

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0330 of 10 May 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12

Products for installation systems for supporting technical building equipment

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischer manufacturing plants

17 pages including 12 annexes which form an integral part of this assessment

EAD 280016-00-0602

ETA-21/0330 issued on 5 May 2022

European Technical Assessment ETA-21/0330

Page 2 of 17 | 10 May 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-21/0330

English translation prepared by DIBt

Page 3 of 17 | 10 May 2023

Specific Part

1 Technical description of the product

Object of this European Technical Assessment are the fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12.

The fischer saddle nuts FCN Clix M 10 and FCN Clix M 12 each consist of a sliding nut, a steel plate and a plastic cage.

The fischer saddle nuts FCN Clix P 10 and FCN Clix P 12 each consist of a sliding nut and a plastic cage.

Annex A describes the dimensions and materials of the saddle nuts.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performance given in Section 3 can only be assumed if the fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12 are used in compliance with the specifications and under boundary conditions set out in Annex B.

The test and assessment methods on which this European Technical Assessment is based lead to an assumption of a working life of the fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12 of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

In accordance with the European Assessment Document EAD 280016-00-0602, the product is intended to be used in dry indoor conditions for supporting:

- pipes for the transport of water not intended for human consumption,
- pipes for the transport of gas/fuel intended for the supply of building heating/cooling systems,
- technical building equipment in general,
- components of fixed fire-fighting systems.

The product is intended to be used where failure or excessive deformation of the installation systems would

- compromise safety in case of fire (BWR 2) or
- would lead to an unacceptable risk of accidents or damage in service or in operation (BWR 4).

European Technical Assessment ETA-21/0330

Page 4 of 17 | 10 May 2023

English translation prepared by DIBt

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire:	
- Steel	Class A1
- Plastic parts	not relevant for fire growth based on TR021 and therefore do not need to be classified
Pull-out resistance with $\varepsilon_{B,\theta a} \le 2 \%$ under fire exposure	see Annex D1
Pull-out resistance with $\varepsilon_{B,\theta a} > 2 \ \%$ under fire exposure	No performance assessed

3.2 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic pull-out resistance	see Annex C1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 280016-00-0602 the applicable European legal act is:

For products for installation systems intended to be used for supporting pipes for the transport of water not intended for human consumption the applicable European legal act is Commission Decision 1999/472/EC, as amended by Commission Decision 2001/596/EC.

The system to be applied is 4. This includes uses that are subject to regulations on reaction to fire performance because the performance of the product is class A1 without the need to be tested for reaction to fire.

For products for installation systems intended to be used for supporting pipes for the transport of gas/fuel intended for the supply of building heating/cooling systems the applicable European legal act is Commission Decision 1999/472/EC, as amended by Commission Decision 2001/596/EC.

The system to be applied is 3.

For products for installation systems intended to be used for supporting technical building equipment in general the applicable European legal act is Commission Decision 97/161/EC.

The system to be applied is 2+.

For products for installation systems intended to be used for supporting components of fixed fire-fighting systems the applicable European legal act is Commission Decision 96/577/EC, as amended by Commission Decision 2002/592/EC.

The system to be applied is 1.

European Technical Assessment ETA-21/0330

Page 5 of 17 | 10 May 2023

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable Earopean Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 May 2023 by Deutsches Institut für Bautechnik

Dr.-Ing. Ronald Schwuchow beglaubigt:
Head of Section Ascher

Shape and materials of saddle nuts FCN Clix P and FCN Clix ${\bf M}$

Table A 1.1: Shape and materials of the saddle nut FCN Clix M 10 / 12 and FCN Clix P 10 / 12

Shape	Designation	Thread	Material
Steel plate	FCN Clix M 10	M10	Steel plate: Steel S235JR according to EN 10025-2:2019, material No.: 1.0038, galvanised Saddle nut:
Plastic cage Sliding nut	FCN Clix M 12	M12	Steel S235JR according to EN 10025-2:2019, material No.: 1.0037, galvanised Plastic cage: Polyamide, Nylon 1013B
	FCN Clix P 10	M10	Saddle nut: Steel S235JR according to EN 10025-2:2019,
Plastic cage Sliding nut	FCN Clix P 12	M12	material No.: 1.0037, galvanised Plastic cage: Polyamide, Nylon 1013B

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Product description Shape and materials	Annex A1

Dimensions of saddle nut FCN Clix M

Table A 2.1 Dimensions of the FCN Clix M 10 parts

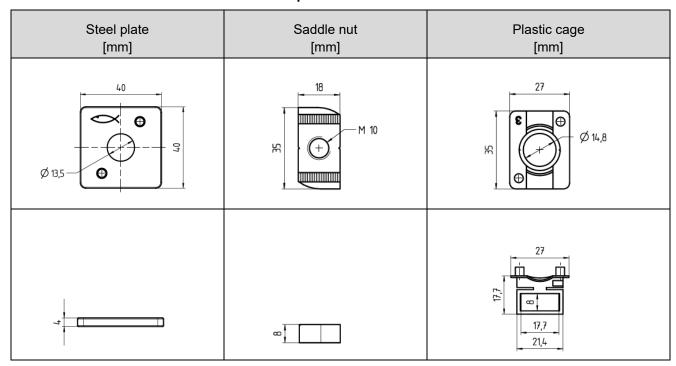


Table A 2.2: Dimensions of the FCN Clix M 12 parts

Steel plate [mm]	Saddle nut [mm]	Plastic cage [mm]
Ø 13,5 • 9	18 M 12	27 8 Ø 14,8
3	9,5	27 27 27 21,4

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Product description Dimensions	Annex A2

Dimensions of saddle nut FCN Clix P

Table A 3.1 Dimensions of the FCN Clix P 10 parts

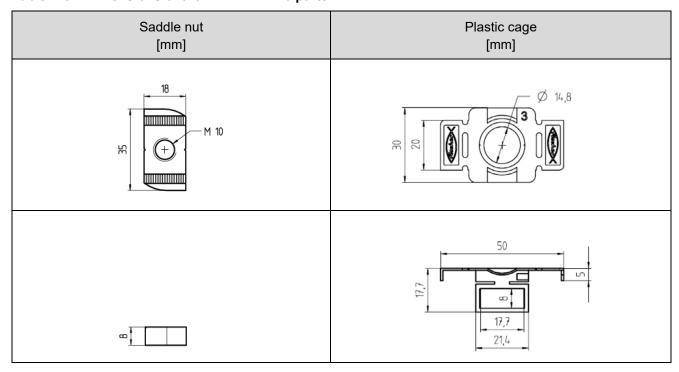
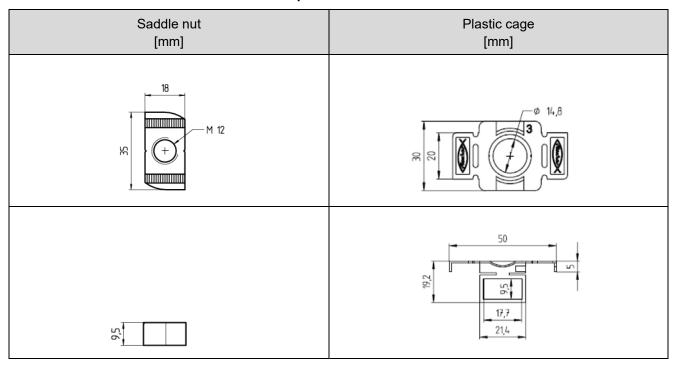



Table A 3.2: Dimensions of the FCN Clix P 12 parts

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix	P 12
Product description Dimensions	Annex A3

Requirements for performance assessment of saddle nuts FCN Clix M and FCN Clix P

- fischer saddle nut FCN Clix M 10 and FCN Clix M 12 as well as saddle nut FCN Clix P 10 and FCN Clix P 12 are used to transfer loads of components of technical building equipment such as pipes and equipment for sprinkler, water, heating, cooling, ventilation, electrical and other installations into the fischer FUS channels.
- The performance of saddle nuts FCN Clix P and FCN Clix M results in conjunction with the parts shown in Annexes B3 to B10.
- fischer saddle nuts FCN Clix M 10 and FCN Clix M 12 are used for fixing threaded rods to fischer FUS channel system in conjunction with hexagon nuts.
- The performances of FCN Clix M 10 and FCN Clix M 12 are assessed in conjunction with
 - o threaded rods of property class 4.8 or better acc. to Table B 4.1,
 - o hexagon nuts of property class 8 or better acc. to Table B 5.1 and
 - o channels acc. to Table B 6.1.
- The performances of FCN Clix P 10 and FCN Clix P 12 are assessed in conjunction with
 - o threaded rods of property class 4.8 or better acc. to Table B 4.1,
 - o hexagon nuts of property class 8 or better acc. to Table B 5.1,
 - o channels acc. to Table B 6.1 and
 - o drilled plates acc. to Table B 7.1.
- Inclinations of the channel of more than 0° to the horizontal are not permitted.
- The data for resistance at ambient temperature and under fire exposure apply to static and centric tension loading.
- Resistance and deformation values under fire exposure are assessed based on the standard temperature/time curve (STTC) acc. to EN 1363-1:2020.
- Prior to installation, it must be ensured that the supported components, the threaded rods, the anchoring to the base material and the base material itself are suitable to withstand the resistance values of the saddle nuts as well as the installation system and that they have a fire proof certificate.
- When mounting the saddle nut FCN Clix P or FCN Clix M to attachments, the general manufacturer's mounting instructions for attachments and fasteners must be observed. The installation instructions for saddle nut FCN Clix M and FCN Clix P is shown in Annex B2 and Annex B3.

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Product description	Annex B1
Requirements for performance assessment	

Installation instructions for saddle nut FCN Clix M

Figure B 2.1 – Installation instructions saddle nut FCN Clix M

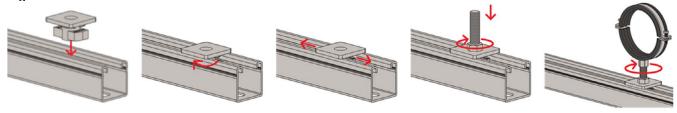


Table B 2.1 shows the installation torques $T_{inst.}$ for the installation of the saddle nut FCN Clix M in combination with a threaded rod of property class 4.8 or higher with the FUS channel system depending on the thread size.

Table B 2.1 - Installation torques T_{inst.} for installing the saddle nut FCN Clix M

Thread	Hexagon nut	Installation torque T _{inst} for property class ≥ 4.8
M10	acc. to EN ISO 4032:2012 or DIN 934-1987	15 Nm
M12	acc. to EN ISO 4032:2012 or DIN 934-1987	20 Nm

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Intended use Installation instructions for saddle nut FCN clix M	Annex B2

Installation instructions for saddle nut FCN Clix P

Figure B 3.1 – Installation instructions saddle nut FCN Clix P

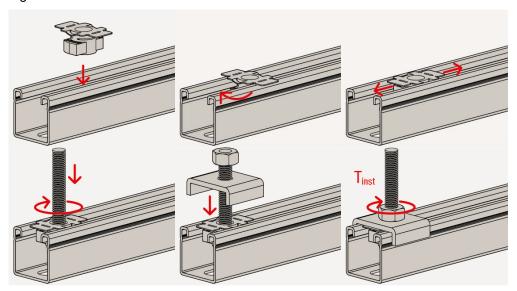


Table B 2.2 shows the installation torques $T_{inst.}$ for the installation of the saddle nut FCN Clix P in combination with the drilled plate HK 41 and a threaded rod of property class 4.8 or higher with the FUS channel system depending on the thread size.

Table B 3.1 - Installation torques T_{inst} for installing the saddle nut FCN Clix P

Thread	Hexagonal nut	Installation torque T _{inst.} for property class ≥ 4.8
M10	acc. to EN ISO 4032:2012 or DIN 934:1987	15 Nm
M12	acc. to EN ISO 4032:2012 or DIN 934:1987	20 Nm

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	A D2
Intended use Installation instructions for saddle nut FCN clix P	Annex B3

Components necessary for an assembly corresponding to figures B 2.1 and B 3.1

Table B 4.1: Threaded rod dimensions and materials for use with saddle nuts FCN Clix M and FCN Clix P

Shape	Designation	Thread	L [mm] 1)	Material		
B _M	G M10 x 1.000	M10	1.000			
	G M10 x 2.000	M10	2.000	DIN 070.0040		
	G M10 x 3.000	M10	3.000	DIN 976:2016, property class 4.8 or better		
	G M12 x 1.000	M12	1.000	acc. to EN ISO 898-1:2013, zinc coated		
	G M12 x 2.000	M12	2.000	Zino oodiod		
	G M12 x 3.000	M12	3.000			

¹⁾ The lengths of the threaded rods shown in Table B 4.1 serve as an example.

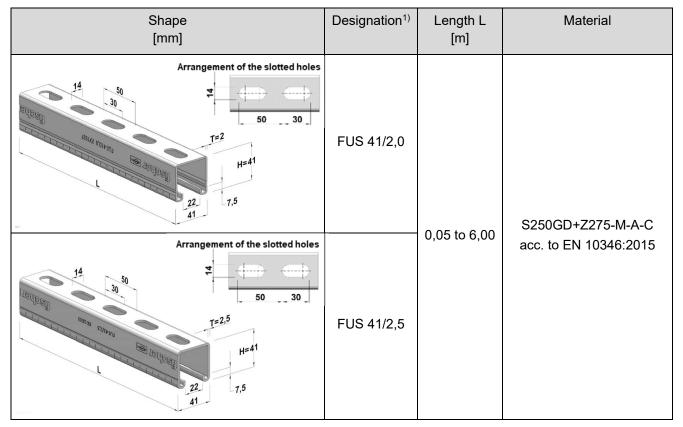
fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12

Intended use Requirements for performance assessment

Annex B4

Components necessary for an assembly corresponding to figures B 2.1 and B 3.1

Table B 5.1:Dimensions and materials of hexagonal nuts for use with saddle nuts FCN Clix M and FCN Clix P


Shape	Designation	Thread M	Hexagonal nut [mm]	H [mm]	Materials
Z SM	MU M10 Hexagonal nut	M10	acc. to EN ISO 4032:2012 or DIN 934:1987	8	Property class 8 or higher acc. to EN ISO 898-2:2012, zinc coated
SM SM	MU M12 Hexagonal nut	M12	acc. to EN ISO 4032:2012 or DIN 934:1987	10	Property class 8 or higher acc. to EN ISO 898-2:2012, zinc coated

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Intended use Requirements for performance assessment	Annex B5

Components necessary for an assembly corresponding to figures B 2.1 and B 3.1

Table B 6.1: Shape, dimensions and materials of channel FUS 41

Legend of the variables in the figures: H = Channel height, T = Material thickness of the channel, L = Length of the channel

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Intended use Requirements for performance assessment	Annex B6

 $^{^{1)}}$ The designation of the channel refers to the height H and the material thickness T of the channel. Example: The channel FUS 41/2,0 has a height H = 41 mm and a material thickness T = 2,0 mm.

Components necessary for an assembly corresponding to figures B 3.1

The saddle nut FCN Clix P can only be used in combination with drilled plate HK 41.

Table B 7.1: Shape, dimensions and materials of the drilled plate HK 41

Shape	Dimension [mm]	Designation	Materials	
	49,5 HK 41 10,5		Steel, S235JR acc. to EN 10025-2:2019, material	
	40,5	HK 41 12,5	No. 1.0037 Surface acc. to EN ISO 4042:2018-A2K	

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12	
Intended use Requirements for performance assessment	Annex B7

Characteristic pull-out resistance of saddle nuts FCN Clix P and FCN Clix M

Table C 1.1 shows the characteristic pull-out resistance F_{Rk} of the saddle nuts FCN Clix P and FCN Clix M

Table C 1.1: Characteristic pull-out resistance

Saddle nut	FUS- Channel	Characteristic pull-out resis Saddle nut pull out test in ch center	Characteristic pull-out resistance Saddle nut pull out test at channel end		
		150		20	
		<i>F_{RK}</i> [kN]	γм ¹⁾	<i>F_{RK}</i> [kN]	γм ¹⁾
FONLOW M 40	FUS 41 / 2,0	_ 2)	_ 2)	_ 2)	_ 2)
FCN Clix M 10	FUS 41 / 2,5	14,0	1,10	9,6	1,27
FCN Clix M 12	FUS 41 / 2,0	_ 2)	_ 2)	_ 2)	_ 2)
FON CIIX WI 12	FUS 41 / 2,5	14,1	1,10	9,9	1,45
ECN Cliv D 10 3)	FUS 41 / 2,0	13,9	1,23	7,7	1,25
FCN Clix P 10 ³⁾ FUS 41 / 2,5		15,2	1,14	12,6	1,43
FCN Clix P 12 4)	FUS 41 / 2,0	15,0	1,44	8,3	1,16
FON Clix P 12 "	FUS 41 / 2,5	15,6	1,15	15,8	1,10

¹⁾ Partial safety factor in absence of other national regulations

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12

Performance
Characteristic pull-out resistance

Annex C1

²⁾ No performance assessed

³⁾ Values are only valid in combination with the HK 10,5 drilled plate

⁴⁾ Values are only valid in combination with the HK 12,5 drilled plate

Pull-out resistance of saddle nuts FCN Clix M and FCN Clix P under fire exposure

Table D 1.1:Pull-out resistance with $\varepsilon_{B,\theta a} \le 2 \%$ under fire exposure, coefficients c_1 , c_2 and c_3 of regression curve $F_{Rk(t)} = c_3 (c_1 + c_2 / t)$

	Re	egression coeff	Limits for F _{Rk(t)}			
Saddle nut	channel	C ₁ [N]	c₂ [N·min]	C₃ [-]	t _{min} [min]	t _{max} [min]
FCN Clix M 10	FUS 41/2,5	196,74	35.994,78	0,85	23	125
FCN Clix M 12		233,24	37.579,70	0,78	24	135
FCN Clix P 10 1)		656,85	44.601,95	0,82	13	122
FCN Clix P 12 1)		408,73	31.437,48	0,91	15	125

¹⁾ Values are only valid in combination with the drilled plate HK 10,5.

Based on the coefficients given in Table D 1.1, the Pull-out resistance under fire exposure $F_{Rk(30)}$, $F_{Rk(60)}$, $F_{Rk(90)}$, $F_{Rk(120)}$ are calculated in Table D 1.2 for the discrete time points t = [30, 60, 90, 120] min.

Table D 1.2:Pull-out resistance $F_{Rk(t)}$ with $\varepsilon_{B,\theta a} \leq 2~\%$ under fire exposure of the saddle nuts FCN Clix P and FCN Clix M

		Pull through resistance F _{Rk(t)}					
Saddle nut	channel	F _{Rk(30)} [N]	F _{Rk(60)} [N]	F _{Rk(90)} [N]	F _{Rk(120)} [N]		
FCN Clix M 10	FUS 41/2,5	1.183	675	505	421		
FCN Clix M 12		1.151	666	504	423		
FCN Clix P 10 1)		1.761	1.150	947	845		
FCN Clix P 12 1)		1.325	849	690	610		

¹⁾ Values are only valid in combination with the HK 10,5 drilled plate.

The equation for calculating the pull-through resistances at each time point in the range of the defined time interval is given in formula Eq. D 1.1

$$F_{Rk(t)} = c_3(c_1 + c_2/t)$$
 Eq. D 1.1

fischer saddle nut FCN Clix M 10, FCN Clix M 12, FCN Clix P 10 and FCN Clix P 12

Performance pull-out resistance under fire exposure

Annex D1