

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0486 of 8 June 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Fixanchor W-FAZ PRO dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Plant 1

23 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601 Edition 06/2021

ETA-20/0486 issued on 28 July 2020

European Technical Assessment ETA-20/0486 English translation prepared by DIBt

Page 2 of 23 | 8 June 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 23 | 8 June 2023

Specific Part

1 Technical description of the product

The Fixanchor W-FAZ PRO dynamic is a fastener made of zinc plated steel (S) or stainless steel (A4) or high corrosion resistant steel (HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B3, C2, C3
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C4
Displacements	see Annex C8, C9
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C5

European Technical Assessment ETA-20/0486

Page 4 of 23 | 8 June 2023

English translation prepared by DIBt

Essential characteristic (fatigue loading, Assessment method B: Fatigue limit resistance)	Performance
Characteristic fatigue resistance under cyclic tension loading	
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,\infty}$	
Characteristic concrete cone, splitting and pull-out fatigue resistance $\Delta N_{Rk,c,0,\infty} \Delta N_{Rk,sp,0,\infty} \Delta N_{Rk,p,0,\infty}$	see Annex C1
Characteristic fatigue resistance under cyclic shear loading	
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,\infty}$	
Characteristic concrete edge and pry-out fatigue resistance $\Delta V_{Rk,c,0,\infty}$ $\Delta V_{Rk,cp,0,\infty}$	see Annex C1
Characteristic fatigue resistance under combined cyclic tension and sh	ear loading
Characteristic steel fatigue resistance a_s ($n = \infty$)	see Annex C1
Load transfer factor for cyclic tension, shear and combined tension and	shear loading
Load transfer factor $\psi_{\scriptscriptstyle FN}, \psi_{\scriptscriptstyle FV}$	see Annex C1

3.2 Safty in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	see Annex C6, C7		

3.3 Aspects of durability

Essential characteristic	Performance
Durability	see Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330250-00-0601 the applicable European legal act is: 1996/582/EC.

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 June 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Page 6 of European Technical Assessment ETA-20/0486 of 8 June 2023

English translation prepared by DIBt

Usable length: B = h_{ef} + t_{fix}

h_{ef}: (existing) effective anchorage depth

t_{fix}: fixture thickness

Table A1: Length identification

Length identifier	G	Н	I	J	Κ	L	М	Ν	0	Ρ	Q	R	S	Т	U
Usable ≥ length B	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135

Length identifie	·V	W	X	Y	Ζ
Usable ≥ length B	140	145	150	160	170

Dimensions in mm

Table A2: Material

		W-FAZ PRO dynamic/S	W-FAZ PRO dynamic/A4	W-FAZ PRO dynamic/HCR						
Part Designation		Steel, galvanized (S)	Stainless steel (A4) CRC III	High corrosion resistant steel (HCR) CRC V						
1	Conical bolt	Steel, galvanized $\ge 5 \ \mu m$, fracture elongation $A_5 \ge 8\%$	Stainless steel, fracture elongation A₅ ≥ 8%	High corrosion resistant steel, fracture elongation $A_5 \ge 8\%$						
2	Expansion sleeve	Stainless steel	Stainless steel	Stainless steel						
3	Filling washer									
4	Washer	Staal golyanizad > E ym		High corrosion						
5	Hexagon nut	Steel, galvanized 2 5 µm	Stamess steel	resistant steel						
6	6 Locking nut									
7	Filling mortar	e.g. Würth injection mor	e.g. Würth injection mortar WIT-VM 250, WIT-UH 300, WIT-PE 1000, WIT-VIZ							

Fixanchor W-FAZ PRO dynamic

Product description

Marking, length identification, material

Annex A2

Page 7 of European Technical Assessment ETA-20/0486 of 8 June 2023

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Fatigue cyclic loading
- · Static and quasi-static action, fire exposure and seismic performance

Base materials:

- Cracked or uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
- For all other conditions according to EN 1993-1-2006+A1:2015-10, corresponding to corrosion resistance classes CRC according to Annex A2, Table A2

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018, TR 055:2018 and TR 061:2020 (design method II)

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on the site
- The anchor can be set in pre-positioned or in-place installation.

Fixanchor W-FAZ PRO dynamic

Intended use Specifications of intended use

Deutsches Institut für Bautechnik

Table E	81: In	stallation	parameters
---------	--------	------------	------------

Anchor size				M10	M12	M16
Nominal drill hole diam	eter	d ₀ =	[mm]	10	12	16
Cutting diameter of dril	l bit	$d_{\text{cut}} \leq$	[mm]	10,45	12,5	16,5
Effective anchorage de	epth ¹⁾	h _{ef} ≥	[mm]	60	70	85
Donth of drill halo		h₀≥	[mm]	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14
Depth of drift hole		h₁≥	[mm]	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17
Diameter of clearance hole in the fixture		d _f =	[mm]	12	14	18
Minimum fixture thickne	ess	t _{fix,min} =	[mm]	5	6	8
Installation torque	S	T _{inst} =	[Nm]	40	60	110
Installation torque	A4 and HCR	T _{inst} =	[Nm]	40	55	100
Overstand		$h_{p} \leq$	[mm]	21,5 + t _{fix}	25,5 + t _{fix}	29,5 + t _{fix}
Length of fastener		L	[mm]	h _{ef} + t _{fix} + 30,5	h _{ef} + t _{fix} + 35,5	h _{ef} + t _{fix} + 43
Hexagon nut width across nut		[mm]	17	19	24	
Locking nut	width a	cross nut	[mm]	17	19	24

¹⁾ End of thread must be above the concrete surface

Intended use Installation parameters

Table B2: Minimum thickness of concrete member, minimum spacings,edge distances and required area

Anchor size	M10	M12	M16				
Minimum member thickness depending on h _{ef}	h _{min} ≥	[mm]	1,5·h _{ef}				
Minimum edge distances and spacings							
Minimum odgo distoneo	Cmin	[mm]	45	55	65		
Minimum edge distance	for s ≥	[mm]	see Table B4				
Minimum energinge	Smin	[mm]	40	50	65		
Minimum spacings	for c ≥	[mm]		see Table B4			

The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in connection with the anchorage depth and the member thickness:

$\mathbf{A}_{sp,rqd} \leq \mathbf{A}_{sp,ef}$

Required splitting area A_{sp,rqd} and idealized splitting area A_{sp,ef} acc. to Table B4.

Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp}

Anchor size		M10	M12	M16				
Applicable concrete thickness h _{sp} [mm]			[mm]	$\min(h; h_{ef} + 1, 5 \cdot c \cdot \sqrt{2})$				
Area to determine c _{cr,sp} —	S	A_{sp}	[mm²]	$\frac{N_{Rk,sp}^{0} + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$		
	A4 HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,415}{0,000742}$		

Fixanchor W-FAZ PRO dynamic

Intended use Minimum spacings and edge distances Required area and applicable concrete thickness

Table B4: Areas to determine spacings and edge distances for installation									
Anchor size	M10	M12	M16						
The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness:									
$A_{sp,rqd} \leq A_{sp,ef}$									
Idealized splitting The spacings and e	area A _{sp,ef} dge distances shall be s	selected o	r rounded	in steps of 5 mr	n.				
Member thickness	: h > h _{ef} + 1,5 ⋅ c								
Single anchor or an	chor group with $s \ge 3 \cdot c$								
Effective anchorage	edepth	h _{ef} < 1,5	·c	A _{sp,ef} =	(6•c) • (1,5•c + h	_{ef}) [mm²]			
Effective anchorage	edepth	h _{ef} ≥ 1,5	· c	A _{sp,ef} =	(6·c) · (3·c)	[mm²]			
Anchor group (s < 3	··c)								
Effective anchorage depth $h_{ef} < 1,5 \cdot c$				$A_{sp,ef} = (3 \cdot c + s) \cdot (1, 5 \cdot c + h_{ef}) [mm^2]$					
Effective anchorage	edepth	h _{ef} ≥ 1,5	·c	$A_{sp,ef} = (3 \cdot c + s) \cdot (3 \cdot c) \qquad [mm]$					
Member thickness	: h ≤ h _{ef} + 1,5 · c								
Single anchor or an	chor group with s ≥ 3·c								
Effective anchorage	edepth	h _{ef} < 1,5	·c	A _{sp,ef} =	(6·c) · h	[mm²]			
Effective anchorage	edepth	h _{ef} ≥ 1,5	· c	$A_{sp,ef} = (6 \cdot c) \cdot (h - h_{ef} + 1, 5 \cdot c)$ [mm ²]					
Anchor group (s < 3	··c)								
Effective anchorage	edepth	h _{ef} < 1,5	·с	A _{sp,ef} =	(3•c + s) • h	[mm²]			
Effective anchorage	edepth	h _{ef} ≥ 1,5	·c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h - h_{ef} + 1, 5 \cdot c) [mm^2]$					
Required splitting	area A _{sp,rqd}								
2	cracked concrete	A _{sp,rqd}	[mm ²]	23 700	31 500	42 300			
S	uncracked concrete	A _{sp,rqd}	[mm²]	34 700	41 300	50 200			
	cracked concrete	A _{sp,rqd}	[mm²]	25 900	29 800	44 300			
A4 and HCR	uncracked concrete	A _{sp,rqd}	[mm²]	35 700	35 300	54 800			

Fixanchor W-FAZ PRO dynamic

Intended use Areas to determine spacings and edge distances

Intended use Installation instructions

Page 12 of European Technical Assessment ETA-20/0486 of 8 June 2023

English translation prepared by DIBt

6	Screw on self-locking nut until hand tight then tighten $^{1}/_{4}$ to $^{1}/_{2}$ turn.
7	Fill the annular gap between anchor and fixture with mortar (compressive strength ≥ 40 N/mm², e.g. Würth WIT-VM 250, WIT-UH 300, WIT-PE 1000, WIT-VIZ). Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

Fixanchor W-FAZ PRO dynamic

Intended use Installation instructions

Intended use Installation instructions

Page 14 of European Technical Assessment ETA-20/0486 of 8 June 2023

English translation prepared by DIBt

6	Position the fixture					
7	Mount filling washer, washer and nut					
8 Tinst Nm	Apply installation torque T _{inst} according to Table B2 b wrench.	oy using a torque				
9 9	Screw on self-locking nut until hand tight then tighter	n ¹ /4 to ½ turn.				
10	Fill the annular gap between anchor and fixture with r (compressive strength \ge 40 N/mm ² , e.g. Würth WIT-V 300, WIT-PE 1000, WIT-VIZ). Use enclosed reducing adapter. Observe the process the mortar! The annular gap is completely filled, wher seeps out.	nortar /M 250, WIT-UH sing information of n excess mortar				
Fixanchor W-FAZ PRO dynamic						
Intended use Installation instructions		Annex B8				

Anchor size			M10	M12	M16
Tension load					
Steel failure					
	S	[kN]	4,6	6,2	9,7
fatigue resistance	.4 ΔN _{Rk,s,0,∞}	[kN]	3,2	5,3	9,2
HC	R	[KN]	2,8	5,5	9,7
fastener groups	ψ_{FN}	[-]		0,5	
Pull-out					
Characteristic fatigue resistance	∆ N Rk,p,0,∞	[kN]		0,5 N _{Rk,p}	
Concrete cone and splitting fail	ure				
Characteristic fatigue registeres	$\Delta N_{Rk,c,0,\infty}$	[kN]		0,5 N _{Rk,c}	
Characteristic fatigue resistance ΔN_{Rk}		[kN]		0,5 N _{Rk,sp}	
Effective anchorage depth	h _{ef}	[mm]	60	70	85
Shear load					
Steel failure without lever arm					
-	S	[kN]	2,5	4,0	7,5
Characteristic A	4 ΔV _{Rk,s,0,∞}	[kN]	1,5	2,8	6,0
HC	R	[kN]	2,3	2,8	5,0
Load-transfer factor for	ΨFV	[-]		0,5	
Concrete prv-out failure					
Characteristic fatigue resistance	ΔV _{Rk.cp.0.∞}	[kN]		0,5 V _{Rk,cp}	
Concrete edge failure					
Characteristic fatigue resistance	ΔV _{Rk.c.0.∞}	[kN]		0,5 V _{Rk,c}	
Effective length of anchor	lf	[mm]	60	70	85
Diameter of anchor	d _{nom}	[mm]	10	12	16
Tension and shear load				· ·	
	γMs,fat	[-]		1,35	
Partial factor ¹⁾	γMc,fat	[-]		1,5	
	γMsp,fat	[-]	1,5		
	γMp,fat	[-]		1,5	
Exponents for combined loading	α_{s}	[-]	0,5	0,5	0,7
	αc	[-]		1,5	

Fixanchor W-FAZ PRO dynamic

Performance Characteristic values of fatigue resistance

Table C2: Characteristic values for tension load under static and quasi-static action, steel galvanized (S)

Anchor siz	2e			M10	M12	M16
Installation factor				1,0		
Steel failur	re					
Characteris	stic resistance	N _{Rk,s}	[kN]	30,4	44,9	79,3
Partial facto	or ¹⁾	γMs	[-]		1,5	
Pull-out			•			
Characteris cracked co	stic resistance in ncrete C20/25	N _{Rk,p,cr}	[kN]	15	22	30
Increasing N _{Rk,p,cr} = ψ _C	factor c • N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$
Characteris uncracked	stic resistance in concrete C20/25	N Rk,p,ucr	[kN]	24	30	50
Increasing N _{Rk,p,ucr} = ψ	factor _C • N _{Rk,p,ucr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$
Splitting						
Characteris	stic resistance	$N^0_{Rk,sp}$	[kN]		min (N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾))
Characteris	stic edge distance ²⁾	Ccr,sp	[mm]	$\frac{A}{(3)}$	$\frac{h_{sp}}{3,41 \cdot h_{sp}} + 0.8 \cdot (h_{sp} - h_{ef})$	$\frac{(1-1)^2}{(1-1)^2}$
Characteris	stic spacing	S _{cr,sp}	[mm]		2 · c _{cr,sp}	
Concrete o	cone failure					
Effective anchorage depth		h _{ef}	[mm]	60 70		85
Characteris	Characteristic edge distance c _{cr,N} [mm]			1,5 · h _{ef}		
Characteris	stic spacing	Scr,N	[mm]	2 · c _{cr,N}		
Factor	cracked concrete	k _{cr,N}	[-]		7,7	
	uncracked concrete	kucr,N	[-]		11,0	

¹⁾ In absence of other national regulations

²⁾ Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$ according to Table B3 ³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Fixanchor W-FAZ PRO dynamic

Performance

Characteristic values for tension load, steel galvanized

Deutsches Institut für Bautechnik

Table C3: Characteristic values for tension load under static or quasi-static action, A4 and HCR

Anchor siz	e			M10	M12	M16
Installation	factor	γinst	[-]		1,0	
Steel failur	e				-	-
Characteris	tic resistance	$N_{Rk,s}$	[kN]	30,4	44,9	74,6
Partial facto	or ¹⁾	γMs	[-]		1,5	
Pull-out						
Characteris cracked cor	tic resistance in ncrete C20/25	N _{Rk,p,cr}	[kN]	17	22	35
Increasing f N _{Rk,p,cr} = ψc	factor • N _{Rk,p,cr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$
Characteris uncracked o	tic resistance in concrete C20/25	N _{Rk,p,ucr}	[kN]	25	42	50
Increasing f N _{Rk,p,ucr} = ψα	factor c ∙ N _{Rk,p,ucr} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$
Splitting						
Characteris	tic resistance	N^0 Rk,sp	[kN]		min (N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾)	
Characteris	tic edge distance ²⁾	C cr,sp	[mm]	$\frac{A}{C}$	$\frac{sp + 0.8 \cdot (h_{sp} - h_{ef})}{3.41 \cdot h_{sp} - 0.59 \cdot h_{ef}}$	$\left(\frac{f}{f}\right)^2$
Characteris	tic spacing	Scr,sp	[mm]		2 · c _{cr,sp}	
Concrete c	one failure					
Effective anchorage depth		h _{ef}	[mm]	60	70	85
Characteris	Characteristic edge distance c _{cr,N} [mm]		[mm]	1,5 · h _{ef}		
Characteris	tic spacing	Scr,N	[mm]	2 · c _{cr,N}		
Faster	cracked concrete	k _{cr,N}	[-]		7,7	
Factor	uncracked concrete	kucr,N	[-]		11,0	

¹⁾ In absence of other national regulations

 $^{2)}$ Applicable concrete thickness h_{sp} and area A_{sp} according to Table B3 to determine characteristic edge distance $c_{cr,sp}$

 $^{3)}\,N^{0}{}_{\text{Rk,c}}\,according$ to EN 1992-4:2018

Fixanchor W-FAZ PRO dynamic

Performance Characteristic values for tension load, A4 and HCR

English translation prepared by DIBt

Table C4: Characteristic values for shear load under static and quasi-static action									
Anchor size			M10	M12	M16				
Installation factor		γinst	[-]		1,0				
Steel failure withou	<u>t</u> lever arm								
Characteristic	S	V ⁰ Rk,s	[kN]	26,8	38,3	60,0			
resistance	A4 and HCR	$V^0{}_{Rk,s}$	[kN]	27,8	39,8	69,5			
Partial factor 1)		γMs	умs [-] 1,25						
Ductility factor	k 7	[-]	1,0						
Steel failure with le	ver arm								
Characteristic	S	M^0 Rk,s	[Nm]	60	105	240			
bending resistance	A4 and HCR	M ⁰ _{Rk,s}	[Nm]	55	99	223			
Partial factor 1)		γMs	[-]		1,25				
Concrete pry-out fa	ilure								
	S	k ₈	[-]	3,1	3,0	3,6			
Pry-out lactor	A4 and HCR	k ₈	[-]	2,8	3,3	3,4			
Concrete edge failu	ire								
Effective length of fail loading	stener in shear	lf	[mm]		h _{ef}				
Outside diameter of	fastener	d _{nom}	[mm]	10	12	16			

¹⁾ In absence of other national regulations

Fixanchor W-FAZ PRO dynamic

Performance Characteristic values for shear load

Table C5: Characteristic values for seismic loading, performance category C1										
Anchor size				M10	M12	M16				
Effective anchora	ige depth	h _{ef} ≥	[mm]	60	70	85				
Tension load			•			•				
Installation factor Steel failure		γinst	[-]		1,0					
Characteristic	S	N _{Rk,s,C1}	[kN]	30,4	44,9	79,3				
resistance	A4 / HCR	N _{Rk,s,C1}	[kN]	30,4	44,9	74,6				
Pull-out										
Characteristic	S	N _{Rk,p,C1}	[kN]	15,0	22,0	30,0				
resistance	A4 / HCR	N _{Rk,p,C1}	[kN]	17,0	22,0	35,0				
Shear load										
Steel failure with	nout lever arm									
Characteristic	S	V _{Rk,s,C1}	[kN]	24,4	33,8	52,3				
resistance	A4 / HCR	V _{Rk,s,C1}	[kN]	22,2	33,2	64,3				
Factor for anchorages		$lpha_{ ext{gap}}$	[-]		1,0					

Table C6: Characteristic values for seismic loading, performance category C2

Anchor size				M10	M12	M16
Effective anchorag	e depth	h _{ef} ≥	[mm]	60	70	85
Tension load						
Installation factor		γinst	[-]		1,0	
Steel failure		1				
Characteristic	S	N _{Rk,s,C2}	[kN]	30,4	44,9	79,3
resistance	A4 / HCR	N _{Rk,s,C2}	[kN]	30,4	44,9	74,6
Pull-out						
Characteristic	S	N _{Rk,p,C2}	[kN]	12,5	19,0	35,2
resistance	A4 / HCR	N _{Rk,p,C2}	[kN]	7,7	13,8	29,4
Shear load						
Steel failure with	out lever arm					
Characteristic	S	V _{Rk,s,C2}	[kN]	19,0	28,0	43,3
resistance	A4 / HCR	V _{Rk,s,C2}	[kN]	15,9	25,6	46,1
Factor for anchora without annular ga	Factor for anchorages α_{gap} [-]without annular gap α_{gap} [-]			1,0		

Fixanchor W-FAZ PRO dynamic

Performance Characteristic resistance for **seismic loading**

Table C7: Characteristic values for tension and shear load under fire exposure,steel galvanized (S)

Anchor size				M10	M12	M16				
Tension load										
Steel failure										
	R30	_		2,6	4,6	7,7				
Characteristic registeres	R60	- NI	FIZN 11	1,9	3,3	5,6				
Characteristic resistance	R90	INRk,s,fi	נגואן	1,3	2,1	3,5				
	R120			1,0	1,5	2,5				
Shear load										
Steel failure without leve	er arm									
	R30		[kN]	7,5	12,3	20,7				
Characteristic registeres	R60			5,1	8,5	14,2				
Characteristic resistance	R90	V Rk,s,fi		2,7	4,6	7,7				
	R120			1,6	2,7	4,5				
Steel failure <u>with</u> lever a	rm									
	R30			9,6	19,1	43,8				
Characteristic resistance	R60	- NA0	[Nima]	6,6	13,1	30,1				
	R90	IVI ~ Rk,s,fi	[NM]	3,5	7,2	16,4				
	R120			2,0	4,2	9,6				

 $N_{\text{Rk},\text{p},\text{fi}}$ and $N_{\text{Rk},\text{c},\text{fi}}$ according to EN 1992-4:2018

Fixanchor W-FAZ PRO dynamic

Table C8: Characteristic values for tension and shear load under fire exposure,A4 and HCR

Anchor size				M10	M12	M16
Tension load						
Steel failure						
	R30	_		6,9	11,0	18,1
Characteristic resistance	R60	NI	FL-N 11	5,0	8,0	13,1
Characteristic resistance	R90	IN Rk,s,fi	נגואן	3,1	4,9	8,1
	R120	-		2,1	3,4	5,6
Shear load						
Steel failure without leve	er arm					
	R30		[kN]	17,6	32,0	52,6
Characteristic registeres	R60			12,6	22,6	37,1
Characteristic resistance	R90	- VRk,s,fi		7,5	13,1	21,5
	R120	-		5,0	8,4	13,8
Steel failure <u>with</u> lever a	rm					
	R30			22,7	49,8	111,5
Oh ana ata viatia na ajatan wa	R60	- • • • •	[N loss]	16,2	35,1	78,6
	R90	■ IVI [×] Rk,s,fi	[Nm]	9,7	20,4	45,6
	R120	_		6,5	13,0	29,2

 $N_{Rk,p,fi}$ and $N_{Rk,c,fi}$ according to EN 1992-4:2018

Fixanchor W-FAZ PRO dynamic

Anchor size			M10	M12	M16
$\begin{array}{l} \textbf{Displacements under stati} \\ \delta_{N0} = \delta_{N0\text{-factor}} * N \\ \delta_{N\infty} = \delta_{N\infty\text{-factor}} * N \end{array}$	c or quasi-sta N: actir	ntic action ng tension loa	ıd		
Cracked concrete					
Easter for displacement	$\delta_{ m N0-factor}$	[mm/kN]	0,05	0,04	0,03
	δ _{N∞-factor}	[mm/kN]	0,20	0,15	0,11
Uncracked concrete					
Faster for displacement	δ N0- factor	[mm/kN]	0,01	0,004	0,005
Factor for displacement	δ _{N∞-} factor	[mm/kN]	0,03	0,03	0,03
Displacement under seism	nic action C2			·	
Displacements for DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	4,7	4,2	4,5
Displacements for ULS	$\delta_{N,C2(ULS)}$	[mm]	16,1	12,9	12,8
Table C10: Displaceme Anchor size	ents under te	ension loa	d, A4 and HC M10	R M12	M16
$\begin{array}{l} \textbf{Displacements under stati} \\ \delta_{N0} = \delta_{N0\text{-factor}} * N \\ \delta_{N^{\infty}} = \delta_{N^{\infty\text{-factor}}} * N \end{array}$	c or quasi-sta N: acti	ntic action ng tension loa	ad		
Cracked concrete					
Factor for displacement	δ N0-factor	[mm/kN]	0,06	0,05	0,02
Factor for displacement	s .	Fina ina /LcN 11	0.17	0.10	0.00

Displacements under static or quasi-static action $\delta_{N0} = \delta_{N0-factor} * N$ $\delta_{N\infty} = \delta_{N\infty-factor} * N$										
Cracked concrete										
Factor for displacement	δ N0-factor	[mm/kN]	0,06	0,05	0,02					
racior for displacement	δ _{N∞-factor}	[mm/kN]	0,17	0,16	0,08					
Uncracked concrete										
Factor for displacement	δ N0- factor	[mm/kN]	0,00	0,001	0,00					
Factor for displacement	$\delta_{N^{\infty-}}$ factor	[mm/kN]	0,05	0,05	0,05					
Displacement under seismic action C2										
Displacements for DLS $\delta_{N,C2(DLS)}$ [mm] 4,1 5,7 5,1										
Displacements for ULS δ _{N,C2(ULS)} [mm] 16,8 18,0 13,9										

Fixanchor W-FAZ PRO dynamic

Performance Displacements under tension load

11,8

Anchor size			M10	M12	M16
Displacements under static $\delta_{V0} = \delta_{V0-factor} * V$ $\delta_{V\infty} = \delta_{V\infty-factor} * V$	or quasi-stati V: acti	i c action ng shear loa	ad		
Factor for displacement	δv0- factor [I	mm/kN]	0,09	0,09	0,07
	δv∞- factor [I	mm/kN]	0,13	0,14	0,11
Displacement under seismi	c action C2				
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	3,1	3,7	3,8
Displacements for ULS	δ V,C2(ULS)	[mm]	5,5	9,9	9,6
Table C12: Displacemen Anchor size	nts under sh e	ear load,	A4 and HCR M10	M12	M16
Table C12: Displacement Anchor size Displacements under static $\delta_{V0} = \delta_{V0-factor} * V$ $\delta_{V\infty} = \delta_{V\infty-factor} * V$	nts under sh o or quasi-stati V: actir	ear load, ic action ng shear loa	A4 and HCR M10	M12	M16
Table C12: Displacement Anchor size Displacements under static $\delta_{V0} = \delta_{V0-factor} * V$ $\delta_{V\infty} = \delta_{V\infty-factor} * V$	nts under sh or quasi-stati V: actin δ _{V0- factor} [ι	ear load, ic action ng shear loa mm/kN]	A4 and HCR M10 d 0,14	M12 0,12	M16 0,09
Table C12: DisplacementAnchor sizeDisplacements under static $\delta_{V0} = \delta_{V0-factor} * V$ $\delta_{V\infty} = \delta_{V\infty-factor} * V$ Factor for displacement	or quasi-stati V: actin	ear load, ic action ng shear loa mm/kN] mm/kN]	A4 and HCR M10 d 0,14 0,20	M12 0,12 0,17	M16 0,09 0,14
Table C12: DisplacementAnchor sizeDisplacements under static $\delta_{V0} = \delta_{V0-factor} * V$ $\delta_{V\infty} = \delta_{V\infty-factor} * V$ Factor for displacementDisplacement under seismic	or quasi-stati V: actin ΔV0- factor [ι δV∞- factor [ι c action C2	ear load, ic action ng shear loa mm/kN] mm/kN]	A4 and HCR M10 d 0,14 0,20	M12 0,12 0,17	M16 0,09 0,14

8,4

 $\delta_{\text{V,C2(ULS)}}$

[mm]

Fixanchor W-FAZ PRO dynamic

Performance Displacements under shear load

Displacements for ULS

Annex C9

11,1