

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-22/0671 vom 10. Januar 2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Injektionssystem FME plus

Verbunddübel zur Verankerung im Beton

Market Tech (Beijing) Co., Ltd Room 121211, unit 2, building 3, No. 1 Futong East Street BEIJING, CHAOYANG DISTRICT VOLKSREPUBLIK CHINA

Manufacturing plant no. 1 Manufacturing plant no. 2

39 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020

Europäische Technische Bewertung ETA-22/0671

Seite 2 von 39 | 10. Januar 2023

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z99114.22 8.06.01-238/22

Europäische Technische Bewertung ETA-22/0671

Seite 3 von 39 | 10. Januar 2023

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem FME plus für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel FME plus und einem Stahlteil gemäß Anhang A 3 und A 5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B3, C1, C3 bis C6, C9 bis C11 und C13 bis C15
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C2, C7, C12 und C16
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C18 bis C21
Charakteristischer Widerstand und Verschiebungen für seismische Leistungskategorie C1und C2	Siehe Anhang C8, C17 bis C19

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z99114.22 8.06.01-238/22

Europäische Technische Bewertung ETA-22/0671

Seite 4 von 39 | 10. Januar 2023

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

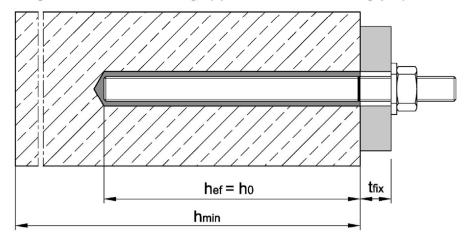
Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

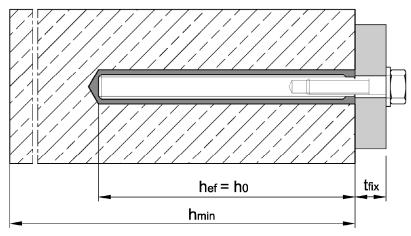
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

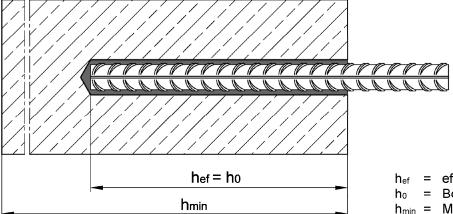
Ausgestellt in Berlin am 10. Januar 2023 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

Z99114.22 8.06.01-238/22



Einbauzustand Ankerstange M8 bis M30


Vorsteckmontage oder Durchsteckmontage (optional mit verfülltem Ringspalt)

Einbauzustand Innengewindeankerstange FMZ-IG M6 bis FMZ-IG M20

Einbauzustand Betonstahl Ø8 bis Ø32

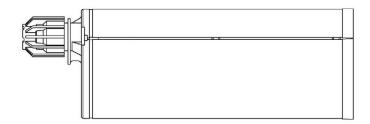
h_{ef} = effektive Verankerungstiefe

h₀ = Bohrlochtiefe h_{min} = Mindestbauteildicke

 t_{fix} = Dicke des Anbauteils

Injektionssystem FME plus

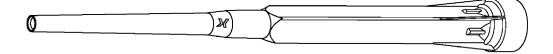
Produktbeschreibung


Einbauzustand

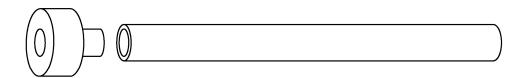
Anhang A1

Kartusche: Injektionsmörtel FME plus

Side-by-side Kartusche 440 ml 585 ml 1400 ml



Kartuschenaufdruck:


FME plus,

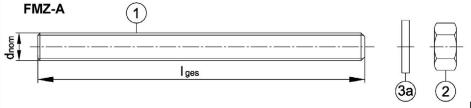
Verarbeitungshinweise, Chargennummer, Haltbarkeitsdatum, Gefahrennummer, Lagertemperatur, Aushärtezeit und Verarbeitungszeit, optional mit Kolbenwegskala

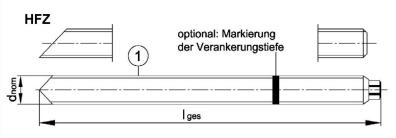
Statikmischer

Injektionsadapter mit Mischerverlängerung

Injektionssystem FME plus

Produktbeschreibung


Kartusche, Statikmischer und Injektionsadapter mit Mischerverlängerung


Anhang A2

Ankerstangen

Ankerstange FMZ-A, HFZ mit Unterlegscheibe und Sechskantmutter M8, M10, M12, M16, M20, M24, M27, M30 (verzinkt, A4, HCR)

Prägung z.B.:

M10

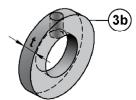
Werkzeichen
M10 Gewindegröße

zusätzliche Kennung:

A4 nichtrostender Stahl

HC hochkorrosionsbeständiger Stahl

Ankerstange HFT (Meterware zum Ablängen)

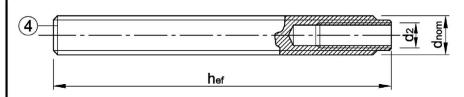

M8, M10, M12, M16, M20, M24, M27, M30 (verzinkt, A2, A4, HCR)

Handelsübliche Gewindestange

M8, M10, M12, M16, M20, M24, M27, M30 (verzinkt, A2, A4, HCR) mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004

<u>Verfüllscheibe</u> und Mischerreduzierung zum Verfüllen des Ringspalts zwischen Anker und Anbauteil


Dicke der Verfüllscheibe für Durchmesser < M24: t = 5 mm

< M24: t = 5 mm ≥ M24: t = 6 mm

Innengewindeankerstange

FMZ-IG M6, FMZ-IG M8, FMZ-IG M10FMZ-IG M12, FMZ-IG M16, FMZ-IG M20 (verzinkt, A4, HCR)

Prägung z.B.: ⟨ M8

Werkzeichen
I Innengewinde

M8 Gewindegröße (Innengewinde)

zusätzliche Kennung:

A4 nichtrostender Stahl

HCR hochkorrosionsbeständiger Stahl

Injektionssystem FME plus

Produktbeschreibung

Ankerstange, Innengewindeankerstange und Verfüllscheibe

Anhang A3

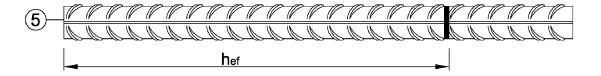
71879 23

Tabelle A1: Werkstoffe -	Ankerstange und	Innengewindeankerstange

	Benennung		Werksto	ff					
galvai feuer			n) gemäß l	EN ISO 14	461:2009 เ	ınd EN IS	O 10684:2004	+AC:2009 oder	
		Charakteristische Zugfestigkeit Charakteristische Streckgrenze				Bruch- dehnung			
		4.6		400		240	A ₅ > 8 %	EN ISO 683-4:2018, EN 10263:2001;	
1	Ankerstange	4.8		400		320	A ₅ > 8 %	h and aloübliah a	
		5.6 f _{uk} 500 f _{yk} 300 [N/mm²]	300	A ₅ > 8 %	handelsübliche Gewindestangen:				
		5.8	[[[]	500	[14/11111]	400	A ₅ > 8 %	EN ISO 898-1:2013	
		8.8		800		640	A ₅ ≥ 12% ¹⁾	1	
		4	für Anker	stangen o	ler Klasse	4.6, 4.8			
2	Sechskantmutter	5	für Anker	stangen o	ler Klasse	4.6, 4.8, 5	5.6, 5.8	EN ISO 898-2:2012	
		8	für Anker	stangen o	ler Klasse	4.6, 4.8, 5	5.6, 5.8, 8.8	1	
3a	Unterlegscheibe		z.B.: EN EN ISO 8		:2000, EN	ISO 7093	:2000, EN ISO	7094:2000,	
3b	Verfüllscheibe		Stahl, ve	rzinkt					
	Innengewinde-	5.8	Stahl, ga	lvanisch v	erzinkt od	er	A ₅ > 8%	EN 100 692 4:2049	
4	ankerstange	8.8	diffusions	sverzinkt			A ₅ > 8%	EN ISO 683-4:2018	
Nicht	rostender Stahl A2 ²⁾ rostender Stahl A4 korrosionsbeständiger	Stahl HCR	CRC III	Werkstoff		1.4404 /	1.4311 / 1.456 1.4571 / 1.457		
Nicht	rostender Stahl A4	Stahl HCR Festigkeits-klasse	CRC III	Werkstoff (Werkstoferistische	fe 1.4401 /	1.4404 / 1.4565) ristische			
Nicht	rostender Stahl A4	Festigkeits-	CRC IV Charakte	Werkstoff (Werkstoferistische	fe 1.4401 / fe 1.4529 / Charakte Streck	1.4404 / 1.4565) ristische	1.4571 / 1.4576 Bruch-	EN 10088-1:2014	
Nicht Hoch	rostender Stahl A4 korrosionsbeständiger	Festigkeits- klasse	CRC IV Charakte Zugfes	Werkstoff (Werkstof eristische stigkeit	fe 1.4401 / fe 1.4529 / Charakte Strecko	1.4404 / / 1.4565) ristische grenze	1.4571 / 1.4576 Bruch- dehnung	EN 10088-1:2014	
Nicht Hoch	rostender Stahl A4 korrosionsbeständiger	Festigkeits- klasse 50	CRC IV Charakte	Werkstoff (Werkstof eristische stigkeit 500	fe 1.4401 / fe 1.4529 / Charakte Streck	1.4404 / / 1.4565) ristische grenze 210	Bruch- dehnung A ₅ > 8%	EN 10088-1:2014	
Nicht Hoch	rostender Stahl A4 korrosionsbeständiger	Festigkeits- klasse 50 70 80	CRC III (CRC IV) Charakter Zugfes f _{uk} [N/mm²]	Werkstoff (Werkstof eristische stigkeit 500 700 800	fe 1.4401 / fe 1.4529 / Charakte Strecko	1.4404 / / 1.4565) ristische grenze 210 450 600	Bruch- dehnung A ₅ > 8% A ₅ ≥ 12% ¹⁾	EN 10088-1:2014 EN ISO 3506-1:2020	
Nicht Hoch	rostender Stahl A4 korrosionsbeständiger	Festigkeits- klasse 50 70 80 50	CRC III (CRC IV) Charakte Zugfes f _{uk} [N/mm²]	Werkstoff (Werkstof eristische stigkeit 500 700 800 estangen o	fe 1.4401 / fe 1.4529 / Charakte Streck(f _{yk} [N/mm²]	1.4404 / /1.4565) ristische grenze 210 450 600	Bruch- dehnung A ₅ > 8% A ₅ ≥ 12% ¹⁾	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014	
Nicht Hoch	rostender Stahl A4 korrosionsbeständiger Ankerstange ³⁾	Festigkeits- klasse 50 70 80 50 70	CRC III (CRC IV) Charakte Zugfes fuk [N/mm²] für Anker	Werkstoff (Werkstoff eristische stigkeit 500 700 800 estangen ce	fe 1.4401 / fe 1.4529 / Charakte Strecko f _{yk} [N/mm²]	1.4404 / /1.4565) ristische grenze 210 450 600 50 50, 70	Bruch- dehnung A ₅ > 8% A ₅ ≥ 12% ¹⁾ A ₅ ≥ 12% ¹⁾	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014	
Nicht Hoch	rostender Stahl A4 korrosionsbeständiger Ankerstange ³⁾	Festigkeits- klasse 50 70 80 50 70	CRC III (CRC IV) Charakter Zugfes fuk [N/mm²] für Anker für Anker z.B.: EN	Werkstoff (Werkstoff eristische stigkeit 500 700 800 estangen cestangen cest	fe 1.4401 / fe 1.4529 / Charakte Streck(f _{yk} [N/mm²] . der Klasse	1.4404 / 1.4565) ristische grenze 210 450 600 50 50, 70 50, 70, 80 ISO 7093	Bruch-dehnung $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020	
Nicht Hoch 1	Ankerstange ³⁾ Sechskantmutter ³⁾	Festigkeits- klasse 50 70 80 50 70	CRC III (CRC IV) Charakte Zugfes fuk [N/mm²] für Anker für Anker für Anker für Anker nichtroste	Werkstoff (Werkstoff ristische stigkeit 500 700 800 stangen c stangen c stangen c stangen c stangen c	fe 1.4401 / fe 1.4529 / Charakte Streck([N/mm²] der Klasse der Klasse der Klasse :2000, EN	1.4404 / 1.4565) ristische grenze 210 450 600 50, 70 50, 70, 80 ISO 7093 387:2006	Bruch-dehnung $A_5 > 8\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$ $A_5 \ge 12\%$	EN 10088-1:2014 EN ISO 3506-1:2020	

¹⁾ A₅ > 8 % Bruchdehnung wenn <u>keine</u> Anforderungen der seismischen Leistungskategorie C2 bestehen

Injektionssystem FME plus Produktbeschreibung Werkstoffe - Ankerstange und Innengewindeankerstange Anhang A4


²⁾ Festigkeitsklasse 50 und 70

³⁾ Festigkeitsklasse 70 und 80 nur bis M24

Betonstahl

 \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} nach EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen
 (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff
Beto	nstahl	
5	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstahl vom Ring Klasse B oder C fyk und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA fuk = ftk = k•fyk

Injektionssystem FME plus	
Produktbeschreibung Produktbeschreibung und Werkstoffe Betonstahl	Anhang A5

Spezifizierung des Verwendungszwecks

Statische und quasi-statische Einwirkung	Nutzungsdauer 50 Jahre	Nutzungsdauer 100 Jahre						
Ankerstangen Innengewindeankerstangen Betonstahl	M8 - M30 FMZ-IG M6 - FMZ-IG M20 Ø8 - Ø32							
	gerissener oder ungerissener Beton Festigkeitsklasse C20/25 bis C50/60 verdichteter, bewehrter oder unbewehrter Normalbeton ohne Faserr gemäß EN 206:2013+A1:2016							
Verankerungsgrund								
Bohrlocherstellung	gerissener Beton: Hammerbohren / Druckluftbohren / Saugbohren							
Bonnocherstending	ungerissener Beton : Hammerbohren / Druckluftbohren / Saugbohren / Diamantbohren							
Temperaturbereich 1)	I: -40°C bis +40°C II: -40°C bis +72°C	l: -40°C bis +40°C II: -40°C bis +72°C						

Seismische Einwirkung	Leistungskategorie C1 Leistungskategorie						
Ankerstangen Betonstahl	M8 - M30 Ø8 - Ø32	M12 – M24 					
	gerissener oder u	ngerissener Beton					
Verankerungsgrund	Festigkeitsklasse C20/25 bis C50/60 verdichteter, bewehrter oder unbewehrter Normalbeton ohne Faseri gemäß EN 206:2013+A1:2016						
Bohrlocherstellung	Hammerbohren / Druckluftbohren / Saugbohren						
Temperaturbereich 1)	I: -40°C bis +40°C II: -40°C bis +72°C	I: -40°C bis +40°C II: -40°C bis +72°C					

Temperaturbereich I: max. Langzeittemperatur +24°C und max. Kurzzeittemperatur +40°C Temperaturbereich II: max. Langzeittemperatur +50°C und max. Kurzzeittemperatur +72°C

Injektionssystem FME plus	
Verwendungszweck Spezifikationen	Anhang B1

Spezifizierung des Verwendungszwecks

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: alle Materialien
- Für alle anderen Bedingungen gilt:
 Verwendung der Werkstoffe aus Anhang A4, Tabelle A1 entsprechend der Korrosionsbeständigkeitsklasse
 CRC gemäß EN 1993-1-4:2006+A1:2015

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Bemessungsverfahren: EN 1992-4:2018 oder Technical Report TR 055, Fassung Februar 2018

Einbau:

- Trockener oder feuchter Beton oder wassergefüllte Bohrlöcher (ausgenommen Seewasser)
- Bohrlochherstellung durch Hammer-, Druckluft-, Saugbohren oder Diamantbohren
- Überkopfmontage erlaubt
- · Einbau durch entsprechend geschultes Personal unter Verantwortung des Bauleiters
- Innengewindeankerstange: Schrauben und Gewindestange (inkl. Mutter und Unterlegscheibe) müssen mindestens dem Material und der Festigkeitsklasse der verwendeten Innengewindeankerstange entsprechen

Injektionssystem FME plus	
Verwendungszweck Spezifikationen	Anhang B2

71879 23 8 06 01-238/22

Tabelle B1: Montage- und Dübelkennwerte, Ankerstangen

Ankerstange				M8	M10	M12	M16	M20	M24	M27	M30
Durchmesser Ankerstang	e d=c	nom	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmesser		d ₀	[mm]	10	12	14	18	22	28	30	35
Effektive Verankerungstie	h _e	f,min	[mm]	60	60	70	80	90	96	108	120
Ellektive veralikerungstie	h _{et}	f,max	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im anzuschließenden	Vorsteck- montage	df≤	[mm]	9	12	14	18	22	26	30	33
Bauteil	Durchsteck- montage	d _f ≤	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment	max	T _{inst}	[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300
Mindestbauteildicke	uteildicke h _{min} [mm		[mm]	h _{ef} + 3	0mm ≥1	00mm			h _{ef} + 2d ₀	1	
Minimaler Achsabstand		Smin	[mm]	40	50	60	75	95	115	125	140
Minimaler Randabstand	1	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ maximales Montagedrehmoment für Festigkeitsklasse 4.6

Tabelle B2: Montage- und Dübelkennwerte, Innengewindeankerstangen

Innengewindeankerstange			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Innendurchmesser	d_2	[mm]	6	8	10	12	16	20
Außendurchmesser 1)	$d=d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d_0	[mm]	12	14	18	22	28	35
Effektive Verenkerungstiefe	$h_{\text{ef,min}}$	[mm]	60	70	80	90	96	120
Effektive Verankerungstiefe -	h _{ef,max}	[mm]	200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	10	20	40	60	100
Minimale Einschraubtiefe	I IG	[mm]	8	8	10	12	16	20
Mindestbauteildicke	h _{min}	[mm]		30mm 0mm	h _{ef} + 2d ₀			
Minimaler Achsabstand	Smin	[mm]	50	60	75	95	115	140
Minimaler Randabstand	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Tabelle B3: Montagekennwerte, Betonstahl

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	d=d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Bohrernenndurchmesse	r ¹⁾ d ₀	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effektive	$h_{\text{ef},\text{min}}$	[mm]	60	60	70	75	80	90	96	100	112	128
Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Mindestbauteildicke	h_{min}	[mm]	•	- 30 mm 00 mm					h _{ef} + 2d)		
Minimaler Achsabstand	Smin	[mm]	40	50	60	70	75	95	120	120	130	150
Minimaler Randabstand	C _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

 $^{^{1)}}$ für $\oslash 8$, $\oslash 10$, $\oslash 12$, $\oslash 24$ und $\oslash 25$ können beide Bohrernenndurchmesser verwendet werden

Injektionssystem FME plus

Verwendungszweck Montagekennwerte **Anhang B3**

Tabelle B4: Parameter für Reinigungs- und Setzzubehör

Ankerstange	Innengewinde- ankerstange	Betonstahl	Bohrer Ø	Bürsten Ø	min. BürstenØ
<u> </u>				d _b = MANAMA	
[-]	[-]	Ø [mm]	d ₀ [mm]	d ♭[mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	FMZ-IG M6	8 / 10	12	13,5	12,5
M12	FMZ-IG M8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	FMZ-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	FMZ-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	FMZ-IG M16		28	30,0	28,5
M27		24 / 25	30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	FMZ-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Tabelle B5: Injektionsadapter

Bohrer Ø		Einbaurichtung und Verwendung							
d ₀ [mm]	[-]	↓ → ↑							
10									
12		Ke Kelatian							
14		Injektionsadapter erforderlich							
16		on or domen							
18	VM-IA 18								
20	VM-IA 20								
22	VM-IA 22								
25	VM-IA 25								
28	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	alle					
30	VM-IA 30		200111111						
32	VM-IA 32								
35	VM-IA 35		l						
40	VM-IA 40								

Saugbohrer

Saugbohrer (MKT Saugbohrer SB, Würth Saugbohrer oder Heller Duster Expert Saugbohrer) und einem Klasse M Staubsauger mit einem Unterdruck von mind. 253 hPa und einer Durchflussrate von mind. 42 l/s (150 m³/h)

Empfohlene Druckluftpistole (min 6 bar)
Bohrernenndurchmesser (d₀): alle Durchmesser

1:			
iniektio	nssystem	- IVI -	DILLS
,	,		P. 40

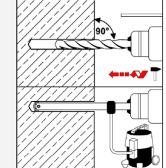
Verwendungszweck

Reinigungs- und Installationszubehör

Anhang B4

Tabelle B6: Verarbeitungs- und Aushärtezeiten

Pote	on Temp	o notur	Verarbeitungszeit	Mindest-A	ushärtezeit
Dett	il Tellipi	eratur	verarbeitungszeit	trockener Beton	feuchter Beton
0°C	bis	+4°C	90 min	144 h	288 h
+5°C	bis	+9°C	80 min	48 h	96 h
+10°C	bis	+14°C	60 min	28 h	56 h
+15°C	bis	+19°C	40 min	18 h	36 h
+20°C	bis	+24°C	30 min	12 h	24 h
+25°C	bis	+34°C	12 min	9 h	18 h
+35°C	bis	+39°C	8 min	6 h	12 h
	+40°C		8 min	4 h	8 h
Kartus	Kartuschentemperatur			+5°C bis +40°C	


Injektionssystem FME plus	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B5

Montageanweisung

1

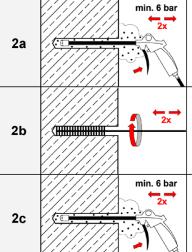
Bohrlocherstellung und Reinigung: Hammerbohren, Druckluftbohren und Saugbohren

Hammerbohren oder Druckluftbohren

Bohrloch drehschlagend mit vorgeschriebenem Bohrlochdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter bei Schritt 2.

Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Saugbohrer: siehe Anhang B4


Bohrloch drehschlagend mit vorgeschriebenem Bohrlochdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Dieses Bohrverfahren entfernt den Staub und reinigt das Bohrloch während des Bohrens. Weiter bei Schritt 3.

Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

Reinigung: trockene, feuchte und wassergefüllte Bohrlöcher für alle Durchmesser im gerissenen und ungerissenen Beton

(Reinigung entfällt bei der Verwendung eines Saugbohrers)

Das Bohrloch vom Bohrlochgrund her mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen, bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund nicht erreicht, ist eine Verlängerung zu verwenden.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) mind. **2x** ausbürsten. Erreicht die Bürste den Bohrlochgrund nicht, ist eine geeignete Bürstenverlängerung zu verwenden.

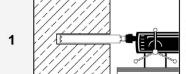
Das Bohrloch vom Bohrlochgrund her erneut mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund nicht erreicht, ist eine Verlängerung zu verwenden.

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in geeigneter Weise zu schützen. Gegebenenfalls ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrlochs führen.

Injektionssystem FME plus

Verwendungszweck

Montageanweisung - Bohren und Reinigen: Hammer, - Druckluft, - und Saugbohrer

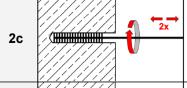

Anhang B6

71879 23 8 06 01-238/22

Montageanweisung (Fortsetzung)

Bohrlocherstellung und Reinigung: Diamantbohren

Bohrloch mit vorgeschriebenem Bohrlochdurchmesser (Tabelle B1, B2 oder B3) und gewählter Bohrlochtiefe erstellen. Weiter bei Schritt 2. Bei Fehlbohrungen ist das Bohrloch zu vermörteln


Reinigung: trockene, feuchte und wassergefüllte Bohrlöcher für alle Durchmesser im ungerissenen Beton

Bohrkern mindestens bis zur Nennbohrlochtiefe herausbrechen und Bohrlochtiefe prüfen.

2b

Bohrloch mit Wasser vom Bohrlochgrund solange ausspülen, bis nur noch klares Wasser aus dem Bohrloch austritt.

Bohrloch mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) mind. **2x** ausbürsten. Erreicht die Bürste den Bohrlochgrund nicht, ist eine geeignete Bürstenverlängerung zu verwenden.

min. 6 bar

Erneut das Bohrloch mit Wasser vom Bohrlochgrund solange ausspülen, bis nur noch klares Wasser aus dem Bohrloch austritt.

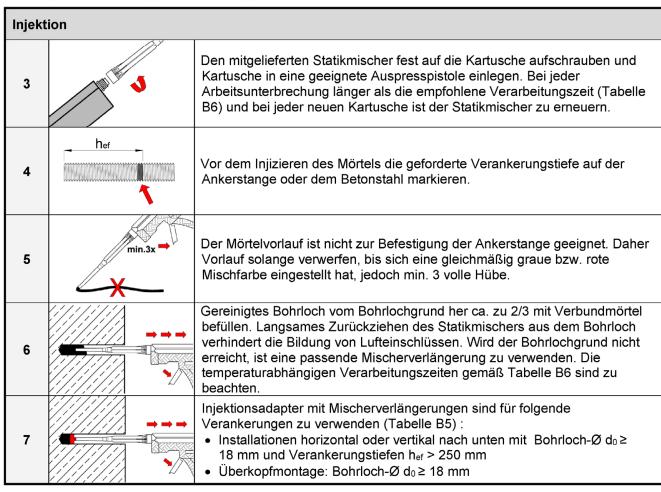
Das Bohrloch vom Bohrlochgrund her mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen, bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund nicht erreicht, ist eine Verlängerung zu verwenden.

2f min. 6 bar

Bohrloch erneut mit geeigneter Drahtbürste gem. Tabelle B4 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten) mind. **2x** ausbürsten. Erreicht die Bürste den Bohrlochgrund nicht, ist eine geeignete Bürstenverlängerung zu verwenden.

Das Bohrloch vom Bohrlochgrund her erneut mind. **2x** vollständig mit Druckluft (min. 6 bar) ausblasen bis die ausströmende Luft staubfrei ist. Wird der Bohrlochgrund nicht erreicht, ist eine Verlängerung zu verwenden.

Injektionssystem FME plus


Verwendungszweck

Montageanweisung - Bohren und Reinigen: Diamantbohren

Anhang B7

Montageanweisung (Fortsetzung)

Injektionssystem FME plus

Verwendungszweck Montageanweisung - Injektion **Anhang B8**

Montageanweisung (Fortsetzung)

Setzen des Befestigungselementes Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Verankerungstiefe einsetzen. 8 Das Befestigungselement muss frei von Schmutz, Fett, Öl und anderen Fremdmaterialien sein. Nach der Installation muss der Ringspalt zwischen Ankerstange und Beton, bei Durchsteckmontage zusätzlich auch im Anbauteil, komplett mit Mörtel verfüllt 9 sein. Wird kein Mörtel an der Betonoberfläche sichtbar, Anwendung vor Beendigung der Verarbeitungszeit wiederholen! Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. mit Holzkeilen). Die angegebene Aushärtezeit muss eingehalten werden. Befestigungselement 10 während der Aushärtezeit (Tabelle B6) nicht bewegen oder belasten. Ausgetretenen Mörtel entfernen. $\mathbf{T}_{\mathsf{inst}}$ Nach vollständiger Aushärtung kann das Anbauteil mit dem 12 Montagedrehmoment ≤ T_{inst} nach Tabelle B1 oder B2 montiert werden. Bei der Vorsteckmontage kann optional der Ringspalt zwischen Ankerstange und Anbauteil nachträglich mit Mörtel verfüllt werden. Dafür Unterlegscheibe 13 durch Verfüllscheibe ersetzen und Mischerreduzierung auf den Mischer stecken. Der Ringspalt ist verfüllt, wenn Mörtel austritt.

Injektionssystem FME plus

Verwendungszweck

Montageanweisung – Setzen des Befestigungselementes

Anhang B9

Tabelle C1: Charakteristische Stahltragfähigkeit für Ankerstangen unter Zugbeanspruchung

Ankers	stange			М8	M10	M12	M16	M20	M24	M27	M30
Stahlve	ersagen										
Spannı	ungsquerschnitt	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Charak	kteristische Widerstände unter	Zugbea	nspruc	hung ¹⁾							
+	Festigkeitsklasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
	Festigkeitsklasse 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
nder	A2, A4 und HCR Festigkeitsklasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Nichtrostender Stahl	A2, A4 und HCR Festigkeitsklasse 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	_3)	_3)
N Nich	A4 und HCR Festigkeitsklasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Teilsic	herheitsbeiwerte ²⁾										
	Festigkeitsklasse 4.6	γMs,N	[-]				2	,0			
_ *	Festigkeitsklasse 4.8	γMs,N	[-]				1	,5			
Stahl, verzinkt	Festigkeitsklasse 5.6	γMs,N	[-]				2	,0			
" *	Festigkeitsklasse 5.8	γMs,N	[-]				1	,5			
	Festigkeitsklasse 8.8	γMs,N	[-]				1	,5			
nder	A2, A4 und HCR Festigkeitsklasse 50	γMs,N	[-]				2,	86			
Nichtrostender Stahl	A2, A4 und HCR Festigkeitsklasse 70	γMs,N	[-]	1,87					_3)	_3)	
N Nich	A4 und HCR Festigkeitsklasse 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ Die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt A_s: FMZ-A, HFZ, HFT.Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gelten die Werte in Klammern.

Leistungen Charakteristische Stahltragfähigkeit für Ankerstangen unter Zugbeanspruchung Anhang C1

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Dübelvariante nicht in ETA enthalten

Tabelle C2: Charakteristische Stahltragfähigkeit für Ankerstangen unter Querbeanspruchung

	Querbeanspruchung										
Ankeı	rstange			M8	M10	M12	M16	M20	M24	M27	M30
Stahl	versagen										
Spanr	nungsquerschnitt	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	kteristische Widerstände unter Querbe	anspruc	hung¹)								
Stahl	versagen <u>ohne</u> Hebelarm										
, <t< td=""><td>Festigkeitsklasse 4.6 und 4.8</td><td>$V^0_{Rk,s}$</td><td>[kN]</td><td>9 (8)</td><td>14 (13)</td><td>20</td><td>38</td><td>59</td><td>85</td><td>110</td><td>135</td></t<>	Festigkeitsklasse 4.6 und 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
	Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
ender I	A2, A4 und HCR, Festigkeitsklasse 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Nichtrostender Stahl	A2, A4 und HCR, Festigkeitsklasse 70	V^0 Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
Nich	A4 und HCR, Festigkeitsklasse 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	_3)	_3)
Stahlv	versagen <u>mit</u> Hebelarm										
t	Festigkeitsklasse 4.6 und 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Stahl, verzinkt	Festigkeitsklasse 5.6 und 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
^	Festigkeitsklasse 8.8	$M^0_{Rk,s}$	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
ınder	A2, A4 und HCR, Festigkeitsklasse 50	$M^0_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Nichtrostender Stahl	A2, A4 und HCR, Festigkeitsklasse 70	$M^0_{Rk,s}$	[Nm]	26	52	92	232	454	784	_3)	_3)
Nich	A4 und HCR, Festigkeitsklasse 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	_3)	_3)
Teilsi	cherheitsbeiwerte ²⁾										
	Festigkeitsklasse 4.6	γMs,V	[-]				1,6	67			
, <u>북</u>	Festigkeitsklasse 4.8	γMs,V	[-]				1,2	25			
Stahl, verzinkt	Festigkeitsklasse 5.6	γмэ,∨	[-]				1,6	§7			
γ »	Festigkeitsklasse 5.8	γMs,V	[-]				1,2	25			
	Festigkeitsklasse 8.8	γMs,V	[-]				1,2	25			
nder	A2, A4 und HCR, Festigkeitsklasse 50	γMs,V	[-]				2,3	38			
Nichtrostender Stahl	A2, A4 und HCR, Festigkeitsklasse 70	γMs,V	[-]			1,5	66			_3)	_3)
Nich	A4 und HCR, Festigkeitsklasse 80	γMs,V	[-]			1,3	3			_3)	_3)

¹⁾ Die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt As: FMZ-A, HFZ, HFT. Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gelten die Werte in Klammern.

Leistungen

Charakteristische Stahltragfähigkeit für Ankerstangen unter Querbeanspruchung

Anhang C2

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Dübelvariante nicht in ETA enthalten

Tabelle C3: Charakteristische Werte für Betonausbruch und Spalten

Ankerstangen / Innenge	ewindeankerstangen / I	Betonst	ahl	alle Größen
Betonausbruch				
Faktor k₁	ungerissener Beton	k ucr,N	[-]	11,0
gerissener Betor		k cr,N	[-]	7,7
Randabstand		C _{cr,N}	[mm]	1,5 • h _{ef}
Achsabstand		S cr,N	[mm]	2 • C _{cr,N}
Spalten				
Charakteristischer Widers	stand	N^0 Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Randabstand	2,0 > h/h _{ef} > 1,3	C cr,sp	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
h/h _{ef} ≤ 1,3				2,4 • h _{ef}
Achsabstand		S cr,sp	[mm]	2 • C _{cr,sp}

210	/+ I A I	22212	+~~~		
 116	K		16111	- IVI -	
	NUV	nssys	COLL		DIGG

Leistungen

Charakteristische Werte für Betonausbruch und Spalten

Anhang C3

Tabelle C4: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 50 Jahre

	ne unu quasi-s	latisc	IIC LIIIW	, ii Kaii	9, 110	ızarıg.			<u> </u>		
Ankerstangen				M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen											
Charakteristischer Wide	rstand	$N_{Rk,s}$	[kN]		A	Վ _s ∙ f _{uk}	(oder si	ehe Tal	belle C1)	
Teilsicherheitsbeiwert		γMs,N	[-]			S	siehe Ta	belle C	1		
Kombiniertes Versage	n durch Herauszie	hen und	d Betonau	sbruch)						
Charakteristische Verb	oundtragfähigkeit i	im <u>unge</u>	<u>rissenen</u>	Beton (C20/25						
Temperaturbereich I: 40°C / 24°C	Hammer- oder	τ _{Rk,ucr}	[N/mm²]	20	20	19	19	18	17	16	16
Temperaturbereich II: 72°C / 50°C	Druckluftbohren	τRk,ucr	[N/mm²]	15	15	15	14	13	13	12	12
Temperaturbereich I: 40°C / 24°C	Caughohron	τ _{Rk,ucr}	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13
Temperaturbereich II: 72°C / 50°C	- Saugbohren	τ _{Rk,ucr}	[N/mm²]	14	14	14	13	13	12	12	11
Charakteristische Verb	undtragfähigkeit i	im <u>geris</u>	senen Be	ton C2	0/25						
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
Temperaturbereich II: 72°C / 50°C	Saugbohren	τRk,cr	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
Reduktionsfaktor ψ ⁰ sus							•		•		
Temperaturbereich I: 40°C / 24°C	Hammer-,	ψ^0 sus	[-]	0,80							
Temperaturbereich II: 72°C / 50°C	- Druckluft- oder Saugbohren	ψ^0 sus	[-]				0,	68			
Erhöhungsfaktor ψ _c											
für τ _{Rk} in Abhängigkeit v Betonfestigkeitsklasse τ _{Rk} = ψ _c · τ _{Rk} (C20/25)	on der	Ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,1			
Betonausbruch											
Relevante Parameter						S	siehe Ta	ibelle C	:3		
Spalten											
Relevante Parameter							siehe Ta	belle C	:3		
Montagebeiwert											
trockener oder feuchter	Beton	γinst	[-]				1	,0			
wassergefülltes Bohrlocl	h	γinst	[-]				1	,2			

¹⁾ Wert in Klammern: Charakteristische Verbundtragfähigkeit bei wassergefüllten Bohrlöchern

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, 50 Jahre Nutzungsdauer

Anhang C4

Tabelle C5: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 100 Jahre

	cne una quasi	-statisti	TIC LITTW		9, 110	LZurig.	<u>Juane</u>				
Ankerstangen				М8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen			·								
Charakteristischer Wide	erstand	$N_{Rk,s}$	[kN]		/	A _s • f _{uk}	(oder sie	ehe Tal	belle C1	1)	
Teilsicherheitsbeiwert		[-]				siehe Ta	ıbelle C	;1			
Kombiniertes Versage	en durch Herausz	ziehen und	d Betonau	sbruch	ı						
Charakteristische Ver	rbundtragfähigkei	it im <u>unge</u>	rissenen	Beton (C20/25						
Temperaturbereich I: 40°C / 24°C	Hammer- oder	τ _{Rk,ucr,100}	[N/mm²]	20	20	19	19	18	17	16	16
Temperaturbereich II: 72°C / 50°C	Druckluftbohren	τRk,ucr,100	[N/mm²]	15	15	15	14	13	13	12	12
Temperaturbereich I: 40°C / 24°C	Coughahran	TRk,ucr,100	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13
Temperaturbereich II: 72°C / 50°C	- Saugbohren	τ _{Rk,ucr,100}	[N/mm²]	14	14	14	13	13	12	12	11
Charakteristische Ver	rbundtragfähigke	it im geris	senen Be	ton C2	0/25						
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	τ _{Rk,cr,100}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperaturbereich II: 72°C / 50°C	Saugbohren	τ _{Rk,cr,100}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5
Reduktionsfaktor ψ ⁰ su	us										
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	ψ ⁰ sus,100	[-]	0,80							
Temperaturbereich II: 72°C / 50°C	Saugbohren	ψ ⁰ sus,100	[-]				0,	,68			
Erhöhungsfaktor ψε											
für τ_{Rk} in Abhängigkeit v Betonfestigkeitsklasse $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$		Ψα	[-]				$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{0}\right)^{0,1}$			
Betonausbruch											
Relevante Parameter						٤	siehe Ta	ıbelle C	;3		
Spalten											
Relevante Parameter						٤	siehe Ta	belle C	,3		
Montagebeiwert											
trockener oder feuchter	r Beton	γinst	[-]				1	,0			
wassergefülltes Bohrloo	ch	γinst	[-]				1	,2			

¹⁾ Wert in Klammern: Charakteristische Verbundtragfähigkeit bei wassergefüllten Bohrlöchern

Injektionssystem FME plus

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, 100 Jahre Nutzungsdauer

Anhang C5

Tabelle C6: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre, Diamantbohren in ungerissenem Beton

Diama	ntbohren in u	rigerisse	JIICIII DC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Ankerstangen				M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen											
Charakteristischer Wide	rstand	$N_{Rk,s}$	[kN]		,	As • fuk	(oder si	ehe Tal	belle C1	l)	
Teilsicherheitsbeiwert		γMs,N	[-]			8	siehe Ta	abelle C	:1		
Kombiniertes Versage	n durch Herausz	iehen und	d Betonau	ısbrucl	h						
Charakteristische Verl	oundtragfähigkei	it im <u>unge</u>	rissenen	Beton	C20/25			Nutzı	ungsda	uer 50	Jahre
Temperaturbereich I: 40°C / 24°C	- Diamantbohren	τRk,ucr	[N/mm²]	15	14	14	13	12	12	11	11
Temperaturbereich II: 72°C / 50°C	Diamantbomen	τrk,ucr	[N/mm²]	12	12	11	10	9,5	9,5	9,0	9,0
Reduktionsfaktor ψ ⁰ sus	im <u>ungerissene</u>	<u>n</u> Beton C	20/25								
Temperaturbereich I: 40°C / 24°C	Diamonthobron	ψ^0 sus	[-]	0,77							
Temperaturbereich II: 72°C / 50°C	- Diamantbohren	ψ^0 sus	[-]				0,	72			
Charakteristische Verl	rissenen	Beton	C20/25			Nutzui	ngsdaı	ıer 100	Jahr		
Temperaturbereich I: 40°C / 24°C	B:	[N/mm²]	15	14	14	13	12	12	11	11	
Temperaturbereich II: 72°C / 50°C	- Diamantbohren	τRk,ucr,100	[N/mm²]	11	11	10	10	9,5	9,0	8,5	8,5
Reduktionsfaktor ψ ⁰ sus	im <u>ungerissene</u>	n Beton C	20/25		•		'	•	•	'	
Temperaturbereich I: 40°C / 24°C	D'a sa a sthack a sa	ψ^0 sus,100	[-]				0,	73			
Temperaturbereich II: 72°C / 50°C	Diamantbohren	ψ ⁰ sus,100	[-]				0,	70			
Erhöhungsfaktor ψ _c						ı	Nutzun	gsdau	er 50 u	nd 100	Jahr
für τ _{Rk} in Abhängigkeit v Betonfestigkeitsklasse τ _{Rk} = ψ _c · τ _{Rk} (C20/25)	on der	Ψα	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,2			
Betonausbruch											
Relevante Parameter					8	siehe Ta	abelle C	3			
Spalten											
Relevante Parameter						8	siehe Ta	belle C	3		
Montagebeiwert											
trockener oder feuchter	γinst	[-]	-] 1,0								
wassergefülltes Bohrloc	h	γinst	[-]		1,2				1,4		

Injektionssystem FME plus

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Ankerstangen**, Nutzungsdauer **50** und **100 Jahre**, **Diamantbohren**

Anhang C6

Tabelle C7: Charakteristische Werte der Quertragfähigkeit für Ankerstangen, statische und quasi-statische Einwirkung

Ankerstangen			М8	M10	M12	М16	M20	M24	M27	M30
Stahlversagen <u>ohne</u> Hebelarm								•	•	
Charakteristischer Widerstand Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	$V^0_{Rk,s}$	[kN]			ode	0,6 • <i>i</i> er siehe	A₅ • f _{uk} Tabell	e C2		
Charakteristischer Widerstand Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR	$V^0_{Rk,s}$	[kN]			ode	0,5 • <i>i</i> er siehe	A₅ • f _{uk} Tabell	e C2		
Duktilitätsfaktor	k 7	[-]				1	,0			
Teilsicherheitsbeiwert	γMs,V	[-]			s	iehe Ta	ibelle C	2		
Stahlversagen <u>mit</u> Hebelarm										
Charakteristischer Biegewiderstand	M^0 Rk,s	[Nm]			ode	1,2 • \ r siehe	V _{el} ∙ f _{uk} Tabelle	e C2		
Elastisches Widerstandsmoment	Wel	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γMs,V	[-]			s	iehe Ta	ibelle C	2		
Betonausbruch auf der lastabgewandten Se	eite									
Pry-out Faktor	k 8	[-]				2	,0			
Betonkantenbruch									_	
Effektive Ankerlänge	l _f	[mm]	[mm] min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300mr							
Außendurchmesser der Ankerstange	d_{nom}	[mm]	8	10	12	16	20	24	27	30
Montagebeiwert	[-]				1	,0				

				4		
-	-	/+: ^	2001	/Atam		
	-	KIIC		V S I E I I I	FIVIE	
	•			/stem		DIGO

Leistungen

Charakteristische Werte der Quertragfähigkeit für Ankerstangen

Anhang C7

Tabelle C8: Charakteristische Werte der Zugtragfähigkeit für Ankerstangen, seismische Einwirkung (Leistungskategorie C1 + C2), Nutzungsdauer 50 und 100 Jahre

	many (Lolotar	9		,							
Ankerstangen				М8	M10	M12	M16	M20	M24	M27	M30
Zugbeanspruchung						•		•			
Stahlversagen											
Charakteristischer Wid	erstand C1	N _{Rk,s,C1}	[kN]				1,0 •	$N_{\text{Rk,s}}$			
Charakteristischer Wid verzinkter Stahl, Festig nichtrostender Stahl A Festigkeitsklasse ≥ 70	keitsklasse 8.8	NRk,s,C2	[kN]	-	1)		1,0 •	$N_{Rk,s}$			1)
Teilsicherheitsbeiwert		γMs,N	[-]				siehe Ta	abelle C	1		
Kombiniertes Versag	en durch Herausz	d Betona	ısbruc	h							
Charakteristische Vei	rbundtragfähigke	n C20/25	bis C5	0/60			Nutz	zungsd	auer 50	Jahre	
Temperaturbereich I:		τ _{Rk,C1}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
40°C / 24°C	Hammer-, Druckluft- oder	τ _{Rk,C2}	[N/mm²]	-	1)	5,8	4,8	5,0	5,1	-	1)
Temperaturbereich II:	Saugbohren	τ _{Rk,C1}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
72°C / 50°C	G G G	τ _{Rk,C2}	[N/mm²]	-	1)	5,0	4,1	4,3	4,4	_	1)
Charakteristische Ve	rbundtragfähigke	it im Beto	n C20/25	bis C5	0/60			Nutzı	ıngsda	uer 100	Jahre
Temperaturbereich I:		τ _{Rk,C1,100}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5
40°C / 24°C	Hammer-, Druckluft- oder	τ _{Rk,C2,100}	[N/mm²]	_	1)	5,8	4,8	5,0	5,1	-	1)
Temperaturbereich II:	Saugbohren	τ _{Rk,C1,100}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5
72°C / 50°C	[N/mm²]	1	1)	5,0	4,1	4,3	4,4	_	1)		
Montagebeiwert											
trockener oder feuchte	r Beton	γinst	[-]				1	,0			
wassergefülltes Bohrlo	ch	γinst	[-]	1,2							

¹⁾ Leistung nicht bewertet

Tabelle C9: Charakteristische Werte der Quertragfähigkeit für Ankerstangen, seismische Einwirkung (Leistungskategorie C1 + C2)

Ankerstangen				М8	M10	M12	M16	M20	M24	M27	M30	
Querbeanspru	chung											
Stahlversagen	<u>ohne</u> Hebelarm											
Charakteristisch	ner Widerstand C1	[kN]				0,7 •	V^0 Rk,s					
Verzinkter Stahl	ner Widerstand C2 I, Festigkeitsklasse 8.8 Stahl A4 und HCR, se ≥ 70	$V_{Rk,\mathbf{s},C2}$	[kN]	-	1)		0,7 •	1,7 · V ⁰ _{Rk,s} _1)				
Teilsicherheitsb	eiwert		γMs,V			5	siehe Ta	abelle C	2			
	ohne Ringspalt						1	,0				
Faktor für Befestigungen	This Eddinopidi Ettilodiloi		[-]				0	,5				

¹⁾ Leistung nicht bewertet

Leistungen Charakteristische Werte für Ankerstangen unter seismischer Einwirkung Anhang C8

Tabelle C10: Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 50 Jahre

Statis	scne una quas	91-5ta	liscile E						
Innengewindeankers	tange			FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20
Stahlversagen 1)									
Charakteristischer Wid		N _{Rk,s}	[kN]	10	17	29	42	76	123
verzinkter Stahl, Festig	keitsklasse 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Teilsicherheitsbeiwert		γMs,N	[-]			1	,5		
Charakteristischer Wid Nichtrostender Stahl A		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
Teilsicherheitsbeiwert		γMs,N	[-]			1,87			2,86
Kombiniertes Versag									
Charakteristische Ve	rbundtragfähigke	it im <u>u</u>	ngerissen	<u>en</u> Beton	C20/25				
Temperaturbereich I: 40°C / 24°C	Hammer- oder	τ _{Rk,ucr}	[N/mm²]	20	19	19	18	17	16
Temperaturbereich II: 72°C / 50°C	Druckluftbohren	τ _{Rk,ucr}	[N/mm²]	15	15	14	13	13	12
Temperaturbereich I: 40°C / 24°C	16	16 (15) ³⁾	15	14	13				
Saugbohren Saugbohren TRK,ucr [N/mm²] 14 14 13 13 12 14 15 15 15 15 15 15 15									11
Charakteristische Ve	erissenen	Beton C2	0/25		•		•		
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	τ _{Rk,cr}	[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5
Temperaturbereich II: 72°C / 50°C	Saugbohren	τ _{Rk,cr}	[N/mm²]	6,0	7,0	7,0	7,0	7,0	7,0
Reduktionsfaktor ψ ⁰ s	ıs								
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	ψ ⁰ sus	[-]			0,	80		
Temperaturbereich II: 72°C / 50°C	Saugbohren	ψ ⁰ sus	[-]			0,	68		
Erhöhungsfaktor ψ_c									
$\begin{array}{l} \text{für } \tau_{Rk} \text{ in Abhängigkeit} \\ \text{Betonfestigkeitsklasse} \\ \tau_{Rk} = \psi_c \cdot \tau_{Rk} \left(C20/25 \right) \end{array}$	von der	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,1		
Betonausbruch									
Relevante Parameter						siehe Ta	abelle C3		
Spalten									
Relevante Parameter						siehe Ta	abelle C3		
Montagebeiwert									
trockener oder feuchte	r Beton	γinst	[-]			1	,0		
wassergefülltes Bohrlo	ch	γinst	[-]			1	,2		

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Innengewindeankerstangen**, Nutzungsdauer **50 Jahre**

Anhang C9

²⁾ Für FMZ-IG M20: Festigkeitsklasse 50

³⁾ Wert in Klammer gültig für wassergefülltes Bohrloch

Tabelle C11: Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 100 Jahre

	Innengewindeankerstange Statische und quasi-statische Entwirkung, Nutzungsdader 100 Jahre FMZ-IG FMZ-IG FMZ-IG FMZ-IG FMZ-IG FMZ-IG M 10 M 12 M 16 M 20 M 10 M 10 M 12 M 16 M 20 M 10 M											
Innengewindeankers	tange			FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20			
Stahlversagen 1)												
Charakteristischer Wid		$N_{Rk,s}$	[kN]	10	17	29	42	76	123			
verzinkter Stahl, Festig		N _{Rk,s}	[kN]	16	27	46	67	121	196			
Teilsicherheitsbeiwert		γMs,N	[-]			1,	,5					
Charakteristischer Wid Nichtrostender Stahl A		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾			
Teilsicherheitsbeiwert		γMs,N	[-]			1,87			2,86			
Kombiniertes Versag	en durch Heraus	sziehen	und Beto	nausbruch	า							
Charakteristische Ve	rbundtragfähigk	eit im <u>ur</u>	ngerissen	en Beton	C20/25							
Temperaturbereich I: 40°C / 24°C	Hammer- und	τRk,ucr,100	[N/mm²]	20	19	19	18	17	16			
Temperaturbereich II: 72°C / 50°C	Druckluftbohren	TRk,ucr,100	[N/mm²]	15	15	14	13	13	12			
Temperaturbereich I: 40°C / 24°C	Saugbohren	τRk,ucr,100	[N/mm²]	16	16	16 (15) ³⁾	15	14	13			
Temperaturbereich II: 72°C / 50°C	Saugbonien	τRk,ucr,100	[N/mm²]	14	14	13	13	12	11			
Charakteristische Ve	rbundtragfähigk	eit im <u>ge</u>	erissenen	Beton C2	0/25							
Temperaturbereich I: 40°C / 24°C	Hammer-,	τ _{Rk,cr,100}	[N/mm²]	6,5	7,5	7,5	7,5	7,5	7,5			
Temperaturbereich II: 72°C / 50°C	Druckluft- oder Saugbohren	τ _{Rk,cr,100}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5			
Reduktionsfaktor ψ ⁰ sı	us											
Temperaturbereich I: 40°C / 24°C	Hammer-,	ψ^0 sus,100	[-]			0,8	80					
Temperaturbereich II: 72°C / 50°C	Druckluft- oder Saugbohren	ψ ⁰ sus,100	[-]			0,0	68					
Erhöhungsfaktor ψ _c												
für τ_{Rk} in Abhängigkeit Betonfestigkeitsklasse $\tau_{Rk} = \psi_c \cdot \tau_{Rk}$ (C20/25)	von der	ψο	[-]			$\left(\frac{f_{ck}}{20}\right)$	-)0,1					
Betonausbruch						(20						
Relevante Parameter						siehe Ta	belle C3					
Spalten												
Relevante Parameter						siehe Ta	belle C3					
Montagebeiwert												
trockener oder feuchte	r Beton	γinst	[-]			1,	,0					
wassergefülltes Bohrlo	ch	γinst	[-]			1,	,2					

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Innengewindeankerstangen**, Nutzungsdauer **100 Jahre**

Anhang C10

²⁾ für FMZ-IG M20: Festigkeitsklasse 50

³⁾ Wert in Klammer gültig für wassergefülltes Bohrloch

Tabelle C12: Charakteristische Werte der Zugtragfähigkeit für Innengewindeankerstangen, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre, Diamantbohren

Innengewindeankerstange FMZ-IG											
Innengewindeankers	tange			FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20		
Stahlversagen ¹⁾											
Charakteristischer Wid	erstand, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
verzinkter Stahl, Festig		N _{Rk,s}	[kN]	16	27	46	67	121	196		
Teilsicherheitsbeiwert	5.8 und 8.8	γMs,N	[-]			1	,5				
Charakteristischer Wid nichtrostender Stahl A		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾		
Teilsicherheitsbeiwert		γMs,N	[-]			1,87			2,86		
Kombiniertes Versage	en durch Herausz	ziehen u	nd Beto	nausbrucl	h						
Charakteristische Ver	rbundtragfähigke	it im <u>un</u> g	gerissen	<u>en</u> Beton	C20/25		Nutzu	ıngsdauer	50 Jahre		
Temperaturbereich I: 40°C / 24°C	Diamantbohren	₹Rk,ucr	[N/mm²]	14	14	13	12	12	11		
Temperaturbereich II: 72°C / 50°C	Diamantbonien	τ _{Rk,ucr}	[N/mm²]	12	11	10	9,5	9,5	9,0		
Reduktions faktor ψ^0_{st}	ıs										
Temperaturbereich I: 40°C / 24°C Diamantbohren 0,77											
Temperaturbereich II: 72°C / 50°C	Diamantbomen	ψ^0 sus	[-]			0,	72				
Charakteristische Ver	rbundtragfähigke	it im <u>un</u> g	gerissen	en Beton	C20/25		Nutzur	ngsdauer 1	00 Jahre		
Temperaturbereich I: 40°C / 24°C	- Diamantbohren	τ _{Rk,ucr,100}	[N/mm²]	14	14	13	12	12	11		
Temperaturbereich II: 72°C / 50°C	Diamantbonren	τ _{Rk,ucr,100}	[N/mm²]	11	10	10	9,5	9,0	8,5		
Reduktions faktor ψ^0_{st}	ıs										
Temperaturbereich I: 40°C / 24°C	- Diamantbohren	ψ ⁰ sus,100	[-]			0,	73				
Temperaturbereich II: 72°C / 50°C	Diamantbonien	ψ ⁰ sus,100	[-]			0,	70				
Erhöhungsfaktor ψc						Nutz	ungsdaue	er 50 und 1	00 Jahre		
für τ_{Rk} in Abhängigkeit Betonfestigkeitsklasse $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	von der	ψο	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,2				
Betonausbruch						\20	,				
Relevante Parameter				siehe Tabelle C3							
Spalten						0.010 10					
Relevante Parameter						siehe Ta	belle C3				
Montagebeiwert						2.20					
trockener oder feuchte	r Beton	γinst	[-]			1	,0				
wassergefülltes Bohrlo		γinst	[-]	1	,2			,4			
) Befestigungsschrauber	odor Cowindocton	agen (inkl	Schoibo	und Mutto	r) müsson r	nindostons	dor gowäh	Iton Fostial	oiteklassa		

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Innengewindeankerstangen**, Nutzungsdauer **50 und 100 Jahre**, **Diamantbohren**

Anhang C11

²⁾ Für FMZ-IG M20: Festigkeitsklasse 50

³⁾ Wert in Klammer gültig für wassergefülltes Bohrloch

Tabelle C13: Charakteristische Werte unter Querbeanspruchung für Innengewindeankerstangen, statische und quasi-statische Einwirkung

						•	I				
Innenge	windeankerstange				FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20	
Stahlver	sagen <u>ohne</u> Hebelarm ¹⁾										
- ₹	Charakteristischer Widerstand,	5.8	V^0 Rk,s	[kN]	6	10	17	25	45	74	
Stahl, verzinkt	Festigkeitsklasse	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
	Teilsicherheitsbeiwert 5.8 u	nd 8.8	γMs,V	[-]			1,	25			
Nicht- rostender Stahl	Charakteristischer Widersta A4 / HCR, Festigkeitsklasse		V^0 Rk,s	[kN]	7	13	20	30	55	62 ²⁾	
rost S	Teilsicherheitsbeiwert		γMs,V	[-]			1,56			2,38	
Duktilitäts	sfaktor		k ₇	[-]			1	,0			
Stahlver	sagen <u>mit</u> Hebelarm ¹⁾										
_ ₩	Charakteristischer Biegewiderstand	5.8	M^0 Rk,s	[Nm]	8	19	37	66	167	325	
Stahl, verzinkt	Festigkeitsklasse	8.8	M ⁰ Rk,s	[Nm]	12	30	60				
>	Teilsicherheitsbeiwert 5.8 u	nd 8.8	γMs,V	[-]			1,	25			
Nicht- rostender Stahl	Charakteristischer Biegewiderstand A4 / HCR, Festigkeitsklasse	÷ 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾	
	Teilsicherheitsbeiwert		γMs,V	[-]			1,56			2,38	
Betonau	sbruch auf der lastabgewa	ndten \$	Seite								
Pry-out F	aktor		k 8	[-]			2	,0			
Betonka	ntenbruch										
						min (h _{ef} ; 300mm)					
Außendurchmesser der Ankerstange d _{nom} [mm] 10 12 16 20 24 3						30					
Montagebeiwert γ_{inst} [-] 1,0											

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen (Ausnahme: FMZ-IG M20). Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Leistungen

Charakteristische Werte unter Querbeanspruchung für Innengewindeankerstangen

Anhang C12

²⁾ Für FMZ-IG M20: Ankerstangen mit Innengewinde: Festigkeitsklasse 50;
Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter): Festigkeitsklasse 70

Tabelle C14: Charakteristische Werte der Zugtragfähigkeit für Betonstahl, statische und quasi-statische Einwirkung, Nutzungsdauer 50 Jahre

						j, i tu		,					
Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristischer Wid	erstand	$N_{Rk,s}$	[kN]					A _s •	$f_{uk}{}^{1)} \\$				
Stahlspannungsquerso	hnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert		γMs,N	[-]			•	•	1,4	4 ²⁾				
Kombiniertes Versag	en durch Herausz	iehen u	nd Beton	ausbr	uch								
Charakteristische Vei	rbundtragfähigkei	t im <u>un</u>	gerissene	<u>n</u> Bet	on C2	0/25							
Temperaturbereich I: 40°C / 24°C	Hammer- und	τ _{Rk,ucr}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
Temperaturbereich II: 72°C / 50°C	Druckluftbohren	τRk,ucr	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Temperaturbereich I: 40°C / 24°C	Saugbohren	τRk,ucr	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
Temperaturbereich II: 72°C / 50°C	emperaturbereich II: 2°C / 50°C					12 (11) ³⁾	11	11	11	11	11	11	11
Charakteristische Vei	<u>rissenen</u> E	3eton	C20/2	5									
Temperaturbereich I: 40°C / 24°C	Hammer-,	₹Rk,cr	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperaturbereich II: 72°C / 50°C	Druckluft- oder Saugbohren	TRk,cr	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Reduktionsfaktor ψ ⁰ sι	ıs			•		•	•	•	•				
Temperaturbereich I: 40°C / 24°C	Hammer-,	ψ^0 sus	[-]					0,	80				
Temperaturbereich II: 72°C / 50°C	Druckluft- oder Saugbohren	ψ^0 sus	[-]					0,	68				
Erhöhungsfaktor ψ _c													
für τ_{Rk} in Abhängigkeit v Betonfestigkeitsklasse $\tau_{Rk} = \psi_C \cdot \tau_{Rk} (C20/25)$	von der	Ψο	[-]					$\left(\frac{f_{ck}}{20}\right)$	0,1				
Betonausbruch													
Relevante Parameter							sie	ehe Ta	abelle	СЗ			
Spalten				ı									
Relevante Parameter		siehe Tabelle C3											
trockener oder feuchte	Iontagebeiwert					1.0							
wassergefülltes Bohrlo		γinst	[-] [-]	1,0									
Wassergerantes Donno	OII	γinst	ן נ־ז						, <u>~</u>				

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Betonstahl, Nutzungsdauer 50 Jahre

Anhang C13

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Wert in Klammern: Charakteristische Verbundtragfähigkeit bei wassergefüllten Bohrlöchern.

Tabelle C15: Charakteristische Werte der Zugtragfähigkeit für Betonstahl, statische und quasi-statische Einwirkung, Nutzungsdauer 100 Jahre

Stati	scne una qua	si-stati	scne Ei	nwir	Kunç	j, ivu	tzunç	gsdai	uer 1	00 Ja	anre		
Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristischer Wid	erstand	$N_{Rk,s}$	[kN]					A _s •	$f_{uk}{}^{1)} \\$				
Stahlspannungsquerso	hnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert		γMs,N	[-]					1,4	4 ²⁾				
Kombiniertes Versag	en durch Heraus:	ziehen u	nd Beton	ausbr	uch								
Charakteristische Ve	rbundtragfähigke	it im <u>ung</u>	gerissene	<u>n</u> Bete	on C2	0/25							
Temperaturbereich I: 40°C / 24°C	Hammer- und	τ _{Rk,ucr,100}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
Temperaturbereich II: 72°C / 50°C	Druckluftbohren	τ _{Rk,ucr,100}	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Temperaturbereich I: 40°C / 24°C	Saugbohren	τ _{Rk,ucr,100}	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
Temperaturbereich II: 72°C / 50°C	Saugbonien	τ _{Rk,ucr,100}	[N/mm²]	12 (11) ³⁾	12 (11) ³⁾	12 (11) ³⁾	11	11	11	11	11	11	11
Charakteristische Ve	harakteristische Verbundtragfähigkeit im gerisse				C20/2	:5							
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	τRk,cr,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperaturbereich II: 72°C / 50°C	Saugbohren	τ _{Rk,cr,100}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Reduktionsfaktor ψ ⁰ sι	ıs												
Temperaturbereich I: 40°C / 24°C	Hammer-,	ψ ⁰ sus,100	[-]					0,	80				
Temperaturbereich II: 72°C / 50°C	Druckluft- oder Saugbohren	ψ ⁰ sus,100	[-]					0,	68				
Erhöhungsfaktor ψε													
für τ _{Rk} in Abhängigkeit Betonfestigkeitsklasse τ _{Rk} = ψc · τ _{Rk} (C20/25)	von der	Ψс	[-]					$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0,1}$				
Betonausbruch													
Relevante Parameter		siehe Tabelle C3											
Spalten													
Relevante Parameter					siehe Tabelle C3								
Montagebeiwert	lontagebeiwert												
trockener oder feuchte		γinst	[-]						,0				
wassergefülltes Bohrlo	ch	γinst	[-]					1	,2				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem FME plus

Leistungen

Charakteristische Werte der Zugtragfähigkeit für Betonstahl, Nutzungsdauer 100 Jahre

Anhang C14

²⁾ Sofern andere nationale Regelungen fehlen

³⁾ Wert in Klammern: Charakteristische Verbundtragfähigkeit bei wassergefüllten Bohrlöchern.

Tabelle C16: Charakteristische Werte der Zugtragfähigkeit für Betonstahl, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre, Diamanthohren

Betonstahl				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristischer Wide	erstand	N _{Rk,s}	[kN]					As •	f _{uk} 1)				
Stahlspannungsquersch	hnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert		γMs,N	[-]					1,4	4 ²⁾				
Kombiniertes Versage	en durch Heraus	ziehen ui	nd Betona	ausbr	uch								
Charakteristische Ver	bundtragfähigk	eit im <u>ung</u>	erissene	<u>n</u> Beto	on C20	0/25			Nι	ıtzung	sdaue	er 50 .	Jahre
Temperaturbereich I: 40°C / 24°C	Diamantbohren	τ _{Rk,ucr}	[N/mm²]	14	13	13	13	12	12	11	11	11	11
Temperaturbereich II: 72°C / 50°C	Diamantbomen	τRk,ucr	[N/mm²]	11	11	10	10	10	9,5	9,5	9,5	9,0	9,0
Reduktionsfaktor ψ ⁰ su	s												
Temperaturbereich I: 40°C / 24°C	10°C / 24°C Piamanthohren Ψ°sus						0,77						
Temperaturbereich II: 72°C / 50°C	[-]	0,72											
Charakteristische Ver	bundtragfähigk	eit im <u>ung</u>	erissene	<u>n</u> Beto	on C20	0/25			Nut	zungs	dauer	100 .	Jahre
Temperaturbereich I: 40°C / 24°C	Diamantbohren	τRk,ucr,100	[N/mm²]	14	13	13	13	12	12	11	11	11	11
Temperaturbereich II: 72°C / 50°C	Diamantbonien	τRk,ucr,100	[N/mm²]	11	10	10	10	9,5	9,0	9,0	9,0	8,5	8,5
Reduktions faktor ψ^0_{su}	s												
Temperaturbereich I: 40°C / 24°C	Diamantbohren	ψ^0 sus,100	[-]					0,	73				
Temperaturbereich II: 72°C / 50°C	Diamantbonien	ψ^0 sus,100	[-]					0,	70				
Erhöhungsfaktor ψε								Nutzu	ıngsd	auer 5	0 und	100 .	Jahre
für τ _{Rk} in Abhängigkeit v Betonfestigkeitsklasse τ _{Rk} = ψ _c · τ _{Rk} (C20/25)	on der	Ψc	[-]					$\left(\frac{f_{ck}}{20}\right)$	0,2				
Betonausbruch													
Relevante Parameter					sie	he Ta	belle	C3					
Spalten													
Relevante Parameter					sie	he Ta	belle	C3					
Montagebeiwert													
trockener oder feuchter	rockener oder feuchter Beton γ _{inst}						1,0						
wassergefülltes Bohrloo		γinst	[-]		1,	2				1,	4		

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Leistungen

Charakteristische Werte der **Zugtragfähigkeit** für **Betonstahl**, Nutzungsdauer **50 und 100 Jahre**, **Diamantbohren**

Anhang C15

²⁾ Sofern andere nationale Regelungen fehlen

Tabelle C17: Charakteristische Werte unter Querbeanspruchung für Betonstahl, statische und quasi-statische Einwirkung

	•											
Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen <u>ohne</u> Hebelarm												
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]					0,50 • /	A _s • f _{uk} 1)				
Stahlspannungsquerschnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γMs,V	[-]		•	1	•	1,	5 ²⁾	•			•
Duktilitätsfaktor	k ₇	[-]					1	,0				
Stahlversagen <u>mit</u> Hebelarm												
Charakteristischer Biegewiderstand	M ⁰ Rk,s	[Nm]					1,2 • V	V _{el} • f _{uk} 1)				
Elastisches Widerstandsmoment	Wel	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Teilsicherheitsbeiwert	γMs,V	[-]					1,	5 ²⁾				
Betonausbruch auf der lastabge	ewandte	en Seite	•									
Pry-out Faktor	k 8	[-]					2	,0				
Betonkantenbruch												
Effektive Ankerlänge	l _f	[mm]			min	(h _{ef} ;12	d _{nom})			min (h _{ef} ; 300	mm)
Außendurchmesser des Betonstahls	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Montagebeiwert	γinst	[-]	1,0									

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem FME plus Leistungen Charakteristische Werte unter Querbeanspruchung für Betonstahl

Anhang C16

²⁾ Sofern andere nationale Regelungen fehlen

Tabelle C18: Charakteristische Werte der Zugtragfähigkeit für Betonstahl, seismische Einwirkung (Leistungskategorie C1), Nutzungsdauer 50 und 100 Jahre

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristischer Wid	erstand	$N_{Rk,s,C1}$	[kN]		$A_s \cdot f_{uk}^{1)}$								
Stahlspannungsquersc	hnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	[-]	1,4 ²⁾											
Kombiniertes Versage	en durch Heraus	nd Betona	usbru	ıch									
Charakteristische Ver	on C20/25	bis C	50/60				Nι	utzunç	gsdau	er 50 、	Jahre		
Temperaturbereich I: 40°C / 24°C	Hammer-, Druckluft- oder	TRk,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperaturbereich II: 72°C / 50°C	Saugbohren	TRk,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Charakteristische Ver	bundtragfähigk	eit im Beto	on C20/25	25 bis C50/60 Nutzungsdauer 100 Jah							Jahre		
Temperaturbereich I: 40°C / 24°C	Hammer-,	TRk,C1,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperaturbereich II: 72°C / 50°C					5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Montagebeiwert													
trockener oder feuchter Beton γ _{inst}			[-]	1,0									
wassergefülltes Bohrloch γ _{inst}			[-]	1,2									

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C19: Charakteristische Werte der Quertragfähigkeit für Betonstahl, seismische Einwirkung (Leistungskategorie C1)

Betonstahl			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen <u>ohne</u> Hebelarm												
Charakteristischer Widerstand	$V_{Rk,s,C1}$	[kN]					0,35 • /	∖ s • f uk ¹⁾				
Stahlspannungsquerschnitt	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	γMs,V	[-]	1,5 2)									
Duktilitätsfaktor	k ₇	[-]	1,0									

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Leistungen Charakteristische Werte für Betonstahl unter seismischer Einwirkung Anhang C17

²⁾ Sofern andere nationale Regelungen fehlen

²⁾ Sofern andere nationale Regelungen fehlen

Ankerstange			М8	M10	M12	M16	M20	M24	M27	M30		
Hammer-, Druckluft	- oder Saug	bohren										
Verschiebungsfaktor	ren ¹⁾											
Ungerissener Beton,	statische ui	nd quasi-stati	П									
Temperaturbereich I:	δ _{NO} - Faktor	1	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041		
40°C / 24°C	δ _{N∞} -Faktor	$\begin{bmatrix} mm \\ N & 2 \end{bmatrix}$	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041		
Temperaturbereich II:	δ _{N0} - Faktor	$\lfloor \frac{N/mm^2}{N} \rfloor$	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055		
72°C / 50°C	δ _{N∞} -Faktor		0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070		
Verschiebungsfaktoren ¹⁾ Gerissener Beton, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre												
Temperaturbereich I:	δ _{No} - Faktor	чиног отп	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082		
40°C / 24°C	δ _{N∞} -Faktor	_ mm _	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,171		
Temperaturbereich II:	δ _{N0} - Faktor	$\left[\frac{mn}{N/mm^2}\right]$	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110		
72°C / 50°C	δ _{N∞} -Faktor	I	0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,229		
Verschiebung Ungerissener und gerissener Beton, seismische Einwirkung (C2)												
Alle Temperatur-	δN,C2 (DLS)	[mm]	_2	2)	0,21	0,24	0,27	0,36	_2	2)		
bereiche	2	[mm]	-	<i>∸)</i> .					-	<i>4)</i>		
0N,C2 (ULS) 0,34 0,31 0,34 0,03												
Diamantgebohrt	ON,C2 (ULS)				0,54	0,51	0,54	0,63				
Diamantgebohrt Verschiebungsfaktor Ungerissener Beton,	ren ¹⁾	าd quasi-statiต	sche Ein		·			·				
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I:	ren ¹⁾	ાd quasi-stati	sche Ein 0,011		·			·	0,015	0,015		
Verschiebungsfaktor Ungerissener Beton,	ren ¹⁾ , statische ui	mm	П	wirkung,	, Nutzung	gsdauer	50 years		0,015 0,024	0,015		
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I: 40°C / 24°C	ren ¹⁾ , statische ui δ _{No} - Faktor δ _{N∞} -Faktor		0,011	wirkung, 0,012	, Nutzun 0,012	gsdauer 0,013	50 years 0,014	0,014		0,015		
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I:	ren ¹⁾ , statische ui δ _{No} - Faktor δ _{N∞} -Faktor	mm	0,011	wirkung, 0,012 0,019	, Nutzun 0,012 0,019	gsdauer 0,013 0,020	50 years 0,014 0,022	0,014	0,024	0,015 0,025 0,018		
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I: 40°C / 24°C	ren ¹⁾ statische ui $ \frac{\delta_{N0}\text{-} \text{Faktor}}{\delta_{N\infty}\text{-} \text{Faktor}} $ $ \frac{\delta_{N0}\text{-} \text{Faktor}}{\delta_{N\infty}\text{-} \text{Faktor}} $ $ \frac{\delta_{N\infty}\text{-} \text{Faktor}}{\delta_{N\infty}\text{-} \text{Faktor}} $ ren ¹⁾	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,011 0,018 0,013 0,052	0,012 0,019 0,014 0,053	0,012 0,019 0,014 0,055	9sdauer 0,013 0,020 0,015 0,058	50 years 0,014 0,022 0,016 0,062	0,014 0,023 0,016 0,065	0,024			
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I: 40°C / 24°C Temperaturbereich II: 72°C / 50°C Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I:	ren ¹⁾ statische ui $ \frac{\delta_{N0}\text{-} \text{Faktor}}{\delta_{N\infty}\text{-} \text{Faktor}} $ $ \frac{\delta_{N0}\text{-} \text{Faktor}}{\delta_{N\infty}\text{-} \text{Faktor}} $ $ \frac{\delta_{N\infty}\text{-} \text{Faktor}}{\delta_{N\infty}\text{-} \text{Faktor}} $ ren ¹⁾	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,011 0,018 0,013 0,052	0,012 0,019 0,014 0,053	0,012 0,019 0,014 0,055	9sdauer 0,013 0,020 0,015 0,058	50 years 0,014 0,022 0,016 0,062	0,014 0,023 0,016 0,065	0,024	0,015 0,025 0,018		
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I: 40°C / 24°C Temperaturbereich II: 72°C / 50°C Verschiebungsfaktor Ungerissener Beton,	ren ¹⁾ statische ui δ_{N0} - Faktor $\delta_{N\infty}$ - Faktor δ_{N0} - Faktor $\delta_{N\infty}$ - Faktor ren ¹⁾ statische ui	\left(\frac{mm}{N/mm^2}\right) Ind quasi-station Indian continuous Indian continu	0,011 0,018 0,013 0,052	wirkung, 0,012 0,019 0,014 0,053 wirkung,	0,012 0,019 0,014 0,055	9sdauer 0,013 0,020 0,015 0,058 9sdauer	50 years 0,014 0,022 0,016 0,062	0,014 0,023 0,016 0,065	0,024 0,018 0,068	0,018 0,028 0,018 0,070		
Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I: 40°C / 24°C Temperaturbereich II: 72°C / 50°C Verschiebungsfaktor Ungerissener Beton, Temperaturbereich I:	ren ¹⁾ statische ui δ_{N0} - Faktor $\delta_{N\infty}$ - Faktor $\delta_{N\infty}$ - Faktor $\delta_{N\infty}$ - Faktor ren ¹⁾ statische ui δ_{N0} - Faktor	$[rac{ ext{mm}}{N/mm^2}]$	0,011 0,018 0,013 0,052 sche Ein	wirkung, 0,012 0,019 0,014 0,053 wirkung,	0,012 0,019 0,014 0,055 Nutzung	9sdauer 0,013 0,020 0,015 0,058 9sdauer 0,013	50 years 0,014 0,022 0,016 0,062 100 Jahr 0,014	0,014 0,023 0,016 0,065	0,024 0,018 0,068	0,018 0,028 0,018 0,070		

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty} \text{-Faktor} \cdot \tau; \hspace{1cm} \tau\text{: einwirkende Verbundspannung unter Zugbeanspruchung}$

Injektionssystem FME plus

Leistungen

Verschiebung (Ankerstange unter Zugbeanspruchung)

Anhang C18

²⁾ Leistung nicht bewertet

Tabelle C21: Verschiebung unter Querbeanspruchung Ankerstange

	•			<u> </u>						
Ankerstange			M8	M10	M12	M16	M20	M24	M27	M30
alle Bohrverfahren										
Verschiebung Ungerissener	sfaktoren ¹⁾ und gerissener Be	ton, statische	und qua	ısi-statis	che Einw	virkung				
Alle	δ _{vo} -Faktor	[mm//kN]\]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperatur- bereiche		[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Verschiebung Ungerissener	und gerissener Be	ton, seismisc	he Einwi	rkung (C	2)					
Alle	$\delta_{\text{V,C2(DLS)}}$	[mm]	nm] - ²⁾		3,1	3,4	3,5	4,2		
Temperatur- bereiche	δv,c2(uls)	נווווון			6,0	7,6	7,3	10,9	_	,

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querkraft

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · **V**;

²⁾ Leistung nicht bewertet

Injektionssystem FME plus

Leistungen

Verschiebung (Ankerstange unter Querlast)

Anhang C19

Tabelle C22: Verschiebungsfaktoren unter Zugbeanspruchung 1), Innengewindeankerstange

				<u> </u>						
Innengewindeankerstan	ge		FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20		
Hammer-, Druckluft- o	der Saugboh	ren								
Ungerissener Beton, sta	atische und qu	uasi-statische	Einwirkun	g, Nutzung	gsdauer 50	und 100 J	lahre			
Temperaturbereich I:	δ _{N0} -Faktor		0,029	0,030	0,033	0,035	0,038	0,041		
40°C / 24°C	δ _{N∞} -Faktor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,029	0,030	0,033	0,035	0,038	0,041		
Temperaturbereich II:	δ _{N0} -Faktor	^l N/mm ²	0,039	0,040	0,044	0,047	0,051	0,055		
72°C / 50°C	δ _{N∞} -Faktor		0,049	0,051	0,055	0,059	0,064	0,070		
Gerissener Beton, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre										
Temperaturbereich I:	δ _{N0} -Faktor		0,071	0,072	0,074	0,076	0,079	0,082		
40°C / 24°C	δ _{N∞} -Faktor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,115	0,122	0,128	0,135	0,142	0,171		
Temperaturbereich II:	δ _{N0} -Faktor		0,095	0,096	0,099	0,102	0,106	0,110		
72°C / 50°C	δ _{N∞} -Faktor		0,154	0,163	0,172	0,181	0,189	0,229		
Diamantbohren										
Ungerissener Beton, sta	atische und qu	uasi-statische	Einwirkun	g, Nutzung	gsdauer 50	Jahre				
Temperaturbereich I:	δ _{N0} -Faktor		0,012	0,012	0,013	0,014	0,014	0,015		
40°C / 24°C	δ _{N∞} -Faktor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,019	0,019	0,020	0,022	0,023	0,025		
Temperaturbereich II:	δ _{N0} -Faktor	^l N/mm ²	0,014	0,014	0,015	0,016	0,016	0,018		
72°C / 50°C	δ _{N∞} -Faktor		0,053	0,055	0,058	0,062	0,065	0,070		
Gerissener Beton, statis	sche und quas	si-statische Ei	nwirkung,	Nutzungso	dauer 100	Jahre				
Temperaturbereich I:	δ _{N0} -Faktor		0,012	0,012	0,013	0,014	0,014	0,015		
40°C / 24°C	δ _{N∞} -Faktor	mm	0,021	0,021	0,023	0,024	0,025	0,027		
Temperaturbereich II:	δ _{N0} -Faktor		0,014	0,014	0,015	0,016	0,016	0,018		
72°C / 50°C	δ _{N∞} -Faktor		0,039	0,040	0,043	0,045	0,047	0,051		

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbeanspruchung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C23: Verschiebungsfaktoren¹⁾ unter Querbeanspruchung, Innengewindeankerstange

Innengewindeankerstang	FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20					
Ungerissener und gerissener Beton, statische und quasi-statische Einwirkung											
Alla Tamparaturharaigha	δ _{vo} -Faktor		0,07	0,06	0,06	0,05	0,04	0,04			
Alle Temperaturbereiche	δ _{∨∞} -Faktor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Berechnung der Verschiebung

 $\delta v_0 = \delta v_0$ -Faktor · **V**;

V: einwirkende Querkraft

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

Injektionssystem FME plus

Leistungen

Verschiebung (Innengewindeankerstange)

Anhang C20

Tabelle C24: Vers	chiebung	ısfaktorer	ո ¹⁾ unt	er Zu ç	gbean	sprud	hung	(Beto	nstah	I)		
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Hammer-, Druckluft-	oder Saug	bohren										
Ungerissener Beton,	statische ur	nd quasi-sta	tische	Einwirk	ung, N	utzung	sdauer	50 und	1 100 J	ahre		
Temperaturbereich I:	$\delta_{\text{N0}}\text{-}\text{Faktor}$		0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
40°C / 24°C	δ _{N∞} -Faktor	rmm1	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperaturbereich II:	δ _{N0} -Faktor	$\left[\frac{N}{mm^2}\right]$	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
72°C / 50°C	δ _{N∞} -Faktor		0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Gerissener Beton, statische und quasi-statische Einwirkung, Nutzungsdauer 50 und 100 Jahre												
Temperaturbereich I:	δ _{N0} -Faktor		0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
40°C / 24°C	δ _{N∞} -Faktor		0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperaturbereich II:	δ _{N0} -Faktor	$\left[\frac{N/mm^2}{N}\right]$	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
72°C / 50°C	δ _{N∞} -Faktor		0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Diamantbohren												
Ungerissener Beton,	statische ur	nd quasi-sta	tische	Einwirk	ung, N	utzung	sdauer	50 Jah	re			
Temperaturbereich I:	δ _{N0} -Faktor		0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
40°C / 24°C	δ _{N∞} -Faktor	r mm	0,018	0,018	0,019	0,020	0,021	0,024	0,027	0,027	0,028	0,031
Temperaturbereich II:	δ _{N0} -Faktor	$\left[\frac{N/mm^2}{N}\right]$	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
72°C / 50°C	δ _{N∞} -Faktor		0,048	0,051	0,054	0,058	0,061	0,068	0,076	0,076	0,081	0,088
Ungerissener Beton,	statische ur	nd quasi-sta	tische	Einwirk	ung, N	utzung	sdauer	100 Ja	hre			
Temperaturbereich I:	δ _{N0} -Faktor		0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
40°C / 24°C	δ _{N∞} -Faktor	rmm_1	0,018	0,020	0,021	0,022	0,024	0,026	0,029	0,029	0,031	0,034
Temperaturbereich II:	δ _{N0} -Faktor	$\left[\frac{N/mm^2}{N}\right]$	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
7000 / 5000	δ _{N∞} -Faktor		0,035	0,037	0,040	0,042	0,045	0,049	0,055	0,055	0,059	0,064

¹⁾ Berechnung der Verschiebung

 $δ_{N0} = δ_{N0}$ -Faktor · τ; $δ_{N\infty} = δ_{N\infty}$ -Faktor · τ; τ : einwirkende Verbundspannung unter Zugbeanspruchung

Tabelle C25: Verschiebungsfaktoren¹⁾ unter Querbeanspruchung (Betonstahl)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener und gerissener Beton, statische und quasi-statische Einwirkung												
Alle Temperatur bereiche	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03		
bereiche	δ _{ν∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · **V**;

V: einwirkende Querkraft

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

Injektionssystem FME plus

Leistungen

Verschiebung (Betonstahl)

Anhang C21