

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-23/0191 vom 11. Juli 2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Chemofast Injektions System UM-H

Nachträglich eingemörteltelte Bewehrungsanschlüsse mit verbessertem Verbund- und Spaltversagen bei statischer Belastung

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

Chemofast Anchoring GmbH

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 332402-00-0601-v01 Edition 10/2020

Europäische Technische Bewertung ETA-23/0191

Seite 2 von 16 | 11. Juli 2023

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-23/0191

Seite 3 von 16 | 11. Juli 2023

Besonderer Teil

1 Technische Beschreibung des Produkts

Gegenstand dieser Europäischen Technischen Bewertung ist der nachträglich eingemörtelte Anschluss von Betonstahl für nachträgliche Bewehrungsanschlüsse durch Verankerung oder Übergreifungsstoß in vorhandene Konstruktionen aus Normalbeton mit dem *Chemofast Injektions System UM-H* auf der Grundlage der technischen Regeln für den Stahlbetonbau.

Für den Bewehrungsanschluss werden Betonstahl mit einem Durchmesser ϕ von 8 bis 32 mm entsprechend Anhang A und der *Chemofast Injektionsmörtel UM-H* verwendet. Der Betonstahl wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen dem Stahlteil, dem Injektionsmörtel und dem Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Bewehrungsanschlusses von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung					
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Beanspruchung)						
Widerstand gegen kombiniertes Versagen durch Herausziehen und Betonausbruch in ungerissenen Beton	Siehe Anhang C 1					
Widerstand gegen Versagen durch kegelförmigen Betonausbruch	Siehe Anhang C 1					
Montagesicherheit	Siehe Anhang C 1					
Widerstand gegen Verbundspaltversagen	Siehe Anhang C 1					
Einfluss von gerissenem Beton auf den Widerstand gegen kombiniertes Versagen durch Herausziehen und Betonausbruch	Siehe Anhang C 1					

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 332402-00-0601-v01 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-23/0191

Seite 4 von 16 | 11. Juli 2023

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 11. Juli 2023 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Stiller

Einbauzustand und Anwendungsbeispiel

Bild A1: Stütze / Wand zu Fundament / Platte

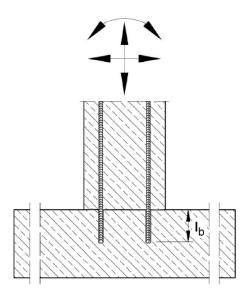
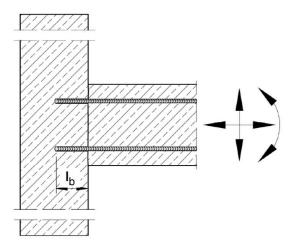
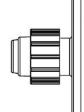



Bild A2: Platte / Balken an Wand oder Balken an Stütze

I_b = Einbindetiefe

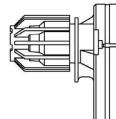
Die Übertragung von Querkräften zwischen vorhandenem und neuem Beton ist zusätzlich gemäß EN 1992-1-1:2004+AC:2010 nachzuweisen.


Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Produktbeschreibung Einbauzustand und Anwendungsbeispiele für Bewehrungsanschlüsse mit Betonstahl	Anhang A 1

Kartuschensystem

Koaxial Kartusche:

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml

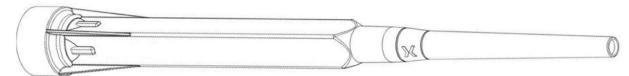

Aufdruck:

UM-H

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:

 $235\ \text{ml},\,345\ \text{ml}$ bis $360\ \text{ml}$ und $825\ \text{ml}$



Aufdruck:

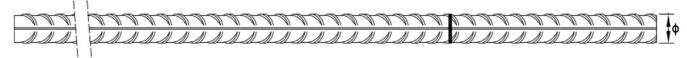
UM-H

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Statikmischer PM-19E

Verfüllstutzen VS und Mischerverlängerung VL

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse


Produktbeschreibung

Injektionssystem

Anhang A 2

Betonstahl: ø8 bis ø32

- Mindestwerte der bezogenen Rippenfläche f_{R.min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05φ ≤ h_{rib} ≤ 0,07φ betragen
 (φ: Nomineller Durchmesser des Betonstahls; h_{rib}: Rippenhöhe des Betonstahls)

Tabelle A1: Werkstoffe

Benennung	Werkstoff
I Anhana (:	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 3

Spezifizierung des Verwendungszwecks									
Beanspruchung der Veran	ıkerung:	Nutzungsdauer 50 Jahre	Nutzungsdauer 100 Jahre						
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	Statische und quasi-statische Lasten	Ø8 bis Ø32	Ø8 bis Ø32						
Temperaturbereich:		I: - 40 °C bis +40 °C ¹⁾ II: - 40 °C bis +80 °C ²⁾ III: - 40 °C bis +120 °C ³⁾ IV: - 40 °C bis +160 °C ⁴⁾	I: - 40 °C bis +40 °C¹) II: - 40 °C bis +80 °C²)						

^{1) (}max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C12/15 bis C50/60 gemäß EN 206: 2013 + A1:2016.
- Maximal zulässiger Chloridgehalt im Beton von 0.40 % (CL 0.40) bezogen auf den Zementgehalt gemäß EN 206: 2013 + A1:2016.
- Nicht karbonisiertem Beton.

Anmerkung: Bei einer karbonatisierten Oberfläche des bestehenden Betons ist die karbonatisierte Schicht vor dem Anschluss des neuen Stabes im Bereich des nachträglichen Bewehrungsanschlusses mit dem Durchmesser von $\phi + 60$ mm zu entfernen.

Die Tiefe des zu entfernenden Betons muss mindestens der Mindestbetondeckung für die entsprechenden Umweltbedingungen nach EN 1992 1 1:2004+AC:2010 entsprechen.

Dies entfällt bei neuen, nicht karbonatisierten Bauteilen und bei Bauteilen in trockener Umgebung.

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Bemessung gemäß EOTA Technical Report TR 069, Fassung Juni 2021.
- Die tatsächliche Lage der Bewehrung im vorhandenen Bauteil ist auf der Grundlage der Baudokumentation festzustellen und beim Entwurf zu berücksichtigen.

Einbau:

- Trockener oder nasser Beton, sowie in wassergefüllte Bohrlöcher.
- Überkopfanwendungen erlaubt.
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB) oder Pressluftbohrer (CD).
- Einbau der Bewehrungsstäbe durch entsprechend qualifiziertes Personal und unter Aufsicht des bautechnischen Verantwortlichen.
- Lage der vorhandenen Bewehrungsstäbe prüfen (falls die Lage vorhandener Bewehrungsstäbe nicht bekannt ist, ist diese mit einem dafür geeigneten Bewehrungssuchgerät sowie anhand der Bauunterlagen zu ermitteln und anschließend am Bauteil zu kennzeichnen).

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C)

^{3) (}max. Langzeit-Temperatur +72°C und max. Kurzzeit-Temperatur +120°C)

^{4) (}max. Langzeit-Temperatur +100°C und max. Kurzzeit-Temperatur +160°C)

Tabelle B1: Mindestbetondeckung c_{min} des eingemörtelten Bewehrungsstabes in Abhängigkeit vom Bohrverfahren

Bohrverfahren Stabdurch- messer		Ohne Bohrhilfe	Mit Bo	hrhilfe
HD: Hammerbohren HDB: Hammerbohren	< 25 mm	30 mm + 0,06 · l _b ≥ 2 φ	$30 \text{ mm} + 0.02 \cdot l_b \ge 2 \phi$	Bohrhilfe
mit Hohlbohrern	≥ 25 mm	40 mm + 0,06 · l _b ≥ 2 φ	40 mm + 0,02 · l _b ≥ 2 φ	
CD: Pressluftbohren	< 25 mm	50 mm + 0,08 · I _b	50 mm + 0,02 · I _b	
CD. Pressiulborireii	≥ 25 mm	60 mm + 0,08 · l _b ≥ 2 φ	60 mm + 0,02 · I _b ≥ 2 ф	

Die Mindestbetondeckung gemäß EN 1992-1-1:2004+AC:2010 ist einzuhalten. Der lichte Mindestabstand beträgt a = max (40mm; 4 φ)

Tabelle B2: Auspressgeräte

Kartusche Typ/Größe	М	Druckluftbetrieben		
Koaxial Kartusche 150, 280, 300 bis 333 ml	z.B. Typ	z.B. Typ TS 492 X		
Koaxial Kartusche 380 bis 420 ml	z.B. Typ CCM 380/10	z.B. Typ H 285 or H244C	z.B. Typ TS 485 LX	
Side-by-side Kartusche 235, 345 ml	z.B. Typ CBM 330A	z.B. Typ H 260	z.B. Typ TS 477 LX	
Side-by-side Kartusche 825 ml	-	-	z.B. Typ TS 498X	

Alle Kartuschen können ebenso mit einem Akkugerät ausgepresst werden.

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Verwendungszweck Mindestbetondeckung Auspressgeräte	Anhang B 2

Tabelle B3: Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung, Hammer- (HD) und Druckluftbohren (CD)

	Roh	r - Ø			d _{b,min}			Kartus Alle G				artusche: 825 ml
Stab-	Boll		d Bürste	C		Verfüll- stutzen			Druckluftpistole		Druckluftpistole	
Ф	HD	CD			Ø		I _{b,max}	Mischerver- längerung	I _{b,max}	Mischerver- längerung	I _{b,max}	Mischerver- längerung
[mm]	[m	m]		[mm]	[mm]		[mm]		[mm]		[mm]	
8	10	-	RB10	11,5	10,5	-	250		250		250	
	12	_	RB12	13,5	12,5	_	700		800		800	VL10/0,75
10	12		11012	10,5	12,5		250		250]	250	oder
10	14	_	RB14	15,5	14,5	VS14	700		1000		1000	VL16/1,8
12	17			920		V314	250	,	250		250	
	1	6	RB16	17,5	16,5	VS16					1200	
14	1	8	RB18	20,0	18,5	VS18	700	VL10/0,75	1000	VL10/0,75	1400	
16	2	0	RB20	22,0	20,5	VS20		oder		oder	1600	
20	25	-	RB25	27,0	25,5	VS25		VL16/1,8		VL16/1,8		
20	1.=	26	RB26	28,0	26,5	VS25			700			VL16/1,8
22	2	8	RB28	30,0	28,5	VS28						VL10/1,0
24/25	3	0	RB30	32,0	30,5	VS30	500				2000	
24/25	3	2	RB32	34,0	32,5	VS32			500	,,		
28	3	5	RB35	37,0	35,5	VS35			500			
32	4	0	RB40	43,5	40,5	VS40						

Tabelle B4: Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung, Hammerbohren mit Hohlbohrersystem (HDB)

	D		d _{b,min}		Kartusche: Alle Größen				Kartusche: 825 ml										
Stab-	Bohr - Ø	d₀ Bürsten - Ø	min.	Verfüll- stutzen	CONTRACTOR OF THE PARTY OF THE	oder Akku- Pistole	Druck	luftpistole	Druck	luftpistole									
ф	HDB	30.000	Ø		I _{b,max}	Mischerver- längerung	I _{b,max}	Mischerver- längerung	I _{b,max}	Mischerver- längerung									
[mm]	[mm]				[mm]		[mm]		[mm]										
8	10			-	250		250		250										
0	12			(500)	700		800		800										
10	12			-	250		250		250										
10	14			VC14	VC14 70	700		1000		1000									
12	14		V314	_ vs					V312	VS14	V314	V314	VS14 2	250		250		250	
12	16	Kaina Da	la lavua a	VS16	6	VII 40/0 75		VI 40/0 75		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
14	18		//-	Keine Reinigung erforderlich	VS18	700	VL10/0,75 oder	1000	VL10/0,75 oder		VL10/0,75 oder								
16	20	enorden	FINOIT	VS20		VL16/1,8		VL16/1,8		VL16/1,8									
20	25			VS25		V 2 1 0/ 1,0	700	VE10/1,0		VE10/1,0									
22	28			VS28			700		1000										
24/25	30			VS30	VS30 500														
24/23	32		VS32 VS35	VS32	500		500												
28	35				VS35			500											
32	40			VS40															

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Verwendungszweck Bürsten, Verfüllstutzen, max Verankerungslänge und Mischerverlängerung	Anhang B 3

Reinigungs- und Installationszubehör

HDB – Hohlbohrersystem

Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer Durchflussmenge von Minimum 150 m³/h (42 l/s).

Handpumpe

(Volumen 750 ml, $h_0 \ge 10 d_s$, $d_0 \le 20 mm$)

Druckluftpistole

(min 6 bar)

Bürste RB

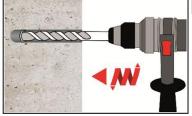
Verfüllstutzen VS

Bürstenverlängerung RBL

Tabelle B5: Verarbeitungs- und Aushärtezeiten

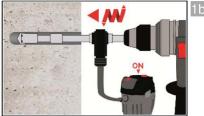
Temperatur	im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
	T		t _{work}	t _{cure}
- 5 °C	bis	- 1 °C	50 min	5 h
0°C	bis	+ 4 °C	25 min	3,5 h
+ 5 °C	bis	+ 9 °C	15 min	2 h
+ 10 °C	bis	+ 14°C	10 min	1 h
+ 15 °C	bis	+ 19°C	6 min	40 min
+ 20 °C	bis	+ 29 °C	3 min	30 min
+ 30 °C	bis	+ 40 °C	2 min	30 min
Kartuschentemperatur			+5°C bis	s +40°C

Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund.
 In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.


Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Verwendungszweck Reinigungs-und Installationszubehör Verarbeitungs- und Aushärtezeiten	Anhang B 4

Setzanweisung

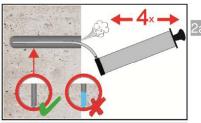
Achtung: Vor dem Bohren, karbonatisierten Beton entfernen und Kontaktfläche reinigen (siehe Anhang B 1) Bei Fehlbohrungen ist das Bohrloch zu vermörteln.


Bohrloch erstellen

1a. Hammer (HD) / Druckluftbohren (CD)

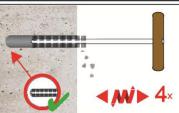
Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B3.

Weiter mit Schritt 2 (MAC oder CAC)

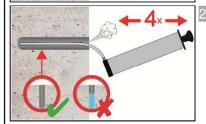

Hammerbohren mit Hohlbohrer (HDB) (siehe Anhang B 4)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B4.

Das Hohlbohrersystem entfernt den Bohrstaub und reinigt das Bohrloch Weiter mit Schritt 3.


Handpumpen-Reinigung (MAC)

für Bohrerdurchmesser d₀ ≤ 20mm und Bohrlochtiefe h₀ ≤ 10 ϕ , mit Bohrmethode HD und CD

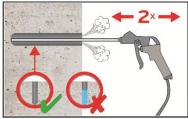


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

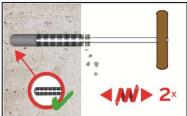
Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

2b. Bohrloch mindestens 4x mit Bürste RB gemäß Tabelle B3 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.

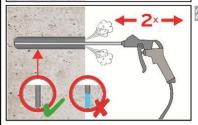
Abschließend Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.


Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse Verwendungszweck Setzanweisung Anhang B 5

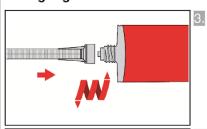
Setzanweisung (Fortsetzung)


Druckluft-Reinigung (CAC):

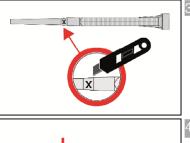
Alle Durchmesser mit Bohrmethode HD und CD



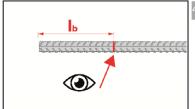
Bohrloch mindestens 2x mit Druckluft (min. 6 bar, ölfrei) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.



Bohrloch mindestens 2x mit Bürste RB gemäß Tabelle B3 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.


Abschließend Bohrloch mindestens 2x mit Druckluft (min. 6 bar, ölfrei) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen.



Statikmischer PM-19E aufschrauben und Kartusche in geeignetes Auspressgerät einlegen.

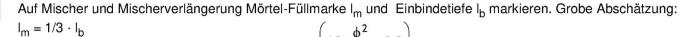
Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 4) und bei neuen Kartuschen, neuen Statikmischer verwenden.

Bei Verwendung der Mischerverlängerung VL16/1,8, muss die Spitze des Mischers an der Position "X" abgeschnitten werden .

Einbindetiefe I_b auf dem Bewehrungsstab markieren.

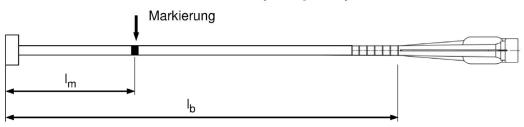
Der Bewehrungsstab muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

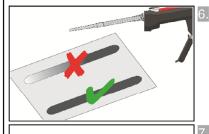
Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse


Verwendungszweck

Setzanweisung (Fortsetzung)

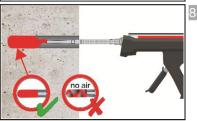
Anhang B 6




Setzanweisung (Fortsetzung)

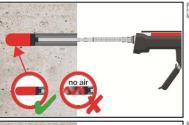
Optimales Mörtelvolumen:

 $I_{m} = I_{b} \cdot \left(1.2 \cdot \frac{\phi^{2}}{d_{0}^{2}} - 0.2 \right)$


Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe)

Verfüllstutzen VS und Mischerverlängerung VL sind gem. Tabelle B3 oder B4 zu verwenden

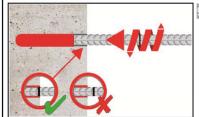
Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.



Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung verwenden) her mit Mörtel befüllen, bis Mörtel-Füllmarke $I_{\rm m}$ sichtbar wird.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.

Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 4) beachten.

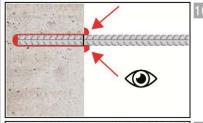


Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch mit Mörtel befüllen, bis Mörtel-Füllmarke I_m sichtbar wird. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt.

Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 4) beachten.

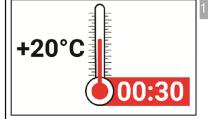
Bewehrungsstab mit leichter Drehbewegung bis zur Markierung einführen.

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse


Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 7


Setzanweisung (Fortsetzung)

Ringspalt zwischen Bewehrungsstab und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 8 wiederholen.

Bei Anwendungen in vertikaler Richtung nach oben ist der Bewehrungsstab zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 4) muss eingehalten werden. Bewehrungsstab während der Aushärtezeit nicht bewegen oder belasten.

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Verwendungszweck Setzanweisung (Fortsetzung)	Anhang B 8

Tabelle C1: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB);
Nutzungsdauer 50 und 100 Jahren

Nutzungsdauer 50 und 100 Janren													
Betonstahl			D			Ø 12	Ø 14	Ø 16	⊘ 20	Ø 24	Ø 2 5	Ø 28	Ø 32
Kombiniertes Versagen durch Herausziehen und Betonausbruch ¹⁾ Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25													
				14	14	14	14	13	13	13	13	13	13
Trockene feuchter Solution Solution	trockener und feuchter Beton, wasser- gefülltes Bohrloch	${}^{\tau}_{Rk,ucr,50} = \\ {}^{\tau}_{Rk,ucr,100}$	1	14	14	14	14	13	13	13	13	13	13
2 .5 30 0/00 0 leuchler				13	12	12	12	12	11	11	11	11	11
IV: 100°C/160°C				9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Reduktionsfaktor ψ ⁰ sus,50 oc	der w ⁰	Lag im geris	l ssenen ur										0,0
' '	· ·	 		0.90									
君皇——————————trockene		Ψ^0 sus, 50 =			<u> </u>								
teuchter	feuchter Beton, wasser-gefülltes Bohrloch	Ψ ⁰ sus,100	[-]	0,87									
Bohrlock		Ψ ⁰ sus,50		0,75									
□ IV: 100°C/160°C				0,66									
Erhöhungsfaktor für Beton		Ψc	[-]					(t _{ck} / :	20) ^{0,1}				
Charakteristische Verbund-trag in Abhängigkeit der	bund-tragfähigkeit		k,ucr,50 =				Ψ c •	^τ Rk,uc	r,50,(C	20/25)			
Betonfestigkeitsklasse			ucr,100 =					^τ Rk,ucr	, ,,				
Einfluss von gerissenem Bete	on auf da	as kombinie	rte Versa	gen d	urch l	lerau:	sziehe	n und	Beto	nausb	ruch		
Einflussfaktor für gerissenen Beton		Ω_{cr}	[-]	0,77	0,78	0,79	0,81	0,81	0,82	0,83	0,83	0,83	0,83
Verbundspaltversagen								•	•	•			
Produktbasisfaktor		A _k	[-]	6,7									
Exponent für den Einfluss der .													
- Betondruckfestigkeit		sp1	[-]						27				
- Stabnenndurchmessers ф		sp2	[-]		0,36								
- Betondeckung c _d		sp3	[-]		0,37								
- seitlichen Betondeckung (c _{ma}	_k / c _d)	sp4	[-]		0,16								
- Einbindetiefe l _b		lb1	[-]		0,49								
Betonausbruch		Τ.	T										
ungerissener Beton		k _{ucr,N}	[-]	11,0									
gerissener Beton		k _{cr,N}	[-]	7,7									
Randabstand		c _{cr,N}	[mm]	1,5 l _b ³⁾									
Achsabstand	s _{cr,N}	[mm]	3,0 l _b ³⁾										
Montagebeiwert													
für trockenen und feuchten Beton MAC CAC					1,2					2)			
		γ _{inst}	Yinst [-]			1,0							
	HDB			1,2									
für wassergefülltes Bohrloch	CAC							1	,4				

¹⁾ Leistung in Temperaturbereich III und IV sind nur für eine Nutzungsdauer von 50 Jahren bewertet

³⁾ siehe Anhang A 1

Chemofast Injektionssystem UM-H für Bewehrungsanschlüsse	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung; Nutzungsdauer 50 und 100 Jahre; (HD, CD und HDB)	Anhang C 1

²⁾ keine Leistung bewertet