



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

ETA-23/0191 of 11 July 2023

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Chemofast Injection system UM-H

Post-installed reinforcing bar (rebar) connection with improved bond-splitting behaviour under static loading

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

Chemofast Anchoring GmbH

16 pages including 3 annexes which form an integral part of this assessment

EAD 332402-00-0601-v01 Edition 10/2020



# European Technical Assessment ETA-23/0191

Page 2 of 16 | 11 July 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



European Technical Assessment ETA-23/0191

English translation prepared by DIBt

Page 3 of 16 | 11 July 2023

#### **Specific Part**

#### 1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the *Chemofast Injection system UM-H* in accordance with the regulations for reinforced concrete construction.

Reinforcing bars with a diameter  $\phi$  from 8 to 32 mm according to Annex A and the *Chemofast injection mortar UM-H* are used for the post-installed rebar connection. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                              | Performance                 |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| Characteristic resistance to tension load (stati                                      | c and quasi-static loading) |  |  |  |
| Resistance to combined pull-out and concrete failure in uncracked concrete            | See Annex C 1               |  |  |  |
| Resistance to concrete cone failure                                                   | See Annex C 1               |  |  |  |
| Robustness                                                                            | See Annex C 1               |  |  |  |
| Resistance to bond-splitting failure                                                  | See Annex C 1               |  |  |  |
| Influence of cracked concrete on resistance to combined pull-out and concrete failure | See Annex C 1               |  |  |  |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332402-00-0601-v01, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1





# **European Technical Assessment ETA-23/0191**

Page 4 of 16 | 11 July 2023

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 11 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Stiller



# Installation condition and application example

Figure A1: Column / wall to foundation / slab

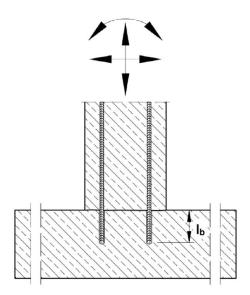
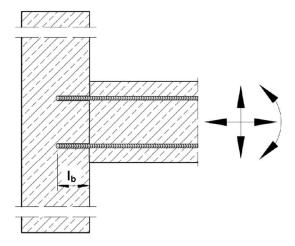




Figure A2: Slab / beam to wall or beam to column



I<sub>b</sub> = Embedment length

The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.

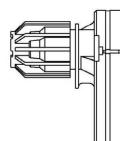
| Chemofast Injection system UM-H for rebar connection                   |           |
|------------------------------------------------------------------------|-----------|
| Product description Installed condition and examples of use for rebars | Annex A 1 |



# Cartridge system

# **Coaxial Cartridge:**

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

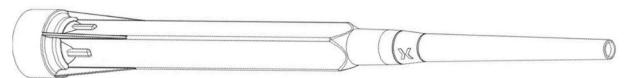



# Imprint:

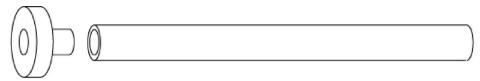
#### UM-H

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

# **Side-by-Side Cartridge:** 235 ml, 345 ml up to 360 ml and 825 ml




### Imprint:


#### UM-H

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

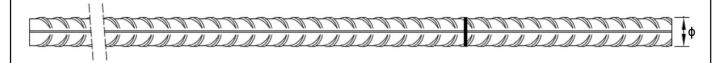
#### Static mixer PM-19E



# Piston plug VS und mixer extension VL



# Chemofast Injection system UM-H for rebar connection


#### **Product description**

Injection system

Annex A 2







- Minimum value of related rip area f<sub>R,min</sub> according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05φ ≤ h<sub>rib</sub> ≤ 0,07φ
   (φ: Nominal diameter of the bar; h<sub>rib</sub>: Rib height of the bar)

#### **Table A1:** Materials Rebar

| Designation                             | Material                                                                                                                         |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Rebar EN 1992-1-1:2004+AC:2010, Annex C | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |  |  |  |  |

Chemofast Injection system UM-H for rebar connection

Product description

Specifications Rebar

Annex A 3



| Specification of the intended use                                                          |                               |                                                                                                                                               |                                                                      |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Anchorages subject to:                                                                     |                               | working life 50 years                                                                                                                         | working life 100 years                                               |  |  |  |  |  |  |  |  |
| HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling | Static and quasi-static loads | Ø8 to Ø32                                                                                                                                     | Ø8 to Ø32                                                            |  |  |  |  |  |  |  |  |
| Temperature Range:                                                                         |                               | I: -40 °C to +40 °C <sup>1)</sup> II: -40 °C to +80 °C <sup>2)</sup> III: -40 °C to +120 °C <sup>3)</sup> IV: -40 °C to +160 °C <sup>4)</sup> | I: -40 °C to +40 °C <sup>1)</sup> II: -40 °C to +80 °C <sup>2)</sup> |  |  |  |  |  |  |  |  |

<sup>1) (</sup>max. long-term temperature +24°C and max. short-term temperature +40°C)

#### Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of  $\phi$  + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EOTA Technical Report TR 069, Edition June 2021.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

#### Installation:

- Dry or wet concrete, as well as in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB) or compressed air drill mode (CD).
- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component).

| Chemofast Injection system UM-H for rebar connection |           |
|------------------------------------------------------|-----------|
| Intended use<br>Specifications                       | Annex B 1 |

<sup>2) (</sup>max. long-term temperature +50°C and max. short-term temperature +80°C)

<sup>3) (</sup>max. long-term temperature +72°C and max. short-term temperature +120°C)

<sup>4) (</sup>max. long-term temperature +100°C and max. short-term temperature +160°C)



| Table B1: | Minimum concrete cover c <sub>min</sub> of post-installed rebar depending of drilling |
|-----------|---------------------------------------------------------------------------------------|
|           | method                                                                                |

| D    | rilling method                     | Rebar<br>diameter | Without drilling aid                | With dri                                    | lling aid    |
|------|------------------------------------|-------------------|-------------------------------------|---------------------------------------------|--------------|
| HD:  | Hammer drilling<br>Hammer drilling | < 25 mm           | 30 mm + 0,06 · $I_b$ ≥ 2 $\phi$     | $30 \text{ mm} + 0.02 \cdot l_b \ge 2 \phi$ | Drilling aid |
| ПОВ. | with hollow drill bit              | ≥ 25 mm           | 40 mm + 0,06 · $I_b$ ≥ 2 $\phi$     | 40 mm + 0,02 · I <sub>b</sub> ≥ 2 φ         |              |
| CD:  | Compressed air                     | < 25 mm           | 50 mm + 0,08 · l <sub>b</sub>       | 50 mm + 0,02 · l <sub>b</sub>               |              |
|      | drilling                           | ≥ 25 mm           | 60 mm + 0,08 · l <sub>b</sub> ≥ 2 ф | 60 mm + 0,02 · I <sub>b</sub> ≥ 2 φ         |              |

The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed.

The minimum clear spacing is  $a = max (40mm; 4 \phi)$ 

Table B2: Dispensing tools

| Cartridge type/size                                 | На                   | Pneumatic tool           |                     |
|-----------------------------------------------------|----------------------|--------------------------|---------------------|
| Coaxial cartridges<br>150, 280,<br>300 up to 333 ml | e.g. Type            | e.g. Type TS 492 X       |                     |
| Coaxial cartridges<br>380 up to 420 ml              | e.g. Type CCM 380/10 | e.g. Type H 285 or H244C | e.g. Type TS 485 LX |
| Side-by-side cartridges<br>235, 345 ml              | e.g. Type CBM 330A   | e.g. Type H 260          | e.g. Type TS 477 LX |
| Side-by-side cartridge<br>825 ml                    | -                    | -                        | e.g. Type TS 498X   |

All cartridges could also be extruded by a battery tool.

| Chemofast Injection system UM-H for rebar connection |           |
|------------------------------------------------------|-----------|
| Intended use Minimum concrete cover Dispensing tools | Annex B 2 |



| Table B3: | Brushes, piston plugs, max embedment length and mixer extension, |
|-----------|------------------------------------------------------------------|
|           | hammer (HD) and compressed air (CD) drilling                     |

|             | Dr        | ·ill |              |      | d <sub>b,min</sub> |         |                      | Cartridge       | Cartridge: 825 ml  |                 |                    |                 |          |
|-------------|-----------|------|--------------|------|--------------------|---------|----------------------|-----------------|--------------------|-----------------|--------------------|-----------------|----------|
| Bar<br>size | bit - Ø d |      | l₀<br>h - Ø  | min. |                    |         | Hand or battery tool |                 | Pneumatic tool     |                 | Pneumatic tool     |                 |          |
| ф           | HD        | CD   |              |      | Ø                  | Ø       |                      | Mixer extension | I <sub>b,max</sub> | Mixer extension | I <sub>b,max</sub> | Mixer extension |          |
| [mm]        | [m        | m]   |              | [mm] | [mm]               |         | [mm]                 |                 | [mm]               |                 | [mm]               |                 |          |
| 8           | 10        | -    | RB10         | 11,5 | 10,5               | 1-      | 250                  |                 | 250                |                 | 250                |                 |          |
|             | 12        | _    | RB12         | 13,5 | 12,5               |         | 700                  |                 | 800                |                 | 800                | VL10/0,75       |          |
| 10          | 12        | •    | NDIZ         | 13,5 | 12,5               |         | 250                  |                 | 250                |                 | 250                | or              |          |
| 10          | 14        |      | RB14 15,5 14 | 15.5 | 145                | VS14 70 | VC14                 | 700             |                    | 1000            |                    | 1000            | VL16/1,8 |
| 12          | 14        | ı    |              | 14,5 | V314               | 250     |                      | 250             |                    | 250             |                    |                 |          |
| 12          | 1         | 6    | RB16         | 17,5 | 16,5               | VS16    |                      |                 |                    |                 | 1200               |                 |          |
| 14          | 1         | 8    | RB18         | 20,0 | 18,5               | VS18    | 700                  | VL10/0,75       | 1000               | VL10/0,75       | 1400               |                 |          |
| 16          | 2         | 0    | RB20         | 22,0 | 20,5               | VS20    |                      | or              |                    | or              | 1600               |                 |          |
| 20          | 25        | -    | RB25         | 27,0 | 25,5               | VS25    |                      | VL16/1,8        |                    | VL16/1,8        |                    |                 |          |
| 20          | =         | 26   | RB26         | 28,0 | 26,5               | VS25    |                      |                 | 700                |                 |                    | VI 40/4 0       |          |
| 22          | 2         | 8    | RB28         | 30,0 | 28,5               | VS28    |                      |                 |                    |                 |                    | VL16/1,8        |          |
| 24/25       | 3         | 0    | RB30         | 32,0 | 30,5               | VS30    | 500                  |                 |                    |                 | 2000               |                 |          |
| 24/25       | 3         | 2    | RB32         | 34,0 | 32,5               | VS32    |                      |                 | F00                |                 |                    |                 |          |
| 28          | 3         | 5    | RB35         | 37,0 | 35,5               | VS35    |                      |                 | 500                |                 |                    |                 |          |
| 32          | 4         | 0    | RB40         | 43,5 | 40,5               | VS40    |                      |                 |                    |                 |                    |                 |          |

Table B4: Brushes, piston plugs, max embedment length and mixer extension, hammer drilling with hollow drill bit system (HDB)

| Bar   | Drill   |                             | d <sub>b,min</sub>  |      |                    | Cartr<br>All s     | Cartridge:<br>825 ml |                             |                    |                 |
|-------|---------|-----------------------------|---------------------|------|--------------------|--------------------|----------------------|-----------------------------|--------------------|-----------------|
| size  | bit - Ø | d <sub>b</sub><br>Brush - Ø | d <sub>b</sub> min. |      |                    | or battery<br>tool | Pneu                 | matic tool                  | Pneu               | matic tool      |
| ф     | HDB     |                             | Ø                   |      | I <sub>b,max</sub> | Mixer extension    | I <sub>b,max</sub>   | Mixer extension             | I <sub>b,max</sub> | Mixer extension |
| [mm]  | [mm]    |                             |                     |      | [mm]               |                    | [mm]                 |                             | [mm]               |                 |
| 8     | 10      |                             |                     |      | 250                |                    | 250                  |                             | 250                |                 |
|       | 12      |                             | 7-                  | 700  |                    | 800                | ,                    | 800                         | VL10/0,75          |                 |
| 10    | 12      | 250                         |                     | 250  |                    | 250                | or                   |                             |                    |                 |
| 10    | 14      |                             |                     |      |                    |                    | 1000                 |                             | 1000               | VL16/1,8        |
| 12    | 14      | VS14                        | V314                | 250  |                    | 250                |                      | 250                         |                    |                 |
| 12    | 16      | No cleanir                  |                     | VS16 |                    | VI 10/0 75         |                      | VL10/0,75<br>or<br>VL16/1,8 |                    |                 |
| 14    | 18      | required                    |                     | VS18 | 700                | VL10/0,75<br>or    | 1000                 |                             |                    |                 |
| 16    | 20      | required                    | •                   | VS20 |                    | VL 16/1,8          |                      |                             |                    |                 |
| 20    | 25      |                             |                     | VS25 |                    | 12 . 6, . , 6      | 700                  | 12.0/1,0                    |                    |                 |
| 22    | 28      |                             |                     | VS28 |                    |                    | 700                  |                             | 1000               | VL16/1,8        |
| 24/25 | 30      |                             |                     | VS30 | 500                |                    |                      |                             |                    |                 |
| 24/23 | 32      |                             |                     | VS32 | 300                |                    | 500                  |                             |                    |                 |
| 28    | 35      |                             |                     | VS35 |                    |                    | 300                  |                             |                    |                 |
| 32    | 40      |                             |                     | VS40 |                    |                    |                      |                             |                    |                 |

| Chemofast Injection system UM-H for rebar connection                                   |           |
|----------------------------------------------------------------------------------------|-----------|
| Intended use Parameter brushes, piston plugs, max embedment length and mixer extension | Annex B 3 |



# Cleaning and installation tools

# HDB - Hollow drill bit system



The hollow drill system consists of Heller Duster Expert Hohlbohrer and a class M hoover with a minimum negative pressure of 253 hPa and a flow rate of minimum 150 m³/h (42 l/s).

#### Hand pump

(Volume 750 ml,  $h_0 \ge 10 d_s$ ,  $d_0 \le 20 mm$ )



### Compressed air tool

(min 6 bar)



#### **Brush RB**



#### Piston Plug VS



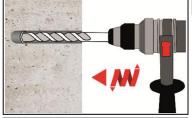
## Brush extension RBL



# Table B5: Working time and curing time

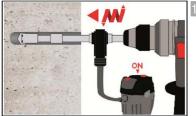
| Tempera                                | ature in bas | e material | Maximum working time | Minimum curing time <sup>1)</sup> |
|----------------------------------------|--------------|------------|----------------------|-----------------------------------|
|                                        | Т            |            | t <sub>work</sub>    | t <sub>cure</sub>                 |
| - 5°C                                  | up to        | - 1 °C     | 50 min               | 5 h                               |
| 0°C                                    | up to        | + 4 °C     | 25 min               | 3,5 h                             |
| + 5 °C                                 | up to        | + 9 °C     | 15 min               | 2 h                               |
| + 10°C                                 | up to        | + 14 °C    | 10 min               | 1 h                               |
| + 15°C                                 | up to        | + 19°C     | 6 min                | 40 min                            |
| + 20 °C                                | up to        | + 29 °C    | 3 min                | 30 min                            |
| + 30 °C                                | up to        | + 40 °C    | 2 min                | 30 min                            |
| Cartridge temperature +5°C up to +40°C |              |            |                      | :o +40°C                          |

The minimum curing time is only valid for dry base material.
 In wet base material the curing time must be doubled.


| Chemofast Injection system UM-H for rebar connection                      |           |
|---------------------------------------------------------------------------|-----------|
| Intended use Cleaning and installation tools Working time and curing time | Annex B 4 |



#### Installation instructions

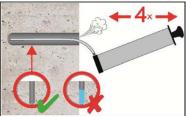

Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B 1) Aborted drill holes shall be filled with mortar.

#### Drilling of the bore hole



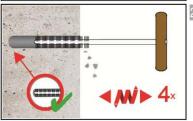
## 1a. Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment length. Drill bit diameter according to Table B3. Proceed with Step 2 (MAC or CAC).

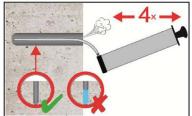



## Hollow drill bit system (HDB) (see Annex B 4)

Drill a hole to the required embedment length . Drill bit diameter according to Table B4. Proceed with Step 3.


### Manual Air Cleaning (MAC)

for bore hole diameter  $d_0 \le 20$ mm and bore hole depth  $h_0 \le 10$  $\phi$ , with drilling method HD and CD




Attention! Standing water in the bore hole must be removed before cleaning.

Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).



Brush the bore hole minimum 4x with brush RB according to Table B3 over the entire embedment depth in a twisting motion (if necessary, use a brush extension RBL).



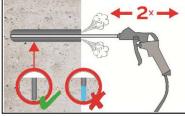
Electronic copy of the ETA by DIBt: ETA-23/0191

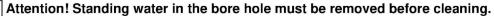
Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Chemofast Injection system UM-H for rebar connection

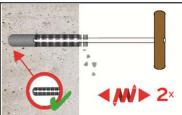
Intended use
Installation instruction

Annex B 5

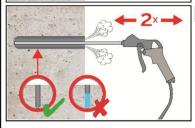



#### Installation instructions (continuation)

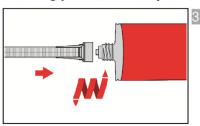

#### Compressed Air Cleaning (CAC):

All diameter with drilling method HD and CD



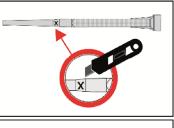



Blow the bore hole clean minimum 2x with compressed air (min. 6 bar, oil-free) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

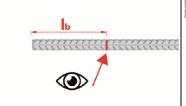



Brush the bore hole minimum 2x with brush RB according to Table B3 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)




Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar, oil-free) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar.




Screw on static-mixing nozzle PM-19E and load the cartridge into an appropriate dispensing tool.

For every working interruption longer than the maximum working time t<sub>work</sub> (Annex B 4) as well as for new cartridges, a new static-mixer shall be used.



In case of using the mixer extension VL16/1,8, the tip of the mixer nozzle has to be cut off at position "X".



Mark embedment length l<sub>b</sub> on the reinforcing bar.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

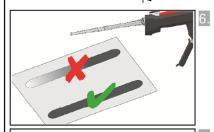
Chemofast Injection system UM-H for rebar connection

Intended use

Installation instructions (continuation)

Annex B 6

#### Installation instructions (continuation)


Injection tool must be marked by mortar level mark  $I_m$  and embedment length  $I_b$  with tape or marker.

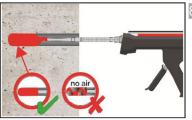
Quick estimation:  $I_m = 1/3 \cdot I_b$ Optimum mortar volume:

$$I_{m} = I_{b} \cdot \left( 1.2 \cdot \frac{\phi^{2}}{d_{0}^{2}} - 0.2 \right)$$



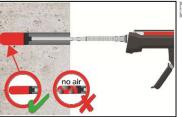
 $I_{m}$ 




Not proper mixed mortar is not sufficient for fastening.

Dispense and discard mortar until an uniform grey colour is shown (at least 3 full strokes).

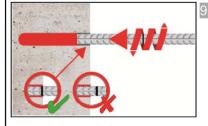



Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B3 or B4

Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.



#### Injecting mortar without piston plug VS


Starting at bottom of the hole and fill the hole up with mortar until the mortar level mark  $I_m$  is visible. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time  $t_{work}$  (Annex B 4).



#### Injecting mortar with piston plug VS

Insert piston plug to bottom of the hole and fill the hole with mortar until mortar level mark  $l_{\rm m}$  is visible. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time t<sub>work</sub> (Annex B 4).

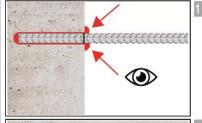


Insert the reinforcing bar while turning slightly up to the embedment mark.

# Chemofast Injection system UM-H for rebar connection

#### Intended use

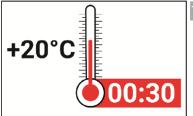
Installation instructions (continuation)


Annex B 7

Z51624.23

Electronic copy of the ETA by DIBt: ETA-23/0191




#### Installation instructions (continuation)



Annular gap between reinforcing bar and base material must be completely filled with mortar. Otherwise, the installation must be repeated starting from step 8 before the maximum working time  $t_{work}$  has expired.



For application in vertical upwards direction the reinforcing bar shall be fixed (e.g. wedges).



Temperature related curing time t<sub>cure</sub> (Annex B 4) must be observed. Do not move or load the reinforcing bar during curing time.

Chemofast Injection system UM-H for rebar connection

Intended use

Installation instructions (continuation)

Annex B 8

Z51624.23

Electronic copy of the ETA by DIBt: ETA-23/0191

8.06.01-35/23



Table C1: Characteristic resistance to tension load under static and quasi-static loading in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB); working life 50 and 100 years

|                                                                                                   | i urmeu i                                                                   | ioles with               | IIIOIIOW                  | uiiii                                | DIL ( | ָטטוו | , wo | ıkılı                | ) IIIC             | 30 a | iiu it | o ye | a1 5 |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|---------------------------|--------------------------------------|-------|-------|------|----------------------|--------------------|------|--------|------|------|
| Reinforcing bar                                                                                   |                                                                             |                          |                           | Ø8                                   | Ø 10  | Ø 12  | Ø 14 | Ø 16                 | Ø 20               | Ø 24 | Ø 25   | Ø 28 | Ø 32 |
| Combined pull-out and concrete failure <sup>1)</sup>                                              |                                                                             |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| Characteristic bond resistance in uncracked concrete C20/25                                       |                                                                             |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| <u> 일</u> <u>I: 24°C/40°C</u>                                                                     | Dry, wet                                                                    | τ <sub>Rk,ucr,50</sub> = | - [N/mm²]                 | 14                                   | 14    | 14    | 14   | 13                   | 13                 | 13   | 13     | 13   | 13   |
| Hi                                                                                                | concrete<br>and                                                             | <sup>τ</sup> Rk,ucr,100  |                           | 14                                   | 14    | 14    | 14   | 13                   | 13                 | 13   | 13     | 13   | 13   |
| हिंह <u>III: 72°C/120°C</u>                                                                       | flooded                                                                     | <sup>τ</sup> Rk,ucr,50   |                           | 13                                   | 12    | 12    | 12   | 12                   | 11                 | 11   | 11     | 11   | 11   |
|                                                                                                   | bore hole                                                                   |                          |                           | 9,5                                  | 9,5   | 9,5   | 9,0  | 9,0                  | 9,0                | 9,0  | 9,0    | 8,5  | 8,5  |
| Reduction factor $\psi^0_{SUS,50}$ or $\psi^0_{SUS,100}$ in cracked and uncracked concrete C20/25 |                                                                             |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| <u>e</u> <u>I: 24°C/40°C</u>                                                                      | Dry, wet                                                                    | $\Psi^{0}$ sus,50 =      | •                         | 0,90                                 |       |       |      |                      |                    |      |        |      |      |
| and                                                           | concrete<br>and                                                             | $\Psi^0$ sus,100         | [-]                       |                                      |       |       |      | 0,                   | 87                 |      |        |      |      |
| <u>ੂੰ</u> ਛੁੱ <u>III: 72°C/120°C</u>                                                              | flooded                                                                     |                          |                           |                                      |       |       |      | 0,                   | 75                 |      |        |      |      |
| ⊢ IV: 100°C/160°C                                                                                 | bore hole                                                                   | Ψ <sup>0</sup> sus,50    |                           | 0,66                                 |       |       |      |                      |                    |      |        |      |      |
| Increasing factors for cond                                                                       | crete                                                                       | Ψс                       | [-]                       |                                      |       |       |      | (f <sub>ck</sub> / 2 | 20) <sup>0,1</sup> |      |        |      |      |
| Characteristic bond resistance depending on the concrete strength                                 |                                                                             | τ <sub>R</sub>           | k,ucr,50 =                | Ψc • <sup>τ</sup> Rk,ucr,50,(C20/25) |       |       |      |                      |                    |      |        |      |      |
| class                                                                                             | τ <sub>Rk</sub>                                                             | ,ucr,100 =               | Ψc • τRk,ucr,100,(C20/25) |                                      |       |       |      |                      |                    |      |        |      |      |
| Influence of cracked cor                                                                          | Influence of cracked concrete on combined pullout and concrete cone failure |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| Factor for influence of cracconcrete                                                              | acked                                                                       | $\Omega_{cr}$            | [-]                       | 0,77                                 | 0,78  | 0,79  | 0,81 | 0,81                 | 0,82               | 0,83 | 0,83   | 0,83 | 0,83 |
| Bond-splitting failure                                                                            |                                                                             |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| Product basic factor                                                                              | A <sub>k</sub>                                                              | [-]                      | 6,7                       |                                      |       |       |      |                      |                    |      |        |      |      |
| Exponent for influence of                                                                         |                                                                             | · · K                    | LI                        |                                      |       |       |      |                      | ·, •               |      |        |      |      |
| - concrete compressive st                                                                         | sp1                                                                         | [-]                      | 0,27                      |                                      |       |       |      |                      |                    |      |        |      |      |
| - rebar diameter φ                                                                                |                                                                             | sp2                      | [-]                       | 0,36                                 |       |       |      |                      |                    |      |        |      |      |
| - concrete cover c <sub>d</sub>                                                                   |                                                                             | sp3                      | [-]                       | 0,37                                 |       |       |      |                      |                    |      |        |      |      |
| - side concrete cover (c <sub>ma</sub>                                                            | <sub>ıx</sub> / c <sub>d</sub> )                                            | sp4                      | [-]                       | 0,16                                 |       |       |      |                      |                    |      |        |      |      |
| - embedment length l <sub>b</sub>                                                                 |                                                                             | lb1                      | [-]                       | 0,49                                 |       |       |      |                      |                    |      |        |      |      |
| Concrete cone failure                                                                             |                                                                             | _                        |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| Uncracked concrete                                                                                |                                                                             | k <sub>ucr,N</sub>       | [-]                       | 11,0                                 |       |       |      |                      |                    |      |        |      |      |
| Cracked concrete                                                                                  |                                                                             | k <sub>cr,N</sub>        | [-]                       | 7,7                                  |       |       |      |                      |                    |      |        |      |      |
| Edge distance                                                                                     |                                                                             | c <sub>cr,N</sub>        | [mm]                      |                                      |       |       |      |                      |                    |      |        |      |      |
| Axial distance                                                                                    |                                                                             | s <sub>cr,N</sub>        | [mm]                      | 3,0 l <sub>b</sub> <sup>3)</sup>     |       |       |      |                      |                    |      |        |      |      |
| Installation factor                                                                               |                                                                             |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |
|                                                                                                   | MAC                                                                         |                          |                           |                                      |       | 1,2   |      |                      |                    |      | 2)     |      |      |
| for dry and wet concrete                                                                          | CAC<br>HDB                                                                  | $\gamma_{inst}$          | [-]                       | 1,0                                  |       |       |      |                      |                    |      |        |      |      |
|                                                                                                   | - 11151                                                                     | 1,2                      |                           |                                      |       |       |      |                      |                    |      |        |      |      |
| or flooded bore hole CAC 1,4                                                                      |                                                                             |                          |                           |                                      |       |       |      |                      |                    |      |        |      |      |

<sup>1)</sup> Performance in Temperature Range III and IV assessed for working life 50 years only

<sup>3)</sup> see Annex A 1

| Chemofast Injection system UM-H for rebar connection                                                                            |           |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances                                                                                                                    | Annex C 1 |
| Characteristic resistance to tension load under static and quasi-static loading; working life 50 and 100 years (HD, CD and HDB) |           |

<sup>2)</sup> no performance assessed