

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0725 of 7 February 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

FAKKT Anchor bolt BA, BA R, BA HCR

Mechanical fasteners for use in concrete

Keller & Kalmbach GmbH Siemensstraße 19 85716 Unterschleißheim DEUTSCHLAND

Herstellwerk 1

18 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-22/0725

Page 2 of 18 | 7 February 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z9798.23 8.06.01-259/22

European Technical Assessment ETA-22/0725

Page 3 of 18 | 7 February 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The FAKKT Bolt Anchor BA is an anchor made of galvanised steel (BA) or made of stainless steel (BA R) or high corrosion resistant steel (BA HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annexes B 3 and C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Displacements (static and quasi-static loading)	See Annex C 4
Characteristic resistance for seismic performance category C1	See Annex C 4
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
Reaction to fire	Class A1			
Resistance to fire	See Annex C 3			

3.2 Aspects of durability

Essential characteristic	Performance			
Durability	See Annex B 1			

Z9798.23 8.06.01-259/22

European Technical Assessment ETA-22/0725 English translation prepared by DIBt

Page 4 of 18 | 7 February 2023

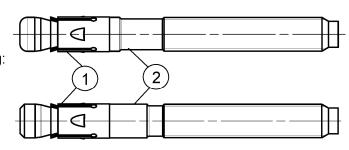
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

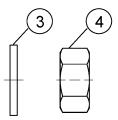
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 7 February 2023 by Deutsches Institut für Bautechnik

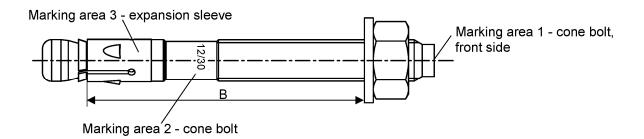
Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider


Z9798.23 8.06.01-259/22

Cone bolt manufactured by cold - forming:

Cone bolt manufactured by turning:

- ① Expansion sleeve
- ② Cone bolt (cold formed or turned)
- 3 Washer
- 4 Hexagon nut


(Fig. not to scale)

Product description
Installed condition

Annex A 1

Product label and letter-code:

Product label, example:

Brand | type of fastener

placed at marking area 2 or marking area 3

MAX

12/30 R

Thread size / max. thickness of the fixture (t_{fix}) identification R or HCR placed at marking area 2

Product descriptionTrade nameMaterialMAXFAKKT Anchor bolt BACarbon steelMAX RFAKKT Anchor bolt BA RStainless steelMAX HCRFAKKT Anchor bolt BA HCRHigh corrosion resistant steel

Table A2.1: Letter - code at marking area 1:

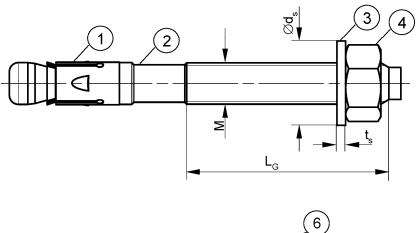
Marking	(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(l)	(K)
Max. t _{fix}	5	10	15	20	5	10	15	20	25	30	35	40	45	50
M8	40	45		-	50	55	60	65	70	75	80	85	90	95
M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
M20 -			105	110	115	120	125	130	135	140	145	150		

Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
•	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500

Calculation existing her for installed fasteners:

existing $h_{ef} = B_{(according to table A2.1)} - existing t_{fix}$

Thickness of the fixture t_{fix} including thickness of fastener plate t and e.g. thickness of grout layer t_{grout} or other non-structural layers


(Fig. not to scale)

Product description
Product label and letter code

Annex A 2

Product dimensions

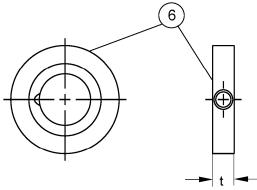


Table A3.1: Dimensions [mm]

Part	Designation			BA, BA R, BA HCR						
Pait	Designation			M8	M10	M12	M16	M20		
1	Expansion sleeve	Sheet thickne	ss	1,3	1,4	1,6	2	,4		
2	O Cara halt		size M	8	10	12	16	20		
	2 Cone bolt	LG		19	26	31	40	50		
3	0 \\/\(\alpha\)	t s	≥	1,4	1,8	2,3	2	.,7		
3	Washer	Ø ds		15	19	23	29	36		
4	Hexagon nut	Wrench size		13	17	19	24	30		
6	Filling disc FFD	t	II		6		7	8		

(Fig. not to scale)

FAKKT Anchor bolt BA, BA R, BA HCR	
Product description Dimensions	Annex A 3

Table A4.1: Materials BA (ISO 4042:2018/Zn5/An(A2K))						
Part	Designation	Material				
1	Expansion sleeve	Cold strip, EN 10139:2016 or stainless steel EN 10088:2014				
2	Cone bolt	Cold form steel or free cutting steel				
3	Washer	Cold strip, EN 10139:2016				
4	Hexagon nut	Steel, property class min. 8, EN ISO 898-2:2012				

Table A4.2: Materials BA R

Part	Designation	Material Stainless steel acc. to EN 10088:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015
1	Expansion sleeve	
2	Cone bolt	Stainless steel EN 10088:2014
3	Washer	
4	Hexagon nut	Stainless steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

Table A4.3: Materials BA HCR

Part	Designation	Material Stainless steel acc. to EN 10088:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015
1	Expansion sleeve	Stainless steel EN 10088:2014
2	Cone bolt	High correction registant steel EN 10099:2014
3	Washer	High corrosion resistant steel EN 10088:2014
4	Hexagon nut	High corrosion resistant steel EN 10088:2014; ISO 3506-2:2018; property class – min. 70

FAKKT Anchor bolt BA, BA R, BA HCR	
Product description Materials	Annex A 4

Specifications of intended use										
Anchorages subject to:										
Cina		BA, BA R, BA HCR								
Size		M8	M10	M12	M16	M20				
Static and quasi-static loads										
Cracked and uncracked concrete		1		✓						
Fire exposure										
Seismic performance category	C1		•	/	•	•				

Base materials:

 Compacted reinforced or unreinforced normal weight concrete without fibres (cracked and uncracked) of strength classes C20/25 to C50/60 according to EN 206:2013+A1:2021

Use conditions (Environmental conditions):

Structures subject to dry internal conditions:

BA, BA R, BA HCR

For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:

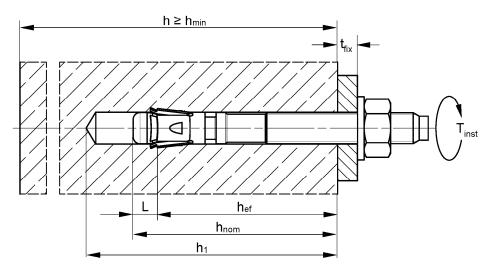
- CRC III: BA R - CRC V: BA HCR

Design:

Electronic copy of the ETA by DIBt: ETA-22/0725

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or
 to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018
- For effective embedment depth hef < 40 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA

FAKKT Anchor bolt BA, BA R, BA HCR


Intended Use
Specifications

Annex B 1

Tabl	<u>е</u>	B2.1	:	Inst	alla [·]	tion	parameters	

C:				BA, BA R, BA HCR					
Size			M8	M10	M12	M16	M20		
Nominal drill hole diameter	$d_0 =$		8	10	12	16	20		
Maximum bit diameter with hammer or hollow drilling	d _{cut,max}	[mm]	8,45	10,45	12,5	16,5	20,55		
Overall fastener embedment depth in the concrete	$h_{nom} \ge (L)$		44,5 (9,5)	52,0 (12)	63,5 (13,5)	82,5 (17,5)	120 (20)		
				Existir	$ng h_{ef} + L =$	h _{nom}			
Depth of drill hole to deepest point	$h_1\geq$			h_{nom}	+ 5		h _{nom} + 10		
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	9	12	14	18	22		
Required setting torque	T _{inst} =	[Nm]	20	45	60	110	200		

h_{ef} = Effective embedment depth

t_{fix} = Thickness of the fixture

h₁ = Depth of drill hole to deepest point
 h = Thickness of the concrete member
 h_{min} = Minimum thickness of concrete member

h_{nom} = Overall fastener embedment depth in the concrete

T_{inst} = Required setting torque

(Fig. not to scale)

FAKKT Anchor bolt BA, BA R, BA HCR	
Intended Use Installation parameters	Annex B 2

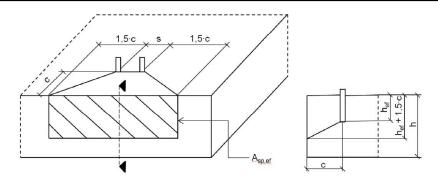
Table B3.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

0:					ΒA	, BA R, BA I	HCR	
Size			M8	M10)	M12	M16	M20
Minimum edge distance								
Uncracked concrete	Ci		40	45		55	65	95
Cracked concrete	ete C _{min}		40	43		33	05	85
Corresponding spacing	s	[mm]			acco	ording to Anne	ex B4	
Minimum thickness of concrete member hr		[]	8	30		100	140	160
Thickness of concrete member	h≥		max. {h _{min} ; h ₁ ¹⁾ + 30}			max. $\{h_{min}; h_1^{(1)} + 2 \cdot d_0\}$		
Minimum spacing								
Uncracked concrete			40	40		50	65	95
Cracked concrete	— Smin		35	35 40		30	05	95
Corresponding edge distance	С	[mm]			acco	ording to Anne	ex B4	
Minimum thickness of concrete member	h _{min}		80	80		100	140	160
Thickness of concrete member h ≥			max. {h _{min} ; h ₁ ¹⁾ + 30}			- 30}	max. $\{h_{min}, h_1^{(1)} + 2 \cdot d_0\}$	
Minimal splitting area								
Uncracked concrete	^	[·1000	18	37		54	67	100
Cracked concrete	— A _{sp,req}	mm²]	12	27		40	50	77

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the hef

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:


$$A_{sp,req} < A_{sp,ef}$$

 $A_{sp,req}$ = required splitting area $A_{sp,ef}$ = effective splitting area (according to Annex B4)

FAKKT Anchor bolt BA, BA R, BA HCR	
Intended Use Minimum thickness of member, minimum spacing and edge distance	Annex B 3

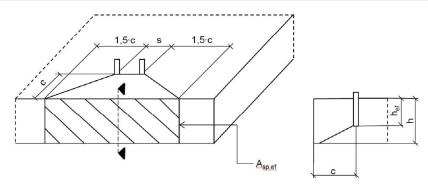


Table B4.1: Effective splitting area $A_{sp,ef}$ with member thickness $h > h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor and group of anchors with s > 3 · c	$A_{sp,ef} = (6 \cdot c) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	with c ≥ c _{min}
Group of anchors with s ≤ 3 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$

Table B4.2: Effective splitting area $A_{sp,ef}$ with member thickness $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Single anchor and group of anchors with s > 3 · c	$A_{sp,ef} = 6 \cdot c \cdot existing h$	[mm²]	with c ≥ c _{min}	
Group of anchors with s ≤ 3 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot existing h$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$	

Edge distance and axial spacing shall be rounded to at least 5 mm

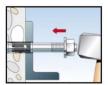
(Fig. not to scale)

FAKKT Anchor bolt BA, BA R, BA HCR	
Intended Use Minimum thickness of member, minimum spacings and edge distances	Annex B 4

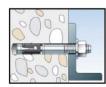
Installation instructions:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- · Check of concrete being well compacted, e.g. without significant voids
- · Hammer or hollow drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller
 distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is
 not in the direction of load application
- · It must be ensured that in case of fire local spalling of the concrete cover does not occur
- · Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure

Installation instructions: Drilling and cleaning the hole


Types of drills and cleaning

Hammer drill	B4444000000	1: Drill the hole	2: Clean the hole
Hollow drill		1: Drill the hole with automatic cleaning	-


FAKKT Anchor bolt BA, BA R, BA HCR	
Intended Use Installation instructions	Annex B 5

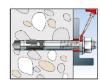
Installation instructions: Installation of the anchor

3: Set the fastener

4: Apply Tinst

5: Installed fastener

FILLING DISC FFD optional for seismic C1 application or minimizing the annular gap:


Optional

The gap between bolt and fixture may be filled with mortar (compressive strength \geq 50 N/mm² e.g. FAKKT IM Z) after step 5 (for eliminating the annular gap).

The filling disc is additional to the standard washer.

The thickness of the filling disc must be considered for definition of t_{fix} Countersunk of the filling disc in direction to the anchor plate.

Electronic copy of the ETA by DIBt: ETA-22/0725

Intended Use Installation instructions

Annex B 6

English translation prepared by DIBt

0:					BA, B	A R, BA HC	R	
Size				18	M10	M12	M16	M20
Steel failure								
Characteristic BA	– N _{Rk,s}	[kN]	16	6,6	28,3	43,2	67,0	123,3
resistance BA R/BA HCR	NRK,S	נעואן	17	7,0	29,0	44,3	70,6	124,9
Partial factor for steel failure	γMs	[-]				1,5		
Modulus of elasticity	Es	[N/mm²]				210.000		
Pullout failure								
Effective embedment depth for calculation	h _{ef}	[mm]	35 - < 45	45	40 - 60	50 - 70	65 - 85	100
Characteristic resistance in cracked concrete C20/25	– N _{Rk,p}	[kN]	5,5	8	13	20	27,0	34,4
Characteristic resistance in uncracked concrete C20/25			1	4	20	22	38,6	49,2
	-	C25/30	,					
		C30/37		1,22				
Increasing factors for N _{Rk,p}	Ψc ⁻	C35/45	1,32					
$N_{Rk,p} = \psi_c * N_{Rk,p} (C20/25)$	٠-	C40/50	1,41					
	-	C45/55	,					
		C50/60						
Installation factor	γinst	[-]				1,0		
Concrete cone and splitting failure								
Factor for uncracked concrete	k _{ucr,N}	[-]				11,0		
Factor for cracked concrete	k cr,N					7,7		
Characteristic spacing	S _{cr,N}	[mm]			3 · h _{ef}			
Characteristic edge distance	C _{cr,N}					1,5 · h _{ef}		
Spacing	S cr,sp				T	2 · C _{cr,sp}		
Edge distance for h = 80			2,4	·h _{ef}	2·h _{ef}	_2)		2)
Edge distance for h = 100					2,4·h _{ef}	2·h _{ef}	_;	2)
Edge distance for h = 120	C cr,sp	[mm]				2,1·h _{ef}		T
Edge distance for h = 140	⊃ ci,sp		2·	h _{ef}	1,9·h _{ef}			_2)
Edge distance for h = 160					1,0116	1,5·h _{ef}	$2 \cdot h_{ef}$	2,4·h _{ef}
Edge distance for h = 200								
Characteristic resistance to splitting	N^0 Rk,sp	[kN]			min (N ⁰ Rk,c ¹⁾ ; NRk,	_o)	

¹⁾ N⁰_{Rk,c} according to EN 1992-4:2018 ²⁾ No performance assessed

FAKKT Anchor bolt BA, BA R, BA HCR	
Performances Characteristic values of resistance under tension loads	Annex C 1

Table C2.1: Characteristic values of shear resistance under static and quasi-static action									
Ci-o				BA, BA R, BA HCR					
Size					M10	M12	M16	M20	
Steel failure without lever ar	m								
Characteristic resistance	BA	V^0 Rk,s	[kN]	13,6	21,4	30,6	55,0	81,4	
Characteristic resistance	BA R/BA HCR	V Rk,s	נאואן	16,8	26,5	38,3	69,8	106,3	
Partial factor for steel failure		γMs	r 1			1,25			
Factor for ductility		k ₇	[-]			1,0			
Steel failure with lever arm a	nd Concrete pryor	ut failur	е						
Effective embedment depth fo	r calculation	h_{ef}	[mm]	45	60	70	85	100	
Characteristic bending	BA	- M ⁰ Rk,s	[Nm]	26	52	92	233	513	
resistance	BA R/BA HCR			29	59	100	256	519	
Factor for pryout failure		k 8	[-]	2,8	3,2		3,0	2,6	
Effective embedment depth fo	r calculation	h	[mm]	35 -	40 -	50 -	65 -		
			[]	< 45	< 60	< 70	< 85		
Characteristic bending	BA	- M ⁰ Rks	[Nm]	20	44	92	184	_1)	
resistance	BA R/BA HCR	101 111,3	[]	21	45	100	193		
Factor for pryout failure		k ₈	[-]	2,5	2,6	3,1	3,2		
Partial factor for steel failure		γMs	r 1			1,25			
Factor for ductility			[-]			1,0			
Concrete edge failure									
Effective embedment depth for calculation		I _f =	[mm]			h_{ef}			
Outside diameter of a fastener			-	8	10	12	16	20	

1) No performance assessed	Ī
----------------------------	---

FAKKT Anchor bolt BA, BA R, BA HCR	
Performances Characteristic values of resistance under shear loads	Annex C 2

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Size			BA, BA R, BA HCR						
Size	M8	M10	M12	M16	M20				
	h _{ef} ≥	: [mm]	35 / 45	40 / 60	50 / 70	65 / 85	100		
Characteristic	R30		1,4	2,8	5,0	9,4	14,7		
	R60		1,2	2,3	4,1	7,7	12,0		
resistance	$N_{Rk,s,fi} \frac{R90}{R90}$		0,9	1,9	3,2	6,0	9,4		
steel failure	R120	-	0,8	1,6	2,8	5,2	8,1		
Characteristic resistance	R30 N _{Rk,c,fi} R90	[kN]	7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000						
Concrete cone failure	R120	- []		7,7 · h _{ef} ^{1,5} · (20	0) ^{0,5} · h _{ef} / 200 / 1000 · 0,8				
Observatoristis	R30		0,9 / 2,0						
Characteristic	R60		0,8 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6		
resistance	$N_{Rk,p,fi} \frac{R90}{R90}$		0,5 / 2,0						
pullout failure	R120		0.3 / 1.6	1.7 / 2.6	2.4 / 4.0	3.6 / 5.4	6.9		

Table C3.2: Characteristic values of shear resistance under fire exposure

Size BA, BA R, BA HCR			F	130	R60		
			$V_{Rk,s,fi,30}$ [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	$V_{Rk,s,fi,60}$ [kN]	M ⁰ _{Rk,s,fi,60} [Nm]	
M8		35	1,8	1,4	1,6	1,2	
M10		40	3	3,6	2,9	3,0	
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4	
M16		65	11,7	19,9	9,1	16,3	
M20		100	18,2	39,0	14,2	31,8	

Size BA, BA R, BA HCR			F	R90	R120		
			V _{Rk,s,fi,90} [kN]	M ⁰ Rk,s,fi,90 [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]	
M8		35	1,3	1,0	1,2	0,8	
M10		40	2,2	2,4	1,9	2,1	
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3	
M16		65	6,6	12,6	5,3	11,0	
M20		100	10,3	24,6	8,3	21,4	

Concrete pryout failure according to EN 1992-4:2018

Table C3.3: Minimum spacings and minimum edge distances of anchors under **fire exposure** for **tension** and **shear** load

Size			BA, BA R, BA HCR						
Size			M8	M10	M10 M12 M16 M20 Annex B3 c _{min} = 2 · h _{ef} ,	M20			
Spacing	Smin		Annex B3						
Edge distance		[mm]	[mm]	$c_{min} = 2 \cdot h_{ef}$					
Edge distance	C _{min}		for fire exposure from more than one side c _{min} ≥ 300 mm						

FAKKT Anchor bolt BA, BA R, BA HCR	
Performances Characteristic values of resistance under fire exposure	Annex C 3

Table C4.1: Characteristic values of tension and shear resistance under seismic action
category C1

		BA, BA R, BA HCR					
Size		М8	M10	M12	M16	M20	
Length of anchor	L _{max}	167	186	221	285	394	
Effective embedment depth	h _{ef} [mm]	45	40 - 60	50 - 70	65 - 85	100	
Factor for Without filling of annular g	ap α _{gap} [-]			0,5			
annular gap With filling of annular gap	α _{gap} [-]			1,0			
Steel failure							
Characteristic resistance tension load C1	NRk,s,eq,C1 [kN]	16,0	27,0	41,0	66,0	111,0	
Partial factor for steel failure	γMs,eq,C1 [-]	1,5					
Pullout failure							
Characteristic resistance tension load in cracked concrete C1	N _{Rk,p,eq,C1} [kN]	4,6	8,0	16,0	28,2	36,0	
Installation factor	γinst [-]	1,0					
Steel failure without lever arm							
Characteristic resistance shear load C1	V _{Rk,s,eq,C1} [kN]	11	17	27	47	56	
Partial factor for steel failure	γMs,eq,C1 [-]			1,25			

Table C4.2: Displacements under static and quasi static tension loads

Ciro			BA, BA R, BA HCR							
Size		M8	M10	M12	M16	M20				
Displacement – factor for tensile load ¹⁾										
δN0 - factor	in cracked		0,22	0,12	0,09	0,08	0,07			
δN∞ - factor	concrete	[mm/kN]	0,78	0,40	0,19	0,	09			
δ _{N0} - factor	in uncracked	- [mm/kN]	0,07	0,05	0,	06	0,05			
δ _{N∞} - factor	concrete		0,29	0,21	0,14	0,10	0,06			

Table C4.3: Displacements under static and quasi static shear loads

Cina		BA								
Size			M8	M10	M12	M16	M20			
Displacement – factor for shear load ²⁾										
δv0 – factor			0,35	0,37	0,27	0,10	0,09			
δ∨∞ - factor	in cracked		0,52	0,55	0,40	0,14	0,15			
	and uncracked	[mm/kN]		BA	R, BA HC	R				
δv0 - factor	concrete		0,23	0,19	0,18	0,10	0,11			
δV∞ - factor			0,27	0,22	0,16	0,11	0,05			

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0 - factor}} \cdot N_{\text{ED}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\,-\,\text{factor}} \,\cdot\, N_{\text{ED}}$

(N_{ED}: Design value of the applied tension force)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\,-\,factor} \cdot V_{ED}$

 $\delta_{V\infty} = \delta_{V\infty\,-\,\text{factor}}\,\cdot\,V_{\text{ED}}$

(V_{ED}: Design value of the applied shear force)

FAKKT Anchor bolt BA, BA R, BA HCR

Performances

Characteristic values under tension and shear loads under seismic action Displacements under tension and shear loads

Annex C 4