

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/1022 of 5 May 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Connector Hilti HCC-B with Injectionmortar Hilti HIT-RE 500 V3 and Hilti HIT-RE 500 V4

Connector for strengthening of existing concrete structures by concrete overlay

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

17 pages including 3 annexes which form an integral part of this assessment

EAD 332347-00-0601, Edition 09/2022

ETA-18/1022 issued on 15 June 2021

Z23237.23

European Technical Assessment ETA-18/1022

Page 2 of 17 | 5 May 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/1022

Page 3 of 17 | 5 May 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Connector Hilti HCC-B is an anchor made of malleable cast iron anchored with Injectionmortar Hilti HIT-RE 500 V3 or Hilti HIT-RE 500 V4 into a predrilled cylindrical drill hole in existing concrete. The Hilti HCC-B is connecting two layers of concrete cast at different times (existing concrete and concrete overlay). The side with shaped head of Hilti HCC-B is finally embedded in the concrete overlay.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Existing concrete:	
- resistances	See Annex C 1, C 2 and C 3
- edge distance and spacing	See Annex B 3
Concrete overlay:	
- resistances	See Annex C 4
- edge distance and spacing	See Annex B 3
Shear interface parameter under static and quasi-static and fatigue cyclic loading	
- material and geometric parameters	See Annex C 4
- factor for fatigue cyclic loading	See Annex C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332347-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-18/1022

Page 4 of 17 | 5 May 2023

English translation prepared by DIBt

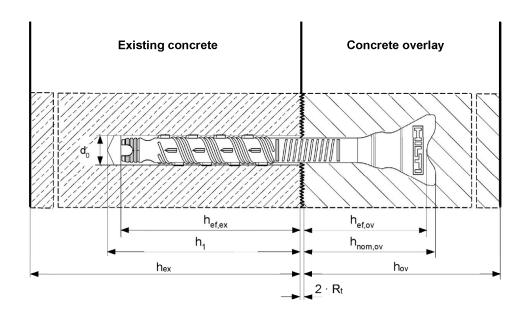
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 5 May 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:
Tempel

Installed condition

Figure A1:

Connector Hilti HCC-B

Effective embedment depth in existing concrete $h_{\text{ef,ex}}$

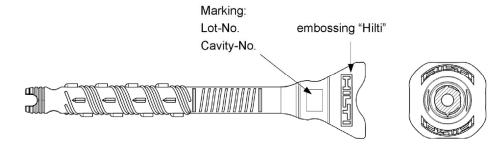
Drill hole depth h₁

Thickness of existing concrete h_{ex}

 R_t Roughness according to EOTA Technical

Report TR 066:2019-10

Effective embedment depth in concrete overlay $h_{\text{ef,ov}}$ Overall embedment depth in the concrete $h_{nom,ov} \\$


Thickness of concrete overlay h_{ov}

Connector Hilti HCC-B	
Product description Installed condition	Annex A1

Product description: Connector and injection mortar

Steel element Hilti HCC-B

Injection mortar Hilti HIT-RE 500 V3: epoxy resin system with aggregate (330 ml, 500 ml and 1400 ml)

Injection mortar Hilti HIT-RE 500 V4: epoxy resin system with aggregate (330 ml, 500 ml and 1400 ml)

Static mixer Hilti HIT-RE-M

Table A1: Materials

Designation	Material
НСС-В	Malleable cast iron, Material EN-GJMB-550-4 acc. EN 1562:2006 Strength: $f_{uk} \ge 500 \text{ N/mm}^2$, $f_{yk} \ge 400 \text{ N/mm}^2$ Rupture Elongation $A_{3,4} \ge 6\%$ Brinell hardness ≤ 250 HBW

Connector Hilti HCC-B	
Product description Steel element / Injection mortar / Static mixer	Annex A2

Specifications of intended use

Anchorages subject to:

- static and quasi static loading
 - surface roughness "very smooth" to "very rough" of the shear interface according to EOTA Technical Report TR 066:2019-10.
- fatique cyclic loading
 - surface roughness "very rough" (Rt ≥ 3 mm) of the shear interface according to EOTA Technical Report TR 066:2019-10.
 - concrete strength class of existing concrete ≥ C20/25 and concrete overlay ≥ C20/25 according to EN 206:2013+A1:2016.

Base material (existing concrete and concrete overlay):

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- · Cracked and uncracked concrete.

Temperature in the base material (existing concrete):

For use with HIT-RE 500 V3

- · at installation:
 - -5 °C to +40 °C for the standard variation of temperatures after installation
- · in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +70 °C

(max. long term temperature +43 °C and max. short term temperature +70 °C)

For use with HIT-RE 500 V4

- · at installation:
 - -5 °C to +40 °C for the standard variation of temperatures after installation
- · in-service:

Temperature range I: -40 °C to +40 °C

(max. long term temperature +24 °C and max. short term temperature +40 °C)

Temperature range II: -40 °C to +55 °C

(max. long term temperature +43 °C and max. short term temperature +55 °C)

Temperature range III: -40 °C to +75 °C

(max. long term temperature +55 °C and max. short term temperature +75 °C)

Connector Hilti HCC-B	
Intended use Specifications	Annex B1

Design:

- The design of an anchorage and the specification of the fastener is under the control of an engineer experienced in anchorages and concrete work.
- Post-installed shear connections are designed in accordance with EOTA Technical Report TR 066:2019-10.
- For the concrete overlay following requirements on the mixture apply:
 - Concrete compressive strength of the new concrete shall be higher than the concrete compressive strength of the existing concrete.
 - Use of concrete with low shrinkage is recommended.
 - Slump of fresh concrete $f \ge 380$ mm, a slump value $f \ge 450$ mm is recommended, if applicable.

Installation:

- Use category (existing concrete): dry or wet concrete condition.
- Installation direction in existing concrete is downward and horizontal and upwards (e.g. overhead) installation (D3).
- The fastener installation is executed by trained personnel, ensuring that the Installation instruction and the specifications by the engineer are observed.
- The requirements for construction works given in EOTA Technical Report TR 066:2019-10 have to be considered.

Connector Hilti HCC-B	
Intended use Specifications	Annex B2

Table B1: Installation parameters of connector Hilti HCC-B in existing concrete

Connector Hilti HCC-B				
Outer diameter of shaft	d	[mm]	14	
Overall length	L	[mm]	180	
Cffeetive and advant double	min. h _{ef,ex}	[]	90	
Effective embedment depth	max. h _{ef,ex}	_ [mm] 	125 - 2 · R _t ¹⁾	
Drill hole depth	h ₁	[mm]	h _{ef,ex} + 5 mm	
Nominal diameter of drill bit	d ₀	[mm]	16	
Minimum thickness of existing concrete	h _{min,ex}	[mm]	h ₁ + 2 · d ₀	
Minimum spacing	Smin,ex	[mm]	75	
Minimum edge distance	Cmin,ex	[mm]	50	
min. h _{ef,ex}				

R_t: Roughness according to EOTA Technical Report TR 066:2019-10.

Table B2: Installation parameters of connector Hilti HCC-B in concrete overlay

Connector Hilti HCC-B						
Diameter of the head	d _h	[mm]	40,6			
Cffeetive ambadment doubt	min. h _{ef,ov}	[mana]	50			
Effective embedment depth	max. h _{ef,ov}	- [mm] -	85 - 2 · R _t ¹⁾			
Overall embedment depth	h _{nom,ov}	[mm]	h _{ef,ov} + 5 mm			
Minimum thickness of concrete overlay	$h_{min,ov}$	[mm]	h _{nom,ov} + c _{nom} ²⁾			
Minimum spacing	S _{min,ov}	[mm]	85			
Minimum edge distance	C _{min,ov}	[mm]	25 + C _{nom} ²⁾			
max. h _{ef,ov} max. h _{nom ov}						

R_t: Roughness according to EOTA Technical Report TR 066:2019-10.

²⁾ c_{nom}: Minimum concrete cover according EN 1992-1-1:2004+AC:2010.

Connector Hilti HCC-B	
Intended use Installation parameters	Annex B3

Table B3: Working time and curing time for Hilti HIT-RE 500 V3 and Hilti HIT-RE 500 V4 1)2)

Temperature	in the T	base material		orking time		curing time
0 °C	to	4 °C	2	hours	48	hours
5 °C	to	9 °C	2	hours	24	hours
10 °C	to	14 °C	1,5	hours	16	hours
15 °C	to	19 °C	1	hour	16	hours
20 °C	to	24 °C	30	min	7	hours
25 °C	to	29 °C	20	min	6	hours
30 °C	to	34 °C	15	min	5	hours
35 °C	to	39 °C	12	min	4,5	hours
	40 °C		10	min	4	hours

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B4: Parameters of drilling, cleaning and setting tools

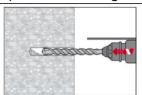
Element	Drill and clean				Setti	ng
	Hamn	ner drilling	Diamond coring Brush			
НСС-В	all	Hollow drill bit TE-CD, TE-YD ¹⁾			machine setting	Hand setting
size	d₀ [mm]	d₀ [mm]	d₀ [mm]	HIT-RB	item	item
16 x 180	16	16	16	16	HCC-M DM14 - HSD-M M12x25	HSD-G M12x25

With vacuum cleaner Hilti VC 10/20/40 (automatic filter cleaning activated, eco-mode off) or a vacuum cleaner providing equivalent cleaning performance in combination with the specified Hilti hollow drill bit TE-CD or TE-YD

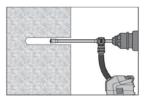
Table B5: Cleaning alternatives

Compressed Air Cleaning (CAC): Air nozzle with an orifice opening of minimum 3,5 mm in diameter.	
Automatic Cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.	

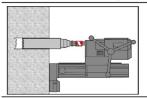
Connector Hilti HCC-B	
Intended use Working time and curing time / Parameters of drilling, cleaning and setting tools / Cleaning alternatives	Annex B4


²⁾ The minimum temperature of the foil pack is +5 °C.

Installation instruction


Hole drilling

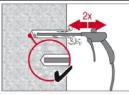
a) Hammer drilling:


Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

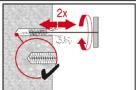
b) Hammer drilling with Hilti hollow drill bit:

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with vacuum attachment following the requirements given in Table B4. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "setting the element" step in the installation instruction.

c) Diamond coring:



Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used.

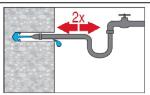

Drill hole cleaning:

Just before setting a connector, the drill hole must be free of dust and debris. Inadequate hole cleaning = poor load values.

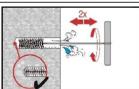
Compressed Air Cleaning (CAC)

Blow 2 times from the back of the hole over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust.

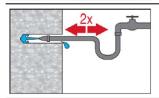
Brush 2 times with the specified brush (see Table B4) by inserting the steel brush Hilti HIT-RB to the back of the hole in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

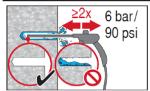

Blow again with compressed air 2 times until return air stream is free of noticeable dust.

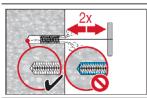
Connector Hilti HCC-B	
Intended use Installation instructions	Annex B5



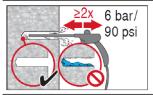
Cleaning of diamond cored holes:


For all drill hole diameters do and all drill hole depths ho.

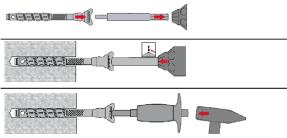

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.


Brush 2 times with the specified brush (see Table B4) by inserting the steel brush Hilti HIT-RB to the back of the hole in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.

Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.



Blow 2 times from the back of the hole over the whole length with oil-free compressed air (min. 6 bar at 6 m³/h) until return air stream is free of noticeable dust and water.


Brush 2 times with the specified brush size (brush $\emptyset \ge$ drill hole \emptyset , see Table B4) by inserting the steel brush Hilti HIT-RB to the back of the hole in a twisting motion and removing it.

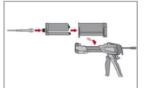
The brush must produce natural resistance as it enters the drill hole – if not the brush is too small and must be replaced with the proper brush diameter.

Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.

Setting the element

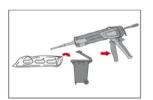
Assemble the setting tool HCC-M DM14 or HSD-M M12x25 to the connector HCC-B and to a drilling machine.

Set the drilling machine to hammering mode and hammer the connector to the desired anchoring embedment depth $h_{\text{ef.}}$


Alternatively, a hammer may also be used to hammer the connector to the desired anchoring embedment depth $h_{\text{ef.}}$ Use of setting tool HSD-G M12x25 is recommended.

Connector Hilti HCC-B	
Intended use Installation instructions	Annex B6

Right after setting the element the clamping noses of the connector create a robust resistance against typical jobsite conditions like hitting by foot or contact with mediumweight goods. Rebar connections may be done to the connectors as well.


Injection preparation

Tightly attach Hilti mixing nozzle HIT-RE-M to foil pack manifold. Do not modify the mixing nozzle.

Observe the instruction for use of the dispenser.

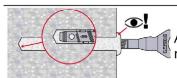
Check foil pack holder for proper function. Insert foil pack into foil pack holder and put holder into dispenser.

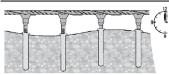
The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discarded quantities are:

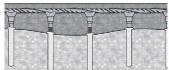
for HIT-RE 500 V3 and HIT-RE 500 V4:

3 strokes for 330 ml foil pack, 4 strokes for 500 ml foil pack, 65 ml foil pack.

The minimum foil pack temperature is +5° C.


Inject adhesive


Put the front end of the mixer into the head of the connector. Dispense mortar until the mortar flows back to the concrete surface in the annular gap.


After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.

After injection is completed the annular gap must be completely filled with mortar. Excess mortar flows out of the borehole.

Observe the curing time t_{cure}, which varies according to temperature of base material (see Table B5). After t_{cure} has elapsed the concrete overlay can be concreted.

Observe the required condition of the surface before concreting and the use of the correct concrete composition.

For requirements on concrete composition see EOTA Technical Report TR 066:2019-10.

Connector Hilti HCC-B	
Intended use Installation instructions	Annex B7

Table C1: Essential characteristics of connector Hilti HCC-B under tension load in existing concrete

Connector Hilti HCC-B						
Steel failure						
Characteristic resistance	$N_{Rk,s,ex}$	[kN]		54,8		
Partial safety factor	γMs,N,ex	[-]		1,5		
Concrete cone failure						
Factor for cracked concrete	$\mathbf{k}_{cr,N,ex}$	[-]		7,7		
Factor for uncracked concrete	$\mathbf{k}_{ucr,N,ex}$	[-]		11,0		
Edge distance	Ccr,N,ex	[mm]		$1,5 \cdot h_{\text{ef,ex}}$		
Spacing	Scr,N,ex	[mm]		$3.0 \cdot h_{\text{ef,ex}}$		
Splitting failure						
	h / h	n _{ef,ex} ≥ 2,0	$1,0\cdot h_{\text{ef,ex}}$	h/h _{ef}		
Edge distance c _{cr,sp,ex} [mm] for	2,0 > h / h	n _{ef,ex} > 1,3	4,6 · h _{ef,ex} - 1,8 · h	1,3		
	h / h	1 _{ef,ex} ≤ 1,3	$2,\!26\cdot h_{\text{ef,ex}}$	1,0 h _{ef}	2,26 h _{ef}	C _{cr,sp}
Spacing	S cr,sp,ex	[mm]		2,0 · c _{cr,sp,ex}		

Connector Hilti HCC-B	
Performance Essential characteristics under tension load in existing concrete	Annex C1

Table C1 continued (1)

Table of continued (1)					
Connector Hilti HCC-B					
Installation factor for HCC-B with HIT-RE 500 V3					
Hammer drilling	γ inst	[-]	1,0		
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]	1,0		
Diamond coring	γinst	[-]	1,4		
Combined pullout and concrete o	one fail	ure for HCC-B	with HIT-RE 500 V3		
Characteristic bond resistance in cr in hammer drilled holes and hammer			llow drill bit TE-CD or TE-YD		
Temperature range I: 40 °C / 24 °	$^{\prime}$ C $ au_{Rk}$	cr [N/mm²]	8,0		
Temperature range II: 70 °C / 43 °	C τ _{Rk} ,	cr [N/mm²]	6,5		
Characteristic bond resistance in ur in hammer drilled holes and hammer					
Temperature range I: 40 °C / 24 °	C τ _{Rk,}	ucr [N/mm²]	12		
Temperature range II: 70 °C / 43 °	C τ _{Rk,}	ucr [N/mm²]	9,0		
Characteristic bond resistance in uncracked concrete C20/25 in diamond cored holes					
Temperature range I: 40 °C / 24	°C T _{Rk,}	ucr [N/mm²]	10		
Temperature range II: 70 °C / 43 °	C τ _{Rk,}	ucr [N/mm²]	7,5		
Influence factors ψ on bond resis	tance τ	Rk			
Influence of concrete strength					
		C30/37	1,04		
Cracked and uncracked concrete	$\psi_{\text{c,ex}}$	C40/50	1,07		
		C50/60	1,10		
Influence of sustained load					
in hammer drilled Cracked and holes and hammer uncracked drilled holes with Hilti	ψ^0 sus	40 °C / 24 °C	0,88		
concrete hollow drill bit TE-CD or TE-YD	1	70 °C / 43 °C	0,70		

Connector Hilti HCC-B	
Performance Essential characteristics under tension load in existing concrete	Annex C2

Table C1 continued (2)

Connector Hi	Iti HCC-B			
Installation fa	ctor for HCC-B with H	IT-RE	500 V4	
Hammer drillin	ng	γinst	[-]	1,0
Hammer drillin Hilti hollow dril	ng with II bit TE-CD or TE-YD	γinst	[-]	1,0
Diamond corin	ng	γinst	[-]	1,4
Combined pu	Illout and concrete co	ne fail	ure for HCC-B	with HIT-RE 500 V4
	bond resistance in crac led holes and hammer dr			ollow drill bit TE-CD or TE-YD
Temperature r	range I: 40 °C / 24 °C	$ au_{Rk,c}$	or [N/mm²]	8,5
Temperature r	range II: 55 °C / 43 °C	$ au_{Rk,G}$	[N/mm ²]	7,5
Temperature r	range III: 75 °C / 55 °C	$ au_{Rk,c}$	_{or} [N/mm ²]	3,0
	bond resistance in uncr led holes and hammer dr			25 Now drill bit TE-CD or TE-YD
Temperature r	range I: 40 °C / 24 °C	$ au_{Rk,\iota}$	ucr [N/mm²]	13
Temperature r	range II: 55 °C / 43 °C	$ au_{Rk,\iota}$	ucr [N/mm²]	11
Temperature r	range III: 75 °C / 55 °C	$ au_{Rk,\iota}$	ucr [N/mm²]	4,0
Characteristic in diamond cor	bond resistance in uncreed holes	acked	concrete C20/2	25
Temperature r	ange I: 40 °C / 24 °C	$ au_{Rk,\iota}$	ucr [N/mm²]	11
Temperature range II: 55 °C / 43 °C τ _{Rk,I}		ucr [N/mm²]	9,0	
Temperature r	range III: 75 °C / 55 °C	$ au_{Rk,\iota}$	ucr [N/mm²]	5,0
Influence fact	tors ψ on bond resista	nce τ _F	₹k	
Influence of co	oncrete strength			
			C30/37	1,04
Cracked and ι	uncracked concrete	Ų c,ex	C40/50	1,07
			C50/60	1,10
Influence of su				
	in hammer drilled holes and hammer		40 °C / 24 °C	0,88
	drilled holes with Hilti	ψ^0 sus	55 °C / 43 °C	0,72
Cracked and uncracked			75 °C / 55 °C	0,69
concrete	in diamond cored holes		40 °C / 24 °C	0,89
		ψ^0 sus	55 °C / 43 °C	0,70
			75 °C / 55 °C	0,62

Connector Hilti HCC-B	
Performance Essential characteristics under tension load in existing concrete	Annex C3

Table C2: Essential characteristics of connector Hilti HCC-B under tension load in concrete overlay

Connector Hilti HCC-B			
Steel failure			
Characteristic resistance	N _{Rk,s,ov}	[kN]	54,8
Partial safety factor	γMs,N,ov	[-]	1,5
Pullout failure			
for cracked concrete	$N_{Rk,p,cr,ov}$	[kN]	≥ N ⁰ Rk,c ¹⁾
for uncracked concrete	$N_{Rk,p,ucr,ov}$	[kN]	≥ N ⁰ Rk,c ¹⁾
Concrete cone failure			
Effective embedment depth	min. h _{ef,ov}	— [mm]	50
Lifective embedifient depth	max. h _{ef,o}	v [[[]]]	85 - 2 · R _t ²⁾
Factor for cracked concrete	$\mathbf{k}_{cr,N,ov}$	[-]	8,9
Factor for uncracked concrete	$\mathbf{k}_{ucr,N,ov}$	[-]	12,7
Edge distance	C _{cr,N,ov}	[mm]	$1.5 \cdot h_{\sf ef,ov}$
Spacing	S cr,N,ov	[mm]	$3,0 \cdot h_{\text{ef,ov}}$
Splitting failure			
Edge distance	C _{cr,sp,ov}	[mm]	$3,0 \cdot h_{\text{ef,ov}}$
Spacing	S _{cr,sp,ov}	[mm]	$6.0 \cdot h_{\text{ef,ov}}$
Blow-out failure	<u> </u>		
Projected area of the head	A_h	[mm ²]	1140
Factor for cracked concrete	k 5,cr	[-]	8,7
Factor for uncracked concrete	k 5,ucr	[-]	12,2

 $N^{0}_{Rk,c}$ according to EN 1992-4:2018, Equation (7.2).

Table C3: Essential characteristics of connector Hilti HCC-B for the shear interface

Connector Hilti HCC-B			
Characteristic yield strength	f _{yk}	[N/mm ²]	400
Product specific factor for ductility	Ωk1	[-]	0,8
Relevant cross section in the area of the interface	As	[mm ²]	109,5
Product specific factor for geometry	OLk2	[-]	1,30
Reduction factor for system performance under fatigue cyclic loading	η_{sc}	[-]	0,4

Connector Hilti HCC-B	
Performance Essential characteristics under tension load in concrete overlay Essential characteristics for the shear interface	Annex C4

Rt: Roughness according to EOTA Technical Report TR 066:2019-10.