

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0726 of 30 January 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Mechanical fastener for use in concrete

Sikla Holding GmbH Ägydiplatz 3 A-4600 THALHEIM BEI WELS ÖSTERREICH

Sikla Herstellwerk 1

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-22/0726 English translation prepared by DIBt

Page 2 of 15 | 30 January 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static loading) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static loading)	See Annex C3
Displacements	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-22/0726 English translation prepared by DIBt

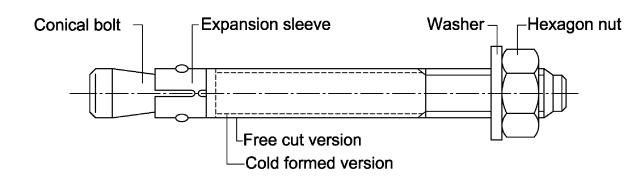
Page 4 of 15 | 30 January 2023

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 30 January 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

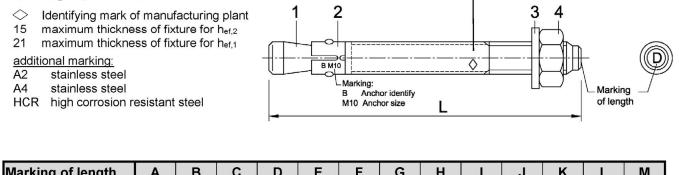


Table A1: Dimensions

Anchoroiro		Anchor length L		Wrench size
Anchor size	Embedment depth hef,1	Embedment depth hef,2	Embedment depth hef,3	wrench size
M6	t _{fix hef,1} + 47,4	t _{fix,hef,2} + 57,4	t _{fix,hef,3} + 77,4	10
M8	t _{fix hef,1} + 57,4	t _{fix,hef,2} + 66,4	t _{fix,hef,3} + 92,4	13
M10	t fix hef,1 + 68,0	t _{fix,hef,2} + 74,0	t _{fix,hef,3} + 106,0	17
M12	t _{fix hef,1} + 82,3	t _{fix,hef,2} + 97,3	t _{fix,hef,3} + 132,3	19
M16	t _{fix hef,1} + 103,0 (t _{fix hef,1} + 101,8) ¹⁾	t _{fix,hef,2} + 121,0 (t _{fix,hef,2} + 117,8) ¹⁾	t _{fix,hef,3} + 159,0 (t _{fix,hef,3} + 157,8) ¹⁾	24
M20	t _{fix hef,1} + 120,7	t _{fix,hef,2} + 142,7	t _{fix,hef,3} + 157,7	30

¹⁾ Anchor version AN B A2 / AN B A4 / AN B HCR

Marking: e.g.: <> 15/21 -

Marking of length	Α	В	C	D	E	F	G	н		J	ĸ	L	M
Length of anchor min \geq	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of length	Ν	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
Marking of length Length of anchor min ≥		-	•	Q 241,3		-	T 304,8	U 330,2	V 355,6	W 381,0	X 406,4	Y 431,8	Z 457,2

Dimensions in mm

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Product description Marking and Dimensions

Annex A1

Part	Designation	Material
Zinc plate	d steel	
AN B	electroplated	≥ 5 µm
AN B fvz	hot-dip galvanized	≥ 50 µm
AN B sh	sherardized	≥ 45 µm
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel
3	Washer	Steel, zinc plated
4	Hexagon nut	Steel, zinc plated
Stainless	steel	
AN B A2 s	tainless steel CRC II ¹	
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
AN B A4 s	tainless steel CRC III	1)
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
AN B HCR	High corrosion resista	ant steel CRC V ¹⁾
1	Conical bolt	High corrosion resistant steel
2	Expansion sleeve	Stainless steel
3	Washer	High corrosion resistant steel
4	Hexagon nut	High corrosion resistant steel

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Product description Materials Annex A2

Deutsches Institut für Bautechnik

Specification	ons of intended use						
AN B / AN B	fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR	M6	M8	M10	M12	M16	M20
	ANB (electroplated)	✓	✓	✓	✓	√	✓
zinc plated steel	AN B fvz (hot-dip galvanized)	_1)	~	✓	✓	✓	✓
	AN B sh (sherardized)	✓	~	✓	~	✓	✓
	AN B A2	~	~	✓	~	~	~
stainless steel	AN B A4	~	~	~	~	~	~
	AN B HCR	✓	✓	✓	✓	✓	~
	static or quasi-static action			'	/		
all versions	uncracked concrete			١	/		

¹⁾ No Performance assessed

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

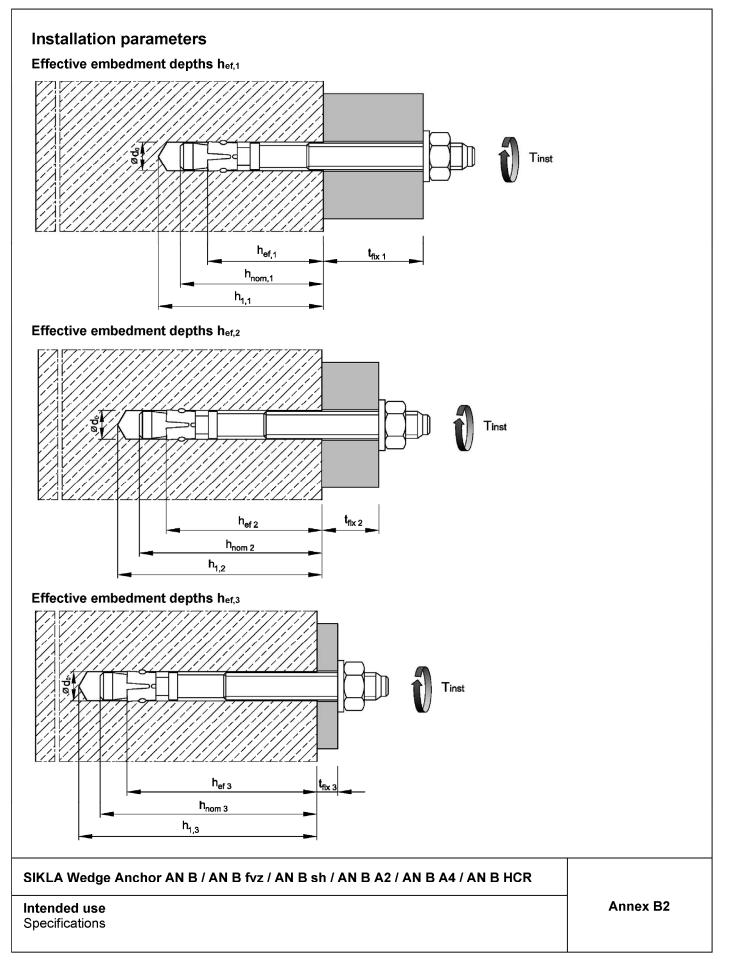
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A2
AN B A2	CRC II
AN B A4	CRC III
AN B HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 or TR 055:2018.


Installation:

- Hole drilling by hammer drill bit or vacuum drill bit.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Intended use Specifications Annex B1

Deutsches Institut für Bautechnik

Table	B1: Installation pa	rameters							
Ancho	or size			M6	M8	M10	M12	M16	M20
Nomin	al drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting	diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
_	AN B	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque	AN B fvz	T _{inst} =	[Nm]	_2)	15	30	40	90	120
stallatic torque	AN B sh	T _{inst} =	[Nm]	5	15	30	40	90	120
ul Tus	AN B A2 / AN B A4 / AN B HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
Diame [®] in the f	ter of clearance hole īxture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22
Embed	dment depth h _{ef,1}								
Effectiv	ve embedment depth	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Depth	of drill hole	$h_{1,1} \geq$	[mm]	45	55	65	75	95	110
Embec	lment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Embed	dment depth h _{ef,2}								
Effectiv	ve embedment depth	$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	82 (80) ¹⁾	100
Depth	of drill hole	$h_{1,2} \geq$	[mm]	55	65	70	90	110	130
Embec	lment depth	$h_{\text{nom},2} \geq$	[mm]	49	56	62	82	102	121
Embed	dment depth h _{ef,3}								
Effectiv	ve embedment depth	$h_{\text{ef},3} \geq$	[mm]	60	70	80	100	120	115
Depth	of drill hole	$h_{1,3} \geq$	[mm]	75	91	102	125	148	145
Embec	lment depth	h _{nom,3} ≥	[mm]	69	82	94	117	140	136

¹⁾ Anchor version AN B A2 / AN B A4 / AN B HCR

²⁾ No Performance assessed

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Intended use Installation parameters Annex B3

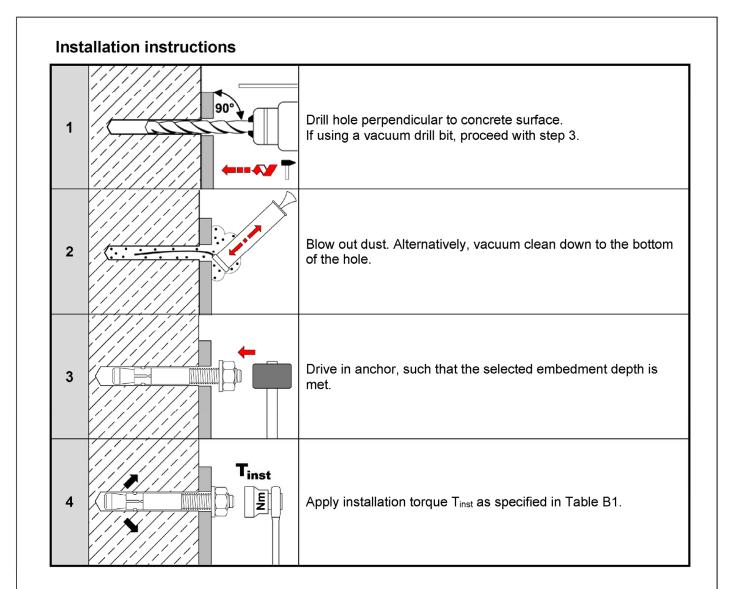
Electronic copy of the ETA by DIBt: ETA-22/0726

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1								
Minimum member thickness	\mathbf{h}_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140
Embedment depth hef,2								
Minimum member thickness	\mathbf{h}_{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125
Embedment depth hef,3								
Minimum member thickness	\mathbf{h}_{min}	[mm]	120	126	132	165	208	215
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125

¹⁾ Anchor version AN B fvz: M8-M20

• Minimum spacings and edge distances, stainless steel

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	Cmin	[mm]	40	60	65	100	110	140
Embedment depth hef,2								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
Minimum energine	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for $c \ge$	[mm]	40	65	70	100	120	150
	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s \geq	[mm]	60	110	80	100	140	180
Embedment depth hef,3								
Minimum member thickness	h _{min}	[mm]	120	126	132	165	200	215
Minimum annainn	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for c \geq	[mm]	40	65	70	100	120	150
	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s \geq	[mm]	60	110	80	100	140	180


Intermediate values by linear interpolation.

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Annex B4

Intended use Minimum spacings and edge distances

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Intended use

Installation instructions

Annex B5

Anchor size				M6	M8	M10	M12	M16	M20
Installation factor	γinst	[-]		1	1	,0			
Steel failure									
Characteristic resistance		N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107
Partial factor ⁴⁾		γMs	[-]		1,	,5		1	,6
Pull-out									
Characteristic resistance	for h	ef,1 NRk,p	[kN]	6,5 ²⁾	10,2 ²⁾	13,4	17,4	25,2	33,9
in uncracked concrete	for h	ef,2 NRk,p	[kN]	10	13	16,4	25,8	36,5	49,2
C20/25	for h	ef,3 NRk,p	[kN]	10	13	16,4	26	40	55
Increasing factor N _{Rk,p} = ψc • N _{Rk,p} (C20/25)		ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	-)0,5		$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^{0,}$
Splitting									
Characteristic resistance N ⁰ _{Rk,sp}				min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]					
Embedment depth hef,1									
Spacing		S cr,sp	[mm]	180	210	230	240	320	400
Edge distance		Ccr,sp	[mm]	90	105	115	120	160	200
Embedment depth h _{ef,2}									
Spacing		Scr,sp	[mm]	160	220	240	330	410	500
Edge distance		C cr,sp	[mm]	80	110	120	165	205	250
Embedment depth h _{ef,3}									
Spacing		S cr,sp	[mm]	160	220	240	330	410	520
Edge distance		C cr,sp	[mm]	80	110	120	165	205	260
Concrete cone failure									
		for h _{ef,1}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective embedment depth	_	for h _{ef,2}	[mm]	40	44	48	65	82	100
		for h _{ef,3}	[mm]	60	70	80	100	120	115
Spacing		S cr,N	[mm]				(1,2,3)		
Edge distance		C cr,N	[mm]				ef (1,2,3)		
Factor uncracked of		k ucr,N	[-]				,0		
cracked o	concrete	k cr,N	[-]	No performance assessed					

¹⁾ Anchor version AN B fvz: M8-M20

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Performance

Characteristic values for tension loads, zinc plated steel

Annex C1

Deutsches Institut für Bautechnik

	chor size				M6	M8	M10	M12	M16	M20		
Installation factor γ_{inst}							1	,0				
St	eel failure			[-]								
Ch	aracteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134		
Pa	rtial factor 3)		γMs	[-]		1	1,50	1		1,68		
Pu	ll-out											
~		for h _{ef,1}	N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9		
	aracteristic resistance in - cracked concrete C20/25 -	for h _{ef,2}	N _{Rk,p}	[kN]	8	15	16,4	25	35,2	49,2		
		for h _{ef,3}	N _{Rk,p}	[kN]	8	15	16,4	25	42	60		
	creasing factor _{k,p} = ψ _C • N _{Rk,p} (C20/25)		ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$							
Sp	litting											
Ch	aracteristic resistance		N ⁰ Rk,sp	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c} ²)]							
En	nbedment depth h _{ef,1}											
Spacing s _{cr,sp}		[mm]	180	210	230	300	320	400				
Ed	ge distance		Ccr,sp	[mm]	90	105	115	150	160	200		
En	nbedment depth h _{ef,2}											
Th	e higher one of the decisive	resistan	ces of	Case 1	and Case	e 2 is appl	icable					
~	Characteristic resistance		N ⁰ Rk,sp	[kN]	6	9	12	20	30	40		
						3 h _{ef}						
· · ·	Spacing		Scr,sp	[mm]			3	Nef				
se	Spacing Edge distance		S _{cr,sp} C _{cr,sp}	[mm] [mm]				n _{ef} h _{ef}				
		25)						h _{ef}				
2 Case	Edge distance Increasing factor	25)	C cr,sp	[mm]	160	220	1,5	h _{ef}	410	560		
Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \bullet N^{0}_{Rk,sp}$ (C20/2	25)	C cr,sp ΨC	[mm] [-]	160 80	220 110	$(\frac{f_{ck}}{20}$	h_{ef}	410 205	560 280		
Case 2 Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing	25)	Ccr,sp ΨC Scr,sp	[mm] [-] [mm]			$1,5$ $\left(\frac{f_{ck}}{20}\right)$	$\frac{h_{ef}}{-}^{0,5}$				
Ja Case 2 Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance	25)	Ccr,sp ΨC Scr,sp	[mm] [-] [mm]			$1,5$ $\left(\frac{f_{ck}}{20}\right)$	$\frac{h_{ef}}{-}^{0,5}$				
Solution Solution Oracle Case 2	Edge distance Increasing factor N ⁰ _{Rk,sp} = ψ _C • N ⁰ _{Rk,sp} (C20/2 Spacing Edge distance nbedment depth h _{ef,3}	25)	C _{cr,sp} ΨC S _{cr,sp} C _{cr,sp}	[mm] [-] [mm] [mm]	80	110	$1,5$ $\left(\frac{f_{ck}}{20}\right)$ 240 120	h _{ef} -) ^{0,5} 	205	280		
Data Case 2 Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing	25)	Ccr,sp ΨC Scr,sp Ccr,sp	[mm] [-] [mm] [mm]	80	110 220	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20} \\ 240 \\ 120 \\ 240 \\ 240 \\ \end{array} $	h _{ef} -) ^{0,5} 340 170 340	205 410	280 620		
Data Data Case 2 Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing ge distance		Ccr,sp ΨC Scr,sp Ccr,sp	[mm] [-] [mm] [mm]	80	110 220	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20} \\ 240 \\ 120 \\ 240 \\ 240 \\ \end{array} $	h _{ef} -) ^{0,5} 340 170 340	205 410	280 620		
2 D D D D Case 2 Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing ge distance	for	Ccr,sp ΨC Scr,sp Ccr,sp Ccr,sp	[mm] [-] [mm] [mm] [mm]	80 160 80	110 220 110	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20}\right) \\ 240 \\ 120 \\ 240 \\ 120 \\ 120 \\ \end{array} $	h _{ef} -) ^{0,5} 	205 410 205	280 620 310 78		
2 D D D D Case 2 Case	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing ge distance oncrete cone failure	for	Ccr,sp ΨC Scr,sp Ccr,sp Ccr,sp	[mm] [-] [mm] [mm] [mm]	80 160 80 30 ¹⁾	110 220 110 35 ¹⁾	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20}\right) \\ 240 \\ 120 \\ 240 \\ 120 \\ 42 \\ \end{array} $	h _{ef} 340 170 340 170 50	205 410 205 64	280 620 310 78 100		
a data data data data data data data da	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing ge distance oncrete cone failure Fective embedment depth	for	Ccr,sp ΨC Scr,sp Ccr,sp Ccr,sp Ccr,sp hef,1≥ hef,2≥	[mm] [-] [mm] [mm] [mm] [mm]	80 160 80 30 ¹⁾ 40	110 220 110 35 ¹⁾ 44	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20}\right) \\ 240 \\ 120 \\ 240 \\ 120 \\ 42 \\ 48 \\ 80 \\ 3 \\ 3 \end{array} $	h _{ef} 340 170 340 170 50 65 100 h _{ef}	205 410 205 64 80	280 620 310 78 100		
b B B B B C ase 2 C ase	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing ge distance oncrete cone failure	for	Ccr,sp ψC Scr,sp Ccr,sp Ccr,sp hef,1 ≥ hef,2 ≥ hef,3 ≥	[mm] [-] [mm] [mm] [mm] [mm] [mm]	80 160 80 30 ¹⁾ 40	110 220 110 35 ¹⁾ 44	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20}\right) \\ 240 \\ 120 \\ 240 \\ 120 \\ 42 \\ 48 \\ 80 \\ 3 \\ 3 \end{array} $	h _{ef} 340 170 340 170 50 65 100	205 410 205 64 80	280 620 310		
Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	Edge distance Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/2 Spacing Edge distance nbedment depth h ef,3 acing ge distance oncrete cone failure Fective embedment depth	for for	Ccr,sp ΨC Scr,sp Ccr,sp Scr,sp Ccr,sp hef,1≥ hef,3≥ Scr,N	[mm] [-] [mm] [mm] [mm] [mm] [mm] [mm]	80 160 80 30 ¹⁾ 40	110 220 110 35 ¹⁾ 44	$ \begin{array}{r} 1,5 \\ \left(\frac{f_{ck}}{20}\right) \\ 240 \\ 120 \\ 240 \\ 120 \\ 42 \\ 48 \\ 80 \\ 3 \\ 1,5 \\ \end{array} $	h _{ef} 340 170 340 170 50 65 100 h _{ef}	205 410 205 64 80	280 620 310 78 100		

¹⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{\scriptscriptstyle 2)}\,N^0{}_{\text{Rk},c}$ according to EN 1992-4:2018

³⁾ In absence of other national regulations

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Performance

Characteristic values for tension loads, stainless steel

Annex C2

Anchor size					M6	M8	M10	M12	M16	M20	
Installation factor			γinst	[-]				1,0			
Steel failure without le	ever arm										
Characteristic	zinc plate	ed steel ¹⁾	V ⁰ Rk.s	[kN]	5	11	17	25	44	69	
resistance	stainless steel		V ⁰ Rk,s	[kN]	7	12	19	27	50	86	
Ductility factor			k 7	[-]	1,0						
Steel failure with lever	' arm					-					
Characteristic bending resistance	zinc plate	ed steel ¹⁾	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363	
	stainless steel		M ⁰ Rk,s	[Nm]	10	24	49	85	199	454	
Partial factor ⁴⁾ for	zinc plated steel ¹⁾		γMs	[-]	1,25				1,:	1,33	
$V^{0}_{Rk,s}$ and $M^{0}_{Rk,s}$	stainless steel		γMs	[-]	1,25				1,4		
Concrete pry-out failu	re										
	zinc plate	ed steel ¹⁾	k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1	
Factor for h ef	stainless steel		k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3	
Concrete edge failure											
for h _{ef,1} Effective length of anchor in shear loading for h _{ef,2}		lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78		
		for h ef,2	lf	[mm]	40	44	48	65	82 (80) ³⁾	100	
		for h ef,3	lf	[mm]	60	70	80	100	120	115	
Outside diameter of anchor				[mm]	6	8	10	12	16	20	

¹⁾ Anchor version AN B fvz: M8-M20

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version stainless steel

⁴⁾ In absence of other national regulations

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Annex C3

Performance Characteristic values for **shear loads**

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1				•		•		
zinc plated steel 1)								
Tension load	Ν	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Dianlocoment	δησ	[mm]	0,3		•	0,4		
Displacement	δ _{N∞}	[mm]	0,6			1,8		
stainless steel								
Tension load	Ν	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δνο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	δ _{N∞}	[mm]			1,3			2,9
Embedment depth hef,2 and hef,3								
zinc plated steel ¹⁾								
Tension load	Ν	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Disals same at	δ _{N0}	[mm]	0,4			0,5		
Displacement -	δ _{N∞}	[mm]	0,7			2,3		
stainless steel								
Tension load	Ν	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δ _{N0}	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δ _{N∞}	[mm]			1,8			4,2

¹⁾ Anchor version AN B fvz: M8-M20

Table C5: Displacements under shear loads

Anchor size			M6	M8	M10	M12	M16	M20
zinc plated steel 1)								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Displacement	δvo	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
Displacement	δv∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
stainless steel								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Dianlagament	δvo	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
Displacement	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version AN B fvz: M8-M20

SIKLA Wedge Anchor AN B / AN B fvz / AN B sh / AN B A2 / AN B A4 / AN B HCR

Performance Displacements

Z2502.23

Annex C4