



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

ETA-21/0469 of 25 July 2023

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS EB II

Bonded fasteners and bonded expansion fasteners for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

36 pages including 3 annexes which form an integral part of this assessment

330499-02-0601, Edition 04/2023

ETA-21/0469 issued on 9 December 2021



# European Technical Assessment ETA-21/0469

Page 2 of 36 | 25 July 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



# **European Technical Assessment ETA-21/0469**

English translation prepared by DIBt

Page 3 of 36 | 25 July 2023

#### **Specific Part**

# 1 Technical description of the product

The fischer injection system FISEB II is a bonded fastener consisting of a cartridge with injection mortar fischer FISEB II and a steel element according to Annex A 4.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

## 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                     |
|------------------------------------------------------------------------------------------|---------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | See Annex C 1 to C 6, B 3 to B7 |
| Characteristic resistance to shear load (static and quasi-static loading)                | See Annex C 1 to C 3            |
| Displacements under short-term and long-term loading                                     | See Annex C 7                   |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | See Annex C 8 to C 13           |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance            |
|--------------------------|------------------------|
| Reaction to fire         | Class A1               |
| Resistance to fire       | See Annex C 14 to C 16 |

# 3.3 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |





# European Technical Assessment ETA-21/0469

Page 4 of 36 | 25 July 2023

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-02-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

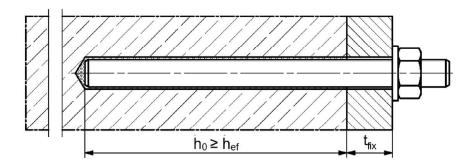
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

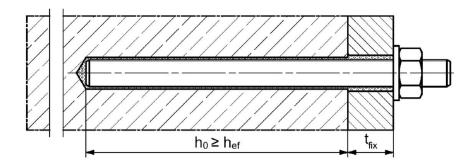
Issued in Berlin on 25 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

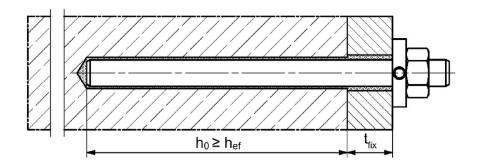
Head of Section


Stiller




# Installation conditions part 1

fischer anchor rod FIS A / RG (Anchor rod) and commercial standard threaded rods (Threaded rod)


# Pre-positioned installation



## Push through installation (annular gap filled with mortar)



# Pre-positioned or push through installation with subsequently injected filling disk (annular gap filled with mortar)



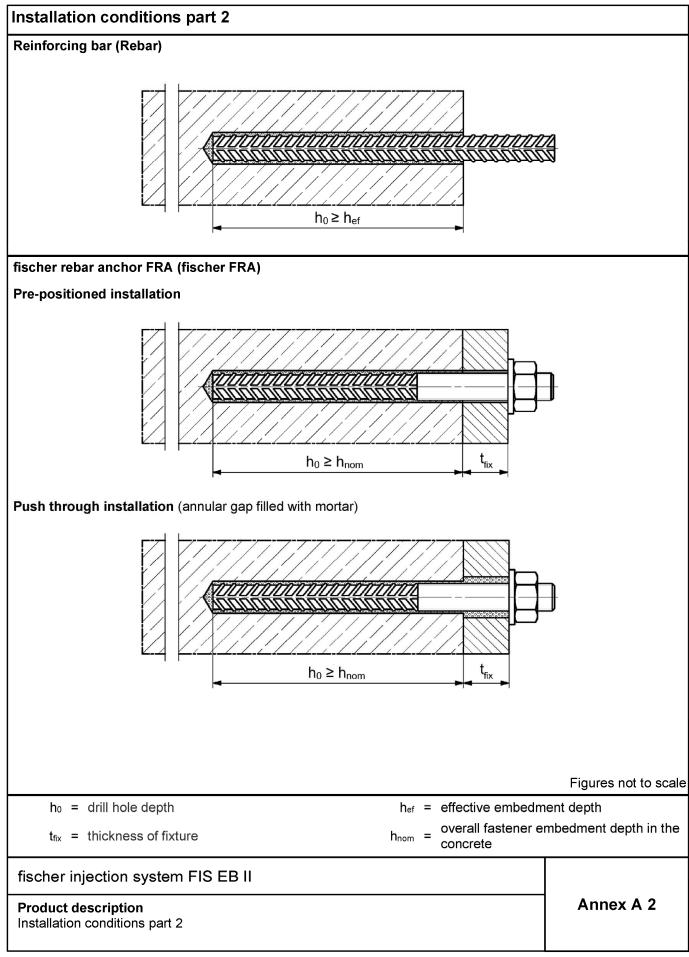
Figures not to scale

 $h_0$  = drill hole depth

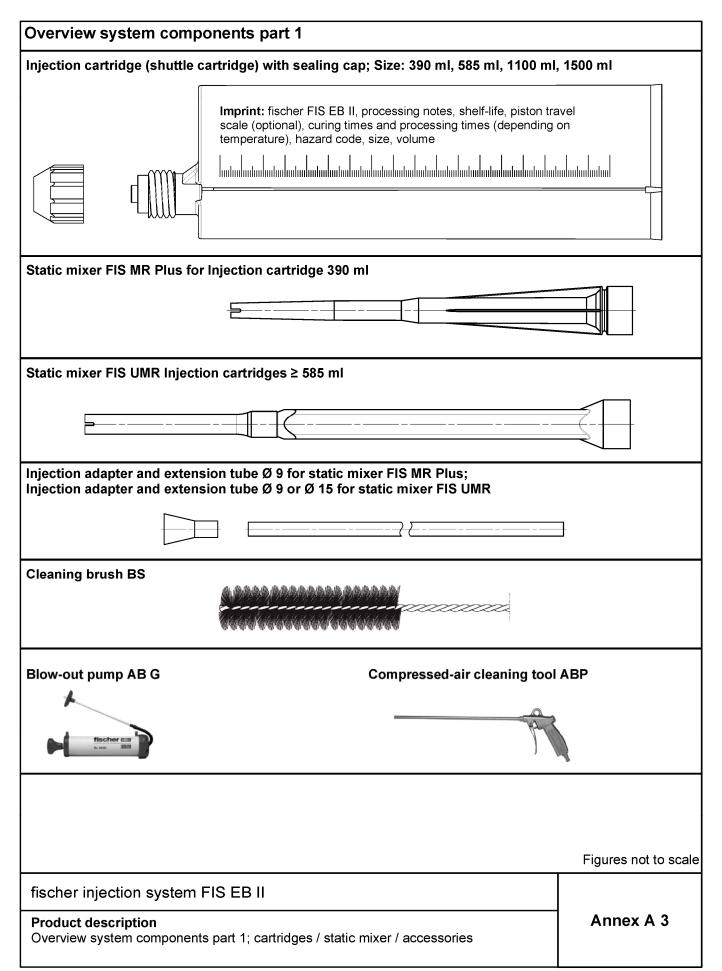
h<sub>ef</sub> = effective embedment depth

 $t_{fix}$  = thickness of fixture

fischer injection system FIS EB II


# **Product description**

Installation conditions part 1


Annex A 1

Z58833.23











# Overview system components part 2 **Anchor rod** Size: M8, M10, M12, M16, M20, M24, M27, M30 Washer / hexagon nut fischer filling disk with injection adapter Rebar Nominal diameter: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 20\$, \$\phi 25\$, \$\phi 26\$, \$\phi 28\$, \$\phi 30\$, \$\phi 32\$ fischer FRA, FRA HCR Size: M12, M16, M20, M24 Figures not to scale fischer injection system FIS EB II Annex A 4 **Product description** Overview system components part 2; steel components, injection adapter



| Part | Designation                   |                                                                                                                                                                                                                                                                              | Mate                                                                                                                                   | erial                                                                                                           |                                                                            |                                                                                                                                                                                                 |
|------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Injection cartridge           |                                                                                                                                                                                                                                                                              | Mortar, hard                                                                                                                           | dener, filler                                                                                                   |                                                                            |                                                                                                                                                                                                 |
|      |                               | Steel                                                                                                                                                                                                                                                                        | Stainless                                                                                                                              | steel R                                                                                                         |                                                                            | High corrosion resistant steel HCR                                                                                                                                                              |
|      | Steel grade                   | zinc plated                                                                                                                                                                                                                                                                  | acc. to EN 10<br>Corrosion resi<br>CRC III<br>EN 1993-1-4:2                                                                            | stance class<br>acc. to                                                                                         | Cor                                                                        | c. to EN 10088-1:2014<br>rosion resistance class<br>CRC V acc. to<br>1993-1-4:2006+A1:2015                                                                                                      |
| 2    | Anchor rod or<br>Threaded rod | Property class 4.8, 5.8 or 8.8;<br>EN ISO 898-1:2013<br>electroplated $\geq$ 5 $\mu$ m,<br>DIN EN ISO 4042:2022<br>or hot dip galvanised $\geq$ 40 $\mu$ m<br>EN ISO 10684:2004+AC:2009<br>$f_{uk} \leq$ 1000 N/mm <sup>2</sup><br>fracture elongation A <sub>5</sub> > 12 % | Property class<br>EN ISO 350<br>1.4401; 1.44<br>1.4571; 1.44<br>1.4062, 1.46<br>EN 10088<br>f <sub>uk</sub> ≤ 1000<br>fracture elongat | 06-1:2020<br>04; 1.4578;<br>39; 1.4362;<br>62, 1.4462;<br>3-1:2014<br>$0 \text{ N/mm}^2$<br>$tion A_5 > 12 \%$  | fractu                                                                     | roperty class 50 or 80;<br>EN ISO 3506-1:2020<br>or property class 70<br>1.4565; 1.4529;<br>EN 10088-1:2014<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup><br>ure elongation A <sub>5</sub> > 12 % |
|      |                               | Fracture elongation A <sub>5</sub> > 8 % t                                                                                                                                                                                                                                   | for applications w<br>catego                                                                                                           |                                                                                                                 | nents                                                                      | for seismic performance                                                                                                                                                                         |
| 3    | Washer<br>ISO 7089:2000       | electroplated ≥ 5 μm,<br>EN ISO 4042:2022<br>or hot dip galvanised ≥ 40 μm<br>EN ISO 10684:2004+AC:2009                                                                                                                                                                      | 1.4401;<br>1.4578;1<br>1.4439;<br>EN 10088                                                                                             | 1.4571;<br>1.4362;                                                                                              |                                                                            | 1.4565; 1.4529;<br>EN 10088-1:2014                                                                                                                                                              |
| 4    | Hexagon nut                   | Property class 5 or 8 acc.<br>EN ISO 898-2:2012<br>electroplated ≥ 5 µm,<br>EN ISO 4042:2022<br>or hot dip galvanised ≥ 40 µm<br>EN ISO 10684:2004+AC:2009                                                                                                                   | 50, 70 or<br>EN ISO 350<br>1.4401; 1.44                                                                                                | Property class<br>50, 70 or 80 acc.<br>EN ISO 3506-2:2020<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362; |                                                                            | Property class<br>50, 70 or 80 acc.<br>EN ISO 3506-2:2020<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                  |
| 5    | fischer filling disk          | electroplated ≥ 5 μm,<br>EN ISO 4042:2022<br>or hot dip galvanised ≥ 40 μm<br>EN ISO 10684:2004+AC:2009                                                                                                                                                                      | 1.4401; 1.44<br>1.4571; 1.44<br>EN 10088                                                                                               | 39; 1.4362;                                                                                                     |                                                                            | 1.4565;1.4529;<br>EN 10088-1:2014                                                                                                                                                               |
| 6    | EN 1992-1-1:2004              | Bars and de-coiled rods, class $f_{yk}$ and k according to NDP or N $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 12 \%)$                                                                                                                                                         |                                                                                                                                        | EN 1992-1-1/N                                                                                                   | A                                                                          |                                                                                                                                                                                                 |
| J    | and AC:2010,<br>Annex C       | Fracture elongation A <sub>5</sub> > 8 % t                                                                                                                                                                                                                                   | for applications w<br>catego                                                                                                           |                                                                                                                 | nents                                                                      | for seismic performance                                                                                                                                                                         |
| 7    | fischer FRA                   | Rebar part: Bars and de-coiled rods class E $f_{yk}$ and k according to NDP or NEN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 12 \%)$ Threaded part: Property class 8 EN ISO 3506-1:2020                                                                 | 3 or C with ICI of                                                                                                                     | 1.4362, 1.4062<br>Corrosion resis<br>acc. to EN 199<br>1.4565; 1.4529<br>Corrosion resis                        | acc. t<br>stance<br>3-1-4<br>acc. t<br>stance<br>3-1-4<br>n <sup>2</sup> ; | :2006+A1:2015<br>o EN 10088-1:2014<br>e class CRC V<br>: 2006+A1:2015                                                                                                                           |
|      |                               | Fracture elongation A₅ > 8 % t                                                                                                                                                                                                                                               | for applications v<br>catego                                                                                                           |                                                                                                                 | nents                                                                      | for seismic performance                                                                                                                                                                         |
|      |                               |                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                 |                                                                            |                                                                                                                                                                                                 |
| fisc | her injection sys             | tem FIS EB II                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                 |                                                                            |                                                                                                                                                                                                 |
|      | duct description erials       |                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                 |                                                                            | Annex A 5                                                                                                                                                                                       |



# Specifications of intended use part 1

Table B1.1: Overview use and performance categories

| Anchorages subjec                             | t to                  |                 |                            | FIS E                       | B II with                                 |                                  |                                  |
|-----------------------------------------------|-----------------------|-----------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------|----------------------------------|
|                                               |                       |                 | or rod,<br>ded rod         | Rek                         |                                           | fische                           |                                  |
| Hammer drilling<br>with standard drill<br>bit | E4440000000           |                 |                            | all si                      | zes                                       |                                  |                                  |
| Static and                                    | uncracked concrete    |                 | Tables:<br>C1.1            |                             | Tables:<br>C2.1                           |                                  | Tables:<br>C2.2                  |
| quasi-static<br>loading, in                   | cracked concrete      | all sizes       | C3.1<br>C4.1<br>C7.1       | all sizes                   | C3.1<br>C5.1<br>C7.2                      | all sizes                        | C3.1<br>C6.1<br>C7.2             |
| Use                                           | dry or wet concrete   |                 |                            | all si                      | zes                                       |                                  |                                  |
| category<br>I                                 | 2 water filled hole   |                 |                            | all si                      | zes                                       |                                  |                                  |
| Seismic<br>performance                        | C1                    | Tables:<br>C8.1 |                            | C9<br>C9<br>C10             | Tables:<br>C9.1<br>C9.3<br>C10.1<br>C11.2 |                                  | les:<br>9.2<br>9.3<br>0.1<br>1.2 |
| category                                      | C2                    | C8<br>C1        | oles:<br>3.1<br>0.1<br>2.1 | Tab<br>C9<br>C10<br>C13     | ).1<br>).1                                |                                  |                                  |
| Installation directio                         | n                     | D3              | (downward a                | nd horizontal               | and upwards                               | (e.g. overhea                    | nd))                             |
| Installation<br>temperature                   |                       |                 | Т                          | <sub>i,min</sub> = +5 °C to | T <sub>i,max</sub> = +40 °                | °C                               |                                  |
| Resistance to fire                            |                       | C1              | oles:<br>4.1<br>c: C 16    | Tab<br>C1s<br>Annex         | 5.1                                       | Tables:<br>C15.1<br>Annex C 16   |                                  |
|                                               | Temperature range l   | -40 °C          | to +43 °C                  |                             |                                           | erature +43 °(<br>erature +24 °C |                                  |
| Service<br>temperature                        | Temperature range II  | -40 °C          | to +60 °C                  |                             |                                           | erature +60 °C<br>rature +43 °C  |                                  |
|                                               | Temperature range III | -40 °C          | to +72 °C                  |                             |                                           | erature +72 °C<br>rature +50 °C  |                                  |

<sup>1)</sup> No performance assessed

fischer injection system FIS EB II

Intended use
Specifications part 1

Annex B 1





# Specifications of intended use part 2

#### **Base materials:**

 Compacted reinforced or unreinforced normal weight concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- For all other conditions according to EN1993-1-4:2006+A1:2015 corresponding to corrosion resistance classes to Annex A 5 Table 5.1.

#### Design:

- Fastenings are designed under the responsibility of an engineer experienced in fastenings and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
   The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fastenings are designed in accordance with: EN 1992-4:2018 and TR 082 from June 2023.

#### Installation:

- Fastener installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · Fastening depth should be marked and adhered to installation.
- Overhead installation is allowed (necessary equipment see installation instruction).

fischer injection system FIS EB II

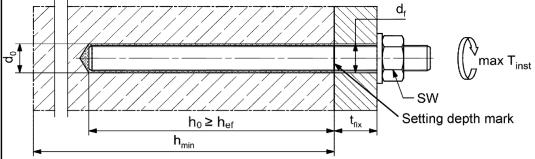
Intended use
Specifications part 2

Annex B 2



| Table B3.1:                          | Installation pa             | ramete                | rs for A | ncho | r rods                          |     |                         |                 |                                   |     |     |
|--------------------------------------|-----------------------------|-----------------------|----------|------|---------------------------------|-----|-------------------------|-----------------|-----------------------------------|-----|-----|
| Anchor rods                          |                             |                       |          | M8   | M10                             | M12 | M16                     | M20             | M24                               | M27 | M30 |
| Nominal drill hole di                | iameter                     | <b>d</b> <sub>0</sub> |          | 10   | 12                              | 14  | 18                      | 24              | 28                                | 30  | 35  |
| Drill hole depth                     |                             | h <sub>0</sub>        |          |      |                                 |     | <b>h</b> <sub>0</sub> ≥ | h <sub>ef</sub> |                                   |     |     |
| Effective                            |                             | h <sub>ef, min</sub>  |          | 60   | 60                              | 70  | 80                      | 90              | 96                                | 108 | 120 |
| embedment depth                      |                             | h <sub>ef, max</sub>  |          | 160  | 200                             | 240 | 320                     | 400             | 480                               | 540 | 600 |
| Simplified spacing a distance 1)     | and edge                    | S = C                 | [mm]     | 40   | 45                              | 55  | 65                      | 85              | 105                               | 120 | 140 |
| Diameter of the                      | pre-positioned installation | df                    |          | 9    | 12                              | 14  | 18                      | 22              | 26                                | 30  | 33  |
| clearance hole of the fixture        | push through installation   | df                    |          | 12   | 14                              | 16  | 20                      | 26              | 30                                | 33  | 40  |
| Minimum thickness of concrete member |                             |                       |          |      | h <sub>ef</sub> + 30<br>(≥ 100) |     |                         |                 | h <sub>ef</sub> + 2d <sub>0</sub> | )   |     |
| Maximum installation                 | on torque r                 | nax T <sub>inst</sub> | [Nm]     | 10   | 20                              | 40  | 60                      | 120             | 150                               | 200 | 300 |

<sup>1)</sup> Detailed calculation according to Annex B 6 and B 7




| Marking (c | n random | place) | anchor rod: |
|------------|----------|--------|-------------|
|------------|----------|--------|-------------|

| Steel electroplated PC¹) 8.8               | • or <b>+</b> | Steel hot-dip PC <sup>1)</sup> 8.8         | • |
|--------------------------------------------|---------------|--------------------------------------------|---|
| High corrosion resistant steel HCR PC1) 50 | •             | High corrosion resistant steel HCR PC1) 70 | - |
| High corrosion resistant steel HCR PC1) 80 | (             | Stainless steel R property class 50        | ~ |
| Stainless steel R property class 80        | *             |                                            |   |

Alternatively: Colour coding according to DIN 976-1: 2016

# Installation conditions:



# Threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled

- · Materials, dimensions and mechanical properties according to Annex A 5, Table A5.1
- Inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored
- Setting depth is marked

Figures not to scale

fischer injection system FIS EB II

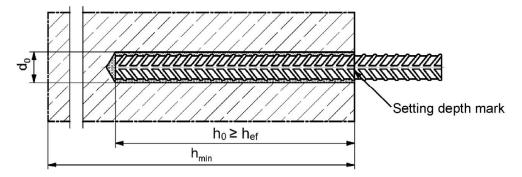
Intended use
Installation parameters Anchor rods

Annex B 3

<sup>1)</sup> PC = property class






| Table B4.1: Installation                           | param                 | eters f | or R           | eba | rs                         |    |    |    |                         |                   |     |         |            |     |     |     |
|----------------------------------------------------|-----------------------|---------|----------------|-----|----------------------------|----|----|----|-------------------------|-------------------|-----|---------|------------|-----|-----|-----|
| Nominal diameter of the rebar                      |                       | ф       | 8 <sup>1</sup> | 1)  | 10                         | 1) | 12 | 1) | 14                      | 16                | 20  | 25      | 26         | 28  | 30  | 32  |
| Nominal drill hole diameter                        | <b>d</b> <sub>0</sub> |         | 10             | 12  | 12                         | 14 | 14 | 16 | 18                      | 20                | 25  | 30      | 35         | 35  | 40  | 40  |
| Drill hole depth                                   | h <sub>0</sub>        |         |                |     |                            |    |    |    | <b>h</b> <sub>0</sub> ≥ | : h <sub>ef</sub> |     |         |            |     |     |     |
| Effective                                          | $h_{\text{ef,min}}$   |         | 60             | )   | 6                          | 0  | 7  | 0  | 75                      | 80                | 90  | 100     | 104        | 112 | 120 | 128 |
| embedment depth                                    | h <sub>ef,max</sub>   | ]       | 16             | 0   | 20                         | 0  | 24 | 10 | 280                     | 320               | 400 | 500     | 520        | 560 | 600 | 640 |
| Simplified spacing and edge distance <sup>2)</sup> | s<br>=<br>C           | [mm]    | 40             | 0   | 4                          | 5  | 5  | 5  | 60                      | 65                | 85  | 120     | 120        | 140 | 140 | 160 |
| Minimum thickness of concrete member               | h <sub>min</sub>      |         |                |     | <sub>ef</sub> + 3<br>≥ 100 | -  |    |    |                         |                   | h∈  | ef + 20 | <b>d</b> o |     |     |     |

<sup>1)</sup> Both drill hole diameters can be used

#### Rebar

- The minimum value of related rib area f<sub>R,min</sub> must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: 0,05 · φ ≤ h<sub>rib</sub> ≤ 0,07 · φ
   (φ = Nominal diameter of the rebar, h<sub>rib</sub> = rib height)

## Installation conditions:



Figures not to scale

fischer injection system FIS EB II

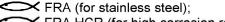
Intended use
Installation parameters Rebars

Annex B 4

<sup>&</sup>lt;sup>2)</sup> Detailed calculation according to Annex B 6 und B 7

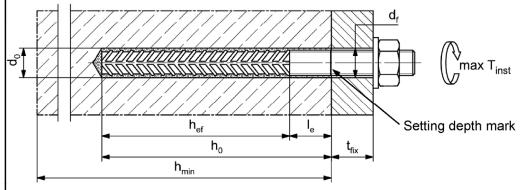


| fischer FRA                                          |                       |      | M1                               | 12 <sup>1)</sup> | M16 | M20                              | M24 |  |
|------------------------------------------------------|-----------------------|------|----------------------------------|------------------|-----|----------------------------------|-----|--|
| Nominal diameter of the rebar                        | ф                     |      | 1                                | 2                | 16  | 20                               | 25  |  |
| Nominal drill hole diameter                          | <b>d</b> <sub>0</sub> |      | 14                               | 16               | 20  | 25                               | 30  |  |
| Drill hole depth                                     | h <sub>0</sub>        |      | h <sub>ef</sub> + l <sub>e</sub> |                  |     |                                  |     |  |
| Effective embedment death                            | h <sub>ef,min</sub>   |      | 7                                | 0                | 80  | 90                               | 96  |  |
| Effective embedment depth                            | h <sub>ef,max</sub>   |      | 14                               | 40               | 220 | 300                              | 380 |  |
| Distance concrete surface to welded joint            | le                    |      |                                  |                  | 1   | 00                               |     |  |
| Simplified spacing and edge distance <sup>2)</sup>   | s<br>=<br>c           | [mm] | 5                                | 5                | 65  | 85                               | 105 |  |
| pre-positioned Diameter of anchorage                 | ≤ d <sub>f</sub>      |      | 1                                | 4                | 18  | 22                               | 26  |  |
| clearance hole in the fixture push through anchorage | ≤ d <sub>f</sub>      |      | 1                                | 8                | 22  | 26                               | 32  |  |
| Minimum thickness<br>of concrete member              | h <sub>min</sub>      |      | h <sub>0</sub> + 30<br>(≥ 100)   |                  |     | h <sub>0</sub> + 2d <sub>0</sub> |     |  |
| Maximum torque moment for attachment of the fixture  | max T <sub>inst</sub> | [Nm] | 4                                | .0               | 60  | 120                              | 150 |  |


<sup>1)</sup> Both drill hole diameters can be used

 $<sup>^{2)}\,\</sup>mbox{Detailed}$  calculation according to Annex B 6 and B 7






Marking frontal e. g:



➤ FRA HCR (for high corrosion resistant steel)

# Installation conditions:



Figures not to scale

fischer injection system FIS EB II

# Intended use

Installation parameters fischer FRA

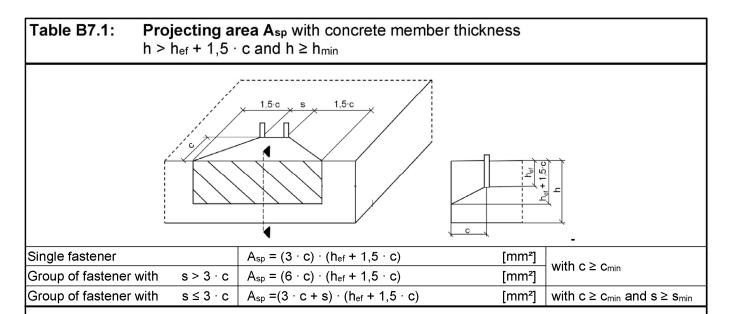
Annex B 5



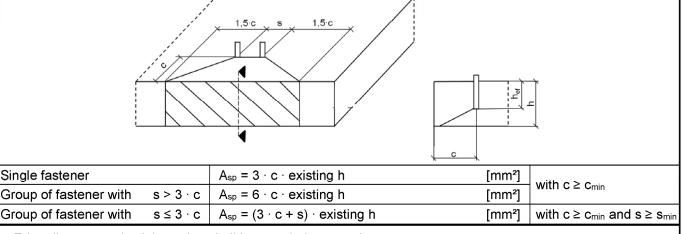
| and fischer                                                                                                                                                               | FRA                   |               |                 |         |                |                 |                         |                         |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|-----------------|---------|----------------|-----------------|-------------------------|-------------------------|-----------------|
| Anchor rods                                                                                                                                                               |                       |               | M8              | M10     | M1             | 2               | -                       | M16                     | M20             |
| Rebars / fischer FRA (nominal diameter)                                                                                                                                   |                       | ф             | 8               | 10      | 12             | 2               | 14                      | 16                      | 20              |
| Minimum edge distance                                                                                                                                                     |                       | •             |                 |         |                | •               |                         |                         |                 |
| Uncracked / cracked concrete                                                                                                                                              | Cmin                  | [1            | 40              | 45      | 45             | 5               | 45                      | 50                      | 55              |
| Spacing                                                                                                                                                                   | s                     | [mm]          |                 | •       | accord         | ing to A        | nnex B                  | 7                       |                 |
| Minimum spacing                                                                                                                                                           |                       |               |                 |         |                |                 |                         |                         |                 |
| Uncracked / cracked concrete                                                                                                                                              | Smin                  | [mm]          | 40              | 45      | 55             | 5               | 60                      | 65                      | 85              |
| Edge distance                                                                                                                                                             | С                     | [mm]          |                 |         | accord         | ing to A        | nnex B                  | 7                       |                 |
| Required projecting area                                                                                                                                                  |                       |               |                 |         |                |                 |                         |                         |                 |
| Uncracked concrete                                                                                                                                                        |                       |               |                 | 40.0    |                | 22,0 23,0       |                         |                         |                 |
| Uncracked concrete                                                                                                                                                        | ۸                     | [1000         | 8,0             | 13,0    | 22,            | 0               | 23,0                    | 24,0                    | 38,5            |
| Cracked concrete                                                                                                                                                          | — A <sub>sp,req</sub> | [1000<br>mm²] | 8,0<br>6,5      | 13,0    | 16,            |                 | 23,0<br>17,5            | 24,0<br>18,5            | 38,5<br>29,5    |
|                                                                                                                                                                           | — A <sub>sp,req</sub> | -             |                 |         |                |                 |                         | ,                       |                 |
| Cracked concrete                                                                                                                                                          | — Asp,req             | -             | 6,5             | 10,0    | 16,            | 5               | 17,5                    | 18,5                    | 29,5            |
| Anchor rods Rebars / fischer FRA                                                                                                                                          | — Asp,req             | mm²]          | 6,5             | 10,0    | -              | 5               | 17,5                    | 18,5<br>M30             | 29,5            |
| Anchor rods Rebars / fischer FRA (nominal diameter)                                                                                                                       | — Asp,req             | ф             | 6,5             | 10,0    | -              | 5               | 17,5                    | 18,5<br>M30             | 29,5            |
| Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance                                                                                                 |                       | mm²]          | 6,5<br>M24      | -<br>25 | -<br><b>26</b> | <b>M27</b> - 75 | 17,5                    | 18,5<br>M30<br>30       | 29,5            |
| Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete                                                                    | Cmin                  | ф             | 6,5<br>M24      | -<br>25 | -<br><b>26</b> | <b>M27</b> - 75 | 17,5<br>-<br>28         | 18,5<br>M30<br>30       | 29,5            |
| Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing                                                            | Cmin                  | ф<br>[mm]     | 6,5<br>M24      | -<br>25 | -<br><b>26</b> | <b>M27</b> - 75 | 17,5<br>-<br>28         | 18,5<br>M30<br>30<br>80 | 29,5            |
| Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing                                            | C <sub>min</sub>      | ф             | 6,5<br>M24<br>- | -<br>25 | - 26 75 accord | 75 ing to A     | 17,5  - 28  80 nnex B   | 18,5  M30 30  80 7      | 29,5<br>-<br>32 |
| Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete               | Cmin<br>S             | ф<br>[mm]     | 6,5<br>M24<br>- | -<br>25 | - 26 75 accord | 75 ing to A     | 17,5  - 28  80 nnex B 7 | 18,5  M30 30  80 7      | 29,5<br>-<br>32 |
| Anchor rods Rebars / fischer FRA (nominal diameter) Minimum edge distance Uncracked / cracked concrete Spacing Minimum spacing Uncracked / cracked concrete Edge distance | Cmin<br>S             | ф<br>[mm]     | 6,5<br>M24<br>- | -<br>25 | - 26 75 accord | 75 ing to A     | 17,5  - 28  80 nnex B 7 | 18,5  M30 30  80 7      | 29,5<br>-<br>32 |

 $\textbf{Splitting failure} \ \text{for minimum edge distance and spacing in dependence of the effective embedment depth} \ h_{\text{ef.}}$ 

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:


 $A_{sp,req} < A_{sp}$ 

A<sub>sp,req</sub> = required projecting area


A<sub>sp</sub> = projecting area (according to Annex B 7)

| fischer injection system FIS EB II                                                     |           |
|----------------------------------------------------------------------------------------|-----------|
| Intended use Minimum spacing and edge distance for Anchor rods, Rebars and fischer FRA | Annex B 6 |





**Table B7.2:** Projecting area  $A_{sp}$  with concrete member thickness  $h \le h_{ef} + 1.5 \cdot c$  and  $h \ge h_{min}$ 



Edge distance and axial spacing shall be rounded up to at least 5 mm

fischer injection system FIS EB II

Intended use
Minimum thickness of concrete member for Anchor rods, Rebar, fischer FRA and minimum spacing and edge distance

Figures not to scale

Annex B 7



| Table B8.1: | Parameters of the cleaning | g brush BS | (steel brush with steel bristles) |
|-------------|----------------------------|------------|-----------------------------------|
|-------------|----------------------------|------------|-----------------------------------|

The size of the cleaning brush refers to the drill hole diameter

| Nominal drill hole<br>diameter | <b>d</b> o | [mm] | 10 | 12 | 14 | 16 | 18 | 20 | 24 | 25 | 28 | 30 | 35 | 40 |
|--------------------------------|------------|------|----|----|----|----|----|----|----|----|----|----|----|----|
| Steel brush<br>diameter BS     | dь         | [mm] | 11 | 14 | 16 | 2  | 0  | 25 | 26 | 27 | 30 | 4  | 0  | 42 |

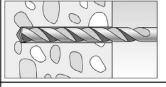


Table B8.2: Conditions for use static mixer without an extension tube

| Nominal drill hole diameter | <b>d</b> o  |      | 10  | 12 | 14    | 16    | 18    | 20    | 24    | 25 | 28 | 30    | 35  | 40 |
|-----------------------------|-------------|------|-----|----|-------|-------|-------|-------|-------|----|----|-------|-----|----|
| Drill hole depth ho         | FIS MR Plus | [mm] | ≤ 9 | 90 | ≤ 120 | ≤ 140 | ≤ 150 | ≤ 160 | ≤ 190 |    |    | ≤ 210 |     |    |
| by using                    | FIS UMR     |      | -   | -  | ≤ 90  | ≤ 160 | ≤ 180 | ≤ 190 | ≤ 2   | 20 |    | ≤ 2   | :50 |    |

Table B8.3 Maximum processing time of the mortar and minimum curing time
(During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

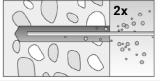
| Temperature at anchoring base [°C] | Maximum processing time<br>t <sub>work</sub> | Minimum curing time<br>t <sub>cure</sub> |
|------------------------------------|----------------------------------------------|------------------------------------------|
| > 5 to 10                          | 180 min                                      | 96 h                                     |
| > 10 to 15                         | 90 min                                       | 60 h                                     |
| > 15 to 20                         | 60 min                                       | 36 h                                     |
| > 20 to 30                         | 30 min                                       | 24 h                                     |
| > 30 to 40                         | 15 min                                       | 12 h                                     |


| fischer injection system FIS EB II                                        |           |
|---------------------------------------------------------------------------|-----------|
| Intended use Cleaning brush (steel brush) Processing time and curing time | Annex B 8 |



# Installation instructions part 1

Drilling and cleaning the hole (hammer drilling with standard drill bit)

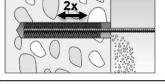

1



Drill the hole.

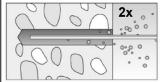
Nominal drill hole diameter  $d_0$  and drill hole depth  $h_0$  see Tables B3.1, B4.1, B5.1.

2




Clean the drill hole: For  $h_{ef} \le 12d$  and  $d_0 < 18$  mm blow out the hole twice by hand.




For  $h_{ef} > 12d$  and / or  $d_0 \ge 18$  mm blow out the hole twice with oil-free compressed air  $(p \ge 6 \text{ bar})$ .

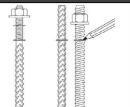
3




Brush the drill hole twice. For drill hole diameter  $d_0 \ge 18$  mm and / or  $h_{ef} > 12d$  use a power drill. For deep holes use an extension. Corresponding brushes see **Table B8.1.** 

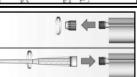
4




Clean the drill hole: For  $h_{ef} \le 12d$  and  $d_0 < 18$  mm blow out the hole twice by hand.



For  $h_{ef} > 12d$  and / or  $d_0 \ge 18$  mm blow out the hole twice with oil-free compressed air  $(p \ge 6 \text{ bar})$ .


# Preparing

5



Mark the setting depth of the steel element

6



Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible).

7



7 D

Place the cartridge into the dispenser.

8



X

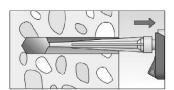
Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

Go to Step 9

fischer injection system FIS EB II

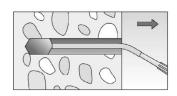
Intended use

Installation instructions part 1


Annex B 9

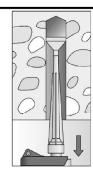
Z58833.23




# Installation instructions part 2

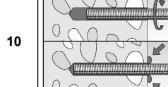
# Injection of the mortar




9

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.




The conditions for mortar injection without extension tube can be found in **Table B8.2** 

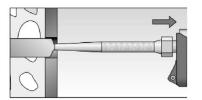
For deeper drill holes, than those mentioned in **Table B8.2**, use a suitable extension tube.



For overhead installation, deep holes ( $h_0 > 250$  mm) or drill hole diameter ( $d_0 \ge 30$  mm) use an injection-adapter.

# Installation of Anchor rods



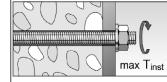

Only use clean and oil-free anchor elements.

Push the anchor rod with the setting depth mark down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element.

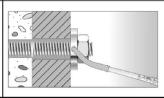


For overhead installations support the anchor rod with wedges (e. g. fischer centering wedges) or fischer overhead clips.




For push through installation fill the annular gap with mortar.




Wait for the specified curing time t<sub>cure</sub> see **Table B8.3**.

12



Mounting the fixture max T<sub>inst</sub> see **Table B3.1.** 



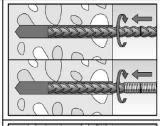


After the minimum curing time is reached, the gap between anchor and fixture (annular clearance) may be filled with mortar via the fischer filling disc. Compressive strength ≥ 50 N/mm² (e.g. fischer injection mortars FIS EB II, FIS SB, FIS V Plus, FIS EM Plus). ATTENTION:

Using fischer filling disk reduces t<sub>fix</sub> (usable length of the anchor).

fischer injection system FIS EB II

Intended use

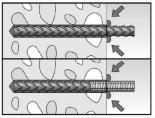

Installation instructions part 2

Annex B 10



# Installation instructions part 3

# Installation Rebars and fischer FRA



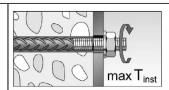

Only use clean and oil-free rebars or fischer FRA. Push the rebar or the fischer FRA with the setting depth mark into the filled hole up to the setting depth mark.

Recommendation:

Rotation back and forth of the rebar or the fischer FRA makes pushing easy.

10




When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.

11



Wait for the specified curing time t<sub>cure</sub> see **Table B8.3** 

12



Mounting the fixture max T<sub>inst</sub> see **Table B5.1** 

Electronic copy of the ETA by DIBt: ETA-21/0469

fischer injection system FIS EB II

Intended use

Installation instructions part 3

Annex B 11

rods and Threaded rods

English translation prepared by DIBt



| Tab                                      |                                                                                                                                                                  |                             |                                                  |                                 | ance to ste                    |                         | under     | tensio       | n and     | shear     | loadir | ng         |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|---------------------------------|--------------------------------|-------------------------|-----------|--------------|-----------|-----------|--------|------------|
| Ancl                                     | nor rod / Threaded ro                                                                                                                                            | od                          |                                                  |                                 | M8                             | M10                     | M12       | M16          | M20       | M24       | M27    | M30        |
| Char                                     | acteristic resistance                                                                                                                                            | to st                       | eel fa                                           | ailure                          | under tensi                    | on loading <sup>3</sup> | 3)        |              |           | -         |        |            |
| υ o                                      |                                                                                                                                                                  |                             | 4.8                                              |                                 | 14,6 (13,2)                    | 23,2 (21,4)             | 33,7      | 62,8         | 98,0      | 141,2     | 183,6  | 224,4      |
| istic<br>N <sub>RK</sub> s               | Steel zinc plated                                                                                                                                                | _                           | 5.8                                              |                                 | 18,3 (16,6)                    | 29,0 (26,8)             | 42,1      | 78,5         | 122,5     | 176,5     | 229,5  | 280,5      |
| teri<br>Ge                               |                                                                                                                                                                  | ropert<br>class             | 8.8                                              | ri. N IT                        | 29,2 (26,5)                    | 46,4 (42,8)             | 67,4      | 125,6        | 196,0     | 282,4     | 367,2  | 448,8      |
| Characteristic esistance N <sub>Rk</sub> | Stainless steel R                                                                                                                                                | Property<br>class           | 50                                               | [kN]                            | 18,3                           | 29,0                    | 42,1      | 78,5         | 122,5     | 176,5     | 229,5  | 280,5      |
| Cha<br>esis                              | and high corrosion                                                                                                                                               | ட                           | 70                                               |                                 | 25,6                           | 40,6                    | 59,0      | 109,9        | 171,5     | 247,1     | 321,3  | 392,7      |
|                                          | resistant steel HCR                                                                                                                                              |                             | 80                                               |                                 | 29,2                           | 46,4                    | 67,4      | 125,6        | 196,0     | 282,4     | 367,2  | 448,8      |
| Parti                                    | ial factors 1)                                                                                                                                                   |                             |                                                  |                                 | ,                              |                         |           |              |           |           |        |            |
| _                                        |                                                                                                                                                                  |                             | 4.8                                              |                                 |                                |                         |           | 1,50         |           |           |        |            |
| Partial factor<br>™                      | Steel zinc plated                                                                                                                                                | £                           | 5.8                                              |                                 |                                |                         |           | 1,50         |           |           |        |            |
| al fa<br>™                               |                                                                                                                                                                  | ropert<br>class             | 8.8                                              | [-]                             |                                |                         |           | 1,50         |           |           |        |            |
| rtia<br>∠                                | Stainless steel R                                                                                                                                                | Property<br>class           | _50                                              |                                 |                                |                         |           | 2,86         |           |           |        |            |
| Ра                                       | and high corrosion                                                                                                                                               | т.                          | _70                                              |                                 |                                | 1                       | ,87 / fis | cher HC      | R: 1,50   | )         |        |            |
|                                          | resistant steel HCR                                                                                                                                              |                             | 80                                               |                                 |                                |                         |           | 1,60         |           |           |        |            |
|                                          | racteristic resistance                                                                                                                                           | to st                       | eel fa                                           | ailure                          | under shea                     | r loading <sup>3)</sup> |           |              |           |           |        |            |
| with                                     | out lever arm                                                                                                                                                    |                             |                                                  |                                 | 1                              |                         |           |              |           |           |        |            |
| ပ နို                                    |                                                                                                                                                                  |                             | 4.8                                              |                                 | 8,7 (7,9)                      | 13,9 (12,8)             | 20,2      | 37,6         | 58,8      | 84,7      | 110,1  | 134,6      |
| ristic<br>V <sup>0</sup> Rk,s            | Steel zinc plated                                                                                                                                                | £.                          | 5.8                                              |                                 | 10,9 (9,9)                     | 17,4 (16,0)             | 25,2      | 47,1         | 73,5      | 105,9     | 137,7  | 168,3      |
| g gel                                    |                                                                                                                                                                  | ropert<br>class             | 8.8                                              | [kN]                            |                                | 23,2 (21,4)             | 33,7      | 62,8         | 98,0      | 141,2     | 183,6  | 224,4      |
| Characteristic                           | Stainless steel R                                                                                                                                                | Property<br>class           | _50                                              | [                               | 9,1                            | 14,5                    | 21,0      | 39,2         | 61,2      | 88,2      | 114,7  | 140,2      |
| Cha<br>Tesis                             | and high corrosion                                                                                                                                               |                             | _70                                              |                                 | 12,8                           | 20,3                    | 29,5      | 54,9         | 85,7      | 123,5     | 160,6  | 196,3      |
|                                          | resistant steel HCR                                                                                                                                              |                             | 80                                               |                                 | 14,6                           | 23,2                    | 33,7      | 62,8         | 98,0      | 141,2     | 183,6  | 224,4      |
|                                          | lity factor                                                                                                                                                      |                             | <b>k</b> <sub>7</sub>                            | [-]                             |                                |                         |           | 1,0          |           |           |        |            |
|                                          | lever arm                                                                                                                                                        |                             |                                                  |                                 | 1                              |                         |           |              |           |           |        |            |
| ristic<br>M <sup>0</sup> Rk,s            |                                                                                                                                                                  |                             | 4.8                                              |                                 |                                | 29,9 (26,5)             | 52,3      | 132,9        | 259,6     | 448,8     | 665,7  | 899,5      |
| cteristic                                | Steel zinc plated                                                                                                                                                | » <del>ر</del> ځ            | 5.8                                              |                                 |                                | 37,3 (33,2)             | 65,4      | 166,2        | 324,6     | 561,0     | 832,2  |            |
|                                          |                                                                                                                                                                  | Property<br>class           | 8.8                                              | [Nm]                            |                                | 59,8 (53,1)             |           | 265,9        | 519,3     | · ·       | 1331,5 | — <u> </u> |
| Charac<br>esistan                        | Stainless steel R                                                                                                                                                | Pro<br>lo                   | 50                                               | _                               | 18,7                           | 37,3                    | 65,4      | 166,2        | 324,6     |           | 832,2  | · ·        |
| Chara<br>resistan                        | and high corrosion resistant steel HCR                                                                                                                           |                             | _/0                                              |                                 | 26,2                           | 52,3                    | 91,5      | 232,6        | 454,4     |           |        | 1574,1     |
|                                          |                                                                                                                                                                  |                             | 80                                               |                                 | 29,9                           | 59,8                    | 104,6     | 265,9        | 519,3     | 897,6     | 1331,5 | [1799,C    |
| rarti                                    | ial factors <sup>1)</sup>                                                                                                                                        |                             | A 0                                              |                                 |                                |                         |           | 1 OF         |           |           |        |            |
| 'n                                       | Steel zinc plated                                                                                                                                                |                             | 4.8<br>5.8                                       |                                 |                                |                         |           | 1,25<br>1,25 |           |           |        |            |
| actc                                     | Steel Zinc plated                                                                                                                                                | rt<br>s                     | 8.8                                              |                                 |                                |                         |           |              |           |           |        |            |
| <b>의 년</b><br>7세s                        |                                                                                                                                                                  | Property<br>class           | 50                                               | [-]                             |                                |                         |           | 1,25<br>2,38 |           |           |        |            |
| Partial factor<br>™s                     | Stainless steel R and high corrosion                                                                                                                             | Pro                         | 70                                               |                                 |                                | 1                       | 56 / fice | her HC       | D: 1.25   | 2)        |        |            |
| Ф.                                       | resistant steel HCR                                                                                                                                              |                             | 80                                               |                                 |                                | 1,                      | ,507 1150 | 1,33         | Ν. 1,25   |           |        |            |
| <sup>2)</sup> O<br>W<br><sup>3)</sup> V  | n absence of other nationly admissible for high with f <sub>yk</sub> /f <sub>uk</sub> ≤ 0,8 and f <sub>uk</sub> ≤ ′alues in brackets are voreaded rods according | corros<br>800 N<br>alid for | gulati<br>sion ro<br>I/mm <sup>2</sup><br>r undo | esistar<br>² (e.g. a<br>ersized | anchor rods).<br>I threaded ro | ds with small           | er stress |              | s for hot | dip galva | anized |            |
| fisc<br>Per                              | her injection syste                                                                                                                                              | m FI                        | SEE                                              | 3 II                            |                                |                         | ading of  | f Anchor     |           | An        | nex C  | 1          |



| Table C2.1:          | Characterist <b>Rebars</b> | ic resis              | tance | to s   | teel f | ailur | e und | ler te                   | nsior               | and                       | shea | ır load | ding | of |
|----------------------|----------------------------|-----------------------|-------|--------|--------|-------|-------|--------------------------|---------------------|---------------------------|------|---------|------|----|
| Nominal diameter     | of the rebar               |                       | ф     | 8      | 10     | 12    | 14    | 16                       | 20                  | 25                        | 26   | 28      | 30   | 32 |
| Characteristic res   | istance to stee            | el failure            | unde  | r tens | ion lo | ading |       |                          |                     |                           |      |         |      |    |
| Characteristic resis | stance                     | N <sub>Rk,s</sub>     | [kN]  |        |        |       |       | P                        | ∖s · <b>f</b> uk    | 2)                        |      |         |      |    |
| Characteristic res   | istance to stee            | el failure            | unde  | rshea  | ar loa | ding  |       |                          |                     |                           |      |         |      |    |
| Without lever arm    |                            |                       |       |        |        |       |       |                          |                     |                           |      |         |      |    |
| Characteristic resis | stance                     | $V^0$ Rk,s            | [kN]  |        |        |       |       | <b>k</b> 6 <sup>1)</sup> | · As · ·            | <b>f</b> uk 2)            |      |         |      |    |
| Ductility factor     |                            | <b>k</b> <sub>7</sub> | [-]   |        |        |       |       |                          | 1,0                 |                           |      |         |      |    |
| With lever arm       |                            |                       |       |        |        |       |       |                          |                     |                           |      |         |      |    |
| Characteristic resis | stance                     | M <sup>0</sup> Rk,s   | [Nm]  |        |        |       |       | 1,2                      | · W <sub>el</sub> · | <b>f</b> uk <sup>2)</sup> |      |         |      |    |

<sup>1)</sup> In accordance with EN 1992-4:2018 section 7.2.2.3.1

- $k_6$  = 0,6 for fasteners made of carbon steel with  $f_{uk} \le 500 \text{ N/mm}^2$ 
  - = 0,5 for fasteners made of carbon steel with 500 < f<sub>uk</sub> ≤ 1000 N/mm<sup>2</sup>
  - = 0,5 for fasteners made of stainless steel

**Table C2.2:** Characteristic resistance to **steel failure** under tension ans shear loading of **fischer FRA** 

| fischer FRA                  |                       |      | M12              | M16   | M20   | M24   |
|------------------------------|-----------------------|------|------------------|-------|-------|-------|
| Characteristic resistance to | steel failure         | unde | r tension loadin | ıg    |       |       |
| Characteristic resistance    | $N_{Rk,s}$            | [kN] | 62,1             | 110,5 | 172,7 | 263,0 |
| Partial factor <sup>1)</sup> |                       |      |                  |       |       |       |
| Partial factor               | γMs                   | [-]  |                  | 1     | ,4    |       |
| Characteristic resistance to | steel failure         | unde | r shear loading  |       |       |       |
| Without lever arm            |                       |      |                  |       |       |       |
| Characteristic resistance    | $V^0$ Rk,s            | [kN] | 33,7             | 62,8  | 98,0  | 141,2 |
| Ductility factor             | <b>k</b> <sub>7</sub> | [-]  |                  | 1     | ,0    |       |
| With lever arm               |                       |      |                  |       |       |       |
| Characteristic resistance    | M <sup>0</sup> Rk,s   | [Nm] | 104,8            | 266,3 | 519,2 | 898,0 |
| Partial factor <sup>1)</sup> |                       |      |                  |       | •     | •     |
| Partial factor               | γMs                   | [-]  |                  | 1,    | 25    |       |

<sup>1)</sup> In absence of other national regulations.

Fischer injection system FIS EB II

Performance
Characteristic resistance to steel failure under tension and shear loading of Rebars and fischer FRA

Annex C 2

8.06.01-300/22

<sup>&</sup>lt;sup>2)</sup> f<sub>uk</sub> respectively shall be taken from the specifications of the rebar.

Deutsches
Institut
für
Bautechnik

|                                                                          | eristic resis<br>and shear |              |          | crete 1                                       | failure  | under                                          |                      |                                                                                                                      |           |     |  |  |  |
|--------------------------------------------------------------------------|----------------------------|--------------|----------|-----------------------------------------------|----------|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|-----------|-----|--|--|--|
| Size                                                                     |                            |              |          |                                               |          | Alls                                           | izes                 |                                                                                                                      |           |     |  |  |  |
| Tension loading                                                          |                            |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Installation factor                                                      | γinst                      | [-]          |          |                                               | Se       | e annex                                        | C 4 to C             | 6                                                                                                                    |           |     |  |  |  |
| Factors for the compressive                                              | strength o                 |              | rete > C | 20/25                                         |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
|                                                                          |                            |              | Uı       | ncracke                                       | d concre | te                                             | (                    | Cracked                                                                                                              | concrete  | •   |  |  |  |
|                                                                          | C25/30                     |              |          | 1,0                                           | 05       |                                                |                      | 1,                                                                                                                   | 02        |     |  |  |  |
| Increasing factor ψε for                                                 | C30/37                     | 1            |          | 1,0                                           | 09       |                                                |                      | 1,                                                                                                                   | 05        |     |  |  |  |
| cracked or uncracked                                                     | C35/45                     | 1 .          |          | 1,                                            | 12       |                                                |                      | 1,                                                                                                                   | 06        |     |  |  |  |
| concrete                                                                 | C40/50                     | [-]          |          | 1,                                            | 16       |                                                | 1,08<br>1,09<br>1,11 |                                                                                                                      |           |     |  |  |  |
| $\tau_{\text{Rk}(X,Y)} = \psi_{\text{c}} \cdot \tau_{\text{Rk}(C20/25)}$ | C45/55                     |              |          | 1,19 1,09<br>1,21 1,11<br>1,0 h <sub>ef</sub> |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
|                                                                          | C50/60                     | 1,0 hef      |          |                                               |          |                                                |                      | 1,                                                                                                                   | 11        |     |  |  |  |
| Splitting failure                                                        |                            |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| h / hef 2                                                                | ≥ 2,0                      |              |          |                                               |          | 1,0                                            | h <sub>ef</sub>      |                                                                                                                      |           |     |  |  |  |
| Edge 2,0 > h / h <sub>e f</sub> >                                        | > 1,3 C <sub>cr,sp</sub>   | [mm]         |          | 4,6 h <sub>ef</sub> - 1,8 h                   |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| h / h <sub>ef</sub> :                                                    | ≤ 1,3                      | [mm]  <br> - |          |                                               |          | 2,26                                           | h <sub>ef</sub>      |                                                                                                                      |           |     |  |  |  |
| Spacing                                                                  | <b>S</b> cr,sp             |              |          |                                               |          | 2 c                                            | cr,sp                |                                                                                                                      |           |     |  |  |  |
| Concrete cone failure                                                    |                            |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Uncracked concrete                                                       | <b>k</b> <sub>ucr,N</sub>  | [-]          |          |                                               |          | 11                                             | ,0                   |                                                                                                                      |           |     |  |  |  |
| Cracked concrete                                                         | <b>k</b> cr,N              | [-]          |          |                                               |          | 7,                                             | 7                    |                                                                                                                      |           |     |  |  |  |
| Edge distance                                                            | <b>C</b> cr,N              | [mm]         |          |                                               |          | 1,5                                            | h <sub>ef</sub>      | Cracked concrete  1,02 1,05 1,06 1,08 1,09 1,11  ef 1,8 h hef Sp  0  2 d <sub>nom</sub> ) d <sub>nom</sub> ; 300 mm) |           |     |  |  |  |
| Spacing                                                                  | <b>S</b> cr,N              | [[[[[]       |          |                                               |          | 2 c                                            | cr,N                 | Cracked concrete  1,02 1,05 1,06 1,08 1,09 1,11  ef 1,8 h lef p  2 d <sub>nom</sub> ) d <sub>nom</sub> ; 300 mm)     |           |     |  |  |  |
| Factors for sustained tension                                            | on loading                 |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Temperature range                                                        |                            | [-]          | 24 °     | C / 43 °(                                     | C        | 43 °C /                                        | 60 °C                | 5                                                                                                                    | 0 °C / 72 | 2°C |  |  |  |
| Factor                                                                   | $\Psi^0$ sus               | [-]          |          | 0,66                                          |          | 0,6                                            | 31                   |                                                                                                                      | 0,60      |     |  |  |  |
| Shear loading                                                            |                            |              |          |                                               | -        |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Installation factor                                                      | γinst                      | [-]          |          |                                               |          | 1,                                             | 0                    |                                                                                                                      |           |     |  |  |  |
| Concrete pry-out failure                                                 |                            |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Factor for pry-out failure                                               | <b>k</b> <sub>8</sub>      | [-]          |          |                                               |          | 2,                                             | 0                    |                                                                                                                      |           |     |  |  |  |
| Concrete edge failure                                                    |                            |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Effective length of fastener for<br>shear loading                        | r I <sub>f</sub>           | [mm]         |          |                                               |          | min (h <sub>ef;</sub><br>min (h <sub>ef;</sub> |                      |                                                                                                                      | )         |     |  |  |  |
| Effective diameter of the fast                                           | tener d <sub>nom</sub>     |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |
| Size                                                                     |                            |              | M8       | M10                                           | M12      | M16                                            | M20                  | M24                                                                                                                  | M27       | M:  |  |  |  |
| Anchor rods and                                                          | ,                          |              |          |                                               |          |                                                |                      |                                                                                                                      |           |     |  |  |  |

| Anchor rods and Threaded rods        | [mm] | 8   |    | 10  | 12 | 16 | 3  | 20 | 24 | 2  |    | 30  |
|--------------------------------------|------|-----|----|-----|----|----|----|----|----|----|----|-----|
| fischer FRA d <sub>not</sub>         | n    | _1) |    | _1) | 12 | 16 | 5  | 20 | 25 |    | 1) | _1) |
| Size (nominal diameter of the rebar) | ф    | 8   | 10 | 12  | 14 | 16 | 20 | 25 | 26 | 28 | 30 | 32  |
| Rebar d <sub>no</sub>                | [mm] | 8   | 10 | 12  | 14 | 16 | 20 | 25 | 26 | 28 | 30 | 32  |

<sup>1)</sup> Anchor type not part of the assessment

fischer injection system FIS EB II

# **Performance**

Characteristic resistance to concrete failure under tension / shear loading

Annex C 3

Threaded rods



| Table C4.1:                                       | Characte<br>Anchor i<br>uncrack | <b>ods</b> an      | d <b>Threa</b>       | ded ro   | <b>ds</b> in h | -         |          |        |       | lure for |         |
|---------------------------------------------------|---------------------------------|--------------------|----------------------|----------|----------------|-----------|----------|--------|-------|----------|---------|
| Anchor rod / Thr                                  | eaded rod                       |                    |                      | M8       | M10            | M12       | M16      | M20    | M24   | M27      | M30     |
| Combined pullou                                   | ıt and conc                     | rete con           | e failure            |          |                |           |          |        |       |          |         |
| Calculation diame                                 |                                 | d                  | [mm]                 | 8        | 10             | 12        | 16       | 20     | 24    | 27       | 30      |
| Uncracked conc                                    | rete                            |                    |                      |          |                |           |          |        |       | ,        |         |
| Characteristic bo                                 | ond resista                     | nce in ur          | cracked              | concret  | e C20/2        | 5         |          |        |       |          |         |
| Hammer-drilling w                                 | ith standard                    | l drill bit (      | dry or we            | t concre | te)            |           |          |        |       |          |         |
| Tem- I: 24 °                                      | °C / 43 °C                      |                    |                      | 14,0     | 14,0           | 14,0      | 14,0     | 14,0   | 13,0  | 12,0     | 12,0    |
|                                                   | °C / 60 °C                      | $	au_{Rk,ucr}$     | [N/mm <sup>2</sup> ] | 14,0     | 13,0           | 13,0      | 12,0     | 11,0   | 10,0  | 8,5      | 8,5     |
| range III: 50 °                                   | °C / 72 °C                      | -                  |                      | 9,0      | 9,0            | 9,0       | 9,0      | 9,0    | 8,5   | 8,0      | 7,5     |
| Hammer-drilling w                                 | vith standard                   | drill bit (        | water fille          | d hole)  |                |           | l        |        | l     |          |         |
| Tem- l: 24 °                                      | °C / 43 °C                      |                    |                      | 14,0     | 14,0           | 14,0      | 14,0     | 14,0   | 12,0  | 12,0     | 12,0    |
|                                                   | °C / 60 °C                      | $	au_{Rk,ucr}$     | [N/mm²]              | 12,0     | 11,0           | 11,0      | 10,0     | 9,5    | 8,5   | 8,5      | 8,5     |
| range III: 50 °                                   | °C / 72 °C                      | - /                | -                    | 9,0      | 9,0            | 9,0       | 8,5      | 8,0    | 7,5   | 7,0      | 6,5     |
| Installation facto                                | rs                              |                    |                      | ,        |                |           |          |        |       |          |         |
| Dry or wet concre                                 | te                              |                    |                      |          |                |           | 1        | ,2     |       |          |         |
| Water filled hole                                 |                                 | γinst              | [-]                  |          |                |           | 1        | ,4     |       |          |         |
| Cracked concret                                   | e                               |                    |                      |          |                |           |          |        |       |          |         |
| Characteristic bo                                 | ond resista                     | nce in cr          | acked co             | ncrete ( | 220/25         |           |          |        |       |          |         |
| Hammer-drilling w                                 | ith standard                    | l drill bit (      | dry or wet           | t concre | te)            |           |          |        |       |          |         |
| Tem- I: 24 °                                      | °C / 43 °C                      |                    |                      | 7,0      | 7,0            | 7,0       | 6,5      | 6,0    | 6,0   | 5,5      | 5,5     |
|                                                   | °C / 60 °C                      | τ <sub>Rk,cr</sub> | [N/mm <sup>2</sup> ] | 6,5      | 6,5            | 6,5       | 6,0      | 6,0    | 6,0   | 5,5      | 5,5     |
| range III: 50 °                                   | °C / 72 °C                      | -                  |                      | 6,0      | 6,0            | 6,0       | 5,5      | 5,5    | 5,5   | 5,0      | 5,0     |
| Hammer-drilling w                                 | ith standard                    | l drill bit (      | water fille          | d hole)  | l              |           |          | I      | I     | I        |         |
| I: 24 °                                           | °C / 43 °C                      |                    |                      | 7,0      | 7,0            | 7,0       | 6,5      | 6,0    | 6,0   | 5,5      | 5,5     |
| Tem- II: 43°                                      | °C / 60 °C                      | $	au_{Rk,cr}$      | [N/mm <sup>2</sup> ] | 5,5      | 5,5            | 5,5       | 5,0      | 4,5    | 4,5   | 4,0      | 4,0     |
| range                                             | °C / 72 °C                      | ·                  |                      | 5,5      | 5,5            | 5,5       | 5,0      | 4,0    | 4,0   | 4,0      | 4,0     |
| Installation facto                                |                                 |                    |                      | -,-      |                |           |          | 1 -, - | 1 -,- | 1 -,-    |         |
| Dry or wet concre                                 |                                 |                    |                      |          |                |           | 1        | ,2     |       |          |         |
| Water filled hole                                 |                                 | γinst              | [-]                  |          |                |           |          | ,4     |       |          |         |
| Water filled hole                                 |                                 | · ·                |                      |          |                |           | 1        | ,4     |       |          |         |
| fischer injection  Performance Characteristic res |                                 |                    |                      | and cond | rete failu     | ure for A | nchor ro | d and  | A     | nnex C   | <br>; 4 |



| Rebars                            |               |                | ф                         | 8      | 10     | 12    | 14   | 16   | 20   | 25   | 26   | 28   | 30   | 32   |
|-----------------------------------|---------------|----------------|---------------------------|--------|--------|-------|------|------|------|------|------|------|------|------|
| Combined pull                     | out and conc  | rete con       | e failure                 |        |        |       |      |      |      |      |      |      |      |      |
| Calculation diar                  | neter         | d              | [mm]                      | 8      | 10     | 12    | 14   | 16   | 20   | 25   | 26   | 28   | 30   | 32   |
| Uncracked cor                     | ncrete        |                |                           |        |        |       |      |      |      |      |      |      |      |      |
| Characteristic                    | bond resistar | nce in ur      | ncracked                  | conci  | rete C | 20/25 |      |      |      |      |      |      |      |      |
| Hammer-drilling                   | with standard | drill bit (    | dry or we                 | t conc | rete)  |       |      |      |      |      |      |      |      |      |
| Tem- 1: 2                         | 4 °C / 43 °C  |                |                           | 14,0   | 14,0   | 14,0  | 13,0 | 13,0 | 12,0 | 11,0 | 11,0 | 11,0 | 11,0 | 11,0 |
|                                   | 3 °C / 60 °C  | $	au_{Rk,ucr}$ | [N/mm <sup>2</sup> ]      | 14,0   | 13,0   | 13,0  | 12,0 | 11,0 | 10,0 | 10,0 | 9,0  | 8,5  | 8,0  | 8,0  |
| range III: 5                      | 0 °C / 72 °C  | , ,            |                           | 9,0    | 9,0    | 9,0   | 9,0  | 9,0  | 9,0  | 8,5  | 8,5  | 8,0  | 8,0  | 7,5  |
| Hammer-drilling                   |               | drill bit (    | water fille               |        | · ·    | -,-   | _,_  | ,_   | -,-  | ,_   | _,-  |      |      | .,-  |
| l· 2                              | 4 °C / 43 °C  |                |                           | 14,0   | 14,0   | 14,0  | 12,0 | 12,0 | 12,0 | 11,0 | 11,0 | 11,0 | 11,0 | 11,0 |
| Tem                               | 3 °C / 60 °C  | <b>π</b>       | <br> [N/mm <sup>2</sup> ] |        | 11,0   | 10,0  | 9,5  | 9,5  | 9,0  | 8,5  | 8,5  | 8,5  | 7,5  | 7,5  |
| ranga                             | 0 °C / 72 °C  | $	au_{Rk,ucr}$ | [[14/11]]                 |        |        |       |      | ·    | ·    |      |      | ,    |      |      |
| 111: 5                            |               |                |                           | 9,0    | 9,0    | 9,0   | 8,5  | 8,0  | 7,5  | 7,0  | 6,5  | 6,5  | 6,0  | 6,0  |
| Installation fac                  |               |                |                           | Ι      |        |       |      |      | 1.0  |      |      |      |      |      |
| Dry or wet cond Water filled hole |               | γinst          | [-]                       |        |        |       |      |      | 1,2  |      |      |      |      |      |
| Cracked concr                     |               |                |                           |        |        |       |      |      | 1,4  |      |      |      |      |      |
| Characteristic                    |               | oco in cr      | acked co                  | ncrote | - C20/ | 25    |      |      |      |      |      |      |      |      |
| Hammer-drilling                   |               |                |                           |        |        | 25    |      |      |      |      |      |      |      |      |
|                                   | 4 °C / 43 °C  | dilli bit (    | dry or we                 | 7,0    | 7,0    | 7,0   | 6,5  | 6,5  | 6,0  | 6,0  | 5,5  | 5,5  | 5,5  | 5,5  |
| 1em                               |               |                | [N1/mama2]                |        |        | -     |      | ,    |      |      |      | ,    |      |      |
| range ———                         | 3 °C / 60 °C  | $	au_{Rk,cr}$  | [N/mm <sup>2</sup> ]      |        | 6,5    | 6,5   | 6,0  | 6,0  | 6,0  | 5,5  | 5,5  | 5,5  | 5,0  | 5,0  |
| - III: 5                          | 0 °C / 72 °C  |                |                           | 6,0    | 6,0    | 6,0   | 6,0  | 5,5  | 5,5  | 5,5  | 5,0  | 5,0  | 5,0  | 4,5  |
| <u>Hammer-drilling</u>            |               | drill bit (    | <u>water fille</u><br>⊤   |        |        |       |      |      |      |      |      |      |      |      |
| Tem- I: 2                         | 4 °C / 43 °C  |                |                           | 7,0    | 7,0    | 7,0   | 7,0  | 6,5  | 6,0  | 6,0  | 5,5  | 5,5  | 5,5  | 5,5  |
| •                                 | 3 °C / 60 °C  | $	au_{Rk,cr}$  | [N/mm <sup>2</sup> ]      | 5,5    | 5,5    | 5,5   | 5,0  | 5,0  | 4,5  | 4,0  | 4,0  | 4,0  | 4,0  | 3,5  |
| range III: 5                      | 0 °C / 72 °C  |                |                           | 5,5    | 5,5    | 5,5   | 5,0  | 5,0  | 4,0  | 4,0  | 4,0  | 4,0  | 4,0  | 3,5  |
| Installation fac                  | tors          |                |                           |        |        |       |      |      |      |      |      |      |      |      |
| Dry or wet cond                   | rete          | Vis+           | [-]                       |        |        |       |      |      | 1,2  |      |      |      |      |      |
| Water filled hole                 | <del>)</del>  | γinst          | [-]                       |        |        |       |      |      | 1,4  |      |      |      |      |      |
| Water filled hole                 | 9             | , mee          |                           |        |        |       |      |      | 1,4  |      |      |      |      |      |
| fischer inject                    | tion system   | FIS EB         | ll                        |        |        |       |      |      |      |      |      |      |      |      |



| fischer FRA                                |                         |                      | M12                                   | M16                                   | M20      | M24                                                                                                                                               |
|--------------------------------------------|-------------------------|----------------------|---------------------------------------|---------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Combined pullout and cond                  | crete con               | e failure            |                                       |                                       |          |                                                                                                                                                   |
| Calculation diameter                       | d                       | [mm]                 | 12                                    | 16                                    | 20       | 25                                                                                                                                                |
| Combined pullout and concrete cone failure |                         |                      |                                       |                                       |          |                                                                                                                                                   |
| Characteristic bond resista                | nce in uı               | ncracked c           | oncrete C20/2                         | 25                                    |          |                                                                                                                                                   |
| Hammer-drilling with standar               | d drill bit (           | dry or wet           | concrete)                             |                                       |          |                                                                                                                                                   |
| Tem- I: 24 °C / 43 °C                      | _                       |                      | 14,0                                  | 13,0                                  | 12,0     | 11,0                                                                                                                                              |
| perature II: 43 °C / 60 °C                 | $	au_{Rk,ucr}$          | [N/mm <sup>2</sup> ] | 13,0                                  | 11,0                                  | 10,0     | 10,0                                                                                                                                              |
| range III: 50 °C / 72 °C                   | _                       |                      | 9,0                                   | 9,0                                   | 9,0      | 8,5                                                                                                                                               |
| Hammer-drilling with standar               | d drill bit (           | water filled         | hole)                                 | •                                     |          |                                                                                                                                                   |
| I: 24 °C / 43 °C                           |                         |                      | 14,0                                  | 12,0                                  | 12,0     | 11,0                                                                                                                                              |
|                                            | -<br>τrkucr             | [N/mm <sup>2</sup> ] | 10,0                                  | 9,5                                   | 9,0      | 8,5                                                                                                                                               |
| rango ———————————————————————————————————— |                         |                      | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | <u> </u> | · ·                                                                                                                                               |
|                                            |                         |                      |                                       | 1 0,0                                 | 1 .,0    | 1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                           |
|                                            |                         |                      |                                       | 1                                     | .2       |                                                                                                                                                   |
|                                            | – γinst                 | [-]                  |                                       |                                       | *        |                                                                                                                                                   |
|                                            |                         |                      |                                       |                                       | ·        |                                                                                                                                                   |
| Characteristic bond resista                | nce in cr               | acked con            | crete C20/25                          |                                       |          |                                                                                                                                                   |
| Hammer-drilling with standar               | d drill bit (           | dry or wet o         | concrete)                             |                                       |          |                                                                                                                                                   |
| l: 24 °C / 43 °C                           |                         |                      | 7,0                                   | 6,5                                   | 6,0      | 6,0                                                                                                                                               |
|                                            | –<br>τ <sub>Rk cr</sub> | [N/mm <sup>2</sup> ] | 6,5                                   | 6,0                                   | 6,0      | 5,5                                                                                                                                               |
| range III: 50 °C / 72 °C                   | _                       |                      | 6.0                                   | 5.5                                   | 5.5      | 9,0       8,5         7,5       7,0         6,0       6,0         6,0       5,5         5,5       5,5         6,0       6,0         4,5       4,0 |
| Hammer-drilling with standar               | d drill bit (           | ⊥<br>water filled    | <u>-</u>                              | - , -                                 |          |                                                                                                                                                   |
| I: 24 °C / 43 °C                           |                         |                      |                                       | 6,5                                   | 6,0      | 6,0                                                                                                                                               |
| 1em                                        | -<br>Ты                 | [N/mm <sup>2</sup> ] | -                                     | <u> </u>                              | <u> </u> | · ·                                                                                                                                               |
| range                                      | – CRK,Cr                | -                    | •                                     | <u> </u>                              | <u> </u> |                                                                                                                                                   |
|                                            |                         |                      | <del></del>                           | 3,0                                   | 4,0      | 4,0                                                                                                                                               |
|                                            |                         | 1                    |                                       | 1                                     | 2        |                                                                                                                                                   |
|                                            | - γinst                 | [-]  -               |                                       |                                       |          |                                                                                                                                                   |
|                                            |                         |                      |                                       |                                       |          |                                                                                                                                                   |
|                                            |                         |                      |                                       |                                       |          |                                                                                                                                                   |



|                    | C7.1: Disp                                         |             |                       |             | ls and Th                             | 1             |             | 1     |      |
|--------------------|----------------------------------------------------|-------------|-----------------------|-------------|---------------------------------------|---------------|-------------|-------|------|
| Anchor i           | rod                                                | M8          | M10                   | M12         | M16                                   | M20           | M24         | M27   | M30  |
| Displace           | ement-Factors 1                                    | for tension | loading <sup>1)</sup> |             |                                       |               |             |       |      |
| Uncrack            | ed or cracked                                      | concrete;   | Temperatu             | re range I, | II, III                               |               |             |       |      |
| $\delta$ N0-Factor | <br> [mm/(N/mm²)]                                  | 0,08        | 0,08                  | 0,09        | 0,10                                  | 0,11          | 0,12        | 0,12  | 0,13 |
| δN∞-Factor         | [[11111/(14/111111-)]                              | 0,11        | 0,12                  | 0,13        | 0,15                                  | 0,16          | 0,17        | 0,18  | 0,19 |
| Displace           | ment-Factors                                       | for shear l | oading <sup>2)</sup>  |             |                                       |               |             |       |      |
| Uncrack            | ed or cracked                                      | concrete;   | Temperatu             | re range I, | II, III                               |               |             |       |      |
| $\delta$ V0-Factor | [mm/kN]                                            | 0,19        | 0,15                  | 0,13        | 0,10                                  | 0,08          | 0,07        | 0,06  | 0,05 |
| δ∨∞-Factor         | [IIIII/KIN]                                        | 0,28        | 0,22                  | 0,19        | 0,14                                  | 0,11          | 0,10        | 0,09  | 0,08 |
| 1) Calcu           | lation of effectiv                                 | e displace  | ment:                 |             | 2) Calculation                        | on of effecti | ve displace | ment: |      |
| δ <sub>N0</sub> =  | $\delta$ N0-Factor $\cdot$ $\tau$                  |             |                       |             | $\delta_{V0} = \delta_{V0}$           | -Factor · V   |             |       |      |
| δ <sub>N∞</sub> =  | $\delta_{\text{N}\infty\text{-Factor}} \cdot \tau$ |             |                       |             | $\delta_{V\infty} = \delta_{V\infty}$ | -Factor · V   |             |       |      |
| τ =                | acting bond str                                    | enath unde  | er tension lo         | ading       | V = actin                             | ig shear loa  | ding        |       |      |

| Table C7.2: | Displacements for Rebars and fisc  | oner FRA |
|-------------|------------------------------------|----------|
| Table C1.2. | Displacements for Repairs and fist | THEI FRA |

| of the re                                                   | bar Φ                                                  | 8       | 10        | 12       | 14      | 16        | 20   | 25   | 26   | 28   | 30   | 32   |  |  |
|-------------------------------------------------------------|--------------------------------------------------------|---------|-----------|----------|---------|-----------|------|------|------|------|------|------|--|--|
| fischer F                                                   | -RA                                                    | _1)     | _1)       | M12      | _1)     | M16       | M20  | M24  | _1)  | _1)  | _1)  | _1)  |  |  |
| Displace                                                    | Displacement-Factors for tension loading <sup>2)</sup> |         |           |          |         |           |      |      |      |      |      |      |  |  |
| Uncracked or cracked concrete; Temperature range I, II, III |                                                        |         |           |          |         |           |      |      |      |      |      |      |  |  |
| $\delta$ N0-Factor                                          | [mm/(N/mm <sup>2</sup> )]                              | 0,08    | 0,08      | 0,09     | 0,10    | 0,10      | 0,11 | 0,12 | 0,12 | 0,13 | 0,13 | 0,13 |  |  |
| δ <sub>N∞-Factor</sub>                                      | -[[mm/(18/mm²)]<br>                                    | 0,11    | 0,12      | 0,13     | 0,14    | 0,15      | 0,16 | 0,18 | 0,18 | 0,19 | 0,19 | 0,20 |  |  |
| Displace                                                    | ement-Factors                                          | for she | ar loadii | ng³)     |         |           |      |      |      |      |      |      |  |  |
| Uncrack                                                     | ed or cracked                                          | concre  | te; Temp  | oerature | range l | , II, III |      |      |      |      |      |      |  |  |
| δv0-Factor                                                  | F (1 N 17                                              | 0,19    | 0,15      | 0,13     | 0,11    | 0,10      | 0,08 | 0,06 | 0,06 | 0,06 | 0,05 | 0,05 |  |  |

0,16

1) Anchor type not part of the assessment

2) Calculation of effective displacement:

3) Calculation of effective displacement:

0,09

0,09

0,08

0,08

0,07

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau$ 

[mm/kN]

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V$ 

0,14

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Factor}} \cdot \tau$ 

Nominal diameter

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V$ 

0,11

V = acting shear loading

 $\tau$  = acting bond strength under tension loading

0,28

0,22

0,19

fischer injection system FIS EB II

# **Performance**

Displacements for Anchor rods, Threaded rods, Rebars and fischer FRA

Annex C 7



Table C8.1: Characteristics resistance to steel failure under tension / shear loading of Anchor rods and Threaded rods under seismic action performance category C1 or C2

| category C1 or C2                                                                              |                            |             |       |         |         |                    |       |       |       |       |       |       |
|------------------------------------------------------------------------------------------------|----------------------------|-------------|-------|---------|---------|--------------------|-------|-------|-------|-------|-------|-------|
| Anchor                                                                                         | rod / Threaded rod         |             |       |         | M12     | M14                | M16   | M20   | M22   | M24   | M27   | M30   |
| Charact                                                                                        | eristic resistance to stee | l failure u | ındeı | tens    | ion loa | ding <sup>1)</sup> |       |       |       |       |       |       |
| Anchor                                                                                         | rods and Threaded rods     | , perform   | ance  | cate    | gory C  | 1                  |       |       |       |       |       |       |
| φ 5                                                                                            |                            |             | 4.8   |         | 33,7    | 46,0               | 62,8  | 98,0  | 121,2 | 141,2 | 183,6 | 224,4 |
| lic r                                                                                          | Steel zinc plated          |             | 5.8   |         | 42,1    | 57,5               | 78,5  | 122,5 | 151,5 | 176,5 | 229,5 | 280,5 |
| l sing                                                                                         |                            | Property    | 8.8   | [kN]    | 67,4    | 92,0               | 125,6 | 196,0 | 242,4 | 282,4 | 367,2 | 448,8 |
| Characteristic resistance N <sub>RK,S,C1</sub>                                                 | Stainless steel R and      | class       | 50    | ונאואן  | 42,1    | 57,5               | 78,5  | 122,5 | 151,5 | 176,5 | 229,5 | 280,5 |
| nara<br>sta                                                                                    | high corrosion             |             | 70    |         | 59,0    | 80,5               | 109,9 | 171,5 | 212,1 | 247,1 | 321,3 | 392,7 |
| Si C                                                                                           | resistant steel HCR        |             | 80    |         | 67,4    | 92,0               | 125,6 | 196,0 | 242,4 | 282,4 | 367,2 | 448,8 |
| Anchor                                                                                         | rods and Threaded rods     | , perform   | ance  | cate    | gory C  | 2                  |       |       |       |       |       |       |
| <b>6</b> 8                                                                                     |                            |             | 4.8   |         | 30,3    | _2)                | 56,5  | 88,2  | _2)   | 141,2 | _2)   | _2)   |
| ic r                                                                                           | Steel zinc plated          |             | 5.8   |         | 37,9    | _2)                | 70,6  | 110,2 | _2)   | 176,5 | _2)   | _2)   |
| l ising                                                                                        |                            | Property    | 8.8   | .,      | 60,6    | _2)                | 113,0 | 176,4 | _2)   | 282,4 | _2)   | _2)   |
| nce act                                                                                        | Stainless steel R and      | class       | 50    | [-]     | 37,9    | _2)                | 70,6  | 110,2 | _2)   | 176,5 | _2)   | _2)   |
| Characteristic resistance N <sub>RK,s,C2</sub>                                                 | high corrosion             |             | 70    |         | 53,1    | _2)                | 98,9  | 154,3 | _2)   | 247,1 | _2)   | _2)   |
| S is                                                                                           | resistant steel HCR        |             | 80    |         | 60,6    | _2)                | 113,0 | 176,4 | _2)   | 282,4 | _2)   | _2)   |
| Characteristic resistance to steel failure under shear loading without lever arm <sup>1)</sup> |                            |             |       |         |         |                    |       |       |       |       |       |       |
| Anchor                                                                                         | rods, performance categ    | ory C1      |       |         |         |                    |       |       |       |       |       |       |
| <b>9</b> 2                                                                                     |                            |             | 4.8   |         | 20,2    | 27,6               | 37,6  | 58,8  | 72,7  | 84,7  | 110,1 | 134,6 |
| tic re-                                                                                        | Steel zinc plated          |             | 5.8   |         | 25,2    | 34,5               | 47,1  | 73,5  | 90,9  | 105,9 | 137,7 | 168,3 |
| l srist<br>V₀ <sub>r</sub>                                                                     |                            | Property    | 8.8   | [kN]    | 33,7    | 46,0               | 62,8  | 98,0  | 121,2 | 141,2 | 183,6 | 224,4 |
| ] Se 32                                                                                        | Stainless steel R and      | class       | 50    | וניואן  | 21,0    | 28,7               | 39,2  | 61,2  | 75,7  | 88,2  | 114,7 | 140,2 |
| Characteristic resistance V <sup>0</sup> Rk,s,C1                                               | high corrosion             |             | 70    | ]       | 29,5    | 40,2               | 54,9  | 85,7  | 106,0 | 123,5 | 160,6 | 196,3 |
| 25 is                                                                                          | resistant steel HCR        |             | 80    |         | 33,7    | 46,0               | 62,8  | 98,0  | 121,2 | 141,2 | 183,6 | 224,4 |
| Threade                                                                                        | ed rods, performance cat   | egory C1    |       |         |         |                    |       |       |       |       |       |       |
| <b>9</b> 5                                                                                     |                            |             | 4.8   |         | 14,1    | 19,3               | 26,3  | 41,1  | 50,9  | 59,3  | 77,1  | 94,2  |
| stic re-                                                                                       | Steel zinc plated          |             | 5.8   |         | 17,7    | 24,1               | 32,9  | 51,4  | 63,6  | 74,1  | 96,3  | 117,8 |
| eris<br>V                                                                                      |                            | Property    | 8.8   | [kN]    | 23,6    | 32,2               | 43,9  | 68,6  | 84,8  | 98,8  | 128,5 | 157,0 |
| l gg                                                                                           | Stainless steel R and      | class       | 50    | וניייזן | 14,7    | 20,1               | 27,4  | 42,8  | 53,0  | 61,7  | 80,3  | 98,1  |
| Characteristic resistance V <sup>0</sup> Rks,c1                                                | high corrosion             |             | 70    |         | 20,6    | 28,1               | 38,4  | 60,0  | 74,2  | 86,4  | 112,4 | 137,4 |
| Si                                                                                             | resistant steel HCR        |             | 80    |         | 23,6    | 32,2               | 43,9  | 68,6  | 84,8  | 98,8  | 128,5 | 157,0 |
| Anchor                                                                                         | rods and Threaded rods     | , perform   | ance  | cate    |         |                    |       |       | ı     |       | ı     |       |
| <b>ē</b> 2                                                                                     |                            |             | 4.8   |         | 13,3    | _2)                | 28,2  | 45,2  | _2)   | 77,0  | _2)   | _2)   |
| offic Rk's                                                                                     | Steel zinc plated          |             | 5.8   |         | 16,6    | _2)                | 35,3  | 56,5  | _2)   | 96,3  | _2)   | _2)   |
| eris<br>∫√                                                                                     |                            | Property    | 8.8   | [-]     | 22,2    | _2)                | 47,1  | 75,4  | _2)   | 128,4 | _2)   | _2)   |
| act<br>Luce                                                                                    | Stainless steel R and      | class       | 50    | ' '     | 13,9    | _2)                | 29,4  | 47,1  | _2)   | 80,3  | _2)   | _2)   |
| Characteristic resistance V <sup>0</sup> RK,S,C2                                               | high corrosion             |             | 70    |         | 19,4    | _2)                | 41,2  | 66,0  | _2)   | 112,4 | _2)   | _2)   |
|                                                                                                | resistant steel HCR        |             | 80    |         | 22,2    | _2)                | 47,1  | 75,4  | _2)   | 128,4 | _2)   | _2)   |

<sup>1)</sup> Partial factors for performance category C1 or C2 see **table C10.1**; for anchor rods the factor for steel ductility is 1,0

<sup>&</sup>lt;sup>2)</sup> No performance assessed

| c .     |           |        |             |                    |
|---------|-----------|--------|-------------|--------------------|
| ticobor | INIAAtian | CVCtCM |             | $ \nu$ $_{\rm II}$ |
| uscher  | injection | System | $\Gamma$ IO |                    |
|         | ,         | -,     |             |                    |

#### **Performance**

Characteristic resistance to steel failure for Anchor rods and Threaded rods under seismic action (performance category C1 / C2)

Annex C 8

8.06.01-300/22

Table C9.1:



\_2)

\_2)

\_2)

\_2)

| of <b>Rebars (B</b><br>under seismic                    | •                                                                                                 | ormano  | e cate  | gory <b>C</b> ′ | 1 or C2 | 2 |  | J |  |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------|---------|-----------------|---------|---|--|---|--|--|--|--|--|
| Nominal diameter of the rebar φ 12 14 16 20 25 26 28 30 |                                                                                                   |         |         |                 |         |   |  |   |  |  |  |  |  |
| Characteristic resistance to steel                      | failure under                                                                                     | tension | loading | J <sup>1)</sup> |         |   |  |   |  |  |  |  |  |
| Rebar B500B acc. to DIN 488-2:20                        | 09-08, perforn                                                                                    | nance c | ategory | <sup>,</sup> C1 |         |   |  |   |  |  |  |  |  |
| Characteristic resistance                               | Characteristic resistance N <sub>Rk,s,C1</sub> [kN] 61,0 83,1 108,5 169,5 265,1 286,2 332,6 381,2 |         |         |                 |         |   |  |   |  |  |  |  |  |
| Rehar B500B acc. to DIN 488-2:20                        | Rehar B500B acc. to DIN 488-2:2009-08, performance category C2                                    |         |         |                 |         |   |  |   |  |  |  |  |  |

Characteristic resistance to steel failure under tension / shear loading

Characteristic resistance N<sub>Rk,s,C2</sub> [kN] 54,9 -2 97,6 152,6 -6 Characteristic resistance to steel failure under shear loading, without lever arm<sup>1)</sup>

 Rebar B500B acc. to DIN 488-2:2009-08, performance category C1

 Characteristic resistance
 V<sup>0</sup><sub>Rk,s,C1</sub>
 [kN]
 21,3
 29,1
 37,9
 59,3
 92,7
 100,1
 116,4
 133,4

 Rebar B500B acc. to DIN 488-2:2009-08, performance category C2

Rebar B500B acc. to DIN 488-2:2009-08, performance category C2

Characteristic resistance V<sup>0</sup>RK,S,C2 [kN] 20,1 -2 40,7 65,2 -2 -2 -2

Table C9.2: Characteristic resistance to steel failure under tension / shear loading of fischer FRA under seismic action performance category C1 or C2

| fischer FRA                                                             |                                       | M12              | M16               | M20              | M24   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------|------------------|-------------------|------------------|-------|--|--|--|--|--|--|--|
| Characteristic resistance to s                                          | teel failure unde                     | r tension loadir | ng <sup>1)</sup>  |                  |       |  |  |  |  |  |  |  |
| fischer FRA, performance category C1                                    |                                       |                  |                   |                  |       |  |  |  |  |  |  |  |
| Characteristic resistance                                               | N <sub>Rk,s,C1</sub> [kl              | N] 62,1          | 110,5             | 172,7            | 263,0 |  |  |  |  |  |  |  |
| fischer FRA, performance category C2                                    |                                       |                  |                   |                  |       |  |  |  |  |  |  |  |
| Characteristic resistance N <sub>Rk,s,C2</sub> [kN] 55,8 99,4 155,4 -2) |                                       |                  |                   |                  |       |  |  |  |  |  |  |  |
| Characteristic resistance to s                                          | teel failure unde                     | r shear loading  | , without lever a | rm <sup>1)</sup> |       |  |  |  |  |  |  |  |
| fischer FRA, performance cat                                            | egory C1                              |                  |                   |                  |       |  |  |  |  |  |  |  |
| Characteristic resistance                                               | V <sup>0</sup> <sub>Rk,s,C1</sub> [kl | N] 33,7          | 62,8              | 98,0             | 141,2 |  |  |  |  |  |  |  |
| fischer FRA, performance cat                                            | egory C2                              |                  |                   |                  | •     |  |  |  |  |  |  |  |
| Characteristic resistance                                               | V <sup>0</sup> <sub>Rk,s,C2</sub> [kl | N] 22,2          | 47,1              | 75,4             | _2)   |  |  |  |  |  |  |  |

<sup>1)</sup> Partial factors for performance category C1 or C2 see table C10.1

fischer injection system FIS EB II

Performance
Characteristic resistance to steel failure under tension / shear loading of Rebars and fischer FRA under seismic action performance category C1 or C2

Annex C 9

<sup>1)</sup> Partial factors for performance category C1 or C2 see table C10.1

<sup>2)</sup> No performance assessed

<sup>2)</sup> No performance assessed

Deutsches
Institut
für
Bautechnik

| <b>Table C10.1:</b> | Partial factors for Anchor rods, Threaded rods, Rebars (B500B) and |
|---------------------|--------------------------------------------------------------------|
|                     | fischer FRA under seismic action performance category C1 or C2     |

| Anch                           | nor rod / Threaded rod     |                  |                                                            |     | M12                      | M. | 16   | M20        | M24    | I N                       | 127 | M30 |  |  |
|--------------------------------|----------------------------|------------------|------------------------------------------------------------|-----|--------------------------|----|------|------------|--------|---------------------------|-----|-----|--|--|
| Nom                            | inal diameter of the reb   | ar               |                                                            | ф   | 12                       | 14 | 16   | 20         | 25     | 26                        | 28  | 30  |  |  |
| fisch                          | er FRA                     |                  |                                                            |     | M12                      | M  | 16   | M20        | M24    |                           | _3) | _3) |  |  |
| Tens                           | ion loading, steel failu   | re <sup>1)</sup> |                                                            |     |                          |    |      |            |        |                           |     |     |  |  |
|                                |                            |                  | 4.8                                                        |     |                          |    |      | 1,         | 50     |                           |     |     |  |  |
| (0                             | Steel zinc plated          |                  | 5.8                                                        |     |                          |    |      | 1,         | 50     |                           |     |     |  |  |
| ľχ                             |                            | Property         | 8.8                                                        |     |                          |    |      | 1,         | 50     |                           |     |     |  |  |
| cto                            | Stainless steel R and      | class            | 5.8<br>8.8<br>50<br>70<br>80<br>B500B<br>FRA<br>4.8<br>5.8 |     | 2,86                     |    |      |            |        |                           |     |     |  |  |
| Partial factor y <sub>™s</sub> | high corrosion             |                  |                                                            | [-] | 1,87 / fischer HCR: 1,50 |    |      |            |        |                           |     |     |  |  |
| <sup>5</sup> arti              | resistant steel HCR        |                  | 80                                                         |     |                          |    |      | 1,         | 60     |                           |     |     |  |  |
| _                              | Rebar                      |                  | B500B                                                      |     |                          |    |      | 1,         | 40     |                           |     |     |  |  |
|                                | fischer                    |                  | FRA                                                        |     |                          |    |      | 1,         | 40     |                           |     |     |  |  |
| Shea                           | ır loading, steel failure¹ | )                |                                                            |     |                          |    |      |            |        |                           |     |     |  |  |
|                                |                            |                  | 4.8                                                        |     |                          |    |      | 1,         | 25     |                           |     |     |  |  |
| (0                             | Steel zinc plated          |                  | 5.8                                                        |     |                          |    |      | 1,         | 25     |                           |     |     |  |  |
| ľγMi                           |                            | Property         | 8.8                                                        |     |                          |    |      | 1,         | 25     |                           |     |     |  |  |
| gcto                           | Stainless steel R and      | class            | 50                                                         | r 1 |                          |    |      | 2,         | 38     |                           |     |     |  |  |
| Partial factor y <sub>™s</sub> | high corrosion             |                  | 70                                                         | [-] |                          |    | 1,50 | 6 / fische | HCR: 1 | , <b>25</b> <sup>2)</sup> |     |     |  |  |
| <sup>5</sup> arti              | resistant steel HCR        |                  | 80                                                         |     |                          |    |      | 1,         | 33     |                           |     |     |  |  |
| щ                              | Rebar                      |                  | B500B                                                      |     |                          |    |      | 1,         | 50     |                           |     |     |  |  |
|                                | fischer                    |                  | FRA                                                        |     |                          |    |      | 1,         | 50     |                           |     |     |  |  |

<sup>1)</sup> In absence of other national regulations

fischer injection system FIS EB II

# Performance

Partial factors for Anchor rods, Threaded rods, Rebars and fischer FRA under seismic action performance category C1 or C2

Annex C 10

<sup>&</sup>lt;sup>2)</sup> Only admissible for high corrosion resistant steel HCR, with  $f_{yk}/f_{uk} \le 0.8$  and  $f_{uk} \le 800$  N/mm<sup>2</sup> (e.g. anchor rods)

<sup>3)</sup> Anchor type not part of the assessment



1,4

Table C11.1: Characteristics resistance for combined pull-out and concrete failure for Anchor rods and Threaded rods in hammer drilled holes under seismic action performance category C1

|                | od / Threaded rod                                                               |           |                      | M12          | M16        | M20         | M24 | M27 | M30 |  |  |  |  |
|----------------|---------------------------------------------------------------------------------|-----------|----------------------|--------------|------------|-------------|-----|-----|-----|--|--|--|--|
| Characte       | ristic bond resistand                                                           | ce, com   | bined pul            | ll-out and   | concrete c | one failure | )   |     |     |  |  |  |  |
| <u>Hammer-</u> | drilling with standar                                                           | d drill b | oit or holle         | ow drill bit | (dry or we | t concrete  | 1   |     |     |  |  |  |  |
| Tem-           | I: 24 °C / 43 °C                                                                |           |                      | 6,5          | 5,6        | 5,0         | 5,5 | 5,5 | 5,5 |  |  |  |  |
| perature       | II: 43 °C / 60 °C                                                               | TRk,C1    | [N/mm <sup>2</sup> ] | 6,5          | 5,6        | 5,0         | 5,5 | 5,5 | 5,5 |  |  |  |  |
| range          | III: 50 °C / 72 °C                                                              |           |                      | 5,7          | 5,5        | 5,0         | 5,0 | 5,0 | 5,0 |  |  |  |  |
| Hammer-        | Hammer-drilling with standard drill bit or hollow drill bit (water filled hole) |           |                      |              |            |             |     |     |     |  |  |  |  |
| Tem-           | I: 24 °C / 43 °C                                                                |           | [N/mm²]              | 6,5          | 5,0        | 4,7         | 4,7 | 4,7 | 4,7 |  |  |  |  |
| perature       | II: 43 °C / 60 °C                                                               | τRk,C1    |                      | 6,5          | 5,0        | 4,7         | 4,7 | 4,7 | 4,7 |  |  |  |  |
| range          | III: 50 °C / 72 °C                                                              |           |                      | 5,7          | 5,5        | 5,0         | 5,0 | 5,0 | 5,0 |  |  |  |  |
| Installatio    | on factors                                                                      |           |                      |              |            |             |     |     |     |  |  |  |  |
| Tension I      | loading                                                                         |           |                      |              |            |             |     |     |     |  |  |  |  |
| Dry or we      | t concrete                                                                      |           |                      |              |            | 1,          | ,2  |     |     |  |  |  |  |
| Water fille    | ed hole                                                                         | γinst     | [-]                  | 1,4          |            |             |     |     |     |  |  |  |  |

Table C11.2: Characteristics resistance for combined pull-out and concrete failure for Rebars and fischer FRA in hammer drilled holes under seismic action performance category C1

| Nominal     | diameter of the reba  | r         | ф                    | 12       | 14       | 16        | 20        | 25  | 26  | 28  | 30  |
|-------------|-----------------------|-----------|----------------------|----------|----------|-----------|-----------|-----|-----|-----|-----|
| fischer F   | RA                    |           |                      | M12      | _1)      | M16       | M20       | M24 | _1) | _1) | _1) |
| Characte    | ristic bond resistan  | ce, com   | bined pul            | l-out an | d concr  | ete con   | e failure |     |     |     |     |
| Hammer-     | drilling with standar | d drill b | oit or holle         | ow drill | bit (dry | or wet c  | oncrete   | )   |     |     |     |
| Tem-        | I: 24 °C / 43 °C      |           |                      | 6,5      | 6,0      | 6,0       | 6,0       | 5,5 | 5,5 | 5,5 | 5,5 |
| perature    | II: 43 °C / 60 °C     | τRk,C1    | [N/mm <sup>2</sup> ] | 6,5      | 6,0      | 6,0       | 6,0       | 5,5 | 5,5 | 5,5 | 5,5 |
| range       | III: 50 °C / 72 °C    |           |                      | 5,7      | 5,5      | 5,5       | 5,0       | 5,0 | 5,0 | 5,0 | 5,0 |
| Hammer-     | drilling with standar | d drill b | oit or holl          | ow drill | bit (wat | er filled | hole)     |     |     |     |     |
| Tem-        | I: 24 °C / 43 °C      |           |                      | 6,5      | 6,0      | 5,0       | 4,7       | 4,7 | 4,7 | 4,7 | 4,7 |
| perature    | II: 43 °C / 60 °C     | τRk,C1    | [N/mm <sup>2</sup> ] | 6,5      | 6,0      | 5,0       | 4,7       | 4,7 | 4,7 | 4,7 | 4,7 |
| range       | III: 50 °C / 72 °C    |           |                      | 5,7      | 5,5      | 5,5       | 4,7       | 4,7 | 4,7 | 4,7 | 4,7 |
| Installatio | on factors            |           |                      |          |          |           |           |     |     |     |     |
| Tension     | loading               |           |                      |          |          |           |           |     |     |     |     |
| Dry or we   | t concrete            |           | [-]                  |          |          |           | 1         | ,2  |     |     |     |
|             |                       | Vinst     | 1 1-1 1              |          |          |           |           |     |     |     |     |

<sup>1)</sup> Anchor type not part of the assessment

Water filled hole

fischer injection system FIS EB II

Performance
Characteristics resistance under seismic action (performance category C1) for Anchor rods, Threaded rods, Rebars and fischer FRA

Annex C 11



Table C12.1: Characteristics resistance for combined pull-out and concrete failure for Anchor rods and Threaded rods in hammer drilled holes under seismic action performance category C2

| •                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                      |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| od / Threaded rod                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M12                                                                           | M16                                                                                                              | M20                                                                    | M24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Characteristic bond resistance, combined pull-out and concrete cone failure     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| drilling with standard                                                          | l drill b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oit or holl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ow drill bit (dry                                                             | or wet concrete                                                                                                  | <u>e)</u>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| I: 24 °C / 43 °C                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,5                                                                           | 5,0                                                                                                              | 3,5                                                                    | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| II: 43 °C / 60 °C                                                               | τRk,C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [N/mm <sup>2</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,5                                                                           | 5,0                                                                                                              | 3,5                                                                    | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| III: 50 °C / 72 °C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,7                                                                           | 3,8                                                                                                              | 2,6                                                                    | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Hammer-drilling with standard drill bit or hollow drill bit (water filled hole) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| I: 24 °C / 43 °C                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,5                                                                           | 5,6                                                                                                              | 3,8                                                                    | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| II: 43 °C / 60 °C                                                               | τRk,C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,c2 [N/mm²]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,5                                                                           | 5,2                                                                                                              | 3,6                                                                    | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| III: 50 °C / 72 °C                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,7                                                                           | 3,8                                                                                                              | 2,6                                                                    | 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| n factors                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| oading                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| concrete                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2                                                                           |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| d hole                                                                          | γinst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | 1,4                                                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| nent-Factors for tens                                                           | ion lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ading <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| or                                                                              | [mm/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /(NI/mm2)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,06                                                                          | 0,11                                                                                                             | 0,08                                                                   | 0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| or                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,13                                                                          | 0,14                                                                                                             | 0,09                                                                   | 0,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| nent-Factors for she                                                            | ar load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ling <sup>2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| or                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m/kNI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,18                                                                          | 0,10                                                                                                             | 0,07                                                                   | 0,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| or                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IIII/KINJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25                                                                          | 0,14                                                                                                             | 0,11                                                                   | 0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                 | ristic bond resistance drilling with standard   : 24 °C / 43 °C    : 43 °C / 60 °C    : 50 °C / 72 °C    : 43 °C / 60 °C    : 50 °C / 72 °C    : 5 | ristic bond resistance, com drilling with standard drill I    24 °C / 43 °C     11: 43 °C / 60 °C     12: 50 °C / 72 °C     13: 43 °C / 60 °C     143 °C / 60 °C     15: 60 °C / 72 °C     16: 43 °C / 60 °C     17: 43 °C / 60 °C     18: 43 °C / 60 °C     19: 43 °C / 60 °C     10: 43 °C / | ristic bond resistance, combined purchasiling with standard drill bit or holl | ristic bond resistance, combined pull-out and concrete drilling with standard drill bit or hollow drill bit (dry | Stick bond resistance, combined pull-out and concrete cone failure   I | Concrete   Concrete |  |  |

1) Calculation of effective displacement:

 $\delta_{\text{N,C2(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau$ 

 $\delta_{N,C2(ULS)} = \delta_{N,(ULS)\text{-Factor}} \cdot \tau$ 

 $\tau$  = acting bond strength under tension loading

2) Calculation of effective displacement:

 $\delta_{V,C2(DLS)} = \delta_{V,(DLS)\text{-Factor}} \cdot V$ 

 $\delta_{V,C2(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V$ 

V = acting shear loading

| fischer | injection | evetem | FIS  | ER I | 11 |
|---------|-----------|--------|------|------|----|
| uscher  | mechon    | Sysiem | -1.5 |      |    |

#### **Performance**

Characteristics resistance under seismic action (performance category C2) for Anchor rods, Threaded rods.

Annex C 12



| <b>Table C13.1:</b> | Characteristics resistance for combined pull-out and concrete failure for |
|---------------------|---------------------------------------------------------------------------|
|                     | Rebars and fischer FRA in hammer drilled holes under seismic action       |
|                     | performance category C2                                                   |

| Nominal                         | diame   | eter of the reba | r            | Ф                      | 12                       | 16           | 20   |
|---------------------------------|---------|------------------|--------------|------------------------|--------------------------|--------------|------|
| fischer FRA                     |         | •                | M12          | M16                    | M20                      |              |      |
| Characte                        | ristic  | bond resistan    | e, com       | bined pu               | ll-out and concrete o    | one failure  | •    |
| Hammer-                         | drillin | ıg with standaı  | d drill l    | oit or holl            | ow drill bit (dry or w   | et concrete) |      |
| Tem-                            | 1:      | 24 °C / 43 °C    |              |                        | 3,5                      | 5,0          | 3,5  |
| perature                        | II:     | 43 °C / 60 °C    | τRk,C2       | [N/mm <sup>2</sup> ]   | 3,5                      | 5,0          | 3,5  |
| range                           | III:    | 50 °C / 72 °C    |              |                        | 2,7                      | 3,8          | 2,6  |
| Hammer-                         | drillin | ıg with standaı  | d drill l    | oit or holl            | ow drill bit (water fill | ed hole)     |      |
| Tem-                            | 1:      | 24 °C / 43 °C    |              |                        | 3,5                      | 5,6          | 3,8  |
| perature                        | II:     | 43 °C / 60 °C    | τRk,C2       | <sub>,C2</sub> [N/mm²] | 3,5                      | 5,2          | 3,6  |
| range                           | III:    | 50 °C / 72 °C    |              |                        | 2,7                      | 3,8          | 2,6  |
| Installatio                     | on fac  | tors             |              |                        |                          |              |      |
| Tension I                       | oadir   | ıg               |              |                        |                          |              |      |
| Dry or we                       | t conc  | rete             | 0.0          | [-]                    | 1,2                      |              |      |
| Water fille                     | d hole  | <del>-</del>     | γinst        | [-]                    |                          | 1,4          |      |
| Displacer                       | nent-   | Factors for ten  | sion lo      | ading <sup>1)</sup>    |                          |              |      |
| $\delta$ N,(DLS)-Fact           | or      |                  | [mm/         | /(N/mm²)]              | 0,06                     | 0,11         | 0,08 |
| $\delta_{N,(ULS)	ext{-}Factor}$ |         |                  | (14/111111)] | 0,13                   | 0,14                     | 0,09         |      |
| Displacer                       | nent-   | Factors for sh   | ear Ioac     | ling <sup>2)</sup>     |                          |              |      |
| $\delta_{ m V,(DLS)}$ -Facto    | or      |                  | _ [m         | nm/kN]                 | 0,18                     | 0,10         | 0,07 |
| $\delta$ V,(ULS)-Facto          | or      |                  | "            | 11 1 / KI <b>1</b> ]   | 0,25                     | 0,14         | 0,11 |

# 1) Calculation of effective displacement:

 $\delta_{\text{N,C2(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \cdot \tau$ 

 $\delta_{N,C2(ULS)} = \delta_{N,(ULS)\text{-Factor}} \cdot \tau$ 

 $\tau$  = acting bond strength under tension loading

## 2) Calculation of effective displacement:

 $\delta_{V,C2(DLS)} = \delta_{V,(DLS)\text{-Factor}} \cdot V$ 

 $\delta_{V,C2(ULS)} = \delta_{V,(ULS)\text{-Factor}} \cdot V$ 

V = acting shear loading

| fischer in | jection | system | FIS | ΕB | Ш |
|------------|---------|--------|-----|----|---|
|------------|---------|--------|-----|----|---|

# Performance

Characteristics resistance under seismic action (performance category C2) for Rebar and fischer FRA.

Annex C 13



Table C14.1: Fire resistance to steel failure under tension and shear loading of Anchor rods and Threaded rods

| Fire resistance to steel failure under Anchor rod / Threaded rod |                         | R30                     | •                                |                          | R60                      |                                   |
|------------------------------------------------------------------|-------------------------|-------------------------|----------------------------------|--------------------------|--------------------------|-----------------------------------|
|                                                                  | N <sub>Rk,s,fi,30</sub> | V <sub>Rk,s,fi,30</sub> | <b>M</b> <sup>0</sup> Rk,s,fi,30 | N <sub>Rk,s,fi,60</sub>  | V <sub>Rk,s,fi,60</sub>  | M <sup>0</sup> Rk,s,fi,60         |
| Steel zinc plated                                                | [kN]                    | [kN]                    | [Nm]                             | [kN]                     | [kN]                     | [Nm]                              |
| M8                                                               | 0,4                     | 0,4                     | 0,4                              | 0,3                      | 0,3                      | 0,3                               |
| M10                                                              | 0,9                     | 0,9                     | 1,1                              | 0,8                      | 0,8                      | 1,0                               |
| M12                                                              | 1,7                     | 1,7                     | 2,6                              | 1,3                      | 1,3                      | 2,0                               |
| M16                                                              | 3,1                     | 3,1                     | 6,7                              | 2,4                      | 2,4                      | 5,0                               |
| M20                                                              | 4,9                     | 4,9                     | 13,0                             | 3,7                      | 3,7                      | 9,7                               |
| M24                                                              | 7,1                     | 7,1                     | 22,5                             | 5,3                      | 5,3                      | 16,8                              |
| M27                                                              | 9,2                     | 9,2                     | 33,3                             | 6,9                      | 6,9                      | 25,0                              |
| M30                                                              | 11,2                    | 11,2                    | 45,0                             | 8,4                      | 8,4                      | 33,7                              |
| Anchor rod / Threaded rod                                        | , _                     | R90                     | ,.                               | -, .                     | R120                     | 00,.                              |
|                                                                  | N <sub>Rk,s,fi,90</sub> | V <sub>Rk,s,fi,90</sub> | <b>M</b> <sup>0</sup> Rk,s,fi,90 | N <sub>Rk,s,fi,120</sub> | V <sub>Rk,s,fi,120</sub> | <b>M</b> <sup>0</sup> Rk,s,fi,120 |
| Steel zinc plated                                                | [kN]                    | [kN]                    | [Nm]                             | [kN]                     | [kN]                     | [Nm]                              |
| M8                                                               | 0,3                     | 0,3                     | 0,3                              | 0,2                      | 0,2                      | 0,2                               |
| M10                                                              | 0,6                     | 0,6                     | 0,7                              | 0,5                      | 0,5                      | 0,6                               |
| M12                                                              | 1,1                     | 1,1                     | 1,7                              | 0,8                      | 0,8                      | 1,3                               |
| M16                                                              | 2,0                     | 2,0                     | 4,3                              | 1,6                      | 1,6                      | 3,3                               |
| M20                                                              | 3,2                     | 3,2                     | 8,4                              | 2,5                      | 2,5                      | 6,5                               |
| M24                                                              | 4,6                     | 4,6                     | 14,6                             | 3,5                      | 3,5                      | 11,2                              |
| M27                                                              | 6,0                     | 6,0                     | 21,6                             | 4,6                      | 4,6                      | 16,6                              |
| M30                                                              | 7,3                     | 7,3                     | 29,2                             | 5,6                      | 5,6                      | 22,5                              |
| Anchor rod / Threaded rod                                        | .,0                     | R30                     |                                  |                          | R60                      | ,                                 |
| Stainless steel R and                                            | N <sub>Rk,s,fi,30</sub> | V <sub>Rk,s,fi,30</sub> | <b>M</b> <sup>0</sup> Rk,s,fi,30 | N <sub>Rk,s,fi,60</sub>  | V <sub>Rk,s,fi,60</sub>  | M <sup>0</sup> Rk,s,fi,60         |
| high corrosion resistant steel HCR                               | [kN]                    | [kN]                    | [Nm]                             | [kN]                     | [kN]                     | [Nm]                              |
| M8                                                               | 0,7                     | 0,7                     | 0,7                              | 0,6                      | 0,6                      | 0,6                               |
| M10                                                              | 1,5                     | 1,5                     | 1,9                              | 1,2                      | 1,2                      | 1,5                               |
| M12                                                              | 2,5                     | 2,5                     | 3,9                              | 2,1                      | 2,1                      | 3,3                               |
| M16                                                              | 4,7                     | 4,7                     | 10,0                             | 3,9                      | 3,9                      | 8,3                               |
| M20                                                              | 7,4                     | 7,4                     | 19,5                             | 6,1                      | 6,1                      | 16,2                              |
| M24                                                              | 10,6                    | 10,6                    | 33,7                             | 8,8                      | 8,8                      | 28,1                              |
| M27                                                              | 13,8                    | 13,8                    | 49,9                             | 11,5                     | 11,5                     | 41,6                              |
| M30                                                              | 16,8                    | 16,8                    | 67,5                             | 14,0                     | 14,0                     | 56,2                              |
| Anchor rod / Threaded rod                                        | , .                     | R90                     | 01,0                             | R120                     |                          |                                   |
| Stainless steel R                                                | N <sub>Rk,s,fi,90</sub> | V <sub>Rk,s,fi,90</sub> | M <sup>0</sup> Rk,s,fi,90        | N <sub>Rk,s,fi,120</sub> | V <sub>Rk,s,fi,120</sub> | <b>M</b> <sup>0</sup> Rk,s,fi,120 |
| and high corrosion resistant steel HCR                           | [kN]                    | [kN]                    | [Nm]                             | [kN]                     | [kN]                     | [Nm]                              |
| M8                                                               | 0,4                     | 0,4                     | 0,4                              | 0,4                      | 0,4                      | 0,4                               |
| M10                                                              | 0,9                     | 0,9                     | 1,2                              | 0,8                      | 0,8                      | 1,0                               |
| M12                                                              | 1,7                     | 1,7                     | 2,6                              | 1,3                      | 1,3                      | 2,1                               |
| M16                                                              | 3,1                     | 3,1                     | 6,7                              | 2,5                      | 2,5                      | 5,3                               |
| M20                                                              | 4,9                     | 4,9                     | 13,0                             | 3,9                      | 3,9                      | 10,4                              |
| M24                                                              | 7,1                     | 7,1                     | 22,5                             | 5,6                      | 5,6                      | 18,0                              |
| M27                                                              | 9,2                     | 9,2                     | 33,3                             | 7,3                      | 7,3                      | 26,6                              |
| M30                                                              | 11,2                    | 11,2                    | 45,0                             | 9,0                      | 9,0                      | 36,0                              |

fischer injection system FIS EB II

# Performance

Fire resistance to steel failure under tension and shear loading of Anchor rods and Threaded rods

Annex C 14



Table C15.1: Fire resistance to steel failure under tension and shear loading of Rebars and fischer FRA

| Fire resistance to steel failure under tension and shear loading |                                 |                                 |                                              |                                 |                                 |                                              |
|------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------|
| Rebar                                                            |                                 | R30                             |                                              |                                 | R60                             |                                              |
| Bars and de-coiled rods                                          | N <sub>Rk,s,fi,30</sub><br>[kN] | V <sub>Rk,s,fi,30</sub><br>[kN] | M <sup>0</sup> <sub>Rk,s,fi,30</sub><br>[Nm] | N <sub>Rk,s,fi,60</sub><br>[kN] | V <sub>Rk,s,fi,60</sub><br>[kN] | M <sup>0</sup> <sub>Rk,s,fi,60</sub><br>[Nm] |
| ф8                                                               | 0,5                             | 0,5                             | 0,6                                          | 0,5                             | 0,5                             | 0,5                                          |
| ф 10                                                             | 1,2                             | 1,2                             | 1,8                                          | 1,0                             | 1,0                             | 1,5                                          |
| ф 12                                                             | 2,3                             | 2,3                             | 4,1                                          | 1,7                             | 1,7                             | 3,0                                          |
| ф 14                                                             | 3,1                             | 3,1                             | 6,5                                          | 2,3                             | 2,3                             | 4,9                                          |
| ф 16                                                             | 4,0                             | 4,0                             | 9,6                                          | 3,0                             | 3,0                             | 7,2                                          |
| ф 20                                                             | 6,3                             | 6,3                             | 18,8                                         | 4,7                             | 4,7                             | 14,1                                         |
| ф 25                                                             | 9,8                             | 9,8                             | 36,8                                         | 7,4                             | 7,4                             | 27,6                                         |
| ф 26                                                             | 10,6                            | 10,6                            | 41,4                                         | 8,0                             | 8,0                             | 31,1                                         |
| ф 28                                                             | 12,3                            | 12,3                            | 51,8                                         | 9,2                             | 9,2                             | 38,8                                         |
| ф 30                                                             | 14,1                            | 14,1                            | 63,6                                         | 10,6                            | 10,6                            | 47,7                                         |
| ф 32                                                             | 16,1                            | 16,1                            | 77,2                                         | 12,1                            | 12,1                            | 57,9                                         |
| Rebar                                                            |                                 | R90                             |                                              |                                 | R120                            |                                              |
| Bars and de-coiled rods                                          | N <sub>Rk,s,fi,90</sub><br>[kN] | V <sub>Rk,s,fi,90</sub><br>[kN] | M <sup>0</sup> Rk,s,fi,90<br>[Nm]            | N <sub>Rk,s,fi,120</sub>        | V <sub>Rk,s,fi,120</sub>        | M <sup>0</sup> Rk,s,fi,120<br>[Nm]           |
| ф 8                                                              | 0,4                             | 0,4                             | 0,4                                          | 0,3                             | 0,3                             | 0,3                                          |
| φ 10                                                             | 0,8                             | 0,8                             | 1,2                                          | 0,6                             | 0,6                             | 0,9                                          |
| φ 12                                                             | 1,5                             | 1,5                             | 2,6                                          | 1,1                             | 1,1                             | 2,0                                          |
| φ 14                                                             | 2,0                             | 2,0                             | 4,2                                          | 1,5                             | 1,5                             | 3,2                                          |
| φ 16                                                             | 2,6                             | 2,6                             | 6,3                                          | 2,0                             | 2,0                             | 4,8                                          |
| ф 20                                                             | 4,1                             | 4,1                             | 12,2                                         | 3,1                             | 3,1                             | 9,4                                          |
| φ 25                                                             | 6,4                             | 6,4                             | 23,9                                         | 4,9                             | 4,9                             | 18,4                                         |
| ф 26                                                             | 6,9                             | 6,9                             | 26,9                                         | 5,3                             | 5,3                             | 20,7                                         |
| ф 28                                                             | 8,0                             | 8,0                             | 33,6                                         | 6,2                             | 6,2                             | 25,9                                         |
| ф 30                                                             | 9,2                             | 9,2                             | 41,4                                         | 7,1                             | 7,1                             | 31,8                                         |
| φ 32                                                             | 10,5                            | 10,5                            | 50,2                                         | 8,0                             | 8,0                             | 38,6                                         |
| fischer FRA                                                      | Í                               | R30                             |                                              | ·                               | R60                             |                                              |
| Stainless steel R                                                | N <sub>Rk,s,fi,30</sub>         | V <sub>Rk,s,fi,30</sub>         | M <sup>0</sup> Rk,s,fi,30                    | N <sub>Rk,s,fi,60</sub>         | V <sub>Rk,s,fi,60</sub>         | <b>M</b> <sup>0</sup> Rk,s,fi,60             |
| and high corrosion resistant steel HCR                           | [kN]                            | [kN]                            | [Nm]                                         | [kN]                            | [kN]                            | [Nm]                                         |
| M12                                                              | 2,5                             | 2,5                             | 3,9                                          | 2,1                             | 2,1                             | 3,3                                          |
| M16                                                              | 4,7                             | 4,7                             | 10,0                                         | 3,9                             | 3,9                             | 8,3                                          |
| M20                                                              | 7,4                             | 7,4                             | 19,5                                         | 6,1                             | 6,1                             | 16,2                                         |
| M24                                                              | 10,6                            | 10,6                            | 33,7                                         | 8,8                             | 8,8                             | 28,1                                         |
| fischer FRA                                                      |                                 | R90                             |                                              |                                 | R120                            |                                              |
| Stainless steel R                                                | N <sub>Rk,s,fi,90</sub>         | V <sub>Rk,s,fi,90</sub>         | M <sup>0</sup> Rk,s,fi,90                    | N <sub>Rk,s,fi,120</sub>        | V <sub>Rk,s,fi,120</sub>        | <b>M</b> <sup>0</sup> Rk,s,fi,120            |
| and high corrosion resistant steel HCR                           | [kN]                            | [kN]                            | [Nm]                                         | [kN]                            | [kN]                            | [Nm]                                         |
| M12                                                              | 1,7                             | 1,7                             | 2,6                                          | 1,3                             | 1,3                             | 2,1                                          |
| M16                                                              | 3,1                             | 3,1                             | 6,7                                          | 2,5                             | 2,5                             | 5,3                                          |
| M20                                                              | 4,9                             | 4,9                             | 13,0                                         | 3,9                             | 3,9                             | 10,4                                         |
| M24                                                              | 7,1                             | 7,1                             | 22,5                                         | 5,6                             | 5,6                             | 18,0                                         |

| fischer injection system FIS EB II                                                                    |            |
|-------------------------------------------------------------------------------------------------------|------------|
| Performance Fire resistance to steel failure under tension and shear loading of Rebars an fischer FRA | Annex C 15 |



# Characteristic bond resistance for cracked concrete under fire conditions for Anchor rods, Threaded rods, Rebars and fischer FRA for hammer drilled holes

The characteristic bond resistance for cracked concrete under fire conditions for a given temperature  $\tau_{Rk,fi}(\theta)$  has to be calculated by the following equation:

$$\tau_{Rk,fi}(\theta) = k_{fi,p}(\theta) \cdot \tau_{Rk,cr,C20/25}$$

 $\theta$  = Temperature in °C in the mortar layer

 $\tau_{Rk,fi}(\theta)$  = Characteristic bond resistance for cracked and uncracked concrete under fire exposure for a given

temperature in N/mm<sup>2</sup> for concrete classes C20/25 to C50/60

 $k_{fi,p}(\theta)$  = Reduction factor under fire conditions

 $\tau_{Rk,cr,C20/25}$  = Characteristic bond resistance for cracked concrete C20/25 in N/mm²,

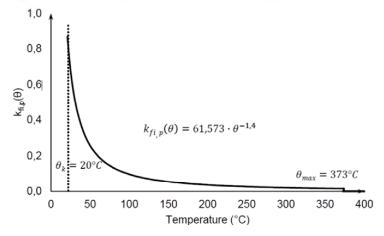
given in Table C4.1, Table C5.1 or Table C6.1, respectively

Anchor rods and If:  $\theta > 20$  °C  $k_{fi,p}(\theta) = 61,573 \cdot \theta^{-1,400} \geq 1,0$ 

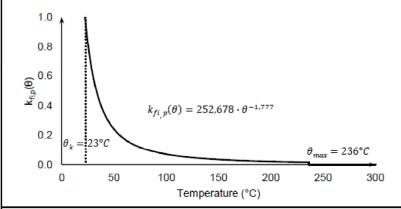
Threaded rods If:  $\theta > \theta_{\text{max}} = 373 \,^{\circ}\text{C}$   $k_{fin}(\theta) = 0$ 

 $k_{fi,p}(\theta) = 0$  see Figure C16.1

Rebars and If:  $\theta > 23$  °C


fischer FRA If:  $\theta > \theta_{max} = 236 \, ^{\circ}\text{C}$ 

 $k_{fi,p}(\theta) = 252,678 \cdot \theta^{-1,777} \ge 1,0$ 


 $k_{fi,p}(\theta) = 0$ 

see Figure C16.2

Figure C16.1: Graph of reduction factor  $k_{fi,p}$  ( $\theta$ ) for anchor rods threaded rods



**Figure C16.2:** Graph of reduction factor  $k_{fi,p}(\theta)$  for rebars and fischer FRA



fischer injection system FIS EB II

# Performance

Characteristic bond resistance under fire conditions

Annex C 16