

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0160 of 30 October 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Hilti HIT-HY 270 with HAS and HAS-U
Product family to which the construction product belongs	Metal Injection anchors for use in masonry
Manufacturer	Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Werke
This European Technical Assessment contains	52 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	330076-01-0604, Edition 10/2022
This version replaces	ETA-19/0160 issued on 30 August 2019

European Technical Assessment ETA-19/0160 English translation prepared by DIBt

Page 2 of 52 | 30 October 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 52 | 30 October 2023

Specific Part

1 Technical description of the product

The Injection system Hilti HIT-HY 270 with HAS and HAS-U for masonry is a bonded anchor (injection type) consisting of a mortar foil pack with injection mortar Hilti HIT-HY 270, a perforated sieve sleeve and an anchor rod with hexagon nut and washer in the range of M6 to M16. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond and/or mechanical interlock between steel element, injection mortar and masonry.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annexes B7 to B9 and C1 to C30
Characteristic resistance and displacements for seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm. Minimum edge distances and spacing	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

European Technical Assessment ETA-19/0160 English translation prepared by DIBt

Page 4 of 52 | 30 October 2023

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

The following standards are referred to in this European Technical Assessment:

-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels
-	EN 10088-1:2014	Stainless steels - Part 1: List of stainless steels
-	EN 10204:2004	Metallic products - Types of inspection documents
-	EN 998-2:2016	Specification for mortar for masonry - Part 2: Masonry mortar
-	EN 771-1:2011 + A1:2015	Specification for masonry units - Part 1: Clay masonry units
-	EN 771-2:2011 + A1:2015	Specification for masonry units - Part 2: Calcium silicate masonry units
-	EN 771-3:2011 + A1:2015	Specification for masonry units - Part 3: Aggregate concrete
		masonry units (Dense and lightweight aggregates)
-	EN 15037-3: 2009 + A1:2011	Precast concrete products - Beam-and-block floor systems –
		Part 3: Clay blocks

Issued in Berlin on 30 October 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Installed condition

Figure A1: Hollow and solid brick with HAS... and HAS-U... and one sieve sleeve HIT-SC (see Table 5)

Figure A2: Hollow and solid brick with HAS... and HAS-U... and two sieve sleeves HIT-SC for deeper embedment depth (see Table B6)

Figure A3: Solid brick with HAS... and HAS-U... (see Table B7)

Hilti HIT-HY 270 with HAS and HAS-U	
Product description	Annex A1

Hilti HIT-HY 270 with HAS and HAS-U

Product description Installed condition Annex A2

Page 7 of European Technical Assessment ETA-19/0160 of 30 October 2023

English translation prepared by DIBt

Product description: Injection mortar and steel elements	
Injection mortar Hilti HIT-HY 270: hybrid system with aggregate 330 ml and 500 ml	
Marking HILTI HY-270 Production number and production line Expiry date mm/yyyy	HT-HY 270
HAS-U	
M6 to M16 washer nut	
M8 to M16 washer nut	
Sieve sleeve HIT- SC 12 to 22	
Head marking: e.g. HIT-SC 18x85	
i HIT-HY 270 with HAS and HAS-U	
duct description ction mortar / Static mixer / Steel element / Sieve sleeve	Annex A3

Page 8 of European Technical Assessment ETA-19/0160 of 30 October 2023

English translation prepared by DIBt

Designation	Material
Steel elements ma	de of zinc coated steel
HAS 5.8 (HDG), HAS-U 5.8 (HDG)	Strength class 5.8, f_{uk} = 500 N/mm ² , f_{yk} = 400 N/mm ² , Elongation at fracture (I ₀ =5d) > 8% ductile Electroplated zinc coated \geq 5 µm, (HDG) hot dip galvanized \geq 50 µm
HAS 8.8 (HDG), HAS-U 8.8 (HDG)	Strength class 8.8, f_{uk} = 800 N/mm ² , f_{yk} = 640 N/mm ² , Elongation at fracture (I ₀ =5d) > 12% ductile Electroplated zinc coated \geq 5 µm, (HDG) hot dip galvanized \geq 50 µm
Washer	Electroplated zinc coated \geq 5 μm Hot dip galvanized \geq 50 μm
Nut	Strength class of nut adapted to strength class of threaded rod Electroplated zinc coated \geq 5 $\mu m,$ Hot dip galvanized \geq 50 μm
Steel elements ma Corrosion resistan	de of stainless steel ce class (CRC) III according EN 1993-1-4
HAS A4 HAS-U A4	Strength class 70 f_{uk} = 700 N/mm ² , f_{yk} = 450 N/mm ² , Rupture elongation (I_0 = 5d) > 12% ductile.
Washer	Stainless steel EN 10088-1
Nut	Strength class of nut adapted to strength class of threaded rod Stainless steel EN 10088-1
Steel elements ma Corrosion resistan	de of high corrosion resistant steel ce class (CRC) V according EN 1993-1-4
HAS-U HCR	Strength class 80, f_{uk} = 800 N/mm ² , f_{yk} = 640 N/mm ² , Rupture elongation (I_0 = 5d) > 12% ductile
Washer	High corrosion resistant steel EN 10088-1
Nut	Strength class of nut adapted to strength class of threaded rod High corrosion resistant steel EN 10088-1
	· ·
Plastic parts	

Hilti HIT-HY 270 with HAS and HAS-U

Product description Materials

Annex A4

Specifications of intended use

Base materials:

- Solid brick masonry (use category b), according to Annex B3.
 - Note: The characteristic resistances are also valid for larger brick sizes and larger compressive strengths of the masonry unit.
- Hollow brick masonry (use category c), according to Annex B3, B5 and B6.
- Mortar strength class of the masonry: M2,5 at minimum according to EN 998-2.
- For masonry made of other solid, hollow or perforated bricks, the characteristic resistance of the anchor may be determined by job site tests according to TR 053:2022-07, under consideration of the β-factor according to Annex C1, Table C1.

Anchorages s	ubject to:	HIT-HY 270 wi	th HAS and HAS-U		
		In solid bricks	In hollow bricks		
Hole drilling	(2002)	Hammer mode, rotary mode	Rotary mode		
Static and quasi static loading		Annex : C1 (steel), C3 to C20	Annex : C1 (steel), C21 to C30		
Use condition: dry or wet structure		Condition d/d - Installation and use in structures subject to dry internal conditions. Condition w/d - Installation in dry or wet substrate and use in structures subject to dry internal conditions (except calcium silicate bricks). Condition w/w - Installation and use in structures subject to dry or wet environmental conditions (except calcium silicate bricks).			
Installation direction Masonry		Нс	Horizontal		
Installation direction Ceiling brick		Overhead			
Use category		b (solid masonry)	c (hollow or perforated masonry)		
Temperature in the base material at installation		+5° C to +40° C (Table B9)	0° C to +40° C (Table B10)		
In-service	Temperature range Ta:	-40 °C to +40 °C (1	nax. long term temperature +24 °C and nax. short term temperature +40 °C)		
temperature	Temperature range Tb:	-40 °C to +80 °C (I	nax. long term temperature +50 °C and nax. short term temperature +80 °C)		

Table B1: Overview use categories

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use Specifications

Us	e condition	s (Environmental conditions):
•	Structures	subject to dry internal conditions
	(zinc coat	ed steel, stainless steel or high corrosion resistant steel).
•	For all oth annex A4	er conditions according to EN 1993-1-4 accordingly to corrosion resistance class according to table A1.
De	sign:	
•	Anchorag masonry v	es are designed under the responsibility of an engineer experienced in anchorages and work.
•	Verifiable position o supports,	calculation notes and drawings are prepared taking account of the loads to be anchored. The f the anchor is indicated on the design drawings (e.g. position of the anchor relative to etc.).
•	Anchorag	es under static or quasi-static loading are designed in accordance with:
	TR 054:20	022-07, Design method A.
	Applies to	all bricks, if no other values are specified:
	$N_{Rk} = N_{Rl}$	$_{x,b} = \mathbf{N}_{\mathrm{Rk},\mathrm{p}} = \mathbf{N}_{\mathrm{Rk},\mathrm{b},\mathrm{c}} = \mathbf{N}_{\mathrm{Rk},\mathrm{p},\mathrm{c}}$
	$V_{Rk} = V_{Rk}$	$\mathbf{v}_{k,b} = \mathbf{V}_{Rk,c,II} = \mathbf{V}_{Rk,c,\perp}$
	For the ca	lculation of pulling out a brick under tension loading $\mathbf{N}_{Rk,pb}$ or
	pushing o	ut a brick under shear loading V _{Rk,pb} see EOTA Technical Report TR 054:2022-07.
	NRK,S, VRK	_s and M ⁰ _{Rk,s} see annexes C1
	Factors fo	r job site tests and displacements see annex C1 – C30
•	In case of load can b	a brick compressive strength f_b is smaller than the highest strength stated in the load table the be calculated according to the following Equation:
	F _{Rk} , act.	= $F_{Rk,ETA,(fb)} * (f_{b,act.}/f_{b,ETA})^{\alpha}$
	F _{Rk,act.}	 Resistance of the fastener in the actual masonry unit
	$F_{Rk,ETA,(fb)}$	 Resistance of the fastener in the masonry unit stated in annex C3 to C30
	f _{b,act.}	 Actual normalized mean compressive strength of the masonry unit according to EN 772-1
	f _{b,ETA.}	 Normalized mean compressive strength stated in annexes C3 to C30
	α =	0,5 for masonry units of clay or concrete and solid unit of calcium silicate
	α =	0,75 for masonry units of perforated calcium silicate
•	For hollov joint. (Cor	<i>r</i> brick masonry. The shear load vertical to the free edge must be transferred via the vertical npletely filled joint or direct contact.)
•	For hollow	<i>i</i> brick masonry shear load only without lever arm permitted.

Installation:

• Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use Specifications

Page 11 of European Technical Assessment ETA-19/0160 of 30 October 2023

English translation prepared by DIBt

Brick type	Picture	Brick size [mm]	Compressive strength f _{b,ETA} [N/mm²]	Bulk density [kg/dm³]	Annex
Solid clay brick EN 771-1		≥ 240x115x52	12 / 20 / 40	2,0	C3/C4
Solid clay brick EN 771-1		≥ 240x115x72	10 / 20	2,0	C5/C7
Solid clay brick EN 771-1		≥ 240x115x113	12 / 20	2,0	C8/C1
Solid calcium silicate brick EN 771-2		≥ 240x115x113	12 / 28	2,0	C11/C ⁷
Solid calcium silicate brick EN 771-2		≥ 248x240x248	12 / 20 / 28	2,0	C13/C ⁻
Solid light weight concrete brick EN 771-3		≥ 240x115x113	4 / 6	0,9	C17/C
Solid normal weight concrete brick EN 771-3		≥ 240x115x113	6 / 16	2,0	C19/C2
Hollow clay brick EN 771-1		300x240x238	12 / 20	1,4	C21/C2
Hollow calcium silicate brick EN 771-2	-	248x240x248	12 / 20	1,4	C23/C2
Hollow lightweight concrete brick EN 771-3		495x240X238	2/6	0,7	C25/C2
Hollow normal weight concrete brick EN 771-3		500x200x200	4 / 10	0,9	C28/C2
Hollow clay brick EN 771-1 Ceiling brick		250x510x180	EN 15037-3 class R2	1,0	C30
HIT-HY 270 with HAS and ded Use types and properties	HAS-U			Anr	nex B3

Table B3: Overview fastening elements (including sizes and embedment depths)and corresponding brick types

Brick type	Picture	HAS/HAS-U	HAS/HAS-U + HIT-SC	Annex
Solid clay brick EN 771-1		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C3/C4
Solid clay brick EN 771-1		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C5/C7
Solid clay brick EN 771-1		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C8/C10
Solid calcium silicate brick EN 771-2		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C11/C12
Solid calcium silicate brick EN 771-2		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C13/C16
Solid light weight concrete brick EN 771-3		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C17/C18
Solid normal weight concrete brick EN 771-3		M8 to M16 h _{ef} = 50 mm to 300 mm	M8 to M16 h _{ef} = 80 mm to 160 mm	C19/C20
Hollow clay brick EN 771-1		-	M8 to M16 h _{ef} = 80 mm to 160 mm	C21/C22
Hollow calcium silicate brick EN 771-2	the second se	-	M8 to M16 h _{ef} = 80 mm to 160 mm	C23/C24
Hollow lightweight concrete brick EN 771-3		-	M8 to M16 h _{ef} = 80 mm to 160 mm	C25/C27
Hollow normal weight concrete brick EN 771-3	-	-	M8 to M16 h _{ef} = 50 mm to 160 mm	C28/C29
Hollow clay brick EN 771-1 Ceiling brick		-	M6 h _{ef} = 80 mm	C30

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use

Fastening elements and corresponding brick types

Page 13 of European Technical Assessment ETA-19/0160 of 30 October 2023

English translation prepared by DIBt

Page 14 of European Technical Assessment ETA-19/0160 of 30 October 2023

English translation prepared by DIBt

Table B5: Installation parameters of HAS... and HAS-U... with one sieve sleeve HIT-SC in hollow brick and solid brick (Figure A1)

HAS and HAS-U	\frown]Þ	M6	IV	8	М	10	M	12	M	16
with HIT-SC			12x85	16x50	16x85	16x50	16x85	18x50	18x85	22x50	22x85
Nominal diameter of drill bit	d_0	[mm]	12	16	16	16	16	18	18	22	22
Drill hole depth	h₀	[mm]	95	60	95	60	95	60	95	60	95
Effective embedment depth	h _{ef}	[mm]	80	50	80	50	80	50	80	50	80
Maximum diameter of clearance hole in the fixture	d _f	[mm]	7	9	9	12	12	14	14	18	18
Minimum wall thickness	\mathbf{h}_{min}	[mm]	115	80	115	80	115	80	115	80	115
Brush HIT-RB	-	[-]	12	16	16	16	16	18	18	22	22
Number of strokes HDM	-	[-]	5	4	6	4	6	4	8	6	10
Number of strokes HDE 500-A	-	[-]	4	3	5	3	5	3	6	5	8
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	0	3	3	4	4	6	6	8	8
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	-	2	2	2	2	3	3	6	6

Table B6: Installation parameters of HAS... and HAS-U... with two HIT-SC in hollow brick and solid brick for deeper embedment depth (Figure A2)

HAS and HAS-U	\frown]Þ	M	18	M	10
with HIT-SC			16x50+16x85	16x85+16x85	16x50+16x85	16x85+16x85
Nominal diameter of drill bit	d_0	[mm]	16	16	16	16
Drill hole depth	h ₀	[mm]	145	180	145	180
Effective embedment depth	h_{ef}	[mm]	130	160	130	160
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	9	12	12
Minimum wall thickness	\mathbf{h}_{min}	[mm]	195	230	195	230
Brush HIT-RB	-	[-]	16	16	16	16
Number of strokes HDM	-	[-]	4+6	6+6	4+6	6+6
Number of strokes HDE-500	-	[-]	3+5	5+5	3+5	5+5
Maximum torque moment	T _{max}	[Nm]	3	3	4	4

Table B6 continued

HAS and HAS-U	\frown	Þ	M	12	M'	16
with HIT-SC			18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Nominal diameter of drill bit	do	[mm]	18	18	22	22
Drill hole depth	h₀	[mm]	145	180	145	180
Effective embedment depth	h _{ef}	[mm]	130	160	130	160
Maximum diameter of clearance hole in the fixture	df	[mm]	14	14	18	18
Minimum wall thickness	h _{min}	[mm]	195	230	195	230
Brush HIT-RB	-	[-]	18	18	22	22
Number of strokes HDM	-	[-]	4+8	8+8	6+10	10+10
Number of strokes HDE-500	-	[-]	3+6	6+6	5+8	8+8
Maximum torque moment	T _{max}	[Nm]	6	6	8	8

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use

Installation parameters

Page 16 of European Technical Assessment ETA-19/0160 of 30 October 2023

English translation prepared by DIBt

HAS and HAS-U	\square		M8	M10	M12	M16
Nominal diameter of drill bit	do	[mm]	10	12	14	18
Drill hole depth = Effective embedment depth	h₀= h _{ef}	[mm]	50300	50300	50300	50300
Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18
Minimum wall thickness	h _{min}	[mm]	h₀+30	h₀+30	h₀+30	h₀+36
Brush HIT-RB	-	[-]	10	12	14	18
Maximum torque moment	T _{max}	[Nm]	5	8	10	10

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use Installation parameters

Table B8: Installation parameters of HAS... and HAS-U... with two sieve sleevesHIT-SC for setting through the fixture and/or through the non- loadbearinglayer in hollow brick and solid brick (Figure A4)

HAS and HAS-U	\sim]Þ	M	8	M	10
with HIT-SC			16x50+16x85	16x85+16x85	16x50+16x85	16x85+16x85
Nominal diameter of drill bit	d_0	[mm]	16	16	16	16
Drill hole depth	h₀	[mm]	145	180	145	180
Min. effective embedment depth	$h_{\text{ef},\text{min}}$	[mm]	80	80	80	80
Max. thickness of non-loadbearing layer and fixture (through setting)	$h_{p,max}$	[mm]	50	80	50	80
Max. diameter of clearance hole in the fixture (pre-setting)	d _{f1}	[mm]	9	9	12	12
Max. diameter of clearance hole in the fixture (through setting)	d _{f2}	[mm	17	17	17	17
Min. wall thickness	\mathbf{h}_{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Brush HIT-RB	-	[-]	16	16	16	16
Number of strokes HDM	-	[-]	4+6	6+6	4+6	6+6
Number of strokes HDE-500	-	[-]	3+5	5+5	3+5	5+5
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	3	3	4	4
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	2	2	2	2

Table B8 continued

HAS and HAS-U		==]Þ	M [.]	12	M	16
with HIT-SC			18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Nominal diameter of drill bit	d₀	[mm]	18	18	22	22
Drill hole depth	h₀	[mm]	145	180	145	180
Min. effective embedment depth	h ef,min	[mm]	80	80	80	80
Max. thickness of non-loadbearing layer and fixture (for through setting)	$\mathbf{h}_{p,max}$	[mm]	50	80	50	80
Max. diameter of clearance hole in the fixture (pre-setting)	d _{f1}	[mm]	14	14	18	18
Max. diameter of clearance hole in the fixture (through setting)	d _{f2}	[mm	19	19	23	23
Min. wall thickness	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Brush HIT-RB	-	[-]	18	18	22	22
Number of strokes HDM	-	[-]	4+8	8+8	6+10	10+10
Number of strokes HDE-500	-	[-]	5+8	8+8	5+8	8+8
Maximum torque moment for all brick types except "parpaing creux"	T _{max}	[Nm]	6	6	8	8
Maximum torque moment for "parpaing creux"	T _{max}	[Nm]	3	3	6	6

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use Installation parameters

Temperature mater	in the base ial T	Maximum working time t _{work}	minimum curing time t _{cure}
5 °C to	10 °C	10 min	2,5 h
> 10 °C to	20 °C	7 min	1,5 h
> 20 °C to	30 °C	4 min	30 min
> 30 °C to	40 °C	1 min	20 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B10: Maximum working time and minimum curing time for hollow bricks ¹⁾

Temperature in the base material T	Maximum working time t _{work}	minimum curing time t _{cure}
0 °C to 5 °C	10 min	4 h
> 5 °C to 10 °C	10 min	2,5 h
> 10 °C to 20 °C	7 min	1,5 h
> 20 °C to 30 °C	4 min	30 min
> 30 °C to 40 °C	1 min	20 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Table B11: Cleaning alternatives

Manual Cleaning (MC):

1)

Hilti hand pump for blowing out drill hole diameter $d_0 \le 18$ mm and drill hole depth up to $h_0 = 100$ mm.

Compressed air cleaning (CAC):

Air nozzle with an orifice opening of minimum 3,5 mm in diameter for blowing out drill hole depth up to $h_0 = 300$ mm.

Steelbrush HIT-RB:

See table B5 to B8 depending on drill hole diameter for MC and CAC

YMMMM

Hilti HIT-HY 270 with HAS and HAS-U

Intended Use Installation parameters Cleaning tools

Installation		
Hole drilling	If no significant resistance is felt over the entire depth of th (e.g. in unfilled butt joints), the anchor should not be set at	e hole when drilling this position.
Drilling mode		
	In hollow and solid bricks (use category c): rotary mod Drill hole to the required embedment depth with a hammer using an appropriately sized carbide drill bit.	e drill set in rotation mode
C C D D D D D D D D D D D D D D D D D D	In solid bricks (use category b): hammer mode Drill hole to the required embedment depth with a hammer mode using an appropriately sized carbide drill bit.	drill set in hammer
Drill hole cleaning	Just before setting the anchor, the drill hole must be free o Inadequate hole cleaning = poor load values.	f dust and debris.
Manual Cleaning (MC): Fo	or hollow and solid bricks	
	The Hilti hand pump may be used for blowing out drill hole $d_0 \le 18$ mm and drill hole depths up to $h_0 = 100$ mm. Blow out at least 2 times from the back of the drill hole untifice of noticeable dust	s up to diameters il return air stream is
	Brush 2 times with the specified steel brush (tables B5 to E brush Hilti HIT-RB to the back of the hole (if needed with e motion and removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be repla brush diameter.	88) by inserting the steel xtension) in a twisting drill hole (brush Ø ≥ aced with the proper
	Blow out again with the Hilti hand pump at least 2 times un free of noticeable dust.	ıtil return air stream is
lilti HIT-HY 270 with HAS	S and HAS-U	
ntended Use		Annex B11

Compressed Air Cleaning	CAC): For hollow and solid bricks	
	Blow 2 times from the back of the hole (if needed with nozz hole length with oil-free compressed air (min. 6 bar at 6 m ³ $h_0 = 300$ mm) until return air stream is free of noticeable du	zle extension) over the /h; drill hole depth up to ust.
◆ 2x ◆ 2x ◆ 3x ↓ C	Brush 2 times with the specified steel brush (tables B5 to E brush Hilti HIT-RB to the back of the hole (if needed with e motion and removing it. The brush must produce natural resistance as it enters the drill hole \emptyset) - if not the brush is too small and must be replaced brush diameter.	88) by inserting the steel xtension) in a twisting drill hole (brush Ø ≥ aced with the proper
↓2x	Blow again with Hilti hand pump or compressed air 2 times is free of noticeable dust.	s until return air stream
Injection preparation in mas	sonry with holes or voids: installation with sieve sleeve l	HIT-SC
	Single sieve sleeve HIT-SC Close lid	
	Two sieve sleeves HIT-SC Plug sieve sleeves together. Discard superfluous lid. Observe sieve sleeve order in case of different sieve sleev sleeve has to be plugged into longer sleeve.	re lengths: shorter
	Insert sieve sleeve manually. When using two sieve sleeves, longer sieve sleeve has to	be be inserted first.
Hilti HIT-HY 270 with HAS	and HAS-U	
Intended Use Installation instructions		Annex B12

For all applications		
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pag Do not modify the mixing nozzle. Observe the instruction for use of the dispenser and foil p Check foil pack holder for proper function. Do not use dar holders. Insert foil pack into foil pack holder and put holde	ck manifold (snug fit). ack. naged foil packs / er into HIT-dispenser.
	Discard initial adhesive. The foil pack opens automatically initiated. Depending on the size of the foil pack an initial a to be discarded. Discarded quantities are 2 strokes 3 strokes	v as dispensing is mount of adhesive has for 330 ml foil pack, for 500 ml foil pack.
Inject adhesive without for	ming air voide	· .
Installation with sieve slee	ve HIT-SC	
	Single sieve sleeve HIT-SC Insert mixer approximately 1 cm through the lid. Inject req adhesive (see tables B5 to B8). Adhesive must emerge th	uired amount of arough the lid.
	Two sieve sleeves HIT-SC Use extension for installation with two sieve sleeves. Insert mixer approximately 1 cm through the tip of sieve s required amount of adhesive into sieve sleeve "1" (see tal mixer to the point where it extends about 1 cm through the Continue injecting in sieve sleeve "2" as described above.	leeve "2" and inject bles B5 to B8). Withdraw e lid into the sleeve "2".
	Control amount of injected mortar. Adhesive has to protru After injection is completed, depressurize the dispenser b trigger. This will prevent further adhesive discharge from t	de into the lid. y pressing the release the mixer.
Hilti HIT-HY 270 with HAS	and HAS-U	
Intended Use Installation instructions		Annex B13
98366.23		8.06.04-139/23

٦

Solid bricks: installation wit	thout sieve sleeve	
	Inject the adhesive starting at the back of the hole, slowly with each trigger pull. Fill holes approximately 2/3 full to ensure that the annular anchor and the base material is completely filled with adh embedment length.	v withdrawing the mixer r gap between the nesive along the
	After injection is completed, depressurize the dispenser b trigger. This will prevent further adhesive discharge from	by pressing the release the mixer.
Setting the element:	Before use, verify that the element is dry and free of oil a	nd other contaminants.
	HAS and HAS-U in hollow and solid bricks: Pre-setting (Figure A1 to FigureA4) Mark the element to the required embedment depth h _{ef} a	cc. to Table B5 to B7.
	HAS and HAS-U in hollow and solid bricks: setting through the fixture (Figure A4a) or through the non-loadbearing layer and the fixture Mark the element to the required embedment depth h _{ef} +	(Figure A4b) h _₽ acc. to Table B8.
	HAS and HAS-U in hollow and solid bricks: setting through the non-loadbearing (Figure A4c) Mark the element to the required embedment depth h _{ef} +	h _₽ acc. to Table B8.
	Set element to the required embedment depth until worki elapsed. The working time t _{work} is given in Table B9 and T	ng time t _{work} has Fable B10.
Loading the anchor		
t _{cure}	After required curing time t _{cure} (see Table B9 and Table B loaded. The applied installation torque shall not exceed the value tables B5 to B8.	a10) the anchor can be as T _{max} given in
Hilti HIT-HY 270 with HAS a	and HAS-U	
Intended Use		Annex B14

Use categories		w/w a	nd w/d	d/d	
Temperature range		Ta*	Tb*	Ta*	Tb*
Base material	Cleaning			1	
Solid clay brick	CAC	0,96	0,96	0,96	0,96
EN 771-1	MC	0,84	0,84	0,84	0,84
Solid calcium silicate brick EN 771-2	CAC/MC	_1)	_1)	0,96	0,80
Solid light weight concrete brick	CAC	0,82	0,68	0,96	0,80
EN 771-3	MC	0,81	0,67	0,90	0,75
Solid normal weight concrete brick EN 771-3	CAC/MC	0,96	0,80	0,96	0,80
Hollow clay brick	CAC	0,96	0,96	0,96	0,96
EN 771-1	MC	0,84	0,84	0,84	0,84
Hollow calcium silicate brick EN 771-2	CAC/MC	_1)	_1)	0,96	0,80
Hollow light weight concrete brick	CAC	0,69	0,57	0,81	0,67
EN 771-3	MC	0,68	0,56	0,76	0,63
Hollow normal weight concrete brick EN 771-3	CAC/MC	0,96	0,80	0,96	0,80

Table C1: β-factor for job-site testing under tension loading

*Temperature range Ta / Tb see Annex B1

¹⁾ No performance assessed

Table C2: Characteristic resistance to steel failure for HAS... and HAS-U... under tension and shear loading in masonry

Steel failure tension loads		M6	M8	M10	M12	M16	
Characteristic steel resistance	N Rk,s	[kN]	As · f _{uk}				
Steel failure shear loads without lever arm							
Characteristic steel resistance strength class 5.8	V _{Rk,s}	[kN]		C),6 · A _s · f	uk	
Characteristic steel resistance strength class 8.8, 70 and 80	$V_{Rk,s}$	[kN]		C),5 · A _s · f	uk	
Steel failure shear loads with lever arm							
Characteristic bending moment	M ⁰ Rk,s	[kN]		1	,2 · W _{el} ·	f uk	

Hilti HIT-HY 270 with HAS and HAS-U Annex C1 Performances Annex C1 β-factors for job-site testing under tension load Characteristic resistances under tension and shear load – steel failure

Hilti HIT-HY 270 with HAS and HAS-U

Performances Anchor spacing

Brick type: Solid clay brick Mz, 1DF

Table C3: Description of brick

Brick type			Solid Mz, 1DF	
Bulk density	ρ	[kg/dm³]	2,0	And the second second
Compressive strength	fb	[N/mm²]	≥ 12, ≥ 20 or ≥ 40	The second second
Code			EN 771 - 1	
Producer				0
Brick dimensions		[mm]	≥ 240 x 115 x 52	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Characteristic resistances for all anchor combinations (see Table B3)

Table C4: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance c ≥115 mm

Use category	Jse category				w/w = w/d d/d		
Service temperature range			Та	Tb	Та	Tb	
Anchor type and size	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$						
		12		1,5 (2,0*)		
	≥ 50	20		2,0 (2,5*)		
		40	3,5 (4,0*)				
	≥ 80	12	2,5 (3,0*)				
All anchor		20	3,5 (4,0*)				
		40	5,5 (6,5*)				
		12	3,5 (4,0*)				
	≥ 100	20	4,5 (5,0*)				
		40	7,0 (8,0*)				

* CAC cleaning only

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{ll} ≥ [mm]	α _{g,N} [-]
N	115	-	-	_	-	-	-
N	115	55	1,0	N	115	75	1,35
N	115	115	2,0	N···	115	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, 1DF Characteristic values of resistance under tension load and group factor

Table C5: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance c \geq 115 mm (for V_{II}) and c \geq 1,5 h_{ef} (for V_{\perp})

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II}$ [kN]	V _{Rk,c} ⊥
		12	2,5	
HAS and HAS-U M8; M10	≥ 50	20	3,0	
		40	4,0	
		12	3,5	
HAS and HAS-U M12; M16	≥ 50	20	4,5	
		40	5,5	Calculate according to
		12	5,0	TR 054 equation 4.7
HAS and HAS-U M8; M10	≥ 80	20	6,0	
		40	7,5	
		12	6,5	
HAS and HAS-U M12; M16	≥ 80	20	8,5	
		40	10,5	

Related edge and spacing distance and group factor $\alpha_{\mathtt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g[⊥],∨ II} [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,γ⊥[-]
	115	-	-		1,5 h _{ef}	-	-
	115	55	1,0		1,5 h _{ef}	55	1,0
	115	115	2,0		1,5 h _{ef}	3 h _{ef}	2,0
Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gII,V} ⊥[-]
-	-	-	-	V	1,5 h _{ef}	115	1,0
	115	75	2,0		1,5 h _{ef}	3 h _{ef}	2,0

Table C6: Displacements

h _{ef}	N	δ _{N0}	δ _{N∞}	V	δνο	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	1,2	0,1	0,2	1,4	0,5	0,75
80	2,1	0,1	0,2	2,1	1,1	1,65
100	3,9	0,2	0,4	3,0	1,3	1,95

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, 1DF Characteristic values of resistance under shear load and group factor Displacements

Brick type: Solid clay brick Mz, NF

Table C7: Description of brick

Brick type			Solid Mz, NF	
Bulk density	ρ	[kg/dm³]	2,0	The Star Provent
Compressive strength	fb	[N/mm²]	≥ 10 / 20	-12 -12
Code			EN 771 - 1	
Producer				
Brick dimensions		[mm]	≥ 240 x 115 x 71	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Characteristic resistances for all anchor combinations (see Table B3)

Table C8: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50$ mm

Use category		w/w :	= w/d	d/d			
Service temperature range	Ta Tb Ta			Tb			
Anchor type and size	N _{Rk} = N	I _{Rk,p} = N _{Rk,b} =	$\mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk}$	(, b,c [kN]			
	> 50	10	1,5 (1,5*)				
	2 20	20	2,0 (2,0*)				
	≥ 80	10	2,5 (3,0*)				
		20	3,5 (4,0*)				

* CAC cleaning only

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s⊪ ≥ [mm]	α _{g,N} [-]
N	50	-	-	-	-	-	-
N	50	75	1,0	N	115	50	1,0
-	-	-	-	N • •	50	115	1,15
N	50	150	2,0	N • •	50	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, NF Characteristic values of resistance under tension load and group factor

Table C9: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance for $h_{ef} \ge 100$ mm at c ≥ 150 mm

Use category	w/w = w/d d/d			/d		
Service temperature range	Ta Tb Ta T					
Anchor type and size	h _{ef} [mm]	f₀ [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$			
All opener	> 100	10	4,0 (4,5*)			
All anchor	2 100	20	5,5 (6,0*)			

* CAC cleaning only

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N	150	-	-	- 1	-	-	-
N	150	75	1,40	N	150	50	0,75
-	-	-	-	N···	150	115	1,35
N	150	150	2,0	N	150	3 h _{ef}	2,0

Table C10: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 1,5 h_{ef}$

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} [kN]$	V _{Rk,c} ⊥
All anchor	> 50	10	3,0	
All anchor	2 50	20	4,5	
HAS and HAS II M8: M10	> 00	10	5,0	
	2 00	20	7,0	Calculate according to
HAS and HAS II MS: M10	> 100	10	8,0	TR 054 equation 4.7
	2 100	20	11,0	
HAS and HAS II M12: M16	> 00	10	9,0	
	2 00	20	12,0	

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V	1,5 h _{ef}	-	-		1,5 h _{ef}	-	-
V.	1,5 h _{ef}	75	1,55		1,5 h _{ef}	75	1,0
V	1,5 h _{ef}	150	2,0	<u>×</u>	1,5 h _{ef}	3 h _{ef}	2,0
Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,V} ⊥ [-]
V	1,5 h _{ef}	50	1,2		1,5 h _{ef}	50	1,60
V.	1,5 h _{ef}	75	1,5		1,5 h _{ef}	3 h _{ef}	2,0
V	1,5 h _{ef}	115	2,0		-	-	-

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, NF

Characteristic values of resistance under tension load and group factor

Table C11: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II} = \mathbf{V}_{Rk,c,\perp}[kN]$
	> 50	10	3,0
All another	2 50	20	4,5
All anchor	> 00	10	4,0
	≥ 00	20	5,5

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]
	50	-	-
V.,	50	75	1,55
V.,	50	150	2,0
Configuration	c ≥ [mm]	s⊫[mm]	α _{gll,Vll} [-]
	50	50	1,2
	50	115	2,0

Table C12: Displacements

h _{ef}	N	δνο	δ _{N∞}	V	δνο	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	0,8	0,1	0,2	1,6	0,8	1,2
80	1,5	0,1	0,2	2,1	0,8	1,2
100	2,3	0,1	0,2	2,1	0,8	1,2

Hilti HIT-HY 270 with HAS and HAS-U Performances solid clay brick Mz, NF Characteristic values of resistance under shear load and group factor Displacements

Brick type: Solid clay brick Mz, 2DF

Table C13: Description of brick

Brick type			Solid Mz, 2DF	and the second second
Bulk density	ρ	[kg/dm³]	≥ 2,0	
Compressive strength	fb	[N/mm²]	≥ 12 / 20	· In St.
Code			EN 771 - 1	
Producer				
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Characteristic resistances for all anchor combinations (see Table B3)

Table C14: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 115 \text{ mm}$

Use category	w/w = w/d		d/d			
Service temperature range	Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f₀ [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$			
	> 50	12		2,5 (3,0*)	
	≥ 50	20		2,5 (3,0*)		
All anohar	≥ 80 ≥ 100	12		3,5 (4,0*)		
All anchor		20		4,5 (5,5*)		
		12	6,0 (7,0*)			
		20	7,0 (8,0*)			

* CAC cleaning only

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N	115	-	-	-	-	-	-
N	115	75	1,0	N	115	75	1,50
N	115	115	1,60	-	-	-	-
N	115	3 h _{ef}	2,0	N···	115	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, 2DF Characteristic values of resistance under tension load and group factor

Table C15: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50$ mm

Use category	w/w = w/d		d/d			
Service temperature range	Та	Ta Tb Ta Tt				
Anchor type and size	h _{ef} [mm]	f₀ [N/mm²]	N _{Rk} = N	I _{Rk,p} = N _{Rk,b} =	NRK,p,c = NRI	,,b,c [kN]
	> 50	12	1,5 (1,5*)			
All anabar	≥ 50	20		2,0 (2,0*)		
All anchor	> 00	12	3,0 (3,5*)			
	≥ 00	20	3 5 (4 0*)			

* CAC cleaning only

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N •	50	-	-		-	1	-
N	50	75	1,10	N • •	115	50	1,0
N	50	115	1,45	N	50	115	1,15
N	50	3 h _{ef}	2,0	N • •	50	3 h _{ef}	2,0

Table C16: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 1,5 h_{ef}$

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} [kN]$	V _{Rk,c} ⊥
All anohor	> 50	12	5,5	
All ancho	2 50	20	7,0	Coloulate according to
HAS and HAS II MS: M10	> 00	12	8,0	TR 054 equation 4.7
	≥ 00	20	10,0	$(\text{for } h_{\text{sf}} > 80 \text{ mm})$
HAS and HAS II M12	> 00	12	10,5	calculate with
	≥ 00	20	12,0	$h_{ef} = 80 \text{ mm}$
HAS and HAS II M16	> 00	12	12,0	
	≥ 00	20	12,0	

Related edge and spacing distance and group factor $\alpha_{\mathtt{g}}$

Configuration	c ≥ [mm]	s⊥ c [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,γ⊥ [-]
	1,5 h _{ef}	-	-		1,5 h _{ef}	-	-
V	1,5 h _{ef}	75	0,85		1,5 h _{ef}	115	0,75
∨ "	1,5 h _{ef}	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0
Configuration	c ≥ [mm]	s⊫[mm]	α _{gll,∨ll} [-]	Configuration	c ≥ [mm]	sıı[mm]	α _{gll,V} ⊥ [-]
V.	1,5 h _{ef}	115	1,60		1,5 h _{ef}	115	0,8
V. •	1,5 h _{ef}	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, 2DF

Characteristic values of resistance under tension and shear load and group factor

Table C17: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II} = \mathbf{V}_{Rk,c,\perp}[kN]$
All anchor	> 50	12	3,0
	2 50	20	4,0
All anohor	\ 00	12	4,5
All anchor	≥ 00	20	5,5

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]
V	50	-	-
V.,	50	75	0,70
V.,	50	115	1,5
V,	50	3 h _{ef}	2,0
Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gll,Vll} [-]
	50	115	2,0

Table C18: Displacements

h _{ef}	N	δνο	δ _{N∞}	V	δνο	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	0,9	0,1	0,2	1,9	0,6	0,9
80	1,3	0,2	0,4	2,8	1,0	1,5
100	1,7	0,3	0,6	2,8	1,0	1,5

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid clay brick Mz, 2DF Characteristic values of resistance under shear load and group factor Displacements

Brick type: Solid calcium silicate brick KS, 2DF

Table C19: Description of brick

Brick type			Solid KS, 2DF	
Bulk density	ρ	[kg/dm³]	≥ 2,0	
Compressive strength	fb	[N/mm²]	≥ 12 / 28	
Code			EN 771 - 2	
Producer			-	
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Characteristic resistances for all anchor combinations (see Table B3)

Table C20: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 115$ mm

Use category	w/w :	= w/d	d/d			
Service temperature range	Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	N _{Rk} = N	I _{Rk,p} = N _{Rk,b} =	$\mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk}$,ь,с [kN]
All anabar	> 50	12	_1)	_1)	6,0	5,0
	2 50	28	_1)	_1)	9,0	7,5

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N	115	-	-	-	-	-	-
N	115	50	1,0	N	115	50	1,0
N	115	115	1,45	-	-	-	-
N	115	150	2,0	N···	115	115 (H)* 240 (S)*	2,0

* (H) = Header, (S) = Stretcher

¹⁾ No performance assessed

Table C21: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category	w/w = w/d		d/d			
Service temperature range			Та	Tb	Та	Tb
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	N _{Rk} = N	I _{Rk,p} = N _{Rk,b} =	= N _{Rk,p,c} = N _{Rk}	қ, ь,с [kN]
All anohar	> 50		-	1)	4,0	3,5
All anchor	≥ 50	28	-	1)	6,5	5,5

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N	50	-	-	-	-	-	-
N	50	115	2,0	N • •	50	115 (H)* 240 (S)*	2,0

* (H) = Header, (S) = Stretcher

¹⁾ No performance assessed

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid silica brick KS, 2DF

Characteristic values of resistance under tension load and group factor

Table C22: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 115 \text{ mm}$

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} [kN]$	V _{Rk,c} ⊥
All anchor	> 50	12	6,0	Calculate according to
	2 50	28	9,0	TR 054 equation 4.7

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
	115	-	-		115	-	-
	115	50	0,45		115	50	0,45
	115	115	2,0		115	115	2,0
Configuration	c ≥ [mm]	s 🗉 [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,V} ⊥ [-]
V.	115	50	0,45		115	50	0,45
V. •	115	115 (H)* 240 (S)*	2,0		115	115 (H)* 240 (S)*	2,0

* (H) = Header, (S) = Stretcher

Table C23: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II} = \mathbf{V}_{Rk,c,\bot}[kN]$
All anober	> E0	12	3,0
All anchor	≥ 50	28	4,5

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥[-]
V. 🛉	50	-	-	V	50	-	-
V.,	50	115	2,0	V	50	115	2,0
Configuration	c ≥ [mm]	s⊫[mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,V} ⊥[-]
V •	50	115 (H)* 240 (S)*	2,0	V	50	115 (H)* 240 (S)*	2,0

* (H) = Header, (S) = Stretcher

Table C24: Displacements

h _{ef}	Ν	δνο	δ _{N∞}	V	δνο	δ∨∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	2,5	0,3	0,6	2,5	1,0	1,5

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid silica brick KS, 2DF

Characteristic values of resistance under tension and shear load and group factor Displacements

Brick type: Solid calcium silicate brick KS, 8DF

Table C25: Description of brick

Brick type			Solid KS, 8DF	
Bulk density	ρ	[kg/dm³]	≥ 2,0	
Compressive strength	fb	[N/mm²]	≥ 12 / 20 / 28	
Code			EN 771 - 2	
Producer				
Brick dimensions		[mm]	≥ 248 x 240 x 248	
Minimum wall thickness	h _{min}	[mm]	≥ 240	

Characteristic resistances for all anchor combinations (see Table B3)

Table C26: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 120 \text{ mm}$

Use category				w/w	= w/d	d/d	
Service temperatu	re range			Та	Tb	Та	Tb
Anchor type and siz	e	h _{ef} [mm]	f _b [N/mm²]	N _{Rk} = I	N _{Rk,p} = N _{Rk,b} =	$\mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k}}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			12	_1)	_1)	7,0	5,5
All anchor		≥ 50	20	_1)	_1)	9,0	7,5
			28	_1)	_1)	10,5	8,5
			12	_1)	_1)	8,5	7,0
HAS and HAS-U	M8, M10		20	_1)	_1)	11,0	9,0
			28	_1)	_1)	12,0	10,5
HAS and HAS-U	M12		12	_1)	_1)	11,5	9,5
HAS and HAS-U	M8, M10		20	_1)	_1)	12,0	12,0
		≥ 80	28	_1)	_1)	12,0	12,0
HAS and HAS-U	M16		12	_1)	_1)	12,0	12,0
HAS and HAS-U	M12, M16		20	_1)	_1)	12,0	12,0
→ HIT-SC → + ≪			28	_1)	_1)	12,0	12,0
			12	_1)	_1)	12,0	11,0
HAS and HAS-U	M8, M10	≥ 100	20	_1)	_1)	12,0	12,0
			28	_1)	_1)	12,0	12,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid silica brick KS, 8DF Characteristic values of resistance under tension load

Table C26 continued								
HAS and HAS-U	M12, M16		12	_1)	_1)	12,0	12,0	
HAS and HAS-U	M8 to M16	≥ 100	20	_1)	_1)	12,0	12,0	
+ HII-SC			28	_1)	_1)	12,0	12,0	
¹⁾ No performance ass	essed							

Related edge and spacing distance and group factor $\alpha_{\mathtt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{ll} ≥ [mm]	α _{g,N} [-]
N	120	-	-	-	-	-	-
N	120	3 h _{ef}	2,0	N · · ·	120	3 h _{ef}	2,0

Table C27: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category				w/w = w/d		d/d	
Service temperatu	re range			Та	Tb	Та	Tb
Anchor type and siz	e	h _{ef} [mm]	f _b [N/mm²]	N _{Rk} = M	N _{Rk,p} = N _{Rk,b} =	$\mathbf{N}_{Rk,p,c} = \mathbf{N}_{Rk}$,,b,c [kN]
			12	_1)	_1)	4,0	3,5
All anchor		≥ 50	20	_1)	_1)	5,5	4,5
			28	_1)	_1)	6,5	5,0
			12	_1)	_1)	5,0	4,0
HAS and HAS-U	M8, M10		20	_1)	_1)	6,5	5,5
			28	_1)	_1)	7,5	6,5
HAS and HAS-U	M12		12	_1)	_1)	7,0	5,5
HAS and HAS-U	M8, M10		20	_1)	_1)	9,0	7,5
		≥ 80	28	_1)	_1)	10,5	8,5
HAS and HAS-U	M16		12	_1)	_1)	10,0	8,0
HAS and HAS-U	M12, M16		20	_1)	_1)	12,0	10,5
			28	_1)	_1)	12,0	12,0
			12	_1)	_1)	8,0	6,5
HAS and HAS-U	M8, M10	≥ 100	20	_1)	_1)	10,5	8,5
			28	_1)	_1)	12,0	10,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid silica brick KS, 8DF

Characteristic values of resistance under tension load and group factor

HAS and HAS-U	M12		12	_1)	_1)	9,5	8,0	
HAS and HAS-U	M8, M ²	10	20	_1)	_1)	12,0	10,0	
+ HII-SC		> 10	28	_1)	_1)	12,0	12,0	
HAS and HAS-U	M16	210	12	_1)	_1)	12,0	10,5	
HAS and HAS-U	M12, N	116	20	_1)	_1)	12,0	12,0	
+ HIT-SC			28	_1)	_1)	12,0	12,0	
) No performance assessed Related edge and spacing distance and group factor α_g								
Configuration c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]	

		-	009,11	• • • • • • • • • • • • • • • • • • •			00g, 11
N •	50	-	-	Ĩ	-	-	-
N	50	50	1,0	N • •	50	50	1,0
N	50	3 h _{ef}	2,0	N··	50	3 h _{ef}	2,0

Table C28: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 120 \text{ mm}$ (for V_{II}) and $c \ge 1,5 \text{ h}_{ef}$ (for V_L)

Anchor type and siz	e	h _{ef} [mm]	f _b [N/mm ²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} [kN]$	V _{Rk,c} ⊥
	M9 M10		12	9,0	
			20	12,0	
		-	28	12,0	
HAS and HAS-U	M12, M16	≥ 50	12	12,0	Calculate according to
HAS and HAS-U	M12, M16		20	12,0	TR 054 equation 4.7
			28	12,0	

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g[⊥],∨ II} [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
	120	-	-		1,5 h _{ef}	-	-
V.	120	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0
Configuration	c ≥ [mm]	sıı [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gll,V} ⊥ [-]
V	120	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid silica brick KS, 8DF

Characteristic values of resistance under tension and shear load and group factor

Table C29: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II} = \mathbf{V}_{Rk,c,\perp}[kN]$
		12	3,0
All anchor	≥ 50	20	4,0
		28	4.5

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V.,	50	-	-	V	50	-	-
V.,	50	250	2,0	V. -	50	250	2,0
Configuration	c ≥ [mm]	sıı [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,V} ⊥[-]
	50	250	2,0	V	50	250	2,0

Table C30: Displacements

h _{ef}	N	δνο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	2,3	0,10	0,20	3,4	2,8	4,2
80	3,4	0,15	0,30	3,4	2,8	4,2
100	3,4	0,15	0,30	3,4	2,8	4,2

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid silica brick KS, 8DF Characteristic values of resistance under shear load and group factor Displacements

Deutsches Institut für Bautechnik

Brick type: Solid lightweight concrete brick Vbl, 2DF

Table C31: Description of brick

Brick type			Solid Vbl, 2DF	
Bulk density	ρ	[kg/dm³]	≥ 0,9	San Santa
Compressive strength	fb	[N/mm²]	≥ 4 / 6	
Code			EN 771-3	
Producer				And the second second
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Characteristic resistances for all anchor combinations (see Table B3)

Table C32: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 115$ mm

Use category	Jse category					d/d		
Service temperature range			Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$					
	> 50	4	3,0	2,0	3,0 (3,5*)	2,5		
	2 50	6	3,5	3,0	4,0	3,0 (3,5*)		
All anchor	≥ 80	4	4,5	3,5	5,0	4,0 (4,5*)		
		6	5,5	4,5	6,0 (6,5*)	5,0 (5,5*)		
	≥ 100	4	6,0	5,0	6,5 (7,0*)	5,5 (6,0*)		
		6	7,5	6,0	8,0 (8,5*)	6,5 (7,0*)		

* Compressed air cleaning only

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s⊫ ≥ [mm]	α _{g,N} [-]
N	115	-	-	-	-	-	-
N	115	3 h _{ef}	2,0	N	115	3 h _{ef}	2,0

Table C33: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category	Use category						w/w = w/d			d/d	
Service temp	erature rang	е					Ta	a	Tb	Та	Tb
Anchor type a	nd size		h _{ef} [m	m]	f₀ [N/mm	ו²]	N	I _{Rk} =	N _{Rk,p} = N _{Rk,b} =	= N _{Rk,p,c} = N _R	к,b,c [kN]
All anohor	All anchor				4		1,	5	1,2	1,5	1,5
All anchor			2 50	/	6		2,	0	1,5	2,0	1,5
Related edge and spacing distance and group factor α_{g}											
Configuration	c ≥ [mm]	s⊥ ≥ [r	nm]	αg,N	v [-]	Cor	nfigura	ation	c ≥ [mm]	s _∥ ≥ [mm]	α _{g,N} [-]
N	50	-		-		-			-	-	-
N	50	115	1,0			N	••		50	115	1,0
N	115	50		1,0	.0		•••		115	50	1,0
N	50	3 h _{ef}		2,0		N	••		50	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid lightweight concrete brick Vbl, 2DF Characteristic values of resistance under tension load and group factor

Table C34: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 115$ mm (for V_{II}) and $c \ge 1,5$ h_{ef} (for V_{\perp})

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} [kN]$	V _{Rk,c} ⊥
		4	2,0	
	> 50	6	2,5	Calculate according to
HAS and HAS II M10 to M16	≥ 50	4	2,5	TR 054 equation 4.7
		6	3,0	

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
	115	-	-		1,5 h _{ef}	-	-
	115	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0
Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gll,∨ll} [-]	Configuration	c ≥ [mm]	sıı [mm]	α _{gII,V} ⊥[-]
V. •	115	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0

Table C35: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size h _{ef} [mm]				m]	_ f₀ [N/mm²]		$ V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}[kN]$					
All anchor			> 50	、	4		1,20					
			2 50	,	6			1				
Related edge a	and spacing d	istance	e and g	rou	p factor α_i	3						
Configuration	c ≥ [mm]	s⊥ ≥ [mm]	αg⊥	-,∨ II [-]	Config	uration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]		
V.,	50	-		-		<u>V</u> .—		50	-	-		
V.	115	50		1,0		V.—		115	50	1,0		
V.,	50	115		1,0		V.—		50	115	1,0		
V.,	50	3 h _{ef}		2,0		<u>V</u> .—		50	3 h _{ef}	2,0		
Configuration	c ≥ [mm]	s⊪[m	m]	α_{gll}	,vii [-]	Config	uration	c ≥ [mm]	s∥[mm]	α _{gII,V} ⊥ [-]		
	115	50		1,0		<u>v</u>		115	50	1,0		
V	50	115		1,0		<u>v</u>		50	115	1,0		
	50	3 h _{ef}		2,0		V	-	50	3 h _{ef}	2,0		

Table C36: Displacements

h _{ef}	Ν	δΝΟ	δ _{N∞}	V	δνο	δ∨∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	2,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid lightweight concrete brick Vbl, 2DF Characteristic values of resistance under tension and shear loads Displacements

Brick type: Solid normal weight concrete brick Vbn, 2DF

Table C37: Description of brick

Brick type			Solid Vbn, 2DF	
Bulk density	ρ	[kg/dm³]	≥ 2,0	and the second sec
Compressive strength	f b	[N/mm²]	≥ 6 / 16	and the second second
Code			EN 771-3	
Producer				and the second second second
Brick dimensions		[mm]	≥ 240 x 115 x 113	
Minimum wall thickness	h _{min}	[mm]	≥ 115	

Characteristic resistances for all anchor combinations (see Table B3)

Table C38: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 115$ mm

Use category		w/w :	= w/d	d/d				
Service temperature range		Та	Tb	Та	Tb			
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$					
All opener	≥ 50	6	3,0	2,5	3,0	2,5		
		16	5,5	4,5	5,5	4,5		

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{ll} ≥ [mm]	α _{g,N} [-]
N	115	-	-	-	-	-	-
N	115	3 h _{ef}	2,0	N··	115	3 h _{ef}	2,0

Table C39: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category		w/w :	= w/d	d/d			
Service temperature range	Та	Tb	Та	Tb			
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{Rk}} = \mathbf{N}_{\mathbf{Rk},\mathbf{p}} = \mathbf{N}_{\mathbf{Rk},\mathbf{b}} = \mathbf{N}_{\mathbf{Rk},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{Rk},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$				
All another	> 50	6	1,5	1,2	1,5	1,2	
All anchor	2.00	16	2,5	2,0	2,5	2,0	

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s⊫≥ [mm]	α _{g,N} [-]
N •	50	-	-	-	-	-	-
N	50	115	1,0	N • •	50	115	1,0
N	115	50	1,0	N	115	50	1,0
N	50	3 h _{ef}	2,0	N • •	50	3 h _{ef}	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid normal weight concrete brick Vbn, 2DF Characteristic values of resistance under tension load and group factor

Table C40: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 115$ mm (for V_{II}) and $c \ge 1,5$ hef (for V_⊥)

Anchor type and size	n _{ef} [mm]	∫ tp [N/mm²]	$\mathbf{V}_{\mathbf{Rk}} = \mathbf{V}_{\mathbf{Rk},\mathbf{b}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\mathbf{II}} [\mathbf{KN}]$	VRk,c ⊥
All anobar	> 50	6	4,0	Calculate according to
All anchor	_ 00	16	6,5	TR 054 equation 4.7

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V	115	-	-		1,5 h _{ef}	-	-
V.,	115	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0
Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s∥[mm]	α _{gll,V} ⊥[-]
<mark>V. •</mark>	115	3 h _{ef}	2,0		1,5 h _{ef}	3 h _{ef}	2,0

Table C41: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type a	nd size		h _{ef} [m	m]	f₀ [N/mm	$\mathbf{M}^{2} \qquad \mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II} = \mathbf{V}_{Rk,c,\perp} [kN]$					
All anchor			≥ 50		4		1,5				
				` 	6	3,0					
Related edge a	and spacing d	istance	e and g	rou	p factor α_{i}	g					
Configuration	c ≥ [mm]	s⊥ ≥ [mm]	αg⊥	-,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥[-]		
V. 🕴	50	-		-		V	50	-	-		
	115	50		1,0		<u>M</u>	115	50	1,0		
V.,	50	115		1,0)	V	50	115	1,0		
V.,	50	3 h _{ef}		2,0		V	50	3 h _{ef}	2,0		
Configuration	c ≥ [mm]	s⊪[m	m]	α _{gll}	,vii [-]	Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gII,V} ⊥[-]		
	115	50		1,0			115	50	1,0		
V •	50	115		1,0		V	50	115	1,0		
V. •	50	3 h _{ef}		2,0		V	50	3 h _{ef}	2,0		

Table C42: Displacements

h _{ef}	Ν	δνο	δ _{N∞}	V	δνο	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	1,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances solid normal weight concrete brick Vbn, 2DF Characteristic values of resistance under shear load and group factor Displacements

		UD		
Table C43: Description of	brick			1
Brick type			Hlz12-1,4-10 DF	IN CASE OF THE REAL
Bulk density	ρ	[kg/dm³]	≥ 1,4	
Compressive strength	f b	[N/mm²]	≥ 12 / 20	
Code			EN 771 - 1	
Producer			Rapis (D)	
Brick dimensions		[mm]	300 x 240 x 238	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 240	see Table B4

Characteristic resistances for all anchor combinations (see Table B3)

Table C44: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 150$ mm

Use category		w/w = w/d d/d			/d		
Service temperature range		Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$				
All opener	> 00	12	5,5 (6,0*)				
All anchor	≥ 00	20	7,0 (8,0*)				

* Compressed air cleaning only

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s⊫≥ [mm]	α _{g,N} [-]
N	150	-	-	-	-	-	-
N	150	240	2,0	N···	150	300	2,0

Table C45: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category		w/w :	= w/d	d/d			
Service temperature range		Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$				
	> 00	12	1,5 (2,0*)				
All anchor	2 80	20	2,0 (2,5*)				

* Compressed air cleaning only

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N •	50	-	-	-	-	-	-
N	50	5 d₀	1,0	N···	50	5 d ₀	1,0
N	50	240	2,0	N • •	50	300	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow clay brick HIz, 10DF

Characteristic values of resistance under tension load and group factor

Table C46: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 300 \text{ mm}$

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{\mathbf{Rk}} = \mathbf{V}_{\mathbf{Rk},\mathbf{b}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\mathbf{II}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\perp}^{(1)} [\mathbf{kN}]$
HAS and HAS LIMS M10		12	4,5
HAS and HAS-0 1010, 10110	\ 00	20	5,5
HAS and HAS II M12 M16	_ ≥ 00	12	9,5
		20	10

¹⁾ $V_{Rk,b}$ may be used as $V_{Rk,c\perp}$ if

- Horizontal joints are completely filled with mortar and

- Vertical joints are completely filled with mortar or the bricks have completely direct contact to each other.

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,γ⊥ [-]
	300	-	-		300	-	-
	300	240	2,0		300	240	1,0
Configuration	c ≥ [mm]	s 🛛 [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	sıı [mm]	α _{gll,V} ⊥[-]
	300	300	2,0	V	300	300	2,0

Table C47: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50 \text{ mm}$

Anchor type and size	h _{ef} [mm]	c [mm]	V _{Rk,c,} ⊥ [kN]
		≥ 50	1,25
		≥ 250	2,5
All anchor	≥ 80	c [mm]	$\mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II}$ [kN]
		≥ 50	1,25
		≥ 100 and ≥ 6*d₀	2,5

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V.	see table C47	-	-	V	see table C47	-	-
V.,	see table C47	5 d₀	1,0	V	see table C47	5 d ₀	1,0
V.,	see table C47	240	2,0	V	see table C47	240	2,0
Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,∨ll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,V} ⊥ [-]
V	see table C47	5 d₀	1,0	V	see table C47	5 d ₀	1,0
	see table C47	300	2,0	V	see table C47	300	2,0

Table C48: Displacements

h _{ef}	N	δΝΟ	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 80	2,5	0,4	0,8	1,7	1,0	1,5

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow clay brick HIz, 10DF

Characteristic values of resistance under shear load and group factor Displacements

Deutsches Institut für Bautechnik

Brick type: Hollow calcium silicate brick KSL, 8DF

Table C49: Description of brick

Brick type			KSL-12-1,4-8 DF	
Bulk density	ρ	[kg/dm³]	≥ 1,4	
Compressive strength	fb	[N/mm ²]	≥ 12 / 20	
Code			EN 771 – 2	
Producer			KS Wemding (D)]
Brick dimensions		[mm]	248 x 240 x 238	ם [
Minimum wall thickness	h _{min}	[mm]	≥ 240	

Characteristic resistances for all anchor combinations (see Table B3)

Table C50: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category	w/w :	= w/d	d/d			
Service temperature range	Ta Tb Ta Tb			Tb		
Anchor type and size	h _{ef} [mm]	f₀ [N/mm²]	N _{Rk} = N	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{k}\mathbf{N}]$		
	> 00	12	_1)	_1)	4,0	3,0
HAS and HAS II M8 to M16	2 00	20	_1)	_1)	5,5	4,5
	> 100	12	_1)	_1)	5,0	4,0
	2 130	20	_1)	_1)	7,5	6,0

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N	50	-	-	-	-	-	-
N	50	50	1,0	N	50	50	1,0
N	50	240	2,0	N··	50	250	2,0

¹⁾ No performance assessed

Table C51: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 125$ mm (for V_{II}) and $c \ge 250$ mm (for V_{\perp})

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{\mathbf{Rk}} = \mathbf{V}_{\mathbf{Rk},\mathbf{b}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\mathbf{II}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\perp}^{1)} [\mathbf{kN}]$
		12	6,0
		20	9,0
	\ 00	12	9,0
	2 00	20	12,0
HAS and HAS II M12 to M16		12	12,0
		20	12,0

 $\overline{{}^{1)}}$ V_{Rk,b} may be used as V_{Rk,c} if

- Horizontal joints are completely filled with mortar and

- Vertical joints are completely filled with mortar or the bricks have completely direct contact to each other and

- max V_{Rk,c}⊥ = 9 kN

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow silica brick KSL, 8DF

Characteristic values of resistance under tension and shear load and group factor

Related edge a	Related edge and spacing distance and group factor $\alpha_{ extsf{g}}$								
Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,γ⊥ [-]		
	125	Ξ.	-		250	-	-		
	125	240	2,0	-	-	-	-		
Configuration	c ≥ [mm]	s∥[mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gII,V} ⊥ [-]		
X	125	250	2,0	V	250	250	2,0		

Table C52: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size	h _{ef} [mm]	c [mm]	f _b [N/mm²]	$V_{Rk,c}, \perp^{1)}$ [kN]
		> 50	12	4,0
	≥ 80	≥ 50	20	6,0
All anchor		c [mm]	f _b [N/mm²]	$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} [kN]$
		> 50	12	4,0
		≥ 50	20	6,0

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V. 🛉	50	-	-	V	50	-	-
V.,	50	50	1,0	V	50	50	1,0
V.,	50	240	2,0	V	50	240	2,0
Configuration	c ≥ [mm]	sıı [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	s⊪[mm]	α _{gll,V} ⊥ [-]
V	50	50	1,0	V	50	50	1,0
V	50	250	2,0	V	50	250	2,0

¹⁾ max $V_{Rk,c^{\perp}} = 9 \text{ kN}$

Table C53: Displacements

h _{ef}	N	δνο	δ _{N∞}	V	δνο	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	1,0	0,3	0,6	4,3	2,0	3,0
130	2,1	0,3	0,6	4,3	2,0	3,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow silica brick KSL, 8DF Characteristic values of resistance under shear load and group factor Displacements

Deutsches Institut für Bautechnik

Brick type: Hollow lightweight concrete brick Hbl, 16DF

Table C54: Description of brick

Brick type			Hbl-4-0,7	
Bulk density	ρ	[kg/dm³]	≥ 0,7	
Compressive strength	fb	[N/mm²]	≥ 2 / 6	
Code			EN 771-3	
Producer			Knobel (D)	
Brick dimensions		[mm]	495 x 240 x 238	Drawir
Minimum wall thickness	h _{min}	[mm]	≥ 240	see

Table B4

Characteristic resistances for all anchor combinations (see Table B3)

Table C55: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 125$ mm

Use category	Use category				d/d	
Service temperature range	Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathrm{Rk}} = \mathbf{N}_{\mathrm{Rk},\mathrm{p}} = \mathbf{N}_{\mathrm{Rk},\mathrm{b}} = \mathbf{N}_{\mathrm{Rk},\mathrm{p,c}} = \mathbf{N}_{\mathrm{Rk},\mathrm{b,c}} [\mathrm{kN}]$			
HAS and HAS II M8 and M10	≥ 80	2	3,5	3,0	4,0	3,0 (3,5*)
HAS and HAS-0 Mo and Mito,		6	6,0	5,0	6,5 (7,0*)	5,5 (6,0*)
HAS and HAS H M12 and M16	≥ 80	2	4,0	3,5	4,5	3,5 (4,0*)
HAS and HAS-0 MTZ and MT6		6	7,0	6,0	8,0	6,5 (7,0*)

* Compressed air cleaning only

Related edge and spacing distance and group factor α_{g}

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s⊫≥ [mm]	α _{g,N} [-]
N	125	-	-	-	-	-	-
N	125	240	2,0	N	125	240	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow lightweight concrete brick Hbl, 16DF Characteristic values of resistance under tension load and group factor

Table C56: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50$ mm

Use category	w/w	= w/d	d/d			
Service temperature range	Та	Tb	Та	Tb		
Anchor type and size	h _{ef} [mm]	f _b [N/mm ²] N _{Rk} = N _{Rk,p} = N _{Rk,b} = N _{Rk,p,c} = N _{Rk,b,c} [к,ь,с [kN]
	> 00	2	1,5	1,2	1,5	1,5
LIAS and LIAS LIMB to M16	≥ 00	6	2,5	2,0	3,0	2,5
HAS and HAS-U MID to MITO	160	2	2,0	1,5	2,0	1,5 (2,0*)
	160	6	3.5	2.5	3.5 (4.0*)	3.0

* Compressed air cleaning only

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s⊫≥ [mm]	α _{g,N} [-]
N	50	-	-	-	-	-	-
N	50	50	1,0	N··	50	50	1,0
N	50	240	2,0	N···	50	240	2,0

Table C57: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 250$ mm (for V_{II}) and $c \ge 500$ mm (for V_{\perp})

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{\mathbf{Rk}} = \mathbf{V}_{\mathbf{Rk},\mathbf{b}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\mathbf{II}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\perp}^{1}$ [kN]
HAS and HAS II MR M10	> 00	2	4,0
	≥ 80	6	6,5
HAS and HAS II M12	≥ 80	2	5,5
		6	9,5
HAS and HAS II MIG	\ 00	2	6,0
	2 00	6	10,0

¹⁾ $V_{Rk,b}$ may be used as $V_{Rk,c^{\perp}}$ if

- Horizontal joints are completely filled with mortar and

- Vertical joints are completely filled with mortar or the bricks have completely direct contact to each other.

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V	250	-	-		500	-	-
V	250	240	2,0		500	240	1,0
Configuration	c ≥ [mm]	s [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	sıı[mm]	α _{gll,V} ⊥ [-]
V. •	250	250	2,0		500	500	2,0

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow lightweight concrete brick Hbl, 16DF Characteristic values of resistance under tension and shear load and group factor

Anchor type a	nd size	h _{ef} [mm]		c [mm]	f _b [N/	′mm²]		V _{Rk,c,} ⊥ [kN		
			> 50			2		1,5		
				2 30	(6		3,0		
				≥ 250		2		2,5		
All anchor		> 80		c [mm]	f _b [N/	′mm²]	VRk	$= V_{Rk,b} = V_{Rk}$,c,ll [kN]	
		- 00	≥ 50			2		1,5		
						3		3,0		
				≥ 100 ≥ 6 d₀		2		2,5	2,5	
Related edge a	and spacing	g distance	and g	froup factor α	g					
Configuration	c ≥ [mm]	s⊥ ≥ [m	m]	α _g ⊥,∨ II [-]	Configur	ation	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]	
V.,	see table C58	-		-	V		see table C58	-	-	
V.,	see table C58	50		1,0	<u>V.</u>		see table C58	50	1,0	
V _{ii}	see table C58	240		2,0	V		see table C58	240	2,0	
Configuration	c ≥ [mm]	s⊫[mm	ן]	α _{gll,Vll} [-]	Configur	ation	c ≥ [mm]	s II [mm]	α _{gll,V} ⊥[-]	
V. •	see table C58	50		1,0	V		see table C58	50	1,0	
	see table C58	250		2,0	V		see table C58	250	2,0	

Table C59: Displacements

h _{ef}	N	δνο	δ _{N∞}	V	δνο	δv∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	0,8	0,20	0,4	2,3	1,0	1,5
160	1,1	0,25	0,5	2,3	1,0	1,5

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow lightweight concrete brick Hbl, 16DF Characteristic values of resistance under shear load and group factor Displacements

Deutsches Institut für Bautechnik

Brick type: Hollow normal weight concrete brick - parpaing creux

Table C60: Description of brick

Brick type			B40	
Bulk density	ρ	[kg/dm³]	≥ 0,9	
Compressive strength	fb	[N/mm²]	≥ 4 / 10	
Code			EN 771-3	
Producer			Fabemi (F)	
Brick dimensions		[mm]	500 x 200 x 200	Drawing of the brick
Minimum wall thickness	h _{min}	[mm]	≥ 200	see Table B4

Characteristic resistances for all anchor combinations (see Table B3)

Table C61: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading at edge distance $c \ge 50 \text{ mm}$

Use category	Use category					d/d	
Service temperature range	Та	Tb	Та	Tb			
Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{\mathbf{R}\mathbf{k}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{p},\mathbf{c}} = \mathbf{N}_{\mathbf{R}\mathbf{k},\mathbf{b},\mathbf{c}} [\mathbf{K}\mathbf{N}]$				
All anohara	≥ 50	4	0,9	0,9	0,9	0,9	
All anchors		10	2,0	1,5	2,0	1,5	
All anabara	> 400	4	1,5	1,2	1,5	1,2	
All anchors	2 130	10	2,5	2,0	2,5	2,0	

Related edge and spacing distance and group factor $\alpha_{\texttt{g}}$

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _{g,N} [-]	Configuration	c ≥ [mm]	s _{II} ≥ [mm]	α _{g,N} [-]
N	50	-	-	-	-	-	-
N	50	200	2,0	N	50	200	2,0

Table C62: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 200 \text{ mm}$ (for V_{II}) and $c \ge 500 \text{ mm}$ (for V_L)

Anchor type and size	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{V}_{\mathbf{Rk}} = \mathbf{V}_{\mathbf{Rk},\mathbf{b}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\mathbf{II}} = \mathbf{V}_{\mathbf{Rk},\mathbf{c},\perp} {}^{1)} [\mathbf{kN}]$
	NEO	4	4
All anabara	200	10	6,5
All anchors	> 00	4	5
	200	10	7,5

¹⁾ $V_{Rk,b}$ may be used as $V_{Rk,c^{\perp}}$ if

- Horizontal joints are completely filled with mortar and

- Vertical joints are completely filled with mortar or the bricks have completely direct contact to each other.

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow normal weight concrete brick - parpaing creux Characteristic values of resistance under tension and shear load and group factor

Related edge and spacing distance and group factor $\alpha_{ extsf{g}}$							
Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥[-]
	200	æ	(-)		500	-	Ξ
V ₀ ↓	200	200	2,0		500	200	1,0
Configuration	c ≥ [mm]	s [mm]	α _{gll,∨ll} [-]	Configuration	c ≥ [mm]	sıı [mm]	α _{gll,V} ⊥[-]
V	200	200	2,0		500	500	2,0

Table C63: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading at edge distance $c \ge 50$ mm

Anchor type and size	h _{ef} [mm]	c [mm]	f _b [N/mm²]	V _{Rk,c,} ⊥ [kN]
	≥ 50	> 50	4	1,2
		≥ 50	10	1,5
All anchor		≥ 250	4/10	2,5
		c [mm]	f _b [N/mm²]	$\mathbf{V}_{Rk} = \mathbf{V}_{Rk,b} = \mathbf{V}_{Rk,c,II} [kN]$
		> 50	4	2,0
		≥ 50	10	3.0

Related edge and spacing distance and group factor α_g

Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨ II [-]	Configuration	c ≥ [mm]	s⊥ ≥ [mm]	α _g ⊥,∨⊥ [-]
V. 🛉	50	-	-	V	see table C63	-	-
V. 🕴	50	50	1,0	V	see table C63	50	1,0
V.,	50	200	2,0	V	see table C63	200	2,0
Configuration	c ≥ [mm]	s II [mm]	α _{gll,Vll} [-]	Configuration	c ≥ [mm]	sıı[mm]	α _{gII,V} ⊥ [-]
	50	50	1,0	V	see table C63	50	1,0
V. •	50	200	2,0	V	see table C63	200	2,0

Table C64: Displacements

h _{ef}	N	δνο	δ _{N∞}	V	δνο	δν∞
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
≥ 50	0,7	0,5	1,0	1,7	1,0	1,5

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow normal weight concrete brick - parpaing creux Characteristic values of resistance under shear load and group factor Displacements

1

Brick type		Ds-1,0		
Bulk density	ρ≥ [kg/dm³]	1,0	willighter.	
Strenght		class R2		
Code		EN 15037-3	and the state of the	
Producer		Fiedler Marktredwitz (D)	and a	
Brick dimensions	[mm]	510 x 250 x 180	Drawing of the brick	
Min. ceiling thickness $h_{min} \ge [mm]$		≥ 180	see Table B4	
		Maximum one anchor per o	ceiling brick	
	XXXXXXXXXXXXX			

Table C66: Installation parameter for all anchor combinations (see Table B3)

Anchor type		HAS-U M6 with HIT-SC 12x85
Edge distance	$c_{min} = c_{cr} [mm]$	100 from support
Spacing Ac	s _{min II} [mm]	510
	s _{min} ⊥ = s _{cr} [mm]	250

Table C67: Group factor

Group factor

α_{g,N} [-]

Table C68: Characteristic tension resistance for all anchor combinations (see Table B3)

Use category			w	/w	d/d	
Service temperature range			Ta Tb Ta		Tb	
Anchor type and size	h _{ef} [mm]	Console load capacity [kN]	N _{Rk} = N	I _{Rk,p} = N _{Rk,b} =	$\mathbf{N}_{\mathrm{Rk},\mathrm{p},\mathrm{c}} = \mathbf{N}_{\mathrm{Rk}}$,,b,c [kN]
All anchor	≥ 80	3	1,5	1,5	1,5	1,5

Table C69: Displacements

h _{ef}	N	δνο	δ _{N∞}
[mm]	[kN]	[mm]	[mm]
≥ 80	0,4	0,15	0,30

Hilti HIT-HY 270 with HAS and HAS-U

Performances hollow clay brick for ceiling Characteristic values of resistance under tension load Displacements