

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0674 of 26 July 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Strong Undercut Anchor FSU

Mechanical fastener for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

18 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601-v02, edition 06/2023

European Technical Assessment ETA-22/0674 English translation prepared by DIBt

Page 2 of 18 | 26 July 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z49039.23 8.06.01-247/22

European Technical Assessment ETA-22/0674

Page 3 of 18 | 26 July 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer Strong Undercut Anchor is an anchor made of galvanized steel which is placed in a cylindrical hole and anchored by displacement-controlled, self-undercutted mechanical interlock. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading), Method A	See Annex C 1 and C 3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements	See Annex C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 5 and C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4

3.3 Aspects of Durability

Essential characteristic	Performance
Durability	See Annex B 1

Z49039.23 8.06.01-247/22

European Technical Assessment ETA-22/0674 English translation prepared by DIBt

Page 4 of 18 | 26 July 2023

4 Assessment and verification of constancy of performance (AVCP) system applied, with

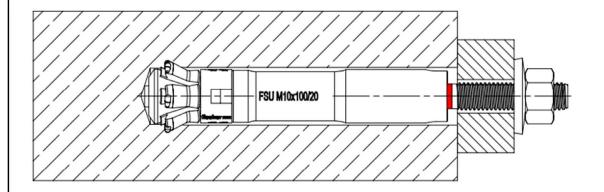
In accordance with the European Assessment Document EAD 330232-01-0601-v02 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

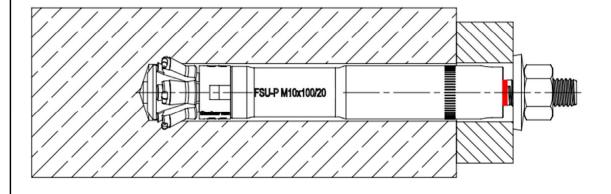
reference to its legal base

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 26 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Ziegler


Z49039.23 8.06.01-247/22

Pre-setting anchor FSU

Push-through anchor FSU-P

(Fig. not to scale)

fischer Strong Undercut Anchor FSU

Product description
Installed condition

Annex A 1

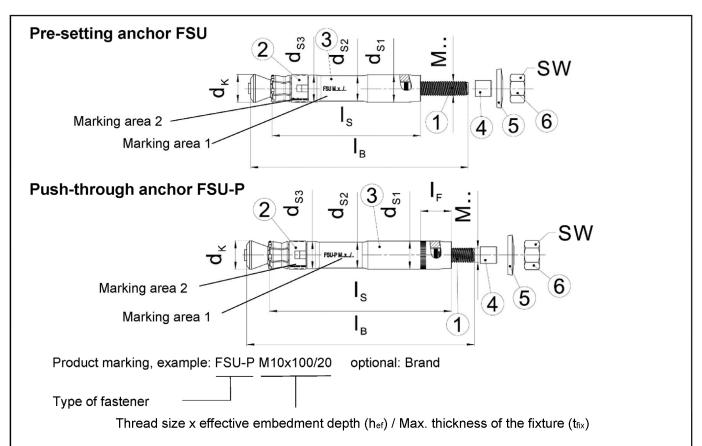


Table A2.1: Dimensions [mm]

Type of anchor	t _{fix}	dκ	d s1	d s2	dsз	М	ls	lв	lF	SW
FSU M10x100/20	≤ 20	19,3	19	17,5	18,5	10	100	148	-	17
FSU M12x125/30	≤ 30	21,5	21	19,3	20,5	12	125	188	_	19
FSU M12x125/50	≤ 50	21,5	21	19,3	20,5	12	125	208	-	19
FSU-P M10x100/20	≥ 10 ≤ 20	19,3	19	17,5	18,5	10	120	148	20	17
FSU-P M12x125/30	≥ 12 ≤ 30	21,5	21	19,3	20,5	12	155	188	30	19
FSU-P M12x125/50	≥ 12 ≤ 50	21,5	21	19,3	20,5	12	175	208	50	19

Table A2.2: Materials FSU

Dart	Designation	Material
Part	Designation	FSU, FSU-P
1	Cone bolt	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018
2	Plastic sleeve	Plastic
3	Sleeve	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018
4	Protective cap	Plastic
5	Washer	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018
6	Hexagon nut	Steel, zinc plated ≥ 5 µm according to EN ISO 4042:2018

(Fig. not to scale)

fischer Strong Undercut Anchor FSU	
Product description Product marking, dimensions and materials	Annex A 2

Stop drill bit FSU-SD

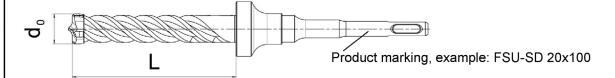


Table A3.1: Required stop drill bits for FSU

Type of anchor	Type of stop drill bit	d₀ [mm]	L [mm]
FSU M10x100/20	FSU-SD 20x100	20	107
FSU M12x125/30	FSU-SD 22x125	22	132
FSU M12x125/50	F30-3D 22x125	22	132
FSU-P M10x100/20	FSU-SD 20x120	20	127
FSU-P M12x125/30	FSU-SD 22x155	22	162
FSU-P M12x125/50	FSU-SD 22x175	22	182

Machine setting tool FSU-ST

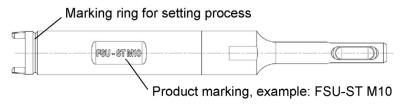


Table A3.2: Required setting tools for FSU

Type of anchor	Type of setting tool
FSU M10x100/20	FSU-ST M10
FSU M12x125/30	FSU-ST M12
FSU M12x125/50	F30-31 W12
FSU-P M10x100/20	FSU-ST M10
FSU-P M12x125/30	FSU-ST M12
FSU-P M12x125/50	F30-31 W12

Table A3.3: Recommendations for hammer drills used with FSU-ST

Technical feature		Recommendation
Drill chuck	[-]	SDS plus
Hammer drilling RPM	[rpm]	600 - 1800
Hammer impact energy	[J]	2 - 5

(Fig. not to scale)

fischer Strong Undercut Anchor FSU	
Product description Setting tools	Annex A 3

Specifications of i		ed use					
		FSU			FSU-P		
Size		M10x100 /20	M12x125 /30	M12x125 /50	M10x100 /20	M12x125 /30	M12x125 /50
Static and quasi-static lo	oads						
Cracked and uncracked concrete							
Seismic performance	C1			✓			
	C2						
Fire exposure		1					

Base materials:

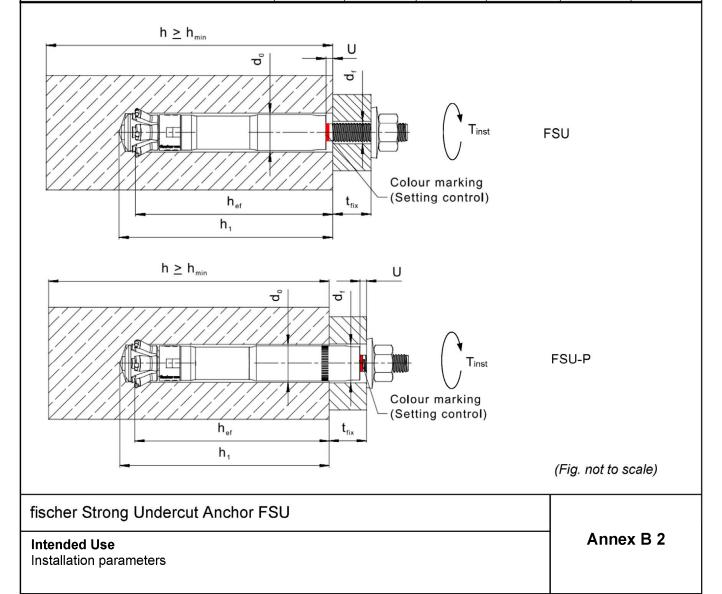
- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

Use conditions (Environmental conditions):

Structures subject to dry internal conditions

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055:2018.
- · For requirements to resistance to fire local spalling of the concrete cover must be avoided


fischer Strong Undercut Anchor FSU	
Intended Use Specifications	Annex B 1

Installation parameters

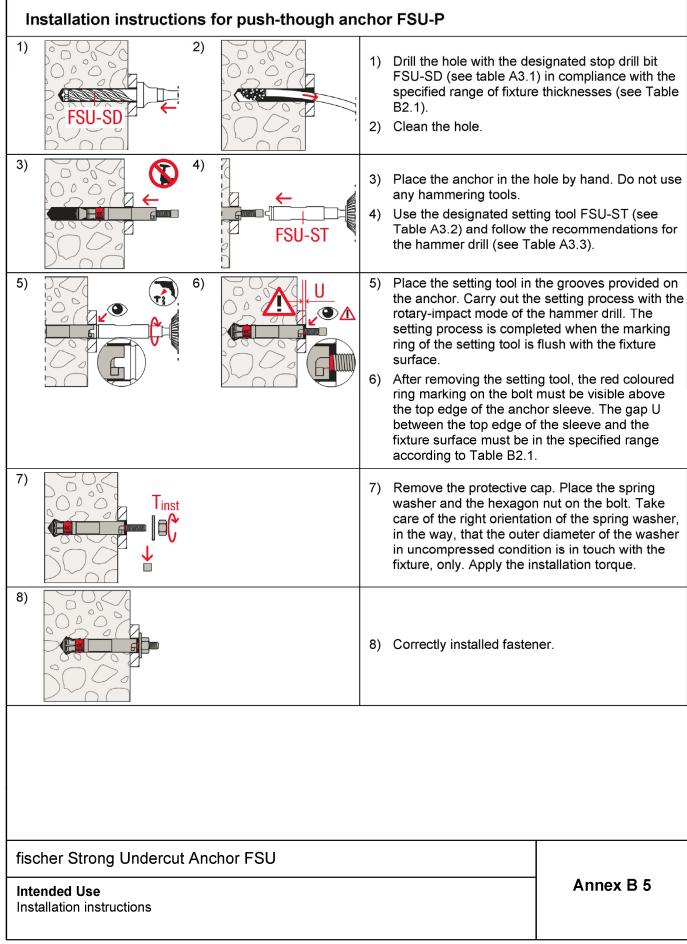
 Table B2.1:
 Installation parameters

				FSU			FSU-P	
Size		M10x100 /20	M12x125 /30	M12x125 /50	M10x100 /20	M12x125 /30	M12x125 /50	
Nominal drill hole diameter	d ₀		20	22	22	20	22	22
Cutting diameter of drill bits	d _{cut} ≤		20,5	22,5	22,5	20,5	22,5	22,5
Depth of drill hole to deepest point	h₁≥		107	132	132	127-t _{fix}	162-t _{fix}	182-t _{fix}
Effective embedment depth	h _{ef} ≥	[mm]	100	125	125	100	125	125
Diameter of clearance hole in the fixture	$d_{f} \leq$		12	14	14	21	23	23
Thickness of the fixture	t fix	•	≤ 20	≤ 30	≤ 50	≥ 10 ≤ 20	≥ 12 ≤ 30	≥ 12 ≤ 50
Gap after setting	U	-	2 - 5	3 - 6	3 - 6	2 - 5	3 - 6	3 - 6
Required setting torque	T _{inst}	[Nm]	40	80	80	40	80	80

Installation instructions

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.
- Fastener installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools (machine setting tool FSU-ST, stop drill bit FSU-SD).
- Drill hole created perpendicular (tolerance +/- 5°) to concrete surface.
- Cleaning the hole of drilling dust.
- Fastener installation ensuring complete expansion of the sleeve with checking that the coloured ring
 marking on the bolt is visible above the top edge of the anchor sleeve, therefore it is required using the
 setting tool FSU-ST, that is the appropriate depth ring marking of the setting tool at least flush with the
 concrete surface (pre-setting) respecting with the fixture surface (Push-through-setting).
- Fastener installation ensuring complete shear load capacity, after setting the gap between the top edge of the sleeve and the concrete surface (pre-setting) or with surface of the fixture (Push-through-setting) has to be in the specified range according to Annex B 2, Table B2.1.
- · Positioning of the drill holes and the undercut without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance, if the aborted drill hole is filled with high strength mortar and, if under shear or oblique tension load, it is not in the direction of load application.
- Application of the torque moment given in Annex B 2, Table B2.1 using a calibrated torque wrench.

fischer Strong Undercut Anchor FSU	
Intended Use Installation instructions	Annex B 3


Z70628.23 8.06.01-247/22

Electronic copy of the ETA by DIBt: ETA-22/0674

Electronic copy of the ETA by DIBt: ETA-22/0674

Installation instructions for pre-setting and	nor FSU
1) Polymer 2) FSU-SD	 Drill the hole with the designated stop drill bit FSU-SD (see Table A3.1). Clean the hole.
3) FSU-ST	 3) Place the anchor in the hole by hand. Do not use any hammering tools. 4) Use the designated setting tool FSU-ST (see Table A3.2) and follow the recommendations for the hammer drill (see Table A3.3).
5)	 5) Place the setting tool in the grooves provided on the anchor. Carry out the setting process with the rotary-impact mode of the hammer drill. The setting process is completed when the marking ring of the setting tool is flush with the concrete surface. 6) After removing the setting tool, the red coloured ring marking on the bolt must be visible above the top edge of the anchor sleeve. The gap U between the top edge of the sleeve and the concrete surface must be in the specified range according to Table B2.1.
7) 8) Tinst	7) Place the fixture. 8) Remove the protective cap. Place the spring washer and the hexagon nut on the bolt. Take care of the right orientation of the spring washer, in the way, that the outer diameter of the washer in uncompressed condition is in touch with the fixture, only. Apply the installation torque.
9)	9) Correctly installed fastener.
fischer Strong Undercut Anchor FSU	
Intended Use Installation instructions	Annex B 4

<u>.</u>				FSU, F	SU-P	
Size				M10x100	M12x125	
Steel failure						
Characteristic resistanc	e	N _{Rk,s}	[kN]	44,2	65,9	
Partial factor for steel fa	ailure	γMs	[-]	1,	5	
Pullout failure						
cracked Characteristic concrete		NI	[LNI]	30,0	40,0	
resistance in C20/25	uncracked concrete	─ N _{Rk,p}	[kN]	44,2	65,9	
			C25/30	1,12		
Increasing factor for N _{Rk,p}		w [1	C30/37	1,22		
			C35/45	1,3	32	
$N_{Rk,p} = \psi_c * N_{Rk,p}$ (C20/2	5)	ψε[-]	C40/50	1,41		
			C45/55	1,50		
			C50/60	1,58		
Installation sensitivity fa	actor	γinst	[-]	1,0		
Concrete cone and sp	litting failure					
Effective embedment d	epth	h _{ef}	[mm]	100	125	
Factor for cracked cond	rete	k cr,N	r 1	8,9		
Factor for uncracked co	oncrete	k ucr,N	— [-] <u> </u>	12,7		
Characteristic spacing		Scr,N		3 x	h _{ef}	
Characteristic edge dis	tance	C cr,N	[mm]	1,5 x h _{ef}		
Characteristic spacing		S cr,sp	[,,,,,,]	3 x h _{ef}		
Characteristic edge dis	tance	C _{cr,sp}		1,5 x h _{ef}		
Characteristic resistance	e to splitting	$N^0_{Rk,sp}$	[kN]	min {N ⁰ _{Rk} ,	c; N _{Rk,p} } ¹⁾	

	<u> </u>
fischer Strong Undercut Anchor FSU	
Performances Characteristic tension resistance under static and quasi-static action	Annex C 1

 $^{^{1)}}$ $N^0_{Rk,c}$ according to EN 1992-4:2018

Ci			FSU	J	
Size			M10x100 M12x		
Steel failure without lever arm					
Characteristic resistance	$V^0_{Rk,s}$	[kN]	26,8	38,2	
Partial factor for steel failure	γMs		1,2	5	
Factor for ductility	k ₇	[-]	1,0	l	
Steel failure with lever arm					
Characteristic bending resistance	M^0 Rk,s	[Nm]	59,8	104,8	
Partial factor for steel failure	γMs	[-]	1,25		
Concrete pryout failure					
Factor for pryout failure	k 8	[-]	2,0		
Concrete edge failure					
Effective length in concrete	lf	[mm]	100	125	
Effective diameter of fastener	d _{nom}	· · [19	21	

Table C2.2: Characteristic shear resistance under static and quasi-static action FSU-P

Size			FSU-P			
Size			M10x100 M12x125			
Steel failure without lever arm						
Characteristic resistance	for t _{fix}	[mm]	10 ≤ t _{fix} < 15	15 ≤ t _{fix} ≤ 20	12 ≤ t _{fix} < 20	$20 \le t_{fix} \le 50$
Characteristic resistance	$V^0_{Rk,s}$	[kN]	66,1	69,6	86,4	96,7
Partial factor for steel failure	γMs		1,25			
Factor for ductility	ctor for ductility k ₇ [-]		1,0			
Steel failure with lever arm						
Characteristic bending resistance	M ⁰ Rk,₃	[Nm]	59	,8	104,8	
Partial factor for steel failure	γMs	[-]	1,25			
Concrete pryout failure						
Factor for pryout failure k ₈			2,0			
Concrete edge failure						
Effective length in concrete	lf	[mm]	10	0	12	25
Effective diameter of fastener	d _{nom}	- -	19)	2	1

fischer Strong Undercut Anchor FSU	
Performances Characteristic shear resistance under static and quasi-static action	Annex C 2

Table C3.1:	Minimum th	hickness	of concrete	memhers	FSII
i labie Cs. I.	IVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HUNHESS	oi concrete	HIGHIDGIS	rou

Size			FSU				
Size			M10x100/20	M12x125/30	M12x125/50		
Minimum thickness of concrete member	h _{min}	[mm]	170	2	215		

Table C3.2: Minimum thickness of concrete members FSU-P

Size		FSU-P			
Size		M10x100/20	M12x125/30	M12x125/50	
Maximum thickness of the fixture	t _{fix,max}	20	30	50	
Minimum thickness of concrete member	h _{min} [mm]	190-t _{fix} 1)	245-t _{fix} 1)	265-t _{fix} 1)	

 $^{^{1)}}$ t_{fix} = actual thickness of the fixture

Table C3.3: Minimum spacings and edge distances

Size			FSU, FSU-P			
Size			M10x100/20	M12x125/30	M12x125/50	
Minimum spacing	Smin	[mm]	80	9	90	
Minimum edge distance	C _{min}	- [mm]	80		90	

fischer Strong Undercut Anchor FSU

Performances
Minimum thickness of concrete member, minimum spacings and edge distances

Annex C 3

Characteristic resistance

pullout failure

10,0

8,0

Table C4.1: Characteristic tension resistance under fire exposure							
0: -			FSU, I	FSU-P			
Size			M10x100	M12x125			
	$N_{Rk,s,fi}$	R30	3,7	4,5			
Characteristic resistance		R60	2,2	3,2			
steel failure		R90	1,7	2,8			
		R120	1,5	2,6			
Characteristic resistance	NI.	R30-R90 [kN	19,9	34,8			
Concrete cone failure	$N_{Rk,c,fi}$	R120	15,9	27,7			

7,5

6,0

Table C4.2: Characteristic shear resistance under fire exposure

R120

R30-R90

 $N_{\mathsf{Rk},\mathsf{p},\mathsf{fi}}$

Cina	Size			FSU, FSU-P			
Size			M10x100	M12x125			
		R30_	3,7	4,4			
Characteristic resistance	\/	R60	2,2	3,0			
steel failure without lever	V _{Rk,s,fi}	R90 [kN]	1,7	2,6			
		R120	1,5	2,3			
		R30_	4,8	6,9			
Characteristic bending resistance steel failure with lever arm	M^0 Rk,s,fi	R60	2,9	5,0			
		R90 [Nm]	2,2	4,4			
		R120	1,9	4,0			

Concrete pryout failure according to EN 1992-4:2018

Table C4.3: Minimum spacings and **minimum edge distances** under **fire exposure** for **tension** and **shear** load

Size			FSU, FSU-P
Size			All sizes
Spacing	S _{min,fi}		4 ⋅h _{ef}
Edge distance	C _{min,fi}	[mm]	$c_{min,fi} = 2 \cdot h_{ef}$, for fire exposure from more than one side $c_{min,fi} \ge 300$ mm

fischer Strong Undercut Anchor FSU

Performances
Characteristic resistance under fire exposure

Annex C 4

Table C5.1:	Characteristic values of tension an performance category C1	d shear resistance under seismic
		FSII FSILP

Si-a					FSU, F	SU-P		
Size				M10x	100	M12	M12x125	
Factor for annular gap α_{gap} [-]			0,5					
Steel failure								
Characteristic resistance tension	load C1	$N_{Rk,s,C1}$	[kN]	44	,2	65	5,9	
Pullout failure								
Characteristic resistance tension load in cracked concrete C1		[kN]	30,0		40,0			
Steel failure without lever arm								
	for t _{fix}		[mm]	10 ≤ t _{fix} < 15	$15 \le t_{fix} \le 20$	$12 \le t_{\text{fix}} < 20$	$20 \le t_{fix} \le 50$	
Characteristic resistance shear load C1	V _{Rk,s,C1} FSU		- [kN]	18,8		26,8		
load C I	V _{Rk,s,C1} FS	V _{Rk,s,C1} FSU-P		46,3	48,7	60,5	67,7	

Table C5.2: Characteristic values of tension and shear resistance under seismic performance category C2

Size			FSU, FSU-P			
Size			M10×	100	M12x125	
Factor for annular gap α_{gap} [-]			0,5			
Steel failure						
Characteristic resistance tension	load C2 N _{Rk,s,C2}	[kN]	44	,2	65	5,9
Pullout failure	·					
Characteristic resistance tension load in cracked concrete C2 NRk,p,C2 [k			30,0		40,0	
Steel failure without lever arm	·					
	for t _{fix}	[mm]	10 ≤ t _{fix} < 15	$15 \le t_{fix} \le 20$	$12 \le t_{\text{fix}} < 20$	$20 \le t_{\text{fix}} \le 50$
Characteristic resistance shear load C2	$V_{Rk,s,C2}$ FSU	FIANT.	20,1		24,5	
load C2	V _{Rk,s,C2} FSU-P	- [kN]	39,6	41,8	51,8	62,9

fischer Strong Undercut Anchor FSU	
Performances Characteristic resistance under seismic performance categories C1 and C2	Annex C 5

Table C6.1: D	Displacements under	er static and quas	si-static tension loads
---------------	---------------------	--------------------	--------------------------------

Size			FSU, FSU-P		
Size	M10x100	M12x125			
Tension load in cracked concrete C20/25	N	[kN]	22,1	32,1	
Displacements	δηο	[mana]	1,1	1,3	
Displacements	$\delta_{N^{\infty}}$	[mm]	2,8	3,0	
Tension load in uncracked concrete C20/25	N	[kN]	22,1	32,1	
Displacements	δηο	[]	1,1	1,3	
Displacements	$\delta_{N^{\infty}}$	[mm]	2,3	2,3	

Table C6.2: Displacements under static and quasi-static shear loads

Size	FSU, FSU-P			
Size	M10x100	M12x125		
Shear load in cracked and uncracked concrete C20/25	V	[kN]	13,8	21,3
Diambasanta FCII		[mm]	5,4	6,7
Displacements FSU	$\delta_{\text{V}^{\infty}}$	- [mm]	8,0	10,0
Shear load in cracked and uncracked concrete C20/25	V	[kN]	36,3	52,2
Displacements FSU-P		[mm]	5,9	7,2
		- [mm]	8,8	10,7

Table C6.3: Displacements under tension loads for seismic performance category C2

Size			FSU, FSU-P		
Size				M10x100	M12x125
Dioplessment	DLS	c	[mama]	4,6	4,6
Displacement	ULS	— δ _{N,C2}	[mm]	11,4	10,4

Table C6.4: Displacements under shear loads for seismic performance category C2

Size			FSU, FSU-P		
Size				M10x100	M12x125
Displacement FSU	DLS	9	[mm]	5,2	5,0
	ULS	δ _{V,C2}		7,3	6,7
Dianlacement FCLL D	DLS	9	[mana]	4,8	5,0
Displacement FSU-P	ULS	—— δv,c2	[mm]	10,7	18,5

	fischer Strong Undercut Anchor FSU	Annex C 6
	Performances Displacement under tension and shear loads	