

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0671 of 10 January 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection System FME plus

Bonded fastener for use in concrete

Market Tech (Beijing) Co., Ltd Room 121211, unit 2, building 3, No. 1 Futong East Street BEIJING, CHAOYANG DISTRICT VOLKSREPUBLIK CHINA

Manufacturing plant no. 1 Manufacturing plant no. 2

39 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0671 English translation prepared by DIBt

Page 2 of 39 | 10 January 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z99115.22 8.06.01-238/22

European Technical Assessment ETA-22/0671 English translation prepared by DIBt

Page 3 of 39 | 10 January 2023

Specific Part

1 Technical description of the product

The "Injection system FME plus for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar FME plus and a steel element according to Annex A 3 and A 5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasistatic loading)	See Annex B3, C1, C3 to C6, C9 to C11 and C13 to C15
Characteristic resistance to shear load (static and quasistatic loading)	See Annex C2, C7, C12 and C16
Displacements under short-term and long-term loading	See Annex C18 to C21
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C8, C17 to C19

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z99115.22 8.06.01-238/22

European Technical Assessment ETA-22/0671 English translation prepared by DIBt

Page 4 of 39 | 10 January 2023

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

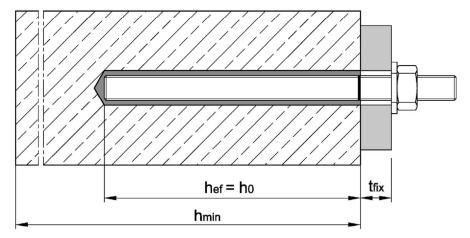
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

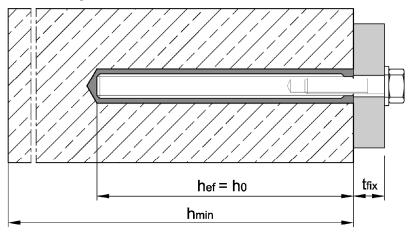
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

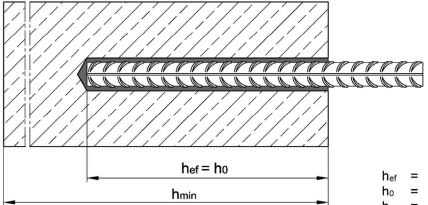
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 January 2023 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider

Z99115.22 8.06.01-238/22




Pre-setting installation or through-setting installation (optional annular gap filled with mortar)

Installation internally threaded anchor rod FMZ-IG M6 to FMZ-IG M20

Installation reinforcing bar Ø8 to Ø32

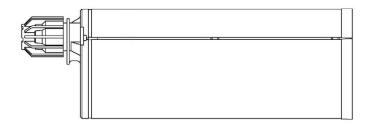
h_{ef} = effective anchorage depth

h₀ = depth of drill hole

h_{min} = minimum thickness of member

t_{fix} = thickness of fixture

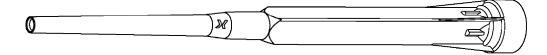
Injection System FME plus Keine Indexeinträge gefunden.


Product description Installation situation Annex A1

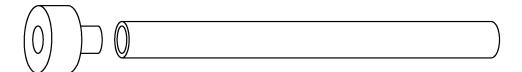
Z1880.23

Cartridge Injection Mortar FME plus

Side-by-side cartridge 440 ml 585 ml 1400 ml



Imprint:


FME plus,

processing notes, batch number, shelf life, hazard-number, storage temperature, curing- and processing time, optional with travel scale

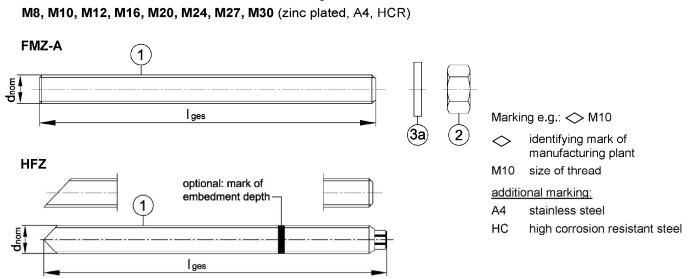
Static Mixer

Retaining washer and extension nozzle

Injection System FME plus

Product description

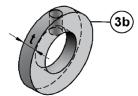
Cartridge, static mixer and retaining washer with extension nozzle


Annex A2

Electronic copy of the ETA by DIBt: ETA-22/0671

Threaded rod

Threaded rod FMZ-A, HFZ with washer and hexagon nut

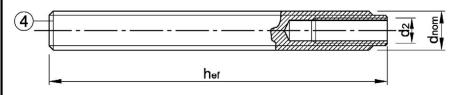

Threaded rod HFT (material sold by the meter, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)

Commercial standard threaded rod

M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR) with:

- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture


Thickness of washer with bore for diameter < M24: t = 5 mm

≥ M24: t = 6 mm

Internally threaded anchor rod

FMZ-IG M6, FMZ-IG M8, FMZ-IG M10, FMZ-IG M12, FMZ-IG M16, FMZ-IG M20

(zinc plated, A4, HCR)

Marking e.g.: ♦ M8

identifying mark of manufacturing plant

internal thread

M8 size of internal thread

additional marking:

stainless steel

HCR high corrosion resistant steel

Injection System FME plus

Product description

Threaded rod, internally threaded anchor rod and washer with bore

Annex A3

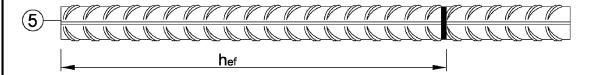
Z1880.23

Table A1: Materials - Threaded rod and	internally threaded anchor rod
---	--------------------------------

Part	Designation	Designation Material							
electr hot-di	ip galvanized ≥ 40 µm (5	cc. to EN ISO 60 µm in avera cc. to EN ISO	ige) acc. t	o EN ISO	1461:2009	and EN	ISO 10684:200	04+AC:2009 or	
		fracture elongation	– EN ISO 683-4:2018,						
		4.6	3 400			240	A ₅ > 8 %	EN 10263:2001;	
1	Threaded rod	4.8		400		320	A ₅ > 8 %	1	
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	commercial standard threaded rod:	
		5.8	ן נואיוווווין	500	ן נואיווווודן	400	A ₅ > 8 %	EN ISO 898-1:2013	
		8.8		800		640	A ₅ ≥ 12% ¹⁾	1	
		4	for class	4.6 or 4.8	rods		<u>'</u>		
2	Hexagon nut	5	for class	4.6, 4.8, 5	5.6, 5.8 roc	ls		EN ISO 898-2:2012	
		8	for class	4.6, 4.8, 5	5.6, 5.8, 8.	8 rods		1	
3a	Washer		e.g.: EN EN ISO 8		7094:2000,				
3b	Washer with bore		steel, zin	c plated					
4	Internally threaded anchor rod	5.8 8.8	steel, ele	ctroplated	l or sherar	dized	A ₅ > 8% A ₅ > 8%	EN ISO 683-4:2018	
Stain	less steel A2 ²⁾ less steel A4 corrosion resistant stee	el HCR	CRC III (Materials		.4404 / 1.	1311 / 1.4567 / 4571 / 1.4578)		
		Property class	charac ultimate		charac yield st		fracture elongation		
1	Threaded rod 3)	50		500		210	A ₅ > 8%	EN 10088-1:2014 EN ISO 3506-1:2020	
	-	70	f _{uk} [N/mm²]	700	f _{yk} [N/mm²]	450	A ₅ ≥ 12% ¹⁾	- EN 150 3500-1.2020	
	-	80	[[[]	800	[[[, [,],],],]	600	A ₅ ≥ 12% ¹⁾	1	
		50	for class	50 rods			•		
2	Hexagon nut 3)	70	for class	50 or 70 r	ods			EN 10088-1:2014 EN ISO 3506-2:2020	
	-	80	for class 50, 70 or 80 rods					- EN 130 3300-2.2020	
			o a · EN	ISO 7089					
3a	Washer); EN ISO	887:2006		EN 10099 1:2014	
3a 3b	Washer Washer with bore		EN ISO 7	7094:2000 steel A4;	stant steel			- EN 10088-1:2014	
		50	EN ISO 7 stainless high corr	7094:2000 steel A4;	<u>, </u>		A ₅ > 8 %	EN 10088-1:2014	

 $^{^{1)}}$ Fracture elongation A₅ > 8 % for applications <u>without</u> requirements for seismic performance category C2 $^{2)}$ Property classes 50 and 70 $^{3)}$ Property classes 70 and 80 up to M24

Injection System FME plus	
Product description Materials - Threaded rod and internally threaded anchor rod	Annex A4



Electronic copy of the ETA by DIBt: ETA-22/0671

Reinforcing bar

 \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 24, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material reinforcing bar

Part	Designation	Material
Reba	r	
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI acc. EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection System FME plus	
Product description Product description and material reinforcing bar	Annex A5

Specification of intended use

Static and quasi-static action	working life 50 years	working life 100 years						
Threaded rod Internally threaded anchor rod Rebar	M8 - M30 FMZ-IG M6 - FMZ-IG M20 Ø8 - Ø32							
	cracked or unc	racked concrete						
Base material	strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016							
		concrete: d air drilling / vaccum drilling						
Hole drilling	uncracked concrete: hammer drilling / compressed air drilling / vaccum drilling / diamond drilling							
Temperature range 1)	I: -40°C to +40°C II: -40°C to +72°C	I: -40°C to +40°C II: -40°C to +72°C						

Seismic action	performance category C1	performance category C2						
Threaded rod Rebar	M8 - M30 M12 - M24 Ø8 - Ø32							
	cracked or uncracked concrete strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016							
Base material								
Hole drilling	hammer drilling / compressed air drilling / vaccum drilling							
Temperature range 1)	I: -40°C to +40°C II: -40°C to +72°C	I: -40°C to +40°C II: -40°C to +72°C						

Temperature Range I: max. long term temperature +24°C and max. short term temperature +40°C max. long term temperature +50°C and max. short term temperature +72°C

Injection System FME plus	
Intended use Specifications	Annex B1

Specification of intended use

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all materials
- For all other conditions:
 Intended use of Materials according to Annex A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with EN 1992-4:2018 or Technical Report TR 055, February 2018

Installation:

- Dry or wet concrete or waterfilled drillholes (not seawater)
- Hole drilling by hammer drill, compressed air drill, vacuum drill or diamond drill mode
- · Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the responsibility of the person responsible for technical matters of the site
- Internally threaded anchor rod: Screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Injection System FME plus	
Intended use Specifications	Annex B2

Table B1: Installation parameters for threaded rods

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Diameter of threaded rod d=d _{nom}		[mm]	8	10	12	16	20	24	27	30	
Nominal drill hole dian	neter	d_0	[mm]	10	12	14	18	22	28	30	35
Effective anchorage d	onth -	$h_{\text{ef},\text{min}}$	[mm]	60	60	70	80	90	96	108	120
Ellective allchorage d	ерш	$h_{\text{ef},\text{max}}$	[mm]	160	200	240	320	400	480	540	600
Diameter of	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Through se installation	tting d _f ≤	[mm]	12	14	16	20	24	30	33	40
Maximum installation torque max.T _{inst} ≤ [Nr		[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300	
Minimum thickness of member h _{min} [mm]		h _{ef} + 3	0mm ≥1	00mm			h _{ef} + 2d ₀	ı			
Minimum spacing s _{min} [mm] 40 50		60	75	95	115	125	140				
Minimum edge distand	ce	C _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ max. installation torque for property class 4.6

Table B2: Installation parameters for internally threaded anchor rods

Internally threaded anchor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Inner diameter of threaded rod	d_2	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod1)	d=d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d o	[mm]	12	14	18	22	28	35
Effective anchorage denth	$h_{\text{ef,min}}$	[mm]	60	70	80	90	96	120
Effective anchorage depth	$h_{\text{ef,max}}$	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque m	ax.T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	lig	[mm]	8	8	10	12	16	20
Minimum thickness of member h _{min} [mm]				30mm 0mm		h _{ef} +	- 2d ₀	
Minimum spacing	Smin	[mm]	50	60	75	95	115	140
Minimum edge distance	Cmin	[mm]	40	45	50	60	65	80

¹⁾ with metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø	8	Ø	10	Ø	12	Ø 14	Ø 16	Ø 20	Ø	24	Ø	25	Ø 28	Ø 32
Diameter of rebar	d=d _{nom}	[mm]	8	3	1	0	1	2	14	16	20	2	24	2	25	28	32
Nominal drill hole diameter 1)	d ₀	[mm]	10	12	12	14	14	16	18	20	25	30	32	30	32	35	40
Effective anchorage	$h_{\text{ef,min}}$	[mm]	6	0	6	0	7	0	75	80	90	9	6	10	00	112	128
depth	$h_{\text{ef},\text{max}}$	[mm]	16	30	20	00	24	10	280	320	400	48	80	50	00	560	640
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm								h _{ef} +	- 2d)			
Minimum spacing	Smin	[mm]	4	0	5	0	6	0	70	75	95	12	20	12	20	130	150
Minimum edge distance	C _{min}	[mm]	3	5	4	0	4	5	50	50	60	7	'0	7	0	75	85

 $^{^{1)}}$ for $\varnothing 8,\,\varnothing 10,\!\varnothing 12,\,\varnothing 24$ and $\varnothing 25$ both nominal drill hole diameter can be used

Injection System FME plus

Intended use

Installation parameters

Annex B3

Table B4: Parameter for cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø
				d _b amanana	
[-]	[-]	Ø [mm]	d ₀ [mm]	d₀[mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	FMZ-IG M6	8 / 10	12	13,5	12,5
M12	FMZ-IG M8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	FMZ-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	FMZ-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	FMZ-IG M16		28	30,0	28,5
M27		24 / 25	30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	FMZ-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Table B5: Retaining washer

Drill bit Ø		Installation direction and use							
d ₀ [mm]	[-]	•	→	1					
10									
12	NI4 -	• . •		I					
14	No reta	aining washer required							
16									
18	VM-IA 18								
20	VM-IA 20								
22	VM-IA 22								
25	VM-IA 25								
28	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all					
30	VM-IA 30	20011111	20011111						
32	VM-IA 32								
35	VM-IA 35								
40	VM-IA 40								

Vacuum drill bit

Vacuum drill bit (MKT Hollow drill bit SB, Würth Hammer drill bit with suction or Heller Duster Expert hollow drill bit system) and a vacuum cleaner with minimum negative pressure of 253 hPa and flow rate of minimum 42 l/s (150 m³/h)

Recommended compressed air tool (min 6 bar)
Drill bit diameter (d₀): all diameters

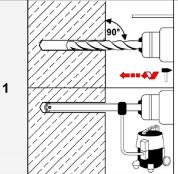
1 !	-4!	0		
inie	ction	System	FIVIE	nius
,-	••••	-,		P

Intended use

Cleaning and setting tools

Annex B4

Table B6: Working time and curing time


Conor	ete temp	o roturo	Working time	Minimum o	curing time				
Coller	ete temp	Derature	Working time	dry concrete	wet concrete				
0°C	to	+4°C	90 min	144 h	288 h				
+5°C	to	+9°C	80 min	48 h	96 h				
+10°C	to	+14°C	60 min	28 h	56 h				
+15°C	to	+19°C	40 min	18 h	36 h				
+20°C	to	+24°C	30 min	12 h	24 h				
+25°C	to	+34°C	12 min	9 h	18 h				
+35°C	to	+39°C	8 min	6 h	12 h				
	+40°C		8 min	8 min 4 h 8 h					
Cartrio	dge temp	perature	+5°C to +40°C						

Injection System FME plus	
Intended use Working and curing time	Annex B5

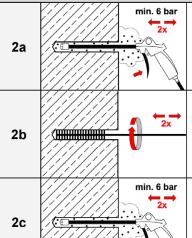
Installation instructions

Drilling of the drill hole and cleaning: Hammer drilling, compressed air drilling and vacuum drilling

Hammer drilling or compressed air drilling:

Drill with hammer drill or compressed air drill a hole into the base material with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected drillhole depth. Continue with step:2.

In case of aborted drill hole, the drill hole shall be filled with mortar.


Vacuum drilling: see Annex B4

Drill drillhole with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected drillhole depth. This drilling method removes dust and cleans the drillhole during drilling. Continue with step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the drill hole must be removed before cleaning!

Cleaning: dry, wet and water-filled drill holes with all diameter in uncracked and cracked concrete (Cleaning not applicable when using vacuum drilling)

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) a minimum of **two** times until return air stream is free of noticeable dust.

If the drillhole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush ≥ d_{b,min} (Table B4) a minimum of **two** times.

If the drillhole ground is not reached with the brush, an appropriate brush extension must be used.

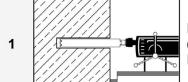
Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drillhole ground is not reached, an extension must be used.

After cleaning, the drillhole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drillhole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drillhole again.

Injection System FME plus

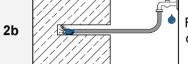
Intended use


Installation instructions – Drilling and cleaning: Hammer drilling, compressed air drilling and vacuum drilling

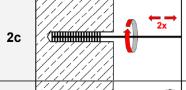
Annex B6

Installation instructions (continuation)

Drilling of the drill hole and cleaning: Diamond drilling



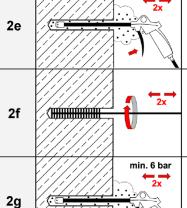
Drill a hole into the base material with prescribed nominal drill hole diameter (Table B1, B2 or B3) and selected drillhole depth. Continue with step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.


Cleaning: dry, wet and water-filled drill holes with all diameter in uncracked concrete

Remove drill core at least up to the nominal drill hole depth and check drill hole depth.

Flush drill hole with water, starting from the bottom until clear water gets out of the drill hole.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush ≥ d_{b,min} (Table B4) a minimum of **two** times.


If the drillhole ground is not reached with the brush, an appropriate brush extension must be used.

Flush drill hole again with water, starting from the bottom until clear water gets out of the drill hole.

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drillhole ground is not reached, an extension must be used.

Check brush diameter (Table B4). Brush the hole again with an appropriate sized wire brush $\geq d_{b,min}$ (Table B4) a minimum of **two** times. If the drillhole ground is not reached with the brush, an appropriate brush

If the drillhole ground is not reached with the brush, an appropriate brush extension must be used.

Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) again a minimum of **two** times until return air stream is free of noticeable dust.

If the drillhole ground is not reached, an extension must be used.

Injection System FME plus

Intended use

Installation instructions - Drilling and cleaning: Diamond drilling

Annex B7

Installation instructions (continuation)

Inject	ion	
3		Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B6) as well as for new cartridges, a new static-mixer shall be used.
4	hef	Prior to inserting the rod into the filled drillhole, the position of the embedment depth shall be marked on the threaded rod or rebar.
5	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.
6		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. If the drill hole ground is not reached, an appropriate extension nozzle shall be used. Observe temperature dependent working times given in Table B6.
7	••••••••••••••••••••••••••••••••••••••	Retaining washer and mixer nozzle extensions shall be used according to Table B5 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System FME plus

Intended use

Installation instructions - Injection

Annex B8

Installation instructions (continuation)

Setting the fastening element Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is 8 reached. The anchor shall be free of dirt, grease, oil or other foreign material. Make sure that excess mortar is visible at the top of the hole and in case of through-setting installation also in the fixture. If these requirements are not 9 maintained, repeat application before end of working time! For overhead installation, the anchor should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or 10 torque. Do not move or load the anchor until it is fully cured (attend Table B6). 11 Remove excess mortar. $\mathbf{T}_{\mathsf{inst}}$ The fixture can be mounted after curing time. Apply installation torque Tinst 12 according to Table B1 or B2. In case of pre-setting installation the annular gap between anchor rod and fixture can optionally be filled with mortar. Therefore, replace regular washer by 13 washer with drill and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

ln	iect	tion	Svst	em F	FME	plus
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-,	~		P. 40

Intended use

Installation instructions – Setting the fastening element

Annex B9

Deutsches Institut für **Bautechnik**

Thread	ded rod	M8	M10	M12	M16	M20	M24	M27	M30		
Steel f	Steel failure										
Cross	sectional area	[mm²]	36,6	58,0	84,3	157	245	353	459	561	
Charac	cteristic resistance under tens	ion load	1)								
þø	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zir	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
teel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Stail	A4 and HCR Property class 80		[kN]	29	46	67	126	196	282	_3)	_3)
Partial	factors 2)										
	Property class 4.6	γMs,N	[-]	2,0							
fed	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
zin	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8	γMs,N	[-]	1,5							
A2, A4 and HCR Property class 50 γ _{Ms,N} [-]							2,	86			
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]			1	,87			_3)	_3)
Staii	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ The characteristic resistances apply for all anchor rods with the cross sectional area As specified here: FMZ-A, HFZ, HFT. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Injection System FME plus	
Performance Characteristic steel resistance for threaded rods under tension load	Annex C1

²⁾ In absence of national regulation

³⁾ Anchor type not part of the ETA

Stainless

Thus	adad sad			MO	MAG	MAG	MAG	Mac	MOA	MOZ	M30
inrea	ded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	acteristic resistance under shear load	1)									
Steel	failure <u>without</u> lever arm										
, ted	Property class 4.6 and 4.8	V^0 Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zin	Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	V^0 Rk,s	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
S	A4 and HCR, property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	_3)	_3)
Steel	failure <u>with</u> lever arm										
eq	Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zin	Property class 8.8	$M^0_{Rk,s}$	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
SS	A2, A4 and HCR, property class 50	M^0 Rk,s	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92	232	454	784	_3)	_3)
S	A4 and HCR property class 80	M ⁰ Pks	[Nm]	30	59	105	266	519	896	_3)	_3)

1) The characteristic resistances apply for all anchor rods with the cross sectional area A _s specified here: FMZ-A, HFZ, HFT.
For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10
according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

 $M^0_{\text{Rk},\text{s}}$

γMs,V

γMs,V

γMs,V

 $\gamma_{\text{Ms,V}}$

 $\gamma_{\text{Ms,V}}$

 $\gamma_{Ms,V}$

γMs,V

γMs,V

[Nm]

[-]

[-]

[-]

[-]

[-]

[-]

[-]

[-]

30

59

105

266

1,67

1,25

1,67

1,25

1,25

2,38

1,56

1,33

519

896

_3)

_3)

_3)

_3)

A2, A4 and HCR, property class 50

A2, A4 and HCR, property class 70

A4 and HCR, property class 80

A4 and HCR, property class 80

Property class 4.6

Property class 4.8

Property class 5.6

Property class 5.8

Property class 8.8

Partial factor 2)

³⁾ Anchor type not part of the ETA

Injection System FME plus	
Performance Characteristic steel resistance for threaded rods under shear load	Annex C2

²⁾ In absence of national regulation

Table C3: Characteristic values for concrete cone and splitting failure

Threaded rods / Internall	y threaded anchor ro	ds / Rel	bars	all sizes
Concrete cone failure				
Castork	uncracked concrete	k _{ucr,N}	[-]	11,0
Factor k₁	cracked concrete	k cr,N	[-]	7,7
Edge distance		C _{cr,N}	[mm]	1,5 • h _{ef}
Spacing		S _{cr,N}	[mm]	2 • C _{cr,N}
Splitting failure				
Characteristic resistance		$N^0_{Rk,sp}$	[kN]	$min (N_{Rk,p}; N^0_{Rk,c})$
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}
Spacing		S _{cr,sp}	[mm]	2 • C _{cr,sp}

Injection System FME plus

Performance

Characteristic values for concrete cone and splitting failure

Annex C3

English translation prepared by DIBt

Table C4: Characteristic values of tension load for threaded rods, static and quasi-static action, working life 50 years

	d quasi-static	400.01	i, workii	19 1110		u13							
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic resistance		$N_{Rk,s}$	[kN]			A _s • f	uk (or se	ee Tabl	e C1)				
Partial factor		γMs,N	[-]				see Ta	ble C1					
Combined pull-out and	concrete failure												
Characteristic bond res	sistance in <u>uncrac</u>	<u>ked</u> cor	ncrete C20	0/25									
Temperature range I: 40°C / 24°C	hammer- or	TRk,ucr	[N/mm²]	20	20	19	19	18	17	16	16		
Temperature range II: 72°C / 50°C	compressed air drilling	τRk,ucr	[N/mm²]	15	15	15	14	13	13	12	12		
Temperature range I: 40°C / 24°C	and a survey of silling as	τ _{Rk,ucr}	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13		
Temperature range II: 72°C / 50°C	vacuum drilling	τ _{Rk,ucr}	[N/mm²]	14	14	14	13	13	12	12	11		
Characteristic bond res	sistance in <u>cracke</u>	<u>d</u> concr	ete C20/2	5									
Temperature range I: 40°C / 24°C	hammer-, compressed air	τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5		
Temperature range II: 72°C / 50°C	or vacuum drilling	τRk,cr	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0		
Reductionfactor ψ ⁰ sus													
Temperature range I: 40°C / 24°C	hammer-, compressed air	ψ^0 sus	[-]	0,80									
Temperature range II: 72°C / 50°C	or vacuum drilling	ψ^0 sus	[-]		0,68								
Increasing factor ψ _c													
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	concrete	Ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	-)0,1					
Concrete cone failure													
Relevant parameter							see Ta	ble C3					
Splitting failure													
Relevant parameter		see Table C3											
Installation factor													
dry or wet concrete		γinst	[-]				1,	,0					
waterfilled drill hole γ_{inst} [-] 1,2													

¹⁾ Value in brackets: characteristic bond resistance for waterfilled drill holes

Performance Characteristic values of tension loads for threaded rods, working life 50 years Annex C4

English translation prepared by DIBt

Table C5: Characteristic values of tension load for threaded rods, static and quasi-static action, working life 100 years

Static at	nd quasi-statio	action	i, workii	ig ille	100 у	ears							
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic resistance	9	$N_{Rk,s}$	[kN]	A _s · f _{uk} (or see Table C1)									
Partial factor		γMs,N	[-]				see Ta	ble C1					
Combined pull-out and	l concrete failure												
Characteristic bond re	sistance in <u>uncra</u>	<u>cked</u> cor	ncrete C2	0/25									
Temperature range I: 40°C / 24°C	Hammer- or	τ _{Rk,ucr,100}	[N/mm²]	20	20	19	19	18	17	16	16		
Temperature range II: 72°C / 50°C	compressed air drilling	τRk,ucr,100	[N/mm²]	15	15	15	14	13	13	12	12		
Temperature range I: 40°C / 24°C	Vacuum drilling	τ _{Rk,ucr,100}	[N/mm²]	17 (16) ¹⁾	16	16	16 (15) ¹⁾	15	14	14	13		
Temperature range II: 72°C / 50°C	Vacuum drilling	τ _{Rk,ucr,100}	[N/mm²]	14	14	14	13	13	12	12	11		
Characteristic bond resistance in <u>cracked</u> concrete C20/25													
Temperature range I: 40°C / 24°C	Hammer-, compressed air	τ _{Rk,cr,100}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5		
Temperature range II: 72°C / 50°C	or vacuum drilling	τ _{Rk,cr,100}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5		
Reductionsfactor ψ ⁰ sus									•	•	•		
Temperature range I: 40°C / 24°C	Hammer-, compressed air	ψ ⁰ sus,100	[-]	0,80									
Temperature range II: 72°C / 50°C	or vacuum drilling	ψ^0 sus,100	[-]	0,68									
Increasing factor ψc													
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	concrete	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,1					
Concrete cone failure													
Relevant parameter					see Ta	ıble C3							
Splitting failure													
Relevant parameter					see Ta	ble C3							
Installation factor													
dry or wet concrete	[-]	1,0											
waterfilled drill hole		γinst	[-]				1	,2					

¹⁾ Value in brackets: characteristic bond resistance for waterfilled drill holes

Performance Characteristic values of tension loads for threaded rods, working life 100 years Annex C5

Table C6: Characteristic values of tension load for threaded rods, static and quasi-static action, working life 50 and 100 years, diamond drilling in uncracked concrete

diamon	d drilling in un	cracked	concre	te									
Threaded rod				М8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic resistance	e	$N_{Rk,s}$	[kN]	As • fuk (or see Table C1)									
Partial factor	γMs,N	[-]	see Table C1										
Combined pull-out and													
Characteristic bond re	sistance in <u>uncra</u>	cked cond	rete C20	0/25				V	Vorking	life 50	years		
Temperature range I: 40°C / 24°C	diamond drilling	₹Rk,ucr	[N/mm²]	15	14	14	13	12	12	11	11		
Temperature range II: 72°C / 50°C	diamond drilling	τRk,ucr	[N/mm²]	12	12	11	10	9,5	9,5	9,0	9,0		
Reduction factor $\psi^0{}_{sus}$	crete C20	/25											
Temperature range I: 40°C / 24°C	diamond drilling	ψ^0 sus	[-]				0,	77					
emperature range II: 2°C / 50°C		ψ ⁰ sus	[-]	0,72									
Characteristic bond re	Characteristic bond resistance in <u>uncracked</u> con				0/25 Working life 100 ye								
Temperature range I: 40°C / 24°C	diamand deilling	τ _{Rk,ucr,100}	[N/mm²]	15	14	14	13	12	12	11	11		
Temperature range II: 72°C / 50°C	diamond drilling	TRk,ucr,100	[N/mm²]	11	11	10	10	9,5	9,0	8,5	8,5		
Reduction factor ψ ⁰ sus	in <u>uncracked</u> con	crete C20	/25			•	'	•	'	•			
Temperature range I: 40°C / 24°C	diamand dellina	ψ ⁰ sus,100	[-]	0,73									
Temperature range II: 72°C / 50°C	diamond drilling	ψ ⁰ sus,100	[-]	0,70									
Increasing factor ψ _c							W	orking	life 50 a	and 100	years		
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	concrete	ψο	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,2					
Concrete cone failure													
Relevant parameter					see Ta	able C3							
Splitting failure													
Relevant parameter					see Ta	able C3							
Installation factor													
dry or wet concrete		γinst	[-]	1,0									
waterfilled drill hole γ _{inst}					1,2				1,4				

Injection System FME plus

Performance

Characteristic values of **tension loads** for **threaded rods**, working life **50** and **100 years**, **diamond drilling**

Annex C6

Table C7: Characteristic values of shear loads for threaded rods, static and quasi-static action

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure <u>without</u> lever arm										
Characteristic shear resistance Steel, property class 4.6, 4.8, 5.6 and 5.8	$V^0_{Rk,s}$	[kN]			(0,6 • <i>7</i> or see	A _s ∙ f _{uk} Γable C	2		
Characteristic shear resistance Steel, property class 8.8 Stainless steel A2, A4 and HCR (all property classes)	$V^0_{Rk,s}$	[kN]	0,5 ⋅ A _s ⋅ f _{uk} or see Table C2							
Ductility factor	k ₇	[-]				1	,0			
Partial factor	γMs,V	[-]				see Ta	ble C2			
Steel failure with lever arm										
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]			c	1,2 • V or see T	V _{el} ∙ f _{uk} able C	2		
Elastic section modulus	Wel	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γMs,V	[-]				see Ta	ble C2			
Concrete pry-out failure										
Pry-out factor	k 8	[-]				2	,0			
Concrete edge failure										
Effective length of anchor	I _f	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300n							
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]				1	,0			

Injection System FME plus	
Performance Characteristic values of shear loads for threaded rods	Annex C7

Deutsches
Institut
für
Bautechnik

Table C8: Characteristic values of tension load for threaded rods, seismic action (performance category C1 + C2), working life 50 and 100 years

	action (peno			,	· -/,					,		
Threaded rod		М8	M10	M12	M16	M20	M24	M27	M30			
Tension loads						•						
Steel failure												
Characteristic resistance	e C1	N _{Rk,s,C1}	[kN]				1,0 •	N _{Rk,s}				
Characteristic resistance	C2											
steel, zinc plated, proper stainless steel A4 and H property class ≥ 70		N _{Rk,s,C2}	[kN]	-	1)		1,0 •	$N_{Rk,s}$		_1)		
Partial factor		γMs,N	[-]			1	see Ta	ble C1				
Combined pull-out and concrete failure												
Characteristic bond resistance in concrete C20/25 to C50/60 Working life 50 years											years	
Temperature range I:	hammer-,	τ _{Rk,C1}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	
40°C / 24°C	compressed	τ _{Rk,C2}	[N/mm²]	-	1)	5,8	4,8	5,0	5,1	-	1)	
Temperature range II:	air or vacuum	τ _{Rk,C1}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	
72°C / 50°C	drilling	τ _{Rk,C2}	[N/mm²]	_1)		5,0	4,1	4,3	4,4	-	1)	
Characteristic bond re	sistance in cond	rete C20/2	25 to C50	/60				W	orking	life 100	years	
Temperature range I:	hammer-,	τ _{Rk,C1,100}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	
40°C / 24°C	compressed	τ _{Rk,C2,100}	[N/mm²]	_	1)	5,8	4,8	5,0	5,1	-	1)	
Temperature range II:	air or vacuum	τ _{Rk,C1,100}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	
72°C / 50°C drilling $\tau_{Rk,C2,100}$ [N/mm				-	1)	5,0	4,1	4,3	4,4	-	1)	
Installation factor												
Dry or wet concrete		γinst	[-]	1,0								
Waterfilled drill hole	γinst	[-]	1,2									

¹⁾ No performance assessed

Table C9: Characteristic values of shear loads for threaded rods, seismic action (performance category C1 + C2)

Threaded rod					M10	M12	M16	M20	M24	M27	M30	
Shear loads												
Steel failure <u>v</u>	Steel failure without lever arm											
Characteristic	resistance C1	$V_{Rk,s,C1}$	[kN]				0,7 •	$V^0_{Rk,s}$				
Characteristic steel, zinc plat stainless steel property class	V _{Rk,s,C2}	[kN]	_1)		(),7 • V ^o f	Rk,s		_1)			
Partial factor	γMs,N	[-]		see Table C2								
Factor for	without annular gap			1,0								
anchorages	with annular gap between threaded rod and fixture	α _{gap}	α _{gap} [-]		0,5							

¹⁾ No performance assessed

Injection System FME plus	
Performance Characteristic values for threaded rods under seismic action	Annex C8

English translation prepared by DIBt

Table C10: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 50 years

Internally threaded an	nchor rod			FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20
Steel failure 1)				5	5				= :
Characteristic resistance	ce, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
steel, zinc plated, prope		 		16	27	46	67	121	196
Partial factor 5.8 and 8.		γMs,N				1	,5		
Characteristic resistance Stainless steel A4 / HC property class 70		N _{Rk,s}		14	26	41	59	110	124 ²⁾
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out an									
Characteristic bond re	esistance in <u>uncr</u>	acked	concrete	C20/25					
Temperature range I: 40°C / 24°C	hammer- or compressed air	TRk,ucr	[N/mm²]	20	19	19	18	17	16
Temperature range II: 72°C / 50°C	drilling	τ _{Rk,ucr}	[N/mm²]	15	15	14	13	13	12
Temperature range I: 40°C / 24°C	vacuum drilling	τ _{Rk,ucr}	[N/mm²]	16	16	16 (15) ³⁾	15	14	13
Temperature range II: 72°C / 50°C	Vacuum ummg	TRk,ucr	[N/mm²]	14	14	13	13	12	11
Characteristic bond re		ked co	ncrete C2	20/25					
Temperature range I: 40°C / 24°C	hammer-, compressed air	τ _{Rk,cr}	[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	or vacuum drilling	τ _{Rk,cr}	[N/mm²]	6,0	7,0	7,0	7,0	7,0	7,0
Reductionfactor ψ ⁰ sus	i								
Temperature range I: 40°C / 24°C	hammer-, compressed air	ψ ⁰ sus	[-]			0,	80		
Temperature range II: 72°C / 50°C	or vacuum drilling	ψ^0 sus	[-]			0,	68		
Increasing factor ψ _c									
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	e concrete	Ψα	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,1		
Concrete cone failure							,		
Relevant parameter						see Ta	able C3		
Splitting failure							tore e.		
Relevant parameter						see Ta	able C3		
Installation factor									
dry or wet concrete		γinst	[-]			1	,0		
waterfilled drill hole		γinst	F 1				,2		
							<u>'</u>		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System FME plus

Performance

Characteristic values of **tension loads** for **internally threaded anchor rod**, working life **50 years**

Annex C9

²⁾ For FMZ-IG M20: property class 50

³⁾ Value in bracket is valid for waterfilled drill hole

Deutsches Institut für **Bautechnik**

English translation prepared by DIBt

Table C11: Characteristic values of tension loads for internally threaded anchor rod
static and quasi-static action, working life 100 years

static	and quasi-st	atic ac	tion, wo	orking life	e 100 ye	ars			
Internally threaded a	nchor rod			FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20
Steel failure 1)									
Characteristic resistan		N _{Rk,s}	[kN]	10	17	29	42	76	123
steel, zinc plated, prop	<u> </u>	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor 5.8 and 8		γMs,N	[-]		1	1	,5		1
Characteristic resistan Stainless steel A4 / HC property class 70		N Rk,s	[kN]	14	26	41	59	110	124 ²⁾
Partial factor		γMs,N	[-]			1,87			2,86
Combined pull-out ar	nd concrete failu	ıre							
Characteristic bond r	esistance in <u>un</u>	cracked	concrete	C20/25					
Temperature range I: 40°C / 24°C	hammer- or compressed	τ _{Rk,ucr,100}	[N/mm²]	20	19	19	18	17	16
Temperature range II: 72°C / 50°C	air drilling	τ _{Rk,ucr,100}	[N/mm²]	15	15	14	13	13	12
Temperature range I: 40°C / 24°C	vacuum drilling	τRk,ucr,100	[N/mm²]	16	16	16 (15) ³⁾	15	14	13
Temperature range II: 72°C / 50°C			[N/mm²]	14	14	13	13	12	11
Characteristic bond r		cked co	ncrete C2	20/25					
Temperature range I: 40°C / 24°C	hammer-, compressed	τ _{Rk,cr,100}	[N/mm²]	6,5	7,5	7,5	7,5	7,5	7,5
Temperature range II: 72°C / 50°C	air or vacuum drilling	τRk,cr,100	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5
Reduction factor ψ ⁰ sus	:								
Temperature range I: 40°C / 24°C	hammer-, compressed	ψ ⁰ sus,100	[-]			0,	80		
Temperature range II: 72°C / 50°C	air or vacuum drilling	ψ^0 sus,100	[-]			0,	68		
Increasing factor ψc									
for τ_{Rk} depending on th strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	e concrete	Ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{100}\right)^{0,1}$		
Concrete cone failure)								
Relevant parameter						see Ta	able C3		
Splitting failure									
Relevant parameter						see Ta	able C3		
Installation factor									
dry or wet concrete		γinst	[-]			1	,0		
waterfilled drill hole		γinst	[-]			1	,2		
Footoning corous as the	coded rade (incl.		(cobor) mi	ot comply v	with the opr	ransiata m	بامجاما مجمل		on of the

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System FME plus

Performance

Characteristic values of tension loads for internally threaded anchor rod, working life 100 years

Annex C10

²⁾ For FMZ-IG M20: property class 50

³⁾ Value in bracket is valid for waterfilled drill hole

Table C12: Characteristic values of tension loads for internally threaded anchor rod, static and quasi-static action, working life 50 and 100 years, diamond drilling

Internally threaded anchor rod FMZ-IG M 8 FMZ-IG M 10 FMZ-IG M 10	diamond drilling											
Characteristic resistance, steel, zinc plated, property class S.8 Nex. [kN] 10 17 29 42 76 123 Steel, zinc plated, property class S.8 Nex. [kN] 16 27 46 67 121 196 Partial factor 5.8 and 8.8 7/Ms.N [-] 1,5 Characteristic resistance, stainless steel A4 / HCR, property class 70 Partial factor Vertical Property class 70 Vertical Property class 70 Partial factor Vertical Property class 70	Internally threaded ar	nchor rod						1				
Steel, zinc plated, property class 8.8 No.s. KN 16 27 46 67 121 196	Steel failure 1)											
Partial factor 5.8 and 8.8 γ _{Ma.N.} [-] 1,5 1,5 Characteristic resistance, stainless steel A4 / HCR, property class 70 Partial factor γ _{Ma.N.} [kN] 14 26 41 59 110 124 29 Partial factor γ _{Ma.N.} [-] 1,87 2,86 Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete C20/25 Working life 50 years Temperature range I: 40°C / 24°C Temperature range II: 72°C / 50°C Reductionfactor ψ ⁰ _{aus} [-] 11 10 9,5 9,5 9,0 Temperature range II: 72°C / 50°C Pool Po	Characteristic resistan	ce, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Characteristic resistance, stainless steel A4 / HCR, property class 70 Nex. [kN] 14 26 41 59 110 124 2)	steel, zinc plated, prop	erty class 8.8	$N_{Rk,s}$	[kN]	16	27	46	67	121	196		
Stainless steel A4 / HCR, properly class 70 NRs,s [kN] 14 26 41 59 110 124 29 Partial factor 7/Ms,N [-] 1,87 2,86 Combined pull-out and concrete failure Characteristic bond resistance in uncracked concrete C20/25 Working life 50 years Temperature range 140°C / 24°C Temperature range 1172°C / 50°C Temperature range 1172°C / 50°C Temperature range 1172°C / 50°C Characteristic bond resistance in uncracked concrete C20/25 Temperature range 1172°C / 50°C Temperat			γMs,N	[-]			1	,5				
Combined pull-out and concrete failure	stainless steel A4 / HC	,	N Rk,s	[kN]	14	26	41	59	110	124 ²⁾		
$ \begin{array}{ c c c c }\hline \textbf{Characteristic bond resistance in } \underline{\textbf{uncracked}} & \textbf{concrete C20/25} & \textbf{Working life 50 years} \\ \hline \textbf{Temperature range I:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 72^{\circ}\text{C} / 50^{\circ}\text{C} \\ \hline \textbf{Reductionfactor } \psi^{\text{sus}} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 72^{\circ}\text{C} / 50^{\circ}\text{C} \\ \hline \textbf{Characteristic bond resistance in } \underline{\textbf{uncracked concrete C20/25}} \\ \hline \textbf{Characteristic bond resistance in } \underline{\textbf{uncracked concrete C20/25}} \\ \hline \textbf{Temperature range II:} \\ 72^{\circ}\text{C} / 50^{\circ}\text{C} \\ \hline \textbf{Characteristic bond resistance in } \underline{\textbf{uncracked concrete C20/25}} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \hline \textbf{Temperature range II:} \\ \hline Temper$	Partial factor		γMs,N	[-]			1,87			2,86		
Temperature range I: $40^{\circ}\text{C} / 24^{\circ}\text{C}$	Combined pull-out ar	nd concrete failur	е									
$ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II: } 72^{\circ}\text{C} / 50^{\circ}\text{C}}{\text{Reductionfactor } \psi^{0}_{\text{sus}}} = \frac{12}{\text{Tr}_{\text{Rk,ucr}}} \frac{ \text{N/mm}^{\circ} }{ \text{Tr}_{\text{Rk,ucr}} } = \frac{14}{12} = \frac{13}{11} = \frac{12}{10} = \frac{12}{9,5} = \frac{11}{9,0} = \frac{12}{9,5} = \frac{12}{9,0} = \frac{12}{$	Characteristic bond r	esistance in <u>unc</u>	racked c	oncrete	C20/25			W	orking life	50 years		
Temperature range II: V^0_{sus} [-] V^0_{s	40°C / 24°C	diamond drilling	TRk,ucr	[N/mm²]	14	14	13	12	12	11		
Temperature range I: $40^{\circ}\text{C} / 24^{\circ}\text{C}$ Temperature range II: $72^{\circ}\text{C} / 50^{\circ}\text{C}$ Characteristic bond resistance in uncracked concrete C20/25 Temperature range I: $40^{\circ}\text{C} / 24^{\circ}\text{C}$ Temperature range I: $40^{\circ}\text{C} / 24^{\circ}\text{C}$ Temperature range II: $40^{\circ}\text{C} / 24^{\circ}\text{C}$ Temperature range II: $72^{\circ}\text{C} / 50^{\circ}\text{C}$ Temperature range	72°C / 50°C	_	τ _{Rk,ucr}	[N/mm²]	12	11	10	9,5	9,5	9,0		
$ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 50^{\circ}\text{C}}{\text{Characteristic bond resistance in } \underbrace{\text{uncracked concrete C20/25}}{\text{Temperature range I:}} \\ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 50^{\circ}\text{C}}{\text{Reductionfactor } \psi^{0}_{\text{sus}}} \\ \frac{40^{\circ}\text{C} / 50^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 50^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 24^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 50^{\circ}\text{C}}{\text{Temperature range II:}} \\ \frac{40^{\circ}\text{C} / 50^{\circ}\text{C}}{Temperatur$	Reductionfactor ψ ⁰ sus		_									
Temperature range II: γ_2° C / 50 °C		diamond drilling	ψ^0 sus	[-]			0,	77				
Temperature range I: $40^{\circ}\text{C} / 24^{\circ}\text{C}$ Temperature range II: $72^{\circ}\text{C} / 50^{\circ}\text{C}$ Reductionfactor ψ^0_{sus} Temperature range II: $72^{\circ}\text{C} / 50^{\circ}\text{C}$ Reductionfactor ψ^0_{sus} Temperature range II: $72^{\circ}\text{C} / 24^{\circ}\text{C}$ Temperature range II:		diamond dining	ψ ⁰ sus	[-]			0,	72				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristic bond r	esistance in <u>unc</u>	racked c	oncrete	C20/25			Wo	rking life '	100 years		
Temperature range II: $72^{\circ}\text{C} \ / 50^{\circ}\text{C}$ Reductionfactor ψ^0_{sus} Temperature range I: $40^{\circ}\text{C} \ / 24^{\circ}\text{C}$ Temperature range II: $72^{\circ}\text{C} \ / 50^{\circ}\text{C}$ Temperature range II: 72	40°C / 24°C	diamond drilling	τ _{Rk,ucr,100}	[N/mm²]	14	14	13	12	12	11		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72°C / 50°C		τ _{Rk,ucr,100}	[N/mm²]	11	10	10	9,5	9,0	8,5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Temperature range II: $\gamma_2^\circ \text{C} / 50^\circ \text{C}$	40°C / 24°C	diamond drilling	ψ ⁰ sus,100	[-]			0,	73				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		alamona aming	ψ ⁰ sus,100	[-]			0,	70				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Increasing factor ψc						V	Norking li	fe 50 and [•]	100 years		
Concrete cone failure Relevant parameter see Table C3 Splitting failure see Table C3 Relevant parameter see Table C3 Installation factor to yinst [-] dry or wet concrete γ_{inst} [-]	strength class	e concrete	ψο	[-]			$\left(\frac{\mathrm{f_{ck}}}{20}\right)$	0,2				
Relevant parameter see Table C3 Splitting failure see Table C3 Relevant parameter see Table C3 Installation factor dry or wet concrete γ _{inst} [-] 1,0)										
Relevant parameter see Table C3 Installation factor try or wet concrete γ_{inst} [-] 1,0							see Ta	ble C3				
	Splitting failure											
dry or wet concrete γ_{inst} [-] 1,0	Relevant parameter						see Ta	ble C3				
1 8.0	Installation factor											
Luctorfilled drill halo	•		γinst				1	,0				
waterfilled drill hole $\gamma_{ m inst}$ [-] 1,2 1,4	waterfilled drill hole	[-]	1,	2		1,	4					

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System FME plus

Performance

Characteristic values of **tension loads** for **internally threaded anchor rod**, working life **50 and 100 years, diamond drilling**

Annex C11

²⁾ For FMZ-IG M20: property class 50

³⁾ Value in bracket is valid for waterfilled drill hole

Table C13: Characteristic values of shear loads for internally threaded anchor rod, static and quasi-static action

Interna	illy threaded anchor rod				FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20
Steel fa	ailure <u>without</u> lever arm ¹⁾									
ted	Characteristic resistance,	5.8	$V^0_{Rk,s}$	[kN]	6	10	17	25	45	74
Steel, zinc plated	property class	8.8	$V^0_{Rk,s}$	[kN]	8	14	23	34	60	98
zir	Partial factor 5.8 and 8.8		γMs,V	[-]			1,	25		
Stainless steel	Characteristic resistance, A4 / HCR, property class 70		$V^0_{Rk,s}$	[kN]	7	13	20	30	55	62 ²⁾
Sta	Partial factor		γMs,V	[-]			1,56			2,38
Ductility	y factor		k ₇	[-]			1	,0		
Steel fa	ailure <u>with</u> lever arm ¹⁾									
pe	Characteristic bending resistance,		M^0 Rk,s	[Nm]	8	19	37	66	167	325
Steel, zinc plated	property class	8.8	M^0 Rk,s	[Nm]	12	30	60	105	267	519
zin	Partial factor 5.8 and 8.8		γMs,V	[-]	1,25					
Stainless steel	Characteristic bending resista A4 / HCR, property class 70	nce	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
Sta	Partial factor		γMs,V	[-]			2,38			
Concre	ete pry-out failure									
Pry-out	factor		k 8	[-]			2	,0		
Concre	ete edge failure									
Effectiv	Effective length of anchor					mii	n (h _{ef} ;12 d	nom)		min (h _{ef} ; 300mm)
Outside	e diameter of anchor		d_{nom}	[mm]	10	12	16	20	24	30
Installa	Installation factor						1	,0		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod (exception: FMZ-IG M20). The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System FME plus	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C12

²⁾ For FMZ-IG M20: Internally threaded rod: property class 50; Fastening screws or threaded rods (incl. nut and washer): property class 70

1,0

1,2

Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension r	esistance	N _{Rk,s}	[kN]					A _s •	f _{uk} 1)				
Cross sectional area		As	[mm²]	50 79 113 154 201 314 452 491 616 804							804		
Partial factor		γMs,N	[-]					1,4	4 ²⁾				
Combined pull-out an	d concrete failure)											
Characteristic bond re	esistance in <u>uncr</u>	acked co	oncrete C	20/25									
Temperature range I: 40°C / 24°C	hammer- and compressed air	τRk,ucr	[N/mm²]	16	16	16	16	16	16	15	15	15	15
Temperature range II: 72°C / 50°C	drilling	τRk,ucr	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Temperature range I: 40°C / 24°C	voorum drilling	τ _{Rk,ucr}	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
Temperature range II: 72°C / 50°C	vacuum drilling	τRk,ucr	[N/mm²]	12 (11) ³⁾	12 (11) ³⁾	12 (11) ³⁾	11	11	11	11	11	11	11
Characteristic bond re	esistance in <u>cracl</u>	ked cond	crete C20	/25						•			
Temperature range I: 40°C / 24°C	hammer-, compressed air	τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	or vacuum drilling	τ _{Rk,cr}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Reductionfactor ψ ⁰ sus				•					•				
Temperature range I: 40°C / 24°C	hammer-, compressed air	ψ^0 sus	[-]					0,	80				
Temperature range II: 72°C / 50°C	or vacuum drilling	ψ^0 sus	[-]					0,	68				
Increasing factor ψ_c													
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	e concrete	Ψ¢	[-]					$\left(\frac{f_{ck}}{20}\right)$	- 1				
Concrete cone failure													
Relevant parameter							;	see Ta	ble C	3			
Splitting failure				I									
Relevant parameter								see Ta	able C	3			
Installation factor				1									

¹⁾ fuk shall be taken from the specifications of reinforcing bars

dry or wet concrete

waterfilled drill hole

In absence of national regulation
 Value in brackets: characteristic bond resistance for waterfilled drill holes

Injection System FME plus	
Performance Characteristic values of tension loads for rebar, working life 50 years	Annex C13

[-]

[-]

 γ_{inst}

Table C15: Characteristic values of tension loads for rebar, static and quasi-static action, working life 100 years

static	and quasi-st	atic acti	on, wor	king	ife 10	00 ye	ars						
Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension r	resistance	N _{Rk,s}	[kN]					A _s •	f _{uk} 1)				
Cross sectional area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γMs,N	[-]					1,4	4 ²⁾				
Combined pull-out an	id concrete failu	ıre											
Characteristic bond r	esistance in <u>unc</u>	cracked co	oncrete C	20/25									
Temperature range I: 40°C / 24°C	hammer- and	τ _{Rk,ucr,100}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
Temperature range II: 72°C / 50°C	compressed air drilling	τRk,ucr,100	[N/mm²]	12	12	12	12	12	12	12	12	11	11
Temperature range I: 40°C / 24°C	vacuum	τRk,ucr,100	[N/mm²]	14 (13) ³⁾	14 (13) ³⁾	13	13	13	13	13	13	13	13
Temperature range II: 72°C / 50°C	drilling	τ _{Rk,ucr,100}	[N/mm²]	12 (11) ³⁾	12 (11) ³⁾	12 (11) ³⁾	11	11	11	11	11	11	11
Characteristic bond r	esistance in <u>cra</u>	crete C20	25										
Temperature range I: 40°C / 24°C	hammer-, compressed	TRk,cr,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperature range II: 72°C / 50°C	air or vacuum drilling	τ _{Rk,cr,100}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Reductionfactor ψ ⁰ sus													
Temperature range I: 40°C / 24°C	hammer-, compressed	ψ^0 sus,100	[-]					0,	80				
Temperature range II: 72°C / 50°C	air or vacuum drilling	ψ^0 sus,100	[-]					0,	68				
Increasing factor ψ _c													
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk} (C20/25)$	e concrete	Ψο	[-]					$\left(\frac{f_{ck}}{20}\right)$	0,1				
Concrete cone failure	•												
Relevant parameter								see Ta	ble C	3			
Splitting failure													
Relevant parameter								see Ta	ble C	3			
Installation factor													
dry or wet concrete		γinst	[-]					1	,0				
waterfilled drill hole		γinst	[-]					1	,2				

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) In absence of national regulation

³⁾ Value in brackets: characteristic bond resistance for waterfilled drill holes

Injection System FME plus	
Performance Characteristic values of tension loads for rebar, working life 100 years	Annex C14

Table C16: Characteristic values of tension loads for rebar, static and quasi-static action, working life 50 and 100 years,

diamo	nd drilling		,	J				•	,				
Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension r	esistance	$N_{Rk,s}$	[kN]					As •	fuk ¹⁾				
Cross sectional area		As	[mm²]	50 79 113 154 201 314 452 491 616 80							804		
Partial factor		γMs,N	[-]		•		•	1,4	4 ²⁾				
Combined pull-out an	d concrete failu	ıre											
Characteristic bond re	esistance in <u>un</u>	cracked c	oncrete C	20/25						Worl	king li	fe 50 <u>y</u>	years
Temperature range I: 40°C / 24°C	diamond	τRk,ucr	[N/mm²]	14	13	13	13	12	12	11	11	11	11
Temperature range II: 72°C / 50°C	drilling	τRk,ucr	[N/mm²]	11	11	10	10	10	9,5	9,5	9,5	9,0	9,0
Reductionfactor ψ ⁰ sus													
Temperature range I: 40°C / 24°C	[-]					0,	77						
Temperature range II: 72°C / 50°C	[-]					0,	72						
Characteristic bond re	oncrete C	20/25						Worki	ng life	9 100 <u>y</u>	years		
Temperature range I: 40°C / 24°C	diamond	τ _{Rk,ucr,100}	[N/mm²]	14	13	13	13	12	12	11	11	11	11
Temperature range II: 72°C / 50°C	drilling	τRk,ucr,100	[N/mm²]	11	10	10	10	9,5	9,0	9,0	9,0	8,5	8,5
Reduction factor ψ^0_{sus}													
Temperature range I: 40°C / 24°C	diamond	ψ ⁰ sus,100	[-]					0,	73				
Temperature range II: 72°C / 50°C	drilling	ψ ⁰ sus,100	[-]					0,	70				
Increasing factor ψ_c								V	orkin/	g life s	50 and	100	years
for τ_{Rk} depending on the strength class $\tau_{Rk} = \psi_c \cdot \tau_{Rk}$ (C20/25)	e concrete	Ψ¢	[-]					$\left(\frac{f_{ck}}{20}\right)$					
Concrete cone failure													
Relevant parameter							;	see Ta	able C	3			
Splitting failure													
Relevant parameter							,	see Ta	able C3	3			
Installation factor													
dry or wet concrete $\gamma_{\rm inst}$ [-]				1,0									
waterfilled drill hole		γinst	[-]		1	,2				1	,4		

 $^{^{\}rm 1)}$ $f_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{\rm 2)}$ In absence of national regulation

Injection System FME plus

Performance

Characteristic values of tension loads for rebar, working life 50 and 100 years, diamond drilling Annex C15

1,0

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever ar	m											
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]					0,50 • /	∆ _s ∙ f _{uk} ¹)				
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]					1,	5 ²⁾				
Ductility factor	k 7	[-]					1	,0				
Steel failure with lever arm												
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]					1,2 • W	∕ _{el} • f _{uk} 1)				
Elastic section modulus	Wel	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γMs,V	[-]					1,	5 ²⁾				
Concrete pry-out failure												
Pry-out factor	k 8	[-]					2	,0				
Concrete edge failure												
Effective length of rebar	lf	[mm]	min (hef; 12 dnom) min (hef; 300mm))mm)			
					12					25	28	32

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulation

[-]

Installation factor

Injection System FME plus	
Performance Characteristic values of shear loads for rebar	Annex C16

Table C18: Characteristic values of tension load for rebar, seismic action (performance category C1), working life 50 and 100 years

Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic resistance	се	N _{Rk,s,C1}	[kN]		A _s ∙ f _{uk} ¹)								
Cross sectional area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γMs,N	[-]					1,4	1 ²⁾				
Combined pull-out an	d concrete failu	re											
Characteristic bond re	/25 to C5	0/60						Wor	king li	fe 50 <u>y</u>	years		
Temperature range I: 40°C / 24°C	hammer-, compressed air	TRk,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperature range II: 72°C / 50°C	or vacuum drilling	TRk,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Characteristic bond re	esistance in con	crete C20	/25 to C5	0/60						Worki	ng life	e 100 <u>y</u>	years
Temperature range I: 40°C / 24°C	hammer-, compressed air	TRk,C1,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperature range II: 72°C / 50°C	or vacuum drilling	TRk,C1,100	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Installation factor													
dry or wet concrete γ _{inst}				1,0									
waterfilled drill hole	waterfilled drill hole γ _{inst}				1,2								

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C19: Characteristic values of shear loads for rebar, seismic action (performance category C1)

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic resistance	$V_{Rk,s,C1}$	[kN]					0,35 • /	۹s • f _{uk} 1)				
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]					1,	5 ²⁾				
Ductility factor	k 7	[-]	·				1	,0				·

 $^{^{1)}\} f_{uk}\,shall$ be taken from the specifications of reinforcing bars

²⁾ In absence of national regulation

Injection System FME plus	
Performance Characteristic values for rebar under seismic action	Annex C17

²⁾ In absence of national regulation

English translation prepared by DIBt

Threaded rod		l	М8	M10	M12	M16	M20	M24	M27	M30
Hammer-, compresse	ed air or vac	uum drilling								
Displacement factor ¹⁾ Uncracked concrete, s	static and qua	asi-static actio	on, work	ing life 5	50 and 1	00 years	, <u> </u>			
Temperature range I:	δ _{N0} - factor		0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II:	δ _{N0} - factor	$\frac{1}{N/mm^{2}}$	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
72°C / 50°C	δ _{N∞} - factor		0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Displacement factor ¹⁾ Cracked concrete, stat	tic and quasi	-static action,	, working	g life 50	and 100	years				
Temperature range I:	δ _{N0} - factor		0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range II:	δ _{N0} - factor	$\sqrt{N/mm^{2}}$	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
72°C / 50°C	δ _{N∞} - factor		0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Displacement Uncracked and cracke	ed concrete,	seismic actior	ı (C2)							
All temperature	δn,c2 (DLS)	[mm]	_2	2)	0,21	0,24	0,27	0,36	:_	2)
ranges	δn,c2 (ULS)	[]			0,54	0,51	0,54	0,63		,
Diamond drilling										
Displacement factor ¹⁾ Uncracked concrete, s	static and qu	asi-static actio	on, work	ing life 5	i0 years					
Temperature range I:					. —	J	0,014	0,014	0,015	0,015
	δ _{N0} - factor		0,011	0,012	0,012	0,013	, 0,0	<u>'</u>	'	' <u> </u>
40°C / 24°C	<u>.</u>	mm	0,011	0,012	0,012 0,019	0,013	0,022	0,023	0,024	0,025
40°C / 24°C Temperature range II:	δ _{N0} - factor		· · · · · · · · · · · · · · · · · · ·			· ·	·		0,024	0,025
40°C / 24°C	$\delta_{\text{No-}}$ factor $\delta_{\text{N}\infty^{-}}$ factor	mm	0,018	0,019	0,019	0,020	0,022	0,023	,	
40°C / 24°C Temperature range II:	$\delta_{\text{No-}}$ factor $\delta_{\text{No-}}$ factor $\delta_{\text{No-}}$ factor $\delta_{\text{No-}}$ factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,018 0,013 0,052	0,019 0,014 0,053	0,019 0,014 0,055	0,020 0,015 0,058	0,022	0,023	0,018	0,018
Temperature range II: 72°C / 50°C Displacement factor¹¹ Uncracked concrete, s Temperature range I:	$\delta_{\text{No-}}$ factor $\delta_{\text{No-}}$ factor $\delta_{\text{No-}}$ factor $\delta_{\text{No-}}$ factor	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,018 0,013 0,052	0,019 0,014 0,053	0,019 0,014 0,055	0,020 0,015 0,058	0,022	0,023	0,018	0,018
Temperature range II: 72°C / 50°C Displacement factor¹¹) Uncracked concrete, s	δ_{No^-} factor δ_{No^-} factor δ_{No^-} factor δ_{No^-} factor	$\left[\frac{mm}{N/mm^2}\right]$ asi-static actio	0,018 0,013 0,052 on, worki	0,019 0,014 0,053 ing life 1	0,019 0,014 0,055	0,020 0,015 0,058	0,022 0,016 0,062	0,023 0,016 0,065	0,018	0,018
Temperature range II: 72°C / 50°C Displacement factor¹¹ Uncracked concrete, s Temperature range I:	δ_{No^-} factor δ_{No^-} factor δ_{No^-} factor δ_{No^-} factor static and qua	$\left[\frac{\mathrm{mm}}{N/mm^2}\right]$	0,018 0,013 0,052 on, worki	0,019 0,014 0,053 ing life 1	0,019 0,014 0,055 100 years 0,012	0,020 0,015 0,058 s	0,022 0,016 0,062	0,023 0,016 0,065	0,018 0,068 0,015	0,018

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : acting bond stress under tension load

Injection System FME plus

Performance

Displacements (threaded rod under tension load)

Annex C18

 $[\]delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

²⁾ No Performance assessed

	Table C21: Dis	placements	under shear	load,	threaded rod
--	----------------	------------	--------------------	-------	--------------

	•									
Threaded rod	Threaded rod			M10	M12	M16	M20	M24	M27	M30
All drilling metho	ods									
Displacement fact Uncracked and cr		e, static and qua	si-static	action						
All temperature ranges	δ _{v0} - factor	[mm//kN])]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	δ _{ν∞} - factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Displacement Uncracked and cracked concrete, seismic action (C2)										
All temperature	emperature δν,c2 (DLS)		[mm] _ ²⁾		3,1	3,4	3,5	4,2		2)
ranges	δv,c2 (ULS)	[mm]			6,0	7,6	7,3	10,9	_	,

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - factor V; V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ - factor · V;

Injection System FME plus

Performance

Displacements (threaded rod under shear load)

Annex C19

²⁾ No Performance assessed

Table C22: Displ	lacement factors1)	under tension load	, internally	threaded anchor rod
------------------	--------------------	--------------------	--------------	---------------------

Table CZZ. Displace		- andore			,		101101 100	
Internally threaded anch	nor rod		FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20
Hammer-, compressed	air or vaccu	m drilling						
Uncracked concrete, sta	atic and quasi	-static action,	working li	fe 50 and 1	00 years			
Temperature range I:	δ _{N0} - factor		0,029	0,030	0,033	0,035	0,038	0,041
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm^2}}\right]$	0,029	0,030	0,033	0,035	0,038	0,041
Temperature range II:	δ_{N0} - factor	^L N/mm ^{2J}	0,039	0,040	0,044	0,047	0,051	0,055
72°C / 50°C	δ _{N∞} - factor		0,049	0,051	0,055	0,059	0,064	0,070
Cracked concrete, static	and quasi-st	atic action, w	orking life	50 and 100	years			
Temperature range I:	δ _{N0} - factor		0,071	0,072	0,074	0,076	0,079	0,082
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,115	0,122	0,128	0,135	0,142	0,171
Temperature range II:	δ _{N0} - factor	^l N/mm ²	0,095	0,096	0,099	0,102	0,106	0,110
72°C / 50°C	δ _{N∞} - factor		0,154	0,163	0,172	0,181	0,189	0,229
Diamond drilling								
Uncracked concrete, sta	atic and quasi	-static action,	working li	fe 50 years	;			
Temperature range I:	δ _{N0} - factor		0,012	0,012	0,013	0,014	0,014	0,015
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,019	0,019	0,020	0,022	0,023	0,025
Temperature range II:	δ _{N0} - factor	^l N/mm ²	0,014	0,014	0,015	0,016	0,016	0,018
72°C / 50°C	δ _{N∞} - factor		0,053	0,055	0,058	0,062	0,065	0,070
Cracked concrete, static	and quasi-st	atic action, w	orking life	100 years				
Temperature range I:	δ _{N0} - factor		0,012	0,012	0,013	0,014	0,014	0,015
40°C / 24°C	δ _{N∞} - factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,021	0,021	0,023	0,024	0,025	0,027
Temperature range II:	δ _{N0} - factor	$^{L}\overline{\text{N/mm}^{2}}$	0,014	0,014	0,015	0,016	0,016	0,018
72°C / 50°C	δ _{N∞} - factor		0,039	0,040	0,043	0,045	0,047	0,051

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{- factor } \cdot \tau; \hspace{1cm} \tau\text{: acting bond stress under tension load}$

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

Table C23: Displacement factors¹⁾ under shear load, internally threaded anchor rod

Internally threaded anch	FMZ-IG M 6	FMZ-IG M 8	FMZ-IG M 10	FMZ-IG M 12	FMZ-IG M 16	FMZ-IG M 20			
Uncracked and cracked concrete, static and quasi-static action									
All tamperature renges	δ _{vo} - factor	[mm//lcN]\]	0,07	0,06	0,06	0,05	0,04	0,04	
All temperature ranges	δ _{ν∞} - factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - factor \cdot V; V: acting shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-} \ \text{factor} \cdot \textbf{V};$

Injection System FME plus

Performance

Displacements (internally threaded anchor rod)

Annex C20

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Table C24: Displa	acement f	actors¹) u	nder t	ensio	n load	d (reb	ar)					
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Hammer-, compress	ed air or va	ccum drilli	ng									
Uncracked concrete,	static and q	uasi-static a	action,	working	g life 50	and 1	00 year	'S				
Temperature range I:	δ_{N0} - factor		0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
40°C / 24°C	δ _{N∞} - factor	r mm	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature range II:	δ _{N0} - factor	$\left[\frac{N}{mm^2}\right]$	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
72°C / 50°C	δ _{N∞} - factor		0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Cracked concrete, sta	atic and qua	si-static act	ion, w	orking	ife 50 a	and 100	years					
Temperature range I:	δ _{N0} - factor		0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
40°C / 24°C	δ _{N∞} - factor	r mm	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature range II:	δ _{N0} - factor	$\left[\frac{N/\text{mm}^2}{N}\right]$	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
72°C / 50°C	δ _{N∞} - factor		0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Diamond drilling												
Uncracked concrete,	static and q	uasi-static a	action,	working	g life 50) years						
Temperature range I:	δ _{N0} - factor		0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
40°C / 24°C	δ _{N∞} - factor	_ mm	0,018	0,018	0,019	0,020	0,021	0,024	0,027	0,027	0,028	0,031
Temperature range II:	δ _{N0} - factor	$\left[\frac{1}{N/mm^2}\right]$	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
72°C / 50°C	δ _{N∞} - factor		0,048	0,051	0,054	0,058	0,061	0,068	0,076	0,076	0,081	0,088
Uncracked concrete,	static and q	uasi-static a	action,	working	g life 10	00 year	s					
Temperature range I:	δ _{N0} - factor		0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
40°C / 24°C	δ _{N∞} - factor	[mm_]	0,018	0,020	0,021	0,022	0,024	0,026	0,029	0,029	0,031	0,034
Temperature range II:	δ _{NO} - factor	$\left[\frac{1}{N/mm^2}\right]$	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
72°C / 50°C	δ _{N∞} - factor		0,035	0,037	0,040	0,042	0,045	0,049	0,055	0,055	0,059	0,064

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-}$ factor $\cdot \tau$; τ : acting bond stress under tension load

 $\delta_{N\infty} = \delta_{N\infty}\text{--} \ \text{factor} \ \cdot \ \tau;$

Table C25: Displacement factors¹⁾ under shear load (rebar)

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and crac	uasi-st	atic ac	tion									
All temperatureranges	δ _{vo} - factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	δ _{V∞} - factor		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ - factor \cdot V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ - factor · **V**;

Injection System FME plus

Performance

Displacements (rebar)

Annex C21