

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0601 of 5 October 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Fall Protection System LUX-top® AP for concrete structures

Anchor Devices for Fastening Personal Fall Protection Systems to Concrete Structures

ST QUADRAT Fall Protection S.A. 45, rue Fuert L-5410 BEYREN LUXEMBURG

ST QUADRAT Fall Protection S.A. 45, rue Fuert L-5410 Beyren

16 pages including 12 annexes which form an integral part of this assessment

331072-00-0601

ETA-20/0601 issued on 14 October 2020

European Technical Assessment ETA-20/0601 English translation prepared by DIBt

Page 2 of 16 | 5 October 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z112174.22 8.06.01-317/22

European Technical Assessment ETA-20/0601 English translation prepared by DIBt

Page 3 of 16 | 5 October 2023

Specific part

1 Technical description of the product

The subject of this assessment are anchor points for protecting persons (operators) working at heights against a fall. The fall protection systems are made of stainless steel 1.4301 / 1.4307. It is fastened to reinforced normal concrete (cracked or uncracked), strength classes C20/25 to C50/60 and pre-stressed concrete with at least the strength class C45/55 according to EN 206. The fall protection systems are fastened to the concrete with the different fasteners which can be seen in the annexes.

This ETA includes the products listed in the following Table 1:

Table 1: Products of this ETA

Annex No.	Trade Name (Product of this ETA)	Fastener			
2	LUX-top® AP2s-18	see Annex 1.3, Table 1			
3	LUX-top® AP2-18 (reduced anchorage depth)	FAZ II 10 /20 K R			
4	LUX-top® AP2-18	see Annex 1.3, Table 2			
5	LUX-top® AP2-26	see Annex 1.3, Table 2			
6	LUX-top® AP10 II	FHY M10 R / FHY M10 A4 alternatively MKT Easy M10 A4			
7	LUX-top® AP10 III	FHY M10 R / FHY M10 A4 alternatively MKT Easy M10 A4			
8	LUX-top® AP2s-90°	see Annex 1.4, Table 3			
9	LUX-top® RGD	see Annex 1.4, Table 4			

The components and the system setup of the product are given in Annexes.

Specification of the intended use in accordance with the applicable EAD 33-1072-00-0601

The fall protection systems listed in Table 1 is used to protect operators working at height (max. 3 persons), by arresting them in a fall. The operators attach themselves to the eye using e.g. ropes and karabiners. In the case of a fall the fall protection systems listed in Table prevent the fall and resulting physical damage assuming the correct usage by the operator. The fall protection systems listed in Table are designed for use in all areas of industry, construction and maintenance.

The intended use of the fall protection systems listed in Table 1 is the attachment to flat roofs or other flat surfaces (e.g. concrete walls) made of concrete. The force applied should usually be perpendicular (90 $^{\circ}$ ± 5 $^{\circ}$) to the fastener. Another load direction is possible if this is specified in the annexes intended only when the direction of force still applies at a 90 $^{\circ}$ angle to the fastening axis.

The performances given in Section 3 are only valid if the of the products listed in Table 1 are used in compliance with the specifications and conditions given in Annexes 1 - 9.

Z112174.22 8.06.01-317/22

European Technical Assessment ETA-20/0601

Page 4 of 16 | 5 October 2023

English translation prepared by DIBt

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the products listed in Table 1 of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				

3.2 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Static loading	Annexes 1-9
Dynamic loading	Annexes 1-9
Check of deformation capacity in case of constraining forces	Annexes 1-9
Durability	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 331072-01-0601, the applicable European legal act is: Decision (EU) 2018/771.

The system to be applied is: 1+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 5 October 2023 by Deutsches Institut für Bautechnik

BD Dr.-Ing. Ronald Schwuchow beglaubigt:
Head of Section Hahn

Z112174.22 8.06.01-317/22

This ETA includes the products listed in Table 1:

Table 1: Products included in this ETA

Annex	Tradename (Product of this ETA)	Fastener	Supporting structure
2	LUX-top® AP2s-18	see annex 1.3 table 1	reinforced concrete C20/25 to C50/60 ^a (cracked or uncracked)
3	LUX-top® AP2-18 (reduced anchorage depth)	bolt anchor FAZ II 10/20 K R ^b	reinforced concrete C20/25 to C50/60 ^a (cracked or uncracked)
4	LUX-top [®] AP2-18	see annex 1.3 table 2	reinforced concrete C20/25 to C50/60 ^a (cracked or uncracked)
5	LUX-top® AP2-26	see annex 1.3 table 2	reinforced concrete C20/25 to C50/60 ^a (cracked or uncracked)
6	LUX-top [®] AP10 II	FHY M10 R / FHY M10 A4 ^c alternative MKT Easy M10 A4	Prestressed concrete hollow core slab min. C45/55 ^a
7	LUX-top® AP10 III	FHY M10 R / FHY M10 A4 ^c alternative MKT Easy M10 A4	Prestressed concrete hollow core slab min. C45/55 ^a
8	LUX-top® AP2s-90°	see annex 1.4 table 3	Reinforced normal concrete C20/25 to C50/60 ^a (cracked and non-cracked)
9	LUX-top® RGD	see annex 1.4 table 4	Reinforced normal concrete C20/25 to C50/60 ^a (cracked and non-cracked)

Annexes 2 to 9 show the components and the system structure of the products. All components of the anchor device can be used in weathered outdoor areas.

a EN 206:2013+A1:2016 Concrete: specification, properties, production and conformity

b ETA-05/0069 fischer Bolt Anchor FAZ II

c ETA-21/0857 fischer hollow ceiling anchor FHY

Fall protection systems for anchoring in concrete substrates

Overview and design values

Annex 1.1

Design values of actions

FEd = FEk * XF

The recommended partial factor γF is 1,5.

The recommended partial factor is used in order to determine the corresponding design actions, provided no partial factor is given in national regulations or national Annexes to Eurocode 0. That leads to the following values:

Example:

For one user: FEd = FEk * χ F = 6 kN * 1,5 = 9 kN

For two Users: FEd = FEk * γ F = (6 + 1) kN * 1,5 = 10,5 kN For three Users: FEd = FEk * γ F = (6 + 2) kN * 1,5 = 12 kN

Static loading / design resistance

FRd = FRk / XM

The recommended partial factor γM is 1,5, provided no partial factor is given in national regulations or national Annexes to Eurocode 2.

Dynamic loading / design resistance

See max. number of users on following annexes.

Deformation capacity

See deformation at 0,70 kN on following annexes.

Fall protection systems for anchoring in concrete substrates

Overview and design values

Annex 1.2

Page 7 of European Technical Assessment ETA-20/0601 of 5 October 2023

English translation prepared by DIBt

40.400 A.4	TUXTOU A4	MKT	10	105	75	140	250	12	,	3		BSZ-SU	MKT	10	105	75	140	250	12	1	3		
M44040F/408	M1ZX105/10	Ē	12	06	70	140	220	12	/	3		HST2-R M10×90/10 ⁸	Hilti	10	75	09	120	250	12	/	3		
100 C C C C C C C C C C C C C C C C C C	M12 A4	Würth	12	06	70	140	220	12	/	3		W-FAZ	Würth	10	75	09	120	250	12	/	3		
20/405 040	30/105 A4	MKT	12	06	70	140	220	12	,	3		BZ 10-10-	MKT	10	75	09	120	250	12	/	3		
11E/20 A 4b							220	12,7	17,5	8		, a						150	12,4	9'6	-		
145/00 44	115/20 A4	MK	12	06	70	120	1					BZ3 M10x	MKT	10	75	09	110	75	12,4	,	3		
							100	12,2	1	ო								250	13,3	22,4	3		
100							220	12,7	17,5	3		192						150	12,4	9'6	1		
40100 DB	12/20 K	Fischer	12	06	70	120	_	01			ř.	FAZ II	Fischer	10	75	09	110	75	12,4	1	3		
							100	12,2	1	3			L					250	13,3	22,4	3		
AIICIO		Manufacturer	Drilling diameter d ₀ [mm]	Drilling depth h ₁ [mm]	Effective anchorage depth her [mm]	min. Concrete thickness h _{min} [mm]		transversal	r R,d [KIN]	Max. number of users	Table 2	Anchor	Manufacturer	Drilling diameter d ₀ [mm]	Drilling depth h ₁ [mm]	Effective anchorage depth her [mm]	min. Concrete thickness h _{min} [mm]	Edge distance c _{min} [mm]	F _{P.4} [kN] transversal	axial	Max. number of users		
	E	T / T / T /	\-{ \-{ \-{	19/ 99/ 99/ 15/	/00 /06 /00 /00 /04 /02	319 310 311 35) 				MKT Würth	bolt bolt i Fix xpa	and and and and	cho cho cho	or E or E or V An	3Z3 3Z V-F ich	3 / plu =A:	BZ ıs a Z a	and Inc	d E d V	3Z. V-F	BZ3 HCR8 -IG FAZ-IG HST2-R	
	pro	ote	ect	ioi	n s	sys	ter	ns	fo	r aı	nchorir	ıg in	со	ncr	ete	e s	ub	stra	ate	es			
:r	rvi	ew	ı a	ınc	d d	es	igr	ı va	alu	es									_	_			,

Page 8 of European Technical Assessment ETA-20/0601 of 5 October 2023

English translation prepared by DIBt

Table 3

	Anahan	FAZ II	BZ3 M12x		
	Anchor	12/20 R ^a	115/20 A4 ^b		
Manufact	urer	Fischer	MKT		
Drilling di	ameter d ₀ [mm]	12	12		
Drilling de	epth h ₁ [mm]	90	90		
Effective	anchorage depth h _{ef} [mm]	70	70		
min. Cond	crete thickness h _{min} [mm]	120	120		
Edge dist	ance c _{min}	150	150		
F _{R,d} [kN]	transversal	12,2	10.0		
R,d [KIN]	axial	12,2	12,2		
Max. num	ber of users	3	3		

Table 4

	Anahan	FAZ II	BZ3 M12x	
	Anchor	12/20 R ^a	115/20 A4 ^b	
Manufact	urer	Fischer	MKT	
Drilling di	ameter d ₀ [mm]	12	12	
Drilling de	epth h ₁ [mm]	90	90	
Effective	anchorage depth h _{ef} [mm]	70	70	
min. Con	crete thickness h _{min} [mm]	ness h _{min} [mm] 120		
Edge dist	ance c _{min}	220 220		
F _{R,d} [kN]	transversal	13,2	13,2	
R,d [KIV]	axial	1	1	
Max. num	nber of users	3	3	

a ETA-05/0069 f

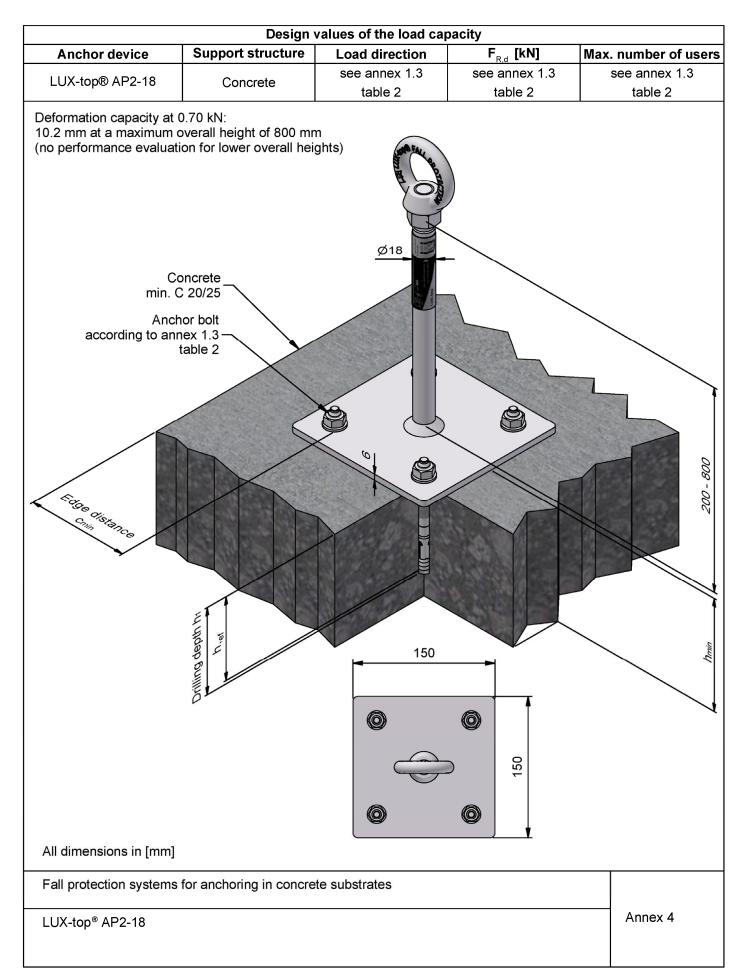
fischer Bolt Anchor FAZ II

b ETA-19/0619 MKT bolt anchor BZ3 / BZ3 A4 / BZ3 HCR8

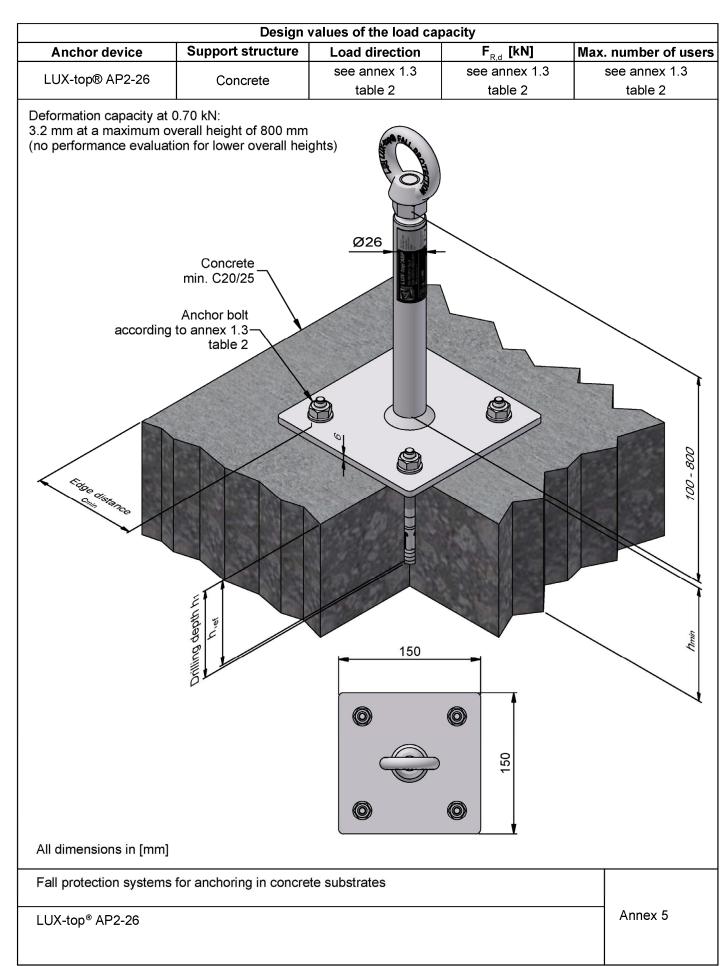
Fall protection systems for anchoring in concrete substrates

Overview and design values

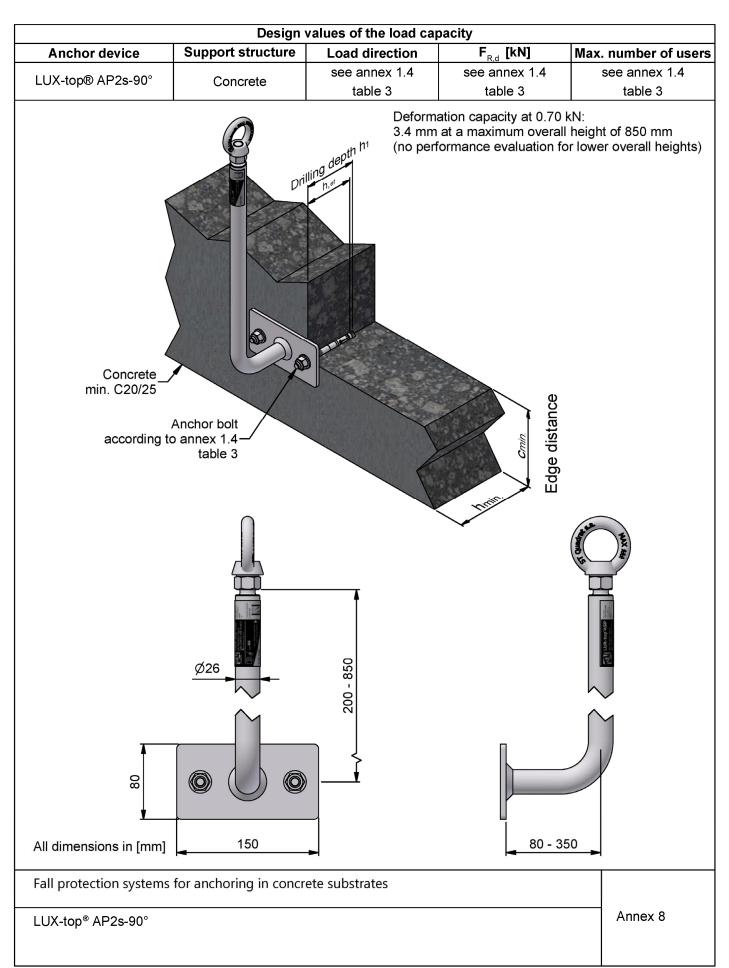
Annex 1.4



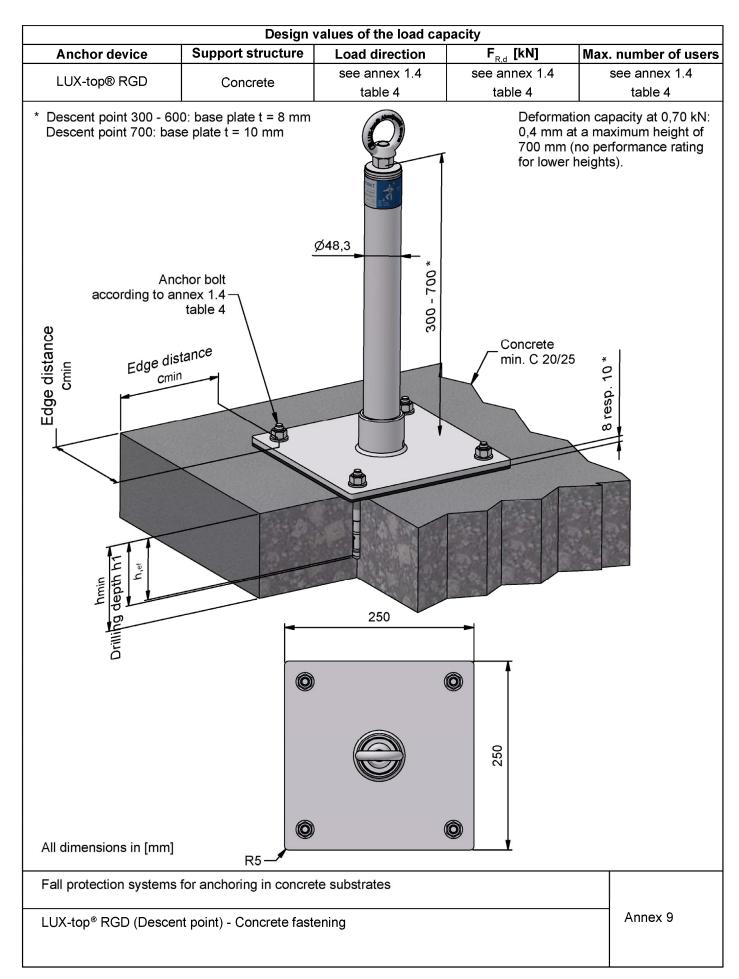
	Design	values of the load ca	pacity	
Anchor device	Support structure	Load direction	F _{R,d} [kN]	Max. number of users
LUX-top® AP2s-18	Concrete	see annex 1.3	see annex 1.3	see annex 1.3
	Control	table 1	table 1	table 1
Concrete min. C 20/25	Anchor bolt rding to annex 1.3 table 1	table 1 F	table 1 For mounting on beam-	table 1
All dimensions in [mm]			80	
	for analysis is seen	do ambalastas		
Fall protection systems	for anchoring in concre	ete sudstrates		
LUX-top® AP2s-18				Annex 2



		values of the load capa		
Anchor device	Support structure	Load direction	F _{R,d} [kN]	Max. number of users
LUX-top® AP2-18	Concrete 1)	transversal	9,2	1
- '		axial	16,0	
LUX-top® AP2-18	Concrete 2)	transversal axial	12,0 16,0	3
Concretion capacity at a 0.2 mm at a maximum on performance evaluate Concretion. C 20 Anchor be FAZ II 10/20 k All dimensions in [mm]	overall height of 800 mn ion for lower overall height ete	ghts) Ø18	150	min. 90°.) min. 100°.)
All difficusions in [illin]				
	for anchoring in concre	te substrates		



	Design	values of the load cap	pacity	
Anchor device	Support structure	Load direction	F _{R,d} [kN]	Max. number of users
LUX-top® AP10 II	Prestressed concrete	transversal	12,0	3
20% tope / ii 10 ii	hollow core slab	axial	12,0	3
(no performance evaluation of the pe	overall height of 800 mm ation for lower overall height of 800 mm ation for lo			Prestressed concrete ceiling min. C 45/55
All dimensions in [mm	1	0	200	
	ns for anchoring in concre	ete substrates		
LUX-top® AP10 II				Annex 6



	Design values of	the load capacity		
Anchor device	Support structure	Load direction	F _{R.d} [kN]	Max. number of users
LUX-top® AP10 III	Prestressed concrete	transversal	12	3
LOX-tope AF 10 III	hollow core slab	axial	12	3
Deformation capacity at 0.70 kN: 3.2 mm at a maximum overall heigen (no performance evaluation for low Hexagonal bolt M10 - A2	ght of 800 mm wer overall heights)			
Washer - A2	300	Ø26		Prestressed concrete ceiling min. C 45/55
Toge distance			// Mirror thickness	/ / min. 28 mm
FHY M10 R / F	alternative asy M10 A4	36		
All dimensions in [mm]		0 0 0 0 0		
7 th difficions in [min]				
Fall protection systems for ancho	oring in concrete substra	tes		
LUX-top® AP10 III				Annex 7

