

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0140 of 2 May 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product SIKLA Injection System AN VME basic C Product family Bonded fastener for use in concrete to which the construction product belongs Manufacturer Sikla Holding GmbH Ägydiplatz 3 A-4600 THALHEIM BEI WELS **ÖSTERREICH** Manufacturing plant Sikla Herstellwerk 1 Sikla Herstellwerk 3 This European Technical Assessment 26 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is EAD 330499-01-0601, Edition 04/2020 issued in accordance with Regulation (EU) No 305/2011, on the basis of

European Technical Assessment ETA-23/0140 English translation prepared by DIBt

Page 2 of 26 | 2 May 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 26 | 2 May 2023

European Technical Assessment ETA-23/0140 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "SIKLA Injection system AN VME basic C" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar AN VME basic C and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 3 C 4, C 6 and C 8
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2, C 5, C 7 and C 9
Displacements under short-term and long-term loading	See Annex C 10 and C 11
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-23/0140

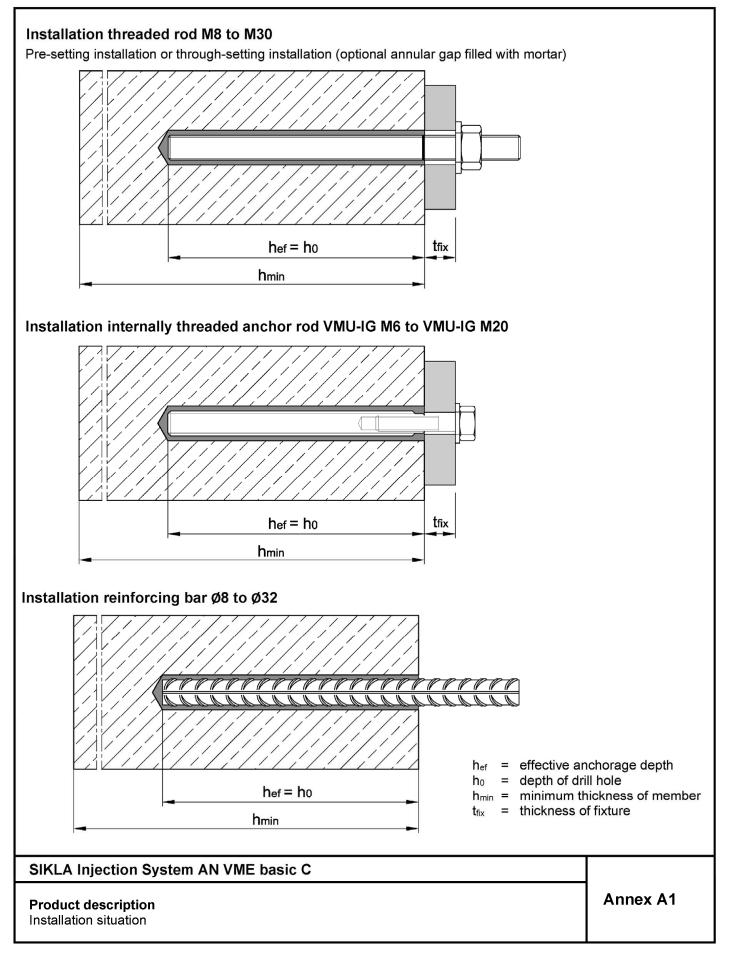
Page 4 of 26 | 2 May 2023

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 May 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Cartridge Injection Mortar AN VME basic C	
Side-by-side cartridge 440 ml, 585 ml, 1400 ml	
Imprint : VME basic processing notes, batch number, shelf life, hazard code, storage temperature, curing- and pro optional with travel scale	ocessing time,
Static mixer	
Retaining washer and extension nozzle)
)
SIKLA Injection System AN VME basic C	
Product description Cartridge, static mixer and retaining washer	Annex A2

Page 7 of European Technical Assessment ETA-23/0140 of 2 May 2023

Threaded rod Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A4, HCR)		
V-A optional: mark of embedment depth	manufa M10 size of t <u>additional mark</u> A4 stainles	ing mark of cturing plant thread <u>king:</u>
Threaded rod VM-A (material sold by the metre, to be cut at the required I M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR)	ength)	
 Commercial standard threaded rod with: M8, M10, M12, M16, M20, M24, M27, M30 (zinc plated, A2, A4, HCR) Materials, dimensions and mechanical properties see Table A1 Steel, zinc plated, according to EN ISO 898-1:2013; EN ISO 898-2:2 Stainless steel or high corrosion resistant steel according to EN ISO Inspection certificate 3.1 acc. to EN 10204:2004 		SO 3506-2:2020
Internally threaded anchor rod VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU (zinc plated, A4, HCR)	J-IG M20	
A Bef	plant I internal thre M8 size of intern additional marking: A4 stainless ste	nark of manufacturing ad nal thread
SIKLA Injection System AN VME basic C		Annex A3
Product description Threaded rod and internally threaded anchor rod		

Part	Designation		Material					
	, zinc plated oplated ≥ 5 µm, hot-di	p galvanized :	≥ 40 µm (5	i0 μm in avera	age) or sher	ardized ≥ 45	μm	
		Property class		ristic ultimate rength		eristic yield ength	fract	ture elongation
		4.6		400		240	A5 >	8 %
1	Threaded rod	4.8		400		320	A5 >	8 %
		5.6	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A5 >	· 8 %
		5.8	[14/1111]	500		400	A5 >	· 8 %
		8.8		800		640	A5 >	· 8 %
		4	for class 4	4.6 or 4.8 rods	<u> </u>			
2	Hexagon nut	5	for class 4	4.6, 4.8, 5.6 0	r 5.8 rods			
		8	for class 4	4.6, 4.8, 5.6, 5	5.8 or 8.8 ro	ds		
3	Washer		e.g.: EN I EN ISO 8	SO 7089:2000 87:2006	0, EN ISO 7	093:2000, EI	N ISO	7094:2000,
			A ₅ > 8%					
	Internally threaded	5.8					A5 >	· 8%
Stain	Internally threaded anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st	8.8 C C	RC II (e.g. RC III (e.g	ctroplated or s 1.4301 / 1.43 1.4401 / 1.44	307 / 1.4311 404 / 1.457		A ₅ >	• 8% • 8%
Stain Stain	anchor rod less steel A2 ¹⁾	8.8 C teel HCR C Property	RC II (e.g. RC III (e.g RC V (e.g character	1.4301 / 1.43 . 1.4401 / 1.44 . 1.4529 / 1.45 ristic ultimate	307 / 1.4311 404 / 1.457 565) characte	ristic yield	A ₅ > 4541)	
Stain Stain High	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st	8.8 C teel HCR C Property class	RC II (e.g. RC III (e.g RC V (e.g character	1.4301 / 1.43 . 1.4401 / 1.44 . 1.4529 / 1.45 ristic ultimate rength	307 / 1.4311 404 / 1.457 565) characte	ristic yield ength	A ₅ > 4541)	ture elongation
Stain Stain	anchor rod less steel A2 ¹⁾ less steel A4	8.8 teel HCR C Property class 50	RC II (e.g. RC III (e.g RC V (e.g character str	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500	807 / 1.4311 404 / 1.457 565) characte stro f _{yk}	ristic yield ength 210	A ₅ > 4541) fract	ture elongation
Stain Stain High	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st	8.8 C teel HCR C Property class	RC II (e.g. RC III (e.g RC V (e.g character str	1.4301 / 1.43 . 1.4401 / 1.44 . 1.4529 / 1.45 ristic ultimate ength 500 700	307 / 1.4311 404 / 1.457 565) characte str	ristic yield ength 210 450	A ₅ > 4541) fract A ₅ > A ₅ >	ture elongation
Stain Stain High	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st	8.8 teel HCR C Property class 50 70 80	RC II (e.g. RC III (e.g RC V (e.g character str f _{uk} [N/mm²]	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500 700 800	807 / 1.4311 404 / 1.457 565) characte stro f _{yk}	ristic yield ength 210	A ₅ > 4541) fract A ₅ > A ₅ >	ture elongation
Stain Stain High	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st Threaded rod ²⁾	8.8 teel HCR C Property class 50 70 80 50	RC II (e.g. RC III (e.g RC V (e.g character str f _{uk} [N/mm²] for class s	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500 700 800	807 / 1.4311 404 / 1.457 565) characte stro f _{yk}	ristic yield ength 210 450	A ₅ > 4541) fract A ₅ > A ₅ >	ture elongation
Stain Stain High	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st	8.8 teel HCR C Property class 50 70 80 50 70	RC II (e.g. RC III (e.g RC V (e.g character str f _{uk} [N/mm ²] for class s	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500 700 800 50 rods	807 / 1.4311 404 / 1.457 565) characte stro f _{yk} [N/mm²]	ristic yield ength 210 450	A ₅ > 4541) fract A ₅ > A ₅ >	ture elongation
Stain Stain High	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st Threaded rod ²⁾	8.8 teel HCR C Property class 50 70 80 50 70	RC II (e.g. RC III (e.g RC V (e.g character str f _{uk} [N/mm ²] for class s for class s	1.4301 / 1.43 1.4401 / 1.43 1.4529 / 1.45 istic ultimate ength 500 700 800 50 rods 50 or 70 rods 50 or 70 rods 50, 70 or 80 ro SO 7089:2000	007 / 1.4311 404 / 1.457 565) characte str f _{yk} [N/mm ²]	ristic yield ength 210 450 600	A ₅ > 4541) fract A ₅ > A ₅ > A ₅ >	ture elongation
Stain Stain High 1	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st Threaded rod ²⁾ Hexagon nut ²⁾ Washer	8.8 teel HCR C Property class 50 70 80 50 70 80	RC II (e.g. RC III (e.g RC V (e.g character str f _{uk} [N/mm ²] for class s for class s for class s for class s	1.4301 / 1.43 1.4401 / 1.43 1.4529 / 1.45 istic ultimate ength 500 700 800 50 rods 50 or 70 rods 50 or 70 rods 50, 70 or 80 ro SO 7089:2000	007 / 1.4311 404 / 1.457 565) characte str f _{yk} [N/mm ²]	ristic yield ength 210 450 600	A ₅ > 4541) fract A ₅ > A ₅ > A ₅ >	* 8% ture elongation * 8% * 8% * 8%
Stain Stain High 1	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st Threaded rod ²⁾ Hexagon nut ²⁾	8.8 teel HCR C Property class 50 70 80 50 70 80	RC II (e.g. RC III (e.g RC V (e.g character str f _{uk} [N/mm ²] for class § for class § for class § e.g.: EN I 887:2006 IG-M20	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500 700 800 50 rods 50 or 70 rods 50, 70 or 80 ro SO 7089:2000	007 / 1.4311 404 / 1.457 565) characte str f _{yk} [N/mm ²]	ristic yield ength 210 450 600	A ₅ > 4541) fract A ₅ > A ₅ > N ISO	* 8% ture elongation * 8% * 8% * 8% 7094:2000; EN I
Stain Stain High 1 1 2 3 4 Prop	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st Threaded rod ²⁾ Hexagon nut ²⁾ Washer Internally threaded	8.8 teel HCR C Property class 50 70 80 50 70 80 50 70 80 70 80 70 70 80 70 70 70 70 70 70 70 70 70 7	RC II (e.g. RC III (e.g RC V (e.g character str [N/mm ²] for class s for class s	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500 700 800 50 rods 50 or 70 rods 50, 70 or 80 ro SO 7089:2000	007 / 1.4311 404 / 1.457 565) characte str f _{yk} [N/mm ²]	ristic yield ength 210 450 600	A ₅ > 4541) fract A ₅ > A ₅ > N ISO	* 8% ture elongation * 8% * 8% * 8% 7094:2000; EN I
Stain Stain High 1 1 2 3 4 Prop	anchor rod less steel A2 ¹⁾ less steel A4 corrosion resistant st Threaded rod ²⁾ Hexagon nut ²⁾ Washer Internally threaded anchor rod erty classes 50 and 70	8.8 teel HCR C Property class 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 50 70 80 70 70 80 70 70 80 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 70 70 70 70 70 70 70 7	RC II (e.g. RC III (e.g RC V (e.g character str [N/mm ²] for class § for class § for class § e.g.: EN I 887:2006 IG-M20 IG-M6 to	1.4301 / 1.43 1.4401 / 1.44 1.4529 / 1.45 istic ultimate ength 500 700 800 50 rods 50 or 70 rods 50, 70 or 80 ro SO 7089:2000	007 / 1.4311 404 / 1.457 565) characte str f _{yk} [N/mm ²]	ristic yield ength 210 450 600	A ₅ > 4541) fract A ₅ > A ₅ > N ISO	* 8% ture elongation * 8% * 8% * 8% 7094:2000; EN I

Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32 7 1 W Ø (5) N N N 1 Ø Ø Ŵ Ŋ Ŋ Ø Ø N hef - Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010 - Rip height of the bar shall be in the range $0,05d \le h \le 0,07d$ (d: Nominal diameter of the bar; h: Rip height of the bar) Table A2: Material reinforcing bar Part Material Designation Rebar Rebar Bars and de-coiled rods class B or C 5 EN 1992-1-1:2004+AC:2010, fyk and k according to NDP or NCI acc. EN 1992-1-1/NA Annex C $\mathbf{f}_{uk} = \mathbf{f}_{tk} = \mathbf{k} \cdot \mathbf{f}_{yk}$

SIKLA Injection System AN VME basic C

Product description

Product description and material reinforcing bar

Annex A5

Specification of intended use					
Injections System VME basic	ons System VME basic Threaded rod Internally threaded anchor rod				
Static and quasi-static action	M8 - M30	VMU-IG M6 – VMU-IG M20	Ø8 - Ø32		
	crac	ked or uncracked conc	rete		
Base material	Concrete strength classes C20/25 to C50/60 compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013+A1:2016				
Hole drilling	hammer drilling / compressed air drilling / vacuum drilling				
Temperature range I: -40°C to +40°C	max. long term temperature +24°C and max. short term temperature +40°C				
Temperature range II: -40°C to +60°C	max. long term temperature +35°C and max. short term temperature +60°C				
Temperature range III: -40°C to +70°C		ng term temperature +4 short term temperature			

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all materials
- For all other conditions: Intended use of Materials according to Annex A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be fastened. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports etc.)
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work
- Fasteners are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- · Dry or wet concrete or waterfilled drill holes (not seawater)
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- · Overhead installation allowed
- Fastener installation carried out by appropriately qualified personnel and under the responsibility of the person competent for technical matters on site
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod

SIKLA Injection System AN VME basic C

Intended Use Specifications

Annex B1

Deutsches Institut für Bautechnik

Table B1: Installation parameters for threaded rods											
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter of thread	ded rod	d=d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole	diameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective anchorage	no donth —	h ef,min	[mm]	60	60	70	80	90	96	108	120
Ellective anchoraç	Je deptil	h ef,max	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
the fixture	Through setti installation	ng d _f ≤	[mm]	12	14	16	20	24	30	33	40
Installation torque max.T _{inst} ≤		max.T _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	60	100	170	250	300
Minimum thickness of member h _{min}		[mm]		_{ef} + 30 m : 100 mr				h _{ef} + 2do)		
Minimum spacing		Smin	[mm]	40	50	60	75	95	115	125	140
Minimum edge dis	stance	Cmin	[mm]	35	40	45	50	60	65	75	80

¹⁾ Max. installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rods

nm] nm]	6	8	10			
nm1		0	10	12	16	20
	10	12	16	20	24	30
nm]	12	14	18	22	28	35
nm]	60	70	80	90	96	120
nm]	200	240	320	400	480	600
nm]	7	9	12	14	18	22
Nm]	10	10	20	40	60	100
nm]	8	8	10	12	16	20
nm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	2d ₀	
nm]	50	60	75	95	115	140
nm]	40	45	50	60	65	80
	m] m] m] m] m] m]	m] 60 m] 200 m] 7 m] 10 m] 8 m] 8 m] h _{ef} + 3 ≥ 100 m] 50 m] 40	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	im] 60 70 80 im] 200 240 320 im] 7 9 12 m] 10 10 20 im] 8 8 10 im] ≥ 100 mm	im] 60 70 80 90 im] 200 240 320 400 im] 7 9 12 14 m] 10 10 20 40 im] 8 8 10 12 im] 8 8 10 12 im] h_{ef} + 30 mm h_{ef} + 400 mm h_{ef} + 400 mm im] 50 60 75 95 im] 40 45 50 60	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

¹⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d=d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter ¹⁾	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effective encharge denth	h ef,min	[mm]	60	60	70	75	80	90	96	100	112	128
Effective anchorage depth -	h ef,max	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]		30 mm 00 mm	1			h _{ef}	+ 2d ₀			
Minimum spacing	Smin	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	Cmin	[mm]	35	40	45	50	50	60	70	70	75	85
¹⁾ For diameter Ø8, Ø10 and Ø12 I	ooth nomir	nal drill	hole dia	meter ca	in be use	ed						
SIKLA Injection System	AN VM	E bas	sic C									
Intended use Installation parameters										An	nex B	2

Deutsches Institut für Bautechnik

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø
 §				d _b	Maaaaaa
[-]	[-]	Ø [mm]	d ₀ [mm]	d ₀ [mm]	d _{b,min} [mm]
M8		8	10	11,5	10,5
M10	VMU-IG M 6	8 / 10	12	13,5	12,5
M12	VMU-IG M 8	10 / 12	14	15,5	14,5
		12	16	17,5	16,5
M16	VMU-IG M10	14	18	20,0	18,5
		16	20	22,0	20,5
M20	VMU-IG M12		22	24,0	22,5
		20	25	27,0	25,5
M24	VMU-IG M16		28	30,0	28,5
M27			30	31,8	30,5
		24 / 25	32	34,0	32,5
M30	VMU-IG M20	28	35	37,0	35,5
		32	40	43,5	40,5

Table B5: Retaining washer

Drill bit Ø		Installation direction and use				
d ₀ [mm]	[-]	₽	➡	1		
10						
12			0 washar			
14		retaining washer required				
16						
18	VM-IA 18					
20	VM-IA 20					
22	VM-IA 22					
25	VM-IA 25					
28	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all		
30	VM-IA 30	2001111	20011111			
32	VM-IA 32					
35	VM-IA 35					
40	VM-IA 40					

Vacuum drill bit

Drill bit diameter (d₀): all diameters

Vacuum drill bit (MKT Hollow drill bit SB, Würth Extraction Drill Bit or Heller Duster Expert) and a class M vacuum with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s (150 m³/h)

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Blow-out pump (volume 750ml) Drill bit diameter (d₀): 10 mm to 20 mm Drill hole depth (h₀): \leq 10 d_{nom} for uncracked concrete

SIKLA Injection System AN VME basic C

Intended Use

Cleaning and setting tools

Annex B3

rilling	of the hole		
1	90°+	Hammer drill or compressed air drill Drill with hammer drill or compressed air drill a hole into the bas size required by the selected fastener (Table B1, B2 or B3). Con In case of aborted drill hole, the drill hole shall be filled with mor Vacuum drill bit: see Annex B3	ntinue with <u>step 2</u>
		Drill hole into the base material to the embedment size and embed required by the selected fastener (Table B1, B2 or B3). This dril removes dust and cleans the drill hole during drilling. Continue In case of aborted hole, the drill hole shall be filled with mortar.	ling system
leanir	ig (not applicable wh	en using a vacuum drill)	
		ater in the drill hole must be removed before cleaning!	
	aning with compres	s ed air ters according to Annex B1	
2a	min. 6 bai		n air stream is fre
2b	t) text	Check brush diameter (Table B4). Brush the hole with an appro brush ≥ d _{b,min} (Table B4) a minimum of two times. If the drill hole ground is not reached with the brush, an appropr extension must be used.	-
2c	min. 6 bai	 Starting from the bottom or back of the drill hole, blow out the he compressed air (min. 6 bar) again a minimum of two times until is free of noticeable dust. If the drill hole ground is not reached, an extension must be use 	return air strean
	ual cleaning	SI	
unc	racked concrete, dry	or wet drill holes; drill hole diameter $d_0 \le 20$ mm and drill hole depth	$h_0 \leq 10 \ d_{nom}$
2a		Starting from the bottom or back of the drill hole, blow out the hole blow-out pump a minimum of four times until return air stream i noticeable dust.	
2b	1	Check brush diameter (Table B4). Brush the hole with an approbrush ≥ d _{b,min} (Table B4) a minimum of four times. If the drill hole ground is not reached with the brush, an approprextension must be used.	
2c		Starting from the bottom or back of the drill hole blow out the ho minimum of four times until return air stream is free of noticeab	
	dispensing the morta	rill hole has to be protected against re-contamination in an appropr ar in the drill hole. If necessary, the cleaning has to be repeated dir ar. In-flowing water must not contaminate the drill hole again.	
KLA	Injection System	AN VME basic C	
			Annex B4

Installation instruction	ns (continuation)	
Injection		
3	Attach the supplied static mixer to the cartridge and load the cartrid correct dispensing tool. For every working interruption longer than the recommended workin (Table B6) as well as for new cartridges, a new static-mixer shall be	ng time
4	Prior to inserting the rod into the filled drill hole, the position of the e depth shall be marked on the threaded rod or rebar.	embedment
5	Prior to dispensing into the drill hole, squeeze out separately a mini full strokes and discard non-uniformly mixed adhesive components shows a consistent grey or red colour.	
6a	Starting from the bottom or back of the cleaned drill hole fill the hole approximately two-thirds with adhesive. Slowly withdraw the static r the hole fills to avoid air pockets. If the drill hole ground is not reach appropriate extension nozzle shall be used. Observe working times B6.	nixing nozzle as ed, an
6b	 Retaining washer and mixer nozzle extensions shall be used accord for the following applications: Horizontal installation (horizontal direction) and ground installation downwards direction): Drill bit-Ø d₀ ≥ 18 mm and anchorage de h_{ef} > 250mm Overhead installation: Drill bit-Ø d₀ ≥ 18 mm 	ion (vertical
SIKLA Injection Syster	n AN VME basic C	
Intended Use Installation instructions (co	ntinuation)	Annex B5

	allation instruction	· · · · · ·
Set	tting the fastening eler	nent
7		Push the fastening element into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. The fastener shall be free of dirt, grease, oil or other foreign material.
8		After installation, the annular gap between anchor rod and concrete must be completely filled with mortar, in the case of push-through installation also in the fixture. If these requirements are not fulfilled, repeat application before end of working time! For overhead installation, the fastener should be fixed (e.g. by wedges).
9	C C	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the fastener until it is fully cured (attend Table B6).
10		Remove excess mortar.
11	Tinst	The fixture can be mounted after curing time. Apply installation torque \leq max. T _{inst} according to Table B1 or B2.
12		In case of pre-setting installation, the annular gap between anchor rod and fixture may optionally be filled with mortar. Therefore, replace regular washer by filling washer and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.

Table B6: Working time and curing time

Concrete temperature	Marking time	Minimum	curing time
Concrete temperature	Working time	dry concrete	wet concrete
+5°C to +9°C	80 min	60 h	120 h
+10°C to +14°C	60 min	48 h	96 h
+15°C to +19°C	40 min	24 h	48 h
+20°C to +24°C	30 min	12 h	24 h
+25°C to +34°C	12 min	10 h	20 h
+35°C to +39°C	8 min	7 h	14 h
+40°C	8 min	4 h	8 h
Cartridge temperature		+ 5°C to + 40°C	

SIKLA Injection System AN VME basic C

Intended Use

Installation instructions (continuation) / Working and curing time

Annex B6

Threa	ded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under tensi	on load ¹⁾									
ed	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zir	Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
steel	A2, A4 and HCR Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainless s	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Stair	A4 and HCR Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Partia	l factor ²⁾										
	Property class 4.6	γms,N	[-]				2	,0			
ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
zin	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8	γMs,N	[-]				1	,5			
steel	A2, A4 and HCR Property class 50 $\gamma_{Ms,l}$		[-]				2,	86			
Stainless :	A2, A4 and HCR Property class 70	γMs,N	[-]			1,	87			_3)	_3)
Stair	A4 and HCR Property class 80	γMs,N	[-]	1,6 - ³⁾						_3)	_3)

¹⁾ The characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A. For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

²⁾ In absence of other national regulations

³⁾ Fastener version not part of the ETA

SIKLA Injection System AN VME basic C

Characteristic values for threaded rods under tension loads

	D M	112	M16	M20	M24	M27	M30
					1		
58,0	3 84	4,3	157	245	353	459	561
		-					
14 (13)	1	20	38	59	85	110	135
17 (16)) 2	25	47	74	106	138	168
23 (21)) 3	34	63	98	141	184	224
15	2	21	39	61	88	115	140
20	3	30	55	86	124	_3)	_3)
23	3	34	63	98	141	_3)	_3)
	·						
30 (27)	1 5	52	133	260	449	666	900
37 (33)) 6	65	166	324	560	833	112
60 (53)) 10	05	266	519	896	1333	179
37	6	66	167	325	561	832	112
52	9	92	232	454	784	_3)	_3)
59	1(05	266	519	896	_3)	_3)
			1,6	67			
			1,2	25			
			1,6	67			
			1,2	25			
			1,2	25			
			2,3	38			
		1,	56			_3)	_3
		1,:	33			_3)	_3
			1,; area A _s speci	2,3 1,56 1,33 area A _s specified her	1,33 area A _s specified here: VMU-	2,38 1,56 1,33 area A _s specified here: VMU-A, V-A,	2,38 1,56 - ³⁾

SIKLA Injection System AN VME basic C

Performance

Characteristic values for threaded rods under shear loads

Table C3: Char	racteristic values of c	oncrete d	cone fai	lure and splitting failure
Threaded rods /	Internally threaded and	hor rods / I	Rebars	all sizes
Concrete cone fa	ailure			
Factorik	uncracked concrete	k ucr,N	[-]	11,0
Factor k₁	cracked concrete	k cr,N	[-]	7,7
Edge distance		Ccr,N	[mm]	1,5 • h _{ef}
Spacing		S cr,N	[mm]	2,0 • C _{cr,N}
Splitting failure				
Characteristic res	istance	N^0 Rk,sp	[kN]	min(N _{Rk,p} ;N ⁰ _{Rk,c})
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}
Edge distance	2,0 > h/h _{ef} > 1,3	C cr,sp	[mm]	2 ∙ h _{ef} (2,5 - h / h _{ef})
	h/h _{ef} ≤ 1,3			2,4 ∙ h _{ef}
Spacing		S cr,sp	[mm]	2,0 • c _{cr,sp}

SIKLA Injection System AN VME basic C

Performance Characteristic values of **concrete cone failure** and **splitting failure**

Threaded rod					M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure				1										
Characteristic resista	nce		N _{Rk,s}	[kN]			c		• f _{uk} āble C	1				
Partial factor			γMs,N	[-]					ble C1	•				
Combined pull-out a	and co	oncrete failur												
Characteristic bond	resis	tance in <u>unc</u>	acked	concrete	C20/25									
	I	40°C / 24°C			15	15	15	14	14	13	13	13		
Temperature range		60°C / 35°C	τ̃Rk,ucr	[N/mm²]	10	10	10	9,5	9,5	9,0	9,0	9,0		
		70°C / 43°C			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0		
Characteristic bond	resis	tance in <u>crac</u>	<u>ked</u> coi	ncrete C2	0/25	I		1						
	I	40°C / 24°C			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0		
Temperature range		60°C / 35°C	τRk,cr	[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5		
		70°C / 43°C			3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0		
Reduction factor ψ^{0}_{s}	_{sus} in (concrete C20	/25	•										
	I	40°C / 24°C												
Temperature range	II	60°C / 35°C	Ψ^0 sus	[-]	0,60									
		70°C / 43°C												
				C25/30				1,	02					
						1,04								
Increasing factors for	τrk			C35/45	1,07									
τ _{Rk} = ψ _c .τ _{Rk} (C20/25)			Ψc	C40/50				1,	08					
				C45/55				1,	09					
				C50/60				1,	10					
Concrete cone failu	re													
Relevant parameter								see Ta	ble C3					
Splitting failure				1										
Relevant parameter								see Ta	ble C3					
Installation factor				1										
Dry or wet concrete o water filled drill hole	r		γinst	[-]				1	,4					
SIKLA Injection S	yster	n AN VME b	asic C											
Performance Characteristic values	rete cone failure ant parameter ing failure ant parameter lation factor wet concrete or filled drill hole									A I	nnex (C4		

Table C5: Characteristic v	alues o	f shea	r load	s for th	readec	l rods						
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure <u>without</u> lever an	n											
Characteristic resistance steel, zinc plated, class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} or see Table C2									
Characteristic resistance steel, zinc plated, class 8.8, stainless steel A2, A4 and HCR	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} or see Table C2									
Ductility factor	k 7	[-]				1	,0					
Partial factor	γMs,V	[-]				see Ta	able C2					
Steel failure <u>with</u> lever arm		I										
Characteristic bending resistance	M ⁰ Rk,s	[Nm]					V _{el} ∙ f _{uk} īable C2					
Elastic section modulus	Wel	[mm³]	31	62	109	277	541	935	1387	1874		
Partial factor	γMs,∨	[-]				see Ta	able C2					
Concrete pry-out failure												
Pry-out factor	k ₈	[-]				2	,0					
Concrete edge failure												
Effective length of fastener	lf	[mm]	min (h _{ef} ;12 d _{nom}) min (h _{ef} ;300mm)									
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	γinst	[-]				1	,0					

SIKLA Injection System AN VME basic C

Performance

Internally threaded	anchoi	rod				VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20			
Steel failure 1)										••••				
Characteristic resista			5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123			
steel, zinc plated, pro	perty cl	ass	8.8	$N_{Rk,s}$	[kN]	16	27	46	67	121	196			
Partial factor				γMs,N	[-]			1,	5					
Characteristic resista steel A4 / HCR, prope	,		70	N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾			
Partial factor				γMs,N	[-]			1,87			2,86			
Combined pull-out a	and cor	ncrete fa	ailure											
Characteristic bond	resista	ance in <u>j</u>	uncra	<u>cked</u> co	oncrete C	20/25								
	I:	40°C /				15	15	14	14	13	13			
Temperature range	II:	60°C /		$ au_{Rk,ucr}$	[N/mm²]	10	10	9,5	9,5	9,0	9,0			
	:	70°C /				7,0	7,0	6,5	6,5	6,0	6,0			
Characteristic bond				ed conc	rete C20/	1	1							
	<u> </u>	40°C /				7,0	7,0	7,0	7,0	6,0	6,0			
Temperature range	<u> </u>	60°C /		τRk,cr	[N/mm²]	5,0	5,0	5,0	5,0	4,5	4,5			
		70°C /		_		3,5	3,5	3,5	3,5	3,0	3,0			
Reduction factor ψ^{0}				5	I	1								
- <i>i</i>	!:	40°C /		Ψ^0 sus	[-]									
Temperature range	emperature rangeII: 60°C / 3 III: 70°C / 4					0,60								
		1001	43 C		C25/30		1,02							
					C23/30									
Increasing factors for				F	C35/45		<u> </u>							
$\tau_{Rk} = \psi_c \cdot \tau_{Rk}(C20/25)$	νrk			ψc	C40/50		1,07							
					C45/55		1,09							
					C50/60			1,1						
Concrete cone failu	re					•								
Relevant parameter								see Ta	ble C3					
Splitting failure														
Relevant parameter								see Ta	ble C3					
Installation factor														
Dry or wet concrete of water filled drill hole	or			γinst	[-]			1,	4					
¹⁾ Fastening screws or thre internally threaded anch internally threaded anch ²⁾ For VMU-IG M20: prope	ior rod. T ior rod ar	he charao nd the fas	cteristic	tension r										
SIKLA Injection S	ystem	AN VM	E bas	sic C										
Performance										Annex	C6			

Interi	nally threaded ar	nchor rod			VMU-IG M6	VMU-IG M8	VMU-IG M10	VMU-IG M12	VMU-IG M16	VMU-IG M20
Steel	failure <u>without</u> I	ever arm ¹⁾			1	I	1		I	I
fed	Characteristic resistance	property class 5.8	V ⁰ Rk,s	[kN]	6	10	17	25	45	74
Steel, zinc plated	Characteristic resistance	property class 8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
л.	Partial factor		γMs,∨	[-]			1,	25		
Stainless steel	Characteristic resistance A4 / HCR	property class 70	V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾
St.	Partial factor		γMs,∨	[-]			1,56			2,38
Ducti	lity factor		k 7	[-]			1	,0		
Steel	failure <u>with</u> leve	er arm ¹⁾			• •					
, ted	Characteristic bending resistance	property class 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, zinc plated	Characteristic bending resistance	property class 8.8	M⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
	Partial factor		γMs,∨	[-]			1,:	25		
Stainless steel	Characteristic bending resistance A4 / HCR	property class 70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾
S	Partial factor		γMs,∨	[-]			1,56			2,38
Conc	rete pry-out failu	ure			•					•
Pry-o	ut factor		k ₈	[-]			2	,0		
Conc	rete edge failure	;								
Effec	tive length of faste	ener	lf	[mm]		mi	n (h _{ef} ;12 d _n	om)		min (h _{ef} 300mm
Outsi	de diameter of fas	stener	\mathbf{d}_{nom}	[mm]	10	12	16	20	24	30
Instal	lation factor		γinst	[-]			1	,0		
intern class	ening screws or threa nally threaded anchor are valid for the inte /MU-IG M20: Internal Fasten	r rod (exceptio rnally threaded	n: VMU-l(l anchor i d: proper	G M20). ⁻ rod and th ty class 5	The characte ne fastening 0;	ristic shear re element	esistance for			
SIKL	A Injection Sy	stem AN V	ME ba	sic C						
	-									

Reinforcing bar					Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure														
Characteristic resista	ance		N _{Rk,s}	[kN]					A _s •	f uk ¹⁾				
Cross sectional area			As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor			γMs,N	[-]					1,4	4 ²⁾				
Combined pull-out	and	concrete failı	ıre											
Characteristic bond	l res	istance in <u>un</u>	cracke	<u>d</u> concret	te C20)/25								
_	I:	40°C / 24°C			14	14	14	12	12	12	12	11	11	11
Temperature range	II:	60°C / 35°C	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
-	III:	70°C / 43°C			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Characteristic bond	l resi	istance in <u>cra</u>	icked c	oncrete	C20/2	5								
	I:	40°C / 24°C			6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
Temperature range	II:	60°C / 35°C	τ _{Rk,cr}	[N/mm²]	4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
-	III:	70°C / 43°C			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reduction factor ψ^{c}	, _{sus} in	concrete C2	0/25								•			
	1:	40°C / 24°C												
Temperature range	II:	60°C / 35°C	ψ^0 sus	[-]					0,	60				
-	III:	70°C / 43°C												
									1,	02				
				C30/37	1,04									
Increasing factor for	TRK			C35/45					1,	07				
τ _{Rk} = ψ _c • τ _{Rk} (C20/25)	• T (K		Ψc	C40/50					1,	08				
				C45/55					1,	09				
				C50/60					1,	10				
Concrete cone failu	ire													
Relevant parameter								s	вее Та	ble C	3			
Splitting failure														
Relevant parameter								s	see Ta	ble C	3			
Installation factor				1										
Dry or wet concrete of water filled drill hole	or		γinst	[-]					1	,4				
⁾ f _{uk} shall be taken from th ⁹ In absence of national r	ne spe	ecifications of rei	nforcing	bars										
	Jyula													
SIKLA Injection S	Syste	em AN VME	basic	С										
-	-													
Performance													ex C8	•

Deutsches Institut für Bautechnik

Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever a	arm											
Characteristic shear resistance	V ⁰ Rk,s	[kN]				(0,50 • A	As • f_{uk} ¹)			
Cross sectional area	As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γMs,V	[-]					1,	5 ²⁾				
Ductility factor k ₇ [-] 1,0												
Steel failure with lever arm	I											
Characteristic bending resistance		1,2 • W	l∕ _{el} ∙ f _{uk} ¹)								
Elastic section modulus	Wel	[mm ³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γMs,∨	[-]					1,8	5 ²⁾				
Concrete pry-out failure												
Pry-out factor	k ₈	[-]	2,0									
Concrete edge failure												
Effective length of rebar	lf	[mm]		_	min	(h _{ef} ;12	d _{nom})			min (h _{ef} ; 300)mm)
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor γ _{inst} [-] 1,0												
¹⁾ f _{uk} shall be taken from the specification ²⁾ In absence of national regulation												
SIKLA Injection System		E basic	С									
Performance Characteristic values of she										An	inex (9

Threaded rod			M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20
Displacement facto uncracked concrete,		uasi-static a	action							
Temperature range _ I: 40°C / 24°C	δ_{N0} -factor	[mm [N/mm ²]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
	$\delta_{N\infty}$ -factor		0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range _ II: 60°C / 35°C	δ_{N0} -factor		0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
	$\delta_{N\infty}$ -factor		0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Temperature range _ III: 70°C / 43°C	δ_{N0} -factor		0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061
	$\delta_{N\infty}$ -factor		0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077
Displacement facto cracked concrete, st		si-static acti	ion							
Temperature range	δ_{N0} -factor		0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
l: 40°C / 24°C	$\delta_{N\infty}$ -factor		0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range _ II: 60°C / 35°C	δ_{N0} -factor	[mm [N/mm ²]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
	δ _{N∞} -factor		0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229
Temperature range _ III: 70°C / 43°C	δ_{N0} -factor		0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121
	$\delta_{N\infty}$ -factor		0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252
$\delta_{N\infty} = \delta_{N\infty}$ - factor \cdot 1	τ;	0		ess for ten	sion					
able C11: Displ		actor und	der she	ear load	l	od)				
able C11: Displ	acement f	actor und	der she	ear load	l	od) M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M2
able C11: Displ (threa	aded rod ar	actor und interna	der she Ily thre M8	ear load aded ar M10 IG-M6	nchor ro M12 IG-M8	, М16				
Table C11: Displ (threa Threaded rod Displacement facto cracked and uncrack	aded rod ar	actor und id interna static and	der she Ily thre M8	ear load aded ar M10 IG-M6	nchor ro M12 IG-M8	, М16				M30 IG-M2 0,03
Table C11: Displ (threa Threaded rod Displacement facto	aded rod an	actor und interna	der she Ily thre M8 quasi-sta	ear load aded ar M10 IG-M6 atic action	nchor ro M12 IG-M8	M16 IG- M10	IG-M12	IG-M16		IG-M2
Table C11: Disple (thread) (thread) Threaded rod Displacement factor Cracked and uncracked All temperature	lacement f aded rod an or ¹⁾ ked concrete, $\delta_{V_{\infty}}$ -factor displacement	actor und id interna static and [mm/(kN)]	der she Ily thre M8 quasi-st	ear load aded ar IG-M6 atic action 0,06 0,08	nchor ro M12 IG-M8	M16 IG- M10 0,04	IG-M12 0,04	IG-M16 0,03	0,03	IG-M2 0,03

B . L			~ -	~	~	~	~	~ ~ ~	~	~	~	~
Rebar	1)		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Displacement factor uncracked concrete, s		asi-static ad	ction									
Temperature range I:	δ _{N0} -factoι	- - mm	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
40°C / 24°C	δ _{N∞} -factoι		0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature range II: 60°C / 35°C	δ _{N0} -factor		0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
	δ _{N∞} -factoι	$\left[\frac{1}{N/mm^2}\right]$	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature range III: 70°C / 43°C	. δ _{N0} -factor	-	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
	δ _{N∞} -factoι		0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Displacement factor cracked concrete, sta		i-static actic	on									
Temperaturbereich I: 40°C / 24°C	δ _{N0} -factor		0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
	δ _{N∞} -factoι	-	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperaturbereich II: 60°C / 35°C	δ _{N0} -factoι		0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
	δ _{N∞} -factoι	l _{N/mm²}	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperaturbereich III:	. δ _{N0} -factoι		0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
70°C / 43°C	δ _{N∞} -factoι		0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286
¹⁾ Calculation of the dis $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;	placomone											
$\delta_{N\infty} = \delta_{N\infty}$ - factor · τ; Table C13: Displa		acting bond s actor und				bar)						
$\delta_{N\infty} = \delta_{N\infty}$ - factor · τ; Table C13: Displa		-			ad (re	, 	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
δ _{N∞} = δ _{N∞} - factor · τ; Table C13: Displa Rebar Displacement facto	acement f	actor und	Ø 8	ear lo Ø 10	ad (re Ø 12	, 	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
δ _{N∞} = δ _{N∞} - factor · τ; Table C13: Displa Rebar Displacement facto cracked and uncrack	r ¹⁾ ed concrete	actor und	er sh e Ø 8 quasi-s	ear lo Ø 10 tatic ac	ad (re Ø 12	Ø 14				1		
δ _{N∞} = δ _{N∞} - factor · τ; Table C13: Displa Rebar Displacement facto	r ¹⁾ ed concrete _{δvo} -factor	actor und	ler sh a Ø 8 quasi-s 0,06	ear lo Ø 10 tatic ac 0,05	ad (re Ø 12 ction 0,05	Ø 14	0,04	0,04	0,03	0,03	0,03	0,03
$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C13: Displa Rebar Displacement facto cracked and uncrack All temperature	acement f r ¹⁾ ed concrete δνο-factor δν∞-factor placement	actor und	Quasi-s 0,06 0,09	ear lo Ø 10 tatic ac 0,05	ad (re Ø 12 ction 0,05	Ø 14	0,04		0,03	0,03	0,03	
$\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$; Table C13: Displa Rebar Displacement facto cracked and uncrack All temperature ranges ¹⁾ Calculation of the dis $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;	acement f	actor und , static and [mm/(kN)] acting shear	Quasi-s Quasi-s 0,06 0,09	ear lo Ø 10 tatic ac 0,05	ad (re Ø 12 ction 0,05	Ø 14	0,04	0,04	0,03	0,03	0,03	0,03