

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0035 of 1 December 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S Product family Anchor Channels to which the construction product belongs fischerwerke GmbH & Co. KG Manufacturer Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND Manufacturing plant fischerwerke 27 pages including 3 annexes which form an integral part This European Technical Assessment contains of this assessment This European Technical Assessment is 330008-04-0601, Edition 02/2023 issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-22/0035 issued on 1 August 2022

European Technical Assessment ETA-22/0035 English translation prepared by DIBt

Page 2 of 27 | 1 December 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 27 | 1 December 2023

Specific Part

1 Technical description of the product

The fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S is a system consisting of a C-shaped channel profile of steel and at least two metal anchors non-detachably fixed on the channel back and fischer Serrated Channel Bolts.

The anchor channel is embedded surface-flush in the concrete. fischer Serrated Channel Bolts with appropriate hexagonal nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static tension loading	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N^0_{Rk,s,l}$; $s_{l,N}$ see Annex C1
- Resistance to steel failure of channel bolt	$N_{Rk,s}$ see Annex C6
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A5 $M_{Rk,s,flex}$ see Annex C1
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B4
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C2
- Resistance to concrete cone failure	h_{ef} see Annex B3
	$k_{cr,N}$; $k_{ucr,N}$ see Annex C2
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A5 c_{min} ; h_{min} see Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C2
 Resistance to blowout failure - bearing area of anchor head 	A _h see Annex A4

European Technical Assessment

ETA-22/0035

English translation prepared by DIBt

Page 4 of 27 | 1 December 2023

Essential characteristic	Performance
Characteristic resistance under static and quasi-static shear loading	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C6
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C7
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V^0_{Rk,s,l,y}$; $s_{l,v}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C4
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C5
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C5
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C4
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C4
- Resistance to concrete pry-out failure	k ₈ see Annex C5
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C5
Characteristic resistance under combined static and quasi-static tension and shear loading	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C6
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	No Performance assessed
 Fatigue limit resistance to steel failure of the whole system (test method B) 	No Performance assessed
 Fatigue resistance to steel failure of the whole system (linearized function, test method C) 	No Performance assessed
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	No Performance assessed
 Fatigue limit resistance to concrete related failure (test method B) 	No Performance assessed
 Fatigue resistance to concrete related failure (linearized function, test method C) 	No Performance assessed

European Technical Assessment

ETA-22/0035

Page 5 of 27 | 1 December 2023

English translation prepared by DIBt

Characteristic resistance under seismic loading (seismic performance category C1)	
 Resistance to steel failure under seismic tension loading (seismic performance category C1) 	No Performance assessed
 Resistance to steel failure under seismic shear loading for shear load in transverse direction (seismic performance category C1) 	No Performance assessed
 Resistance to steel failure under seismic shear loading for shear load in longitudinal channel axis (seismic performance category C1) 	No Performance assessed
Characteristic resistance under static and quasi-static tension and/or shear loading	
- Displacements	$\begin{array}{l} \delta_{N0} \; ; \; \delta_{N^{\infty}} \; see \; Annex \; C3 \\ \delta_{V,y,0} \; ; \; \delta_{V,y,\infty} \; ; \; \delta_{V,x,0} \; ; \; \delta_{V,x,\infty} \\ see \; Annex \; C6 \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C8 and C9

3.3 Aspects of durability linked with the Basic Works Requirements

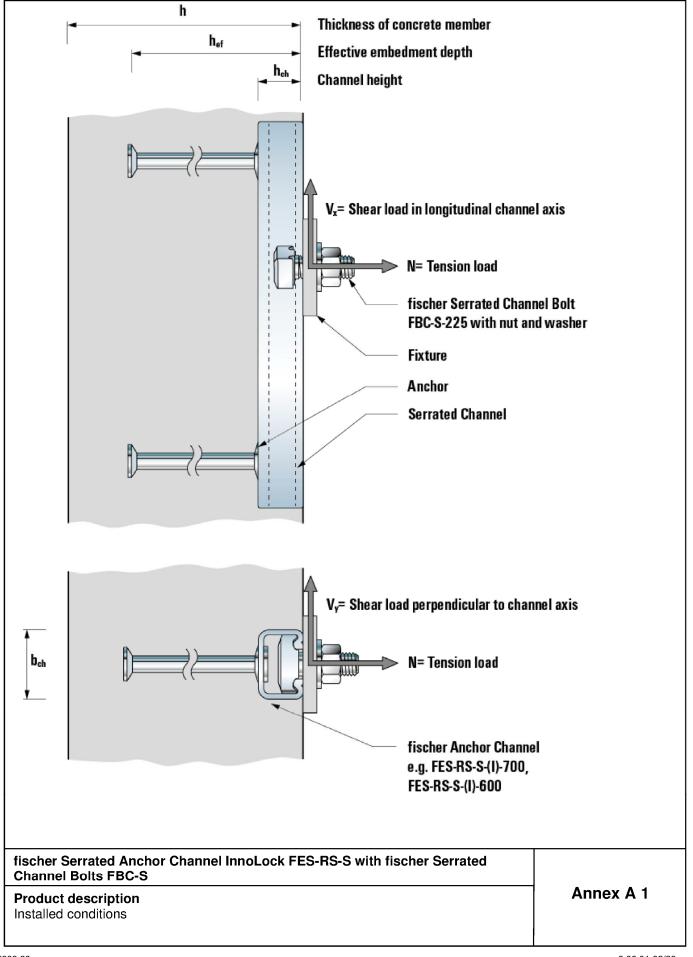
Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-04-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

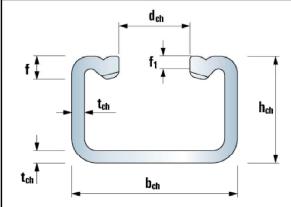

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 1 December 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller

Page 6 of European Technical Assessment ETA-22/0035 of 1 December 2023

Page 7 of European Technical Assessment ETA-22/0035 of 1 December 2023



3 4 5 6 1 hen ben ben <tr< td=""><td>FES-RS5FES-RS1Serrat2Ancho3Serrat</td><td>ed channel profile r ed channel bolt onal nut er</td></tr<>	FES-RS5FES-RS1Serrat2Ancho3Serrat	ed channel profile r ed channel bolt onal nut er
Round anchor I-anchor		
Marking of the fischer anchor channel FES-RS-S:	Marking of the fischer FBC-S:	channel bolt
e. g.: 🤍 700	e.g.: 🥯 8.8 225	
Identifying mark of the manufacturer	Identifying mar	k of the manufacturer
I = Additional marking for I-anchors No marking for round anchors	8.8 = Strength grade	
700= Size of the anchor channel (700, 600)	= Width of ancho	r channel opening d _{ch}
~ 700	 Coating electro No marking for 225 8.8 	p-plated r hot dip galvanized
Stamped into back of channel Optional: printed on channel web or channel lips RS = Roll-shaped, S = Serrated No marking for material acc. Table A7.1 (Channel profile)		
finabor Sorrated Anchor Channel Intel and EEO DO O	ith finghor Servets d	
fischer Serrated Anchor Channel InnoLock FES-RS-S w Channel Bolts FBC-S Product description Product and marking		Annex A 2
09.23		8 06 01-32/23

Page 8 of European Technical Assessment ETA-22/0035 of 1 December 2023

English translation prepared by DIBt

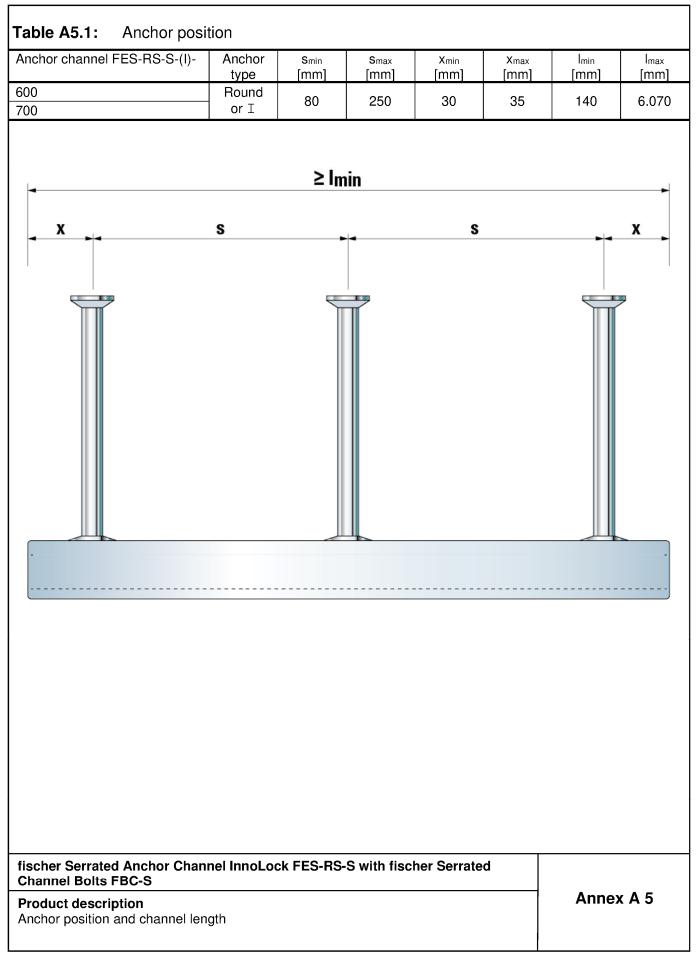
Serrated anchor channel FES-RS-S-(I)-

Table A3.1: Dimensions of channel profile	Table A3.1:	Dimensions	of channel	profile
---	-------------	------------	------------	---------

Anchor channel FES-RS-S-(I)-	b _{ch} [mm]	h _{ch} [mm]	t _{ch} [mm]	d _{ch} [mm]	f [mm]	f₁ [mm]	ly [mm⁴]
600	50,5	29,0	3,0	22,5	6,0	3,0	41.862
700	52,5	34,0	4,0	22,5	7,0	4,0	79.168

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Product description Dimensions of channels Annex A 3


Page 9 of European Technical Assessment ETA-22/0035 of 1 December 2023

	th t	anchor (wolded		tw brorfor	rand rol	d _a		• t n • • •	Ia ▼
	nensions of			I-ancho	or or for	rged ro				
Anchor channel FES-RS-S-(I)-	L		chor	10/0	Δ.	Te e s		und anc		Δ.
0 0 0 (1)-	l _{a,min} t _{w,min} [mm] [mm		t _h [mm]	WA,min [mm]	A _{h,min} [mm²]	l _{a,min} [mm]	da [mm]	an [mm]	t _h [mm]	A _h [mm²]
600	125 6	25	5	30	570	123,5	11,0	24,3	2,5	368
700	125 6	25	5	30	570	144,0	12,8	26,0	3,0	402
fischer Serrated And Channel Bolts FBC-5		InnoLock	FES-RS	S-S with	fischer {	Serrated			nnex A	

Page 10 of European Technical Assessment ETA-22/0035 of 1 December 2023

	Carbon	steel 1)			
	8.8				
	800 / 8				
	F ³⁾ Or E	lectroplated			
k ₂ t _{cbo} Steppe for ma	Mar Serration ed grooves arking of pos	ition FBC and m	atching fisc		
Channel bolt FBC-S	d [mm]	b _{cbo,1} [mm]	b _{cbo,2} [mm]	t _{cbo} [mm]	k₂ [mm]
225	16	21,0	43,0	10,7	15,0
	20				
	k ₂ t _{cbo} Stepp for ma 225 of fischer ch S Channel bolt FBC-S	640 / 66 F ³⁾ or E Annex A7. EN ISO 898-1:2013. k2 tcbo Stepped grooves for marking of pos 225 of fischer channel bolt I Soft FBC-S [mm] 225 Channel d bolt FBC-S [mm] 12 12 16	640 / 660 ²) F ³⁾ or Electroplated Annex A7. EN ISO 898-1:2013. k2 tcbo Marking of chan Serration Stepped grooves for marking of position 225 of fischer channel bolt FBC and m ES Channel bolt FBC-S [mm] 12 21,0	640 / 660 ²) F ³ or Electroplated Annex A7. EN ISO 898-1:2013. k2 tcbo Serration Stepped grooves for marking of position 225 Of fischer channel bolt FBC and matching fisc S Channel d bolt FBC-S [mm] 12 21,0 43,0	640 / 660 ²) F ³) or Electroplated Annex A7. EN ISO 898-1:2013. kz kz kz kz kz kz kz kz box Serration Stepped grooves for marking of position 225 of fischer channel bolt FBC and matching fischer anchor Channel d bolt FBC-S [mm] [mm] [mm] 225 16 21,0 43,0 10,7

		Carbon steel	
Component	Mechanical properties	Coating	Coating
1	2	2a	2b
Channel profile	1.0976 acc. to EN 10149:2013	Hot dip galvanized ≥ 55 µm acc. to EN ISO 1461:2022	Hot dip galvanized ≥ 55 µm acc. to EN ISO 1461:2022
Round anchor	1.5525 acc. to EN 10263:2017	Hot dip galvanized ≥ 55 µm acc. to EN ISO 1461:2022	Hot dip galvanized ≥ 55 µm acc. to EN ISO 1461:2022
I-anchor	1.0045, 1.0976 acc. to EN 10149:2013	Hot dip galvanized ≥ 55 µm acc. to EN ISO 1461:2022	Hot dip galvanized ≥ 55 µm acc. to EN ISO 1461:2022
Serrated channel bolt	Strength grade 8.8 acc. to EN ISO 898- 1:2013	Electroplated acc. to EN ISO 4042:2022	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009
Plain washer ¹⁾ acc. to EN ISO 7089:2000 and EN ISO 7093-1:2000	Hardness class A ≥ 200 HV	Electroplated acc. to EN ISO 4042:2022	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009
Hexagonal nut acc. to EN ISO 4032:2012	Property class 8 acc. to EN ISO 898- 2:2022	Electroplated acc. to EN ISO 4042:2022	Hot dip galvanized ≥ 50 µm acc. to EN ISO 10684:2004 + AC:2009

Specifications of intended use

Anchor channels and serrated channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel.
- Fire exposure: Only for concrete class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres according to EN 206:2013+A2:2021.
- Strength classes C12/15 to C90/105 according to EN 206:2013+A2:2021.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A7, Table A7.1, column 2a and 2b).
- Structures subject to internal conditions with usual humidity (e.g. kitchens, bathrooms and laundries in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A7, Table A7.1, column 2b).

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EN 1992-4:2018 and EOTA TR 047 "Design of Anchor Channels", May 2021.
- The characteristic resistances are calculated with the minimum effective embedment depth.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Intended Use Specifications Annex B 1

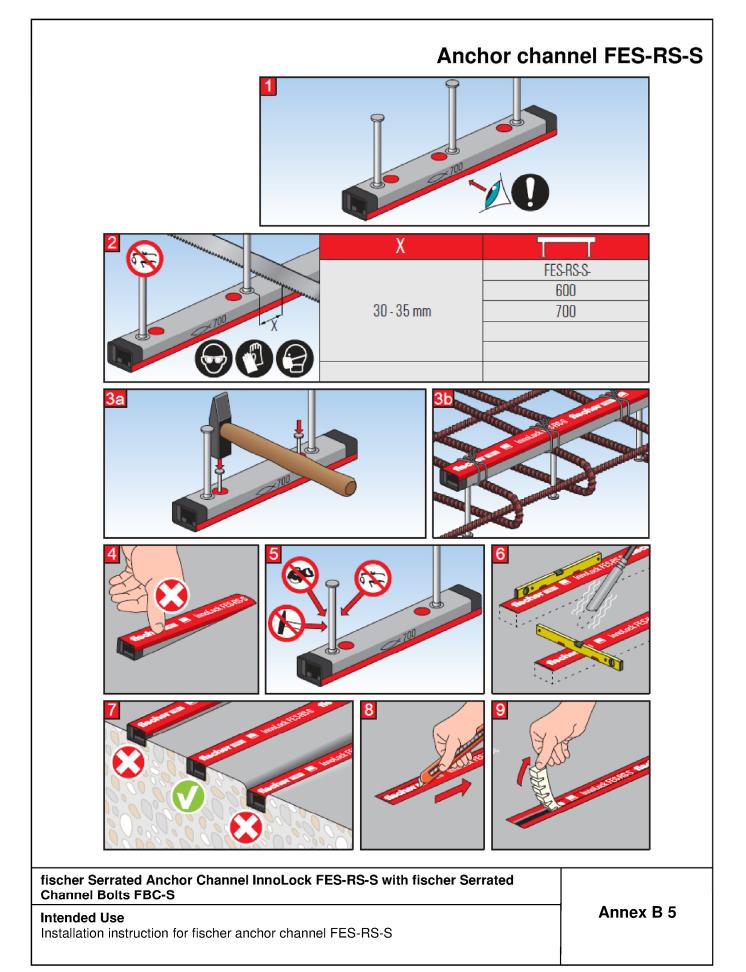
Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex 5, Table A5.1 are generated including end spacing x and minimum channel length I_{min} and only to be used in dry internal conditions.
- Installation in accordance with the installation instruction given in Annexes B5 and B6.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete around the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A7 and provided separately by the user.
- Orientating the serrated channel bolt (groove according to Annex B6) rectangular to the channel axis.
- The required installation torque given in Annex B4 must be applied and must not be exceeded.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Intended Use Specifications Annex B 2

150 75 153 s el bolts <u>M12</u> 60		175 75 178	154 75 178
153 s el bolts M12	159 		178
s el bolts M12			
el bolts M12			
el bolts M12			MOO
M12		116	MOO
60			M20
	<u>ک</u>	80	100
	h fischer Se	h fischer Serrated	h fischer Serrated


Page 16 of European Technical Assessment ETA-22/0035 of 1 December 2023

e	fischer serrated		Tinst	⁾ [Nm]
ischer anchor channel	channel bolt	Thread diameter	General T _{inst,g}	Steel – steel contact Tinst,s
FES-RS-S-(I)-	FBC-S		8.8	8.8
600		M12	80	100
700	225	M16	100	200
¹⁾ T _{inst} must not be		M20	120	360
		Gan Gan Ste The sur cha (e.g	<u>heral:</u> fixture is in contact with finnel profile and the concision tening with T _{inst,g} . el-to-steel contact: fixture is not in contact with fixture is fastend nel by a suitable steel p washer) by tightening w st,s ≥ Tinst,g)	rete surface by vith the concrete ed to the anchor art
scher Serrated	Anchor Channel Inne 3C-S	oLock FES-RS-S wit	h fischer Serrated	
ntended Use				Annex B 4

Page 17 of European Technical Assessment ETA-22/0035 of 1 December 2023

Serrated Channel bolt FBC-S 2 90° FES-RS-S-FBC-S-225 600 225 700 5 8 Α 11 10 B B FES-RS-S-M12 M16 M20 FBC-S-Tinst ins Nm 80 100 120 А 225 600 В 100 200 360 80 100 120 А 225 700 В 100 200 360 T T Tinst must not be exceeded. fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated **Channel Bolts FBC-S**

Intended Use

Installation instruction for fischer serrated channel bolt FBC-S

Annex B 6

Anchor channel FES-RS-S-			600	I-600	700	I-700
Steel failure: Anchor				•		•
Characteristic resistance	N _{Rk,s,a}	[kN]	55,2	57,0	73,3	81,0
Partial factor	γ _{Ms} 1)	[-]		. 1	,8	1
Steel failure: Connection between		d channe	1			
Characteristic resistance	N _{Rk,s,c}	[kN]	55,2	57,0	73,0	80,0
Partial factor	γ _{Ms} ¹⁾	[-]		. 1	,8	
Steel failure: Local flexure of the c	hannel lips	;				
Characteristic spacing of	SI,N	[mm]	1(01	1	05
channel bolts for N _{Rk,s,I}						
Characteristic resistance	N ⁰ Rk,s,l	[kN]	64	4,0		0,0
Partial factor	γMs ¹⁾	[-]		1	,8	
able C1.2: Characteristic fl Anchor channel FES-RS-S-				00	7	00
Steel failure: Flexure of channel						
Characteristic flexural resistance of channel	M _{Rk,s,flex}	[Nm]	25	581		749
Partial factor	γMs,flex ¹⁾	[-]		1	,15	
¹⁾ In absence of other national regulation						

Z75309.23

anchor channel

Anchor channel FES-RS-S-			600	I-600	700	I-700
Concrete failure: Pull-out failure						
Characteristic resistance in cracked concrete C12/15	N _{Rk,p}	[kN]	33,1	51,3	36,2	51,3
Characteristic resistance in uncracked concrete C12/15	N _{Rk,p}	[kN]	46,4	71,8	50,7 50,7 50 50 50 50 50 50 50 50 50 50	71,8
ncreasing factor of $N_{Rk,p} = N_{Rk,p}(C12/15)^* \psi_c$	C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 ≥C60/75	ψc[-]		1,, 2,, 2,, 3,, 3,, 4,, 4,,	50,7 1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00 1,5 8,9 1,5 8,9 12,6 1,5 525	
Partial factor	$\gamma_{Mp} = \gamma_{Mc}^{(1)}$	[-]		1,	,5	
Concrete failure: Concrete cone failure						
Product factor k1	K _{cr,N}	[-]	8,6	8,6	8,9	8,7
	k _{ucr,N}	[-]	12,3	12,4		12,5
Partial factor	γMc ¹⁾	[-]		1,	1,33 1,67 2,08 2,50 2,92 3,33 3,75 4,17 4,58 5,00 1,5 8,9 12,6 1,5 525 1050	
Concrete failure: Concrete splitting failure	·					
Characteristic edge distance	C _{cr,sp}	[mm]	450	462		462
Characteristic spacing	Scr,sp	[mm]	900	942	l 1050	942
Partial factor ¹⁾ In absence of other national regulations.	γмsp= γмс ¹⁾	[-]				I
Partial factor	γмsp= γмc ¹⁾	[-]				

Page 21 of European Technical Assessment ETA-22/0035 of 1 December 2023

English translation prepared by DIBt

Table C3.1: Displacements under tension load									
		600	700						
N	[kN]	21,4	31,4						
δ _{N0}	[mm]	2,1	2,1						
δn∞	[mm]	4,2	4,2						
	Ν δ _{N0}	N [kN] δ _{N0} [mm]	600 N [kN] 21,4 δ _{N0} [mm] 2,1						

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Performances Displacement under tension load Annex C 3

Table C4.1:Characteristic resistances under shear load –
steel failure of anchor channels

Anchor channel FES-RS-S-			600	I-600	700	I-700
Steel failure: Anchor						
Characteristic resistance	V _{Rk,s,a,y}	TLNI	98,5	98,5	120,0	120,0
Characteristic resistance	V _{Rk,s,a,x}	[kN]	34,2	50,7	44,0	48,6
Partial factor	γms ¹⁾	[-]		1	,8	
Steel failure: Connection betwe	en anchor and	d chann	el			
Characteristic resistance	V _{Rk,s,c,y}	FLAI	98,5	98,5	120,0	120,0
Characteristic resistance	V _{Rk,s,c,x}	[kN]	33,1	34,9	43,8	48,0
Partial factor	γms ¹⁾	[-]		1	,8	•
Steel failure: Local flexure of th	e channel lips	5				
Characteristic spacing of channel bolts for V _{Bk,s,I}	SI,V	[mm]	1()1	1	05
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	77	7,7	92	2,0
Partial factor	γms ¹⁾	[-]		1	,8	

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Performances

Characteristic resistance of anchor channel under shear load – steel failure of anchor channel

Annex C 4

Table C5.1: Characteristic resistance for shear load in direction of the longitudinal axis of the channel – steel failure

Anchor channel FES-RS-S-(I)	-			600	700			
Steel failure: Connection between channel lips and serrated channel bolt								
			FBC-S-225-M12-8.8	17,6	_2)			
Characteristic resistance	V _{Rk,s,l,x}	[kN]	FBC-S-225-M16-8.8	17,6	22,5			
			FBC-S-225-M20-8.8	17,6	22,5			
Installation factor	$\gamma_{\text{Inst}}^{1)}$	[-]		M12: 1,4 M16, M20: 1,0	1,2			

¹⁾ In absence of other national regulations.

²⁾ No performance assessed.

Table C5.2: Characteristic resistance of the anchor channel under shear load – concrete failure

Anchor channel	FES-RS-S-(I)-	600	700					
Concrete failure: Pry-out failure								
Product factor		k ₈	[-]	2,0	2,0			
Partial factor		γ _{Mc} ¹⁾	[-]	1,5				
Concrete failure	: Concrete edge failure)						
Product factor	Cracked concrete	k _{cr,V}	[-]	7,5	7,5			
k 12	Uncracked concrete	k _{ucr,v}	[-]	10,5	10,5			
Partial factor		γ _{Mc} ¹⁾	[-]	1,	,5			

¹⁾ In absence of other national regulations.

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Annex C 5

Performances Characteristic resistance under shear load

Anchor channel FES-RS-S-(I)-			600		700
Shear load perpenticular to the	Vy	[kN]	30,5	;	36,5
longitudinal axis of the channel Short-term displacement ¹⁾	Su a	[mm]	2,5		2,9
Long-term displacement ¹⁾	δν,y,0 δν,y,∞	[mm]	3,7		4,4
Shear load in direction of the			,		,
longitudinal axis of the channel	Vx	[kN]	7,0		6,6
Short-term displacement ²⁾	δv,x,0	[mm]	0,9		1,2
Long-term displacement 2)	δv,x,∞	[mm]	1,3		1,8
lips and slip of the anchor channel in a ble C6.2: Characteristic	^{concrete.} resistances unde serrated channe		nd shear loa	d –	
Table C6.2: Characteristic steel failure of	resistances und		nd shear loa	d – M16	M20
lips and slip of the anchor channel in a Table C6.2: Characteristic steel failure of Serrated channel bolt FBC-S-225	resistances und		M12	-	
lips and slip of the anchor channel in a Table C6.2: Characteristic isteel failure of Serrated channel bolt FBC-S-225 Steel failure:	resistances und		M12	M16	
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance	resistances und serrated channe	el bolts	M12	M16 Steel grade	8.8
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance	resistances und serrated channe	el bolts	M12	M16 Steel grade 125,6	8.8
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance Partial factor Characteristic resistance Partial factor	resistances und serrated channe N _{Rk,s} γ _{Ms¹⁾} V _{Rk,s} γ _{Ms¹⁾}	[kN]	M12 67,4	M16 Steel grade 125,6 1,5	8.8
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance Partial factor Characteristic resistance Partial factor ¹⁾ In absence of other national regulatio Table C6.3: Characteristic is	resistances und serrated channe N _{Rk,s} γ _{Ms¹⁾} V _{Rk,s} γ _{Ms¹⁾}	[kN] [-] [kN] [-]	M12 67,4 33,7	M16 Steel grade 125,6 1,5 62,8 1,25	8.8 170,0 98,0
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance Partial factor Characteristic resistance Partial factor ¹⁾ In absence of other national regulatio Table C6.3: Characteristic is Anchor channel FES-RS-S-(I)-	resistances unde serrated channes NRk,s γMs ¹⁾ VRk,s γMs ¹⁾ ns.	er combinec	M12 67,4 33,7 tension and 600	M16 Steel grade 125,6 1,5 62,8 1,25	8.8 170,0 98,0
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance Partial factor ⁽¹⁾ In absence of other national regulation Table C6.3: Characteristic is Anchor channel FES-RS-S-(I)- Steel failure: Local flexure of characteristic resistance	resistances unde serrated channes NRk,s γMs ¹⁾ VRk,s γMs ¹⁾ ns.	er combinec	M12 67,4 33,7 I tension and 600	M16 Steel grade 125,6 1,5 62,8 1,25	8.8 170,0 98,0 d 700
lips and slip of the anchor channel in a Table C6.2: Characteristic is steel failure of Serrated channel bolt FBC-S-225 Steel failure: Characteristic resistance Partial factor Characteristic resistance Partial factor ¹⁾ In absence of other national regulatio Table C6.3: Characteristic is	resistances unde serrated channes γ _{Ms} ¹⁾ V _{Rk,s} γ _{Ms} ¹⁾ ns. resistances unde nnel lips and flexu k ₁₃	er combined [-] [-] [-] [-] [-] [-]	M12 67,4 33,7 tension and 600 according	M16 Steel grade 125,6 1,5 62,8 1,25	8.8 170,0 98,0

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer S	Serrated
Channel Bolts FBC-S	

Performances
Characteristic resistance of channel bolts under tension and shear load,
displacements under shear load, combined tension and shear load

Annex C 6

Thread diamet	er of serra	ated chanr	nel bolt ²⁾	M12	M16	M20
Steel failure:					•	1
Characteristic flexural resistance	M ⁰ Rk,s	[Nm]	FBC-S-225	104,8	266,4	519,3
Partial factor	γ _{Ms} ¹⁾	[-]	FBC-S-225		1,25	
Interna lever arm	а	[kN]	FBC-S-225	29,8	31,8	34,2
¹⁾ In absence of other national regula ²⁾ Materials according to Annex A7, T The characteristic flexure resist c c <	able A7.1.	$M^{0}_{Rk,s} \le$ $M^{0}_{Rk,s} \le$ a = Inter $T_{s} = Ten$	ble C7.1 is limited $0,5 \cdot N^{0}_{Rk,s,l} \cdot a (N^{0}_{F})$ $0,5 \cdot N_{Rk,s} \cdot a (N_{Rk,s})$ rnal lever arm acc asion force acting mpression force a	Rk,s,I according according to cording to Tab on the chann	o Table C6.2) ole C7.1 el lips)
fischer Serrated Anchor Chann Channel Bolts FBC-S	el InnoLo	ck FES-RS	S-S with fischer S	Serrated		

Channel bolt					M12	M16	M20
Steel failure: Anchor, co	nnection bet	ween an	chor and channel,	local bend	ing of char	nnel lip	
				R30	2,5	4,8	12,0
			FES-RS-S-(I)-	R60	2,0	4,2	8,7
			600	R90	1,4	3,5	5,2
Characteristic resistance	N _{Rk,s,fi}	FLAND		R120	1,2	3,1	3,4
	=V _{Rk,s,y,fi}	[kN]		R30	2,5	4,8	12,0
			FES-RS-S-(I)-	R60	2,0	4,2	8,7
			700	R90	1,4	3,5	5,2
				R120	1,2	3,1	3,4
Partial factor	γMs,fi ¹⁾	[-]				1,0	

fischer Serrated Anchor Channel InnoLock FES-RS-S with fischer Serrated Channel Bolts FBC-S

Performances Characteristic resistance under fire exposure Annex C 8

Anchor channel FES-RS-S-(I)-			600	700
	R30		35	50
Min. axis distance	R60		35	50
	R90	– a [mm] –	45	50
	R120		60	65
Fire exposure from o	197000000000970097000	$\geq C_{1, f_1}$	Fire exposure from m	hore than one side
	hannel InnoLock	FES-RS-S with 1	fischer Serrated	
ischer Serrated Anchor C Channel Bolts FBC-S	hannel InnoLock	FES-RS-S with 1	fischer Serrated	
	hannel InnoLock	FES-RS-S with f	fischer Serrated	Annex C 9