

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0343 of 26 June 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system WVSF300

Bonded fastener for use in concrete

J. van Walraven Holding B.V. Industrieweg 5 3641 RK Mijdrecht NIEDERLANDE

Walraven factory A5

32 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-23/0343 English translation prepared by DIBt

Page 2 of 32 | 26 June 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 32 | 26 June 2023

European Technical Assessment ETA-23/0343 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Injection System WVSF300 is a torque controlled bonded fastener consisting of a cartridge with injection mortar WVSF or WVSF Express and an anchor rod with expansion cones and external connection thread (type WBAT-Z) or with internal connection thread (type WBAT-IZ).

The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete). The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1 – C3, C10, B5 – B6
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C4 – C5, C11
Displacements under short-term and long-term loading	See Annex C8 – C9, C11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C6 – C9

3.2 Hygiene, health and the environment (BWR 3)

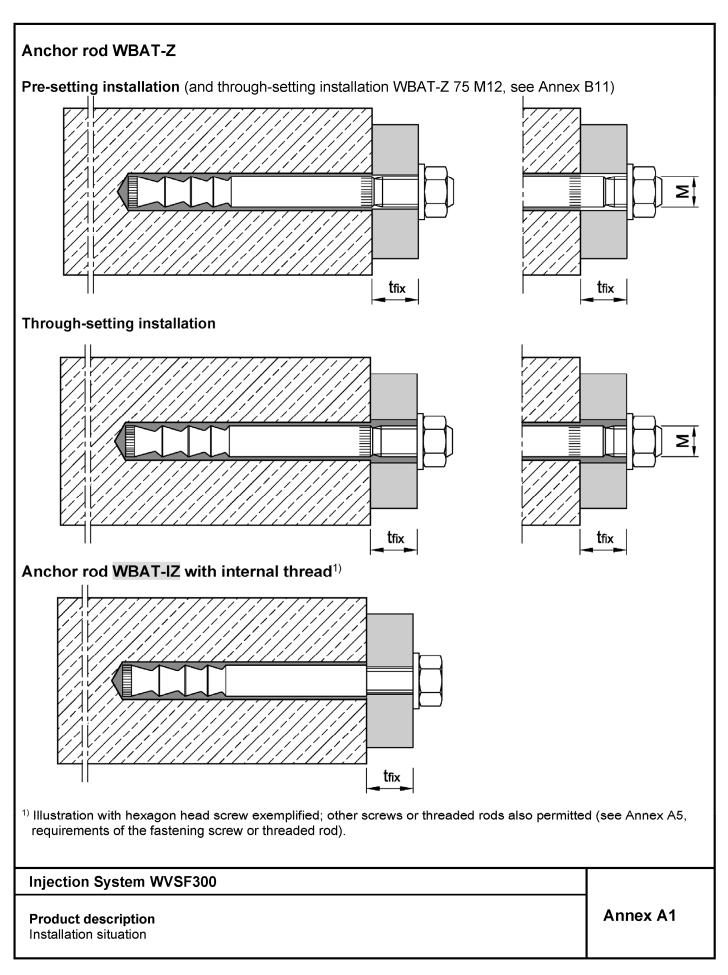
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-23/0343 English translation prepared by DIBt

Page 4 of 32 | 26 June 2023

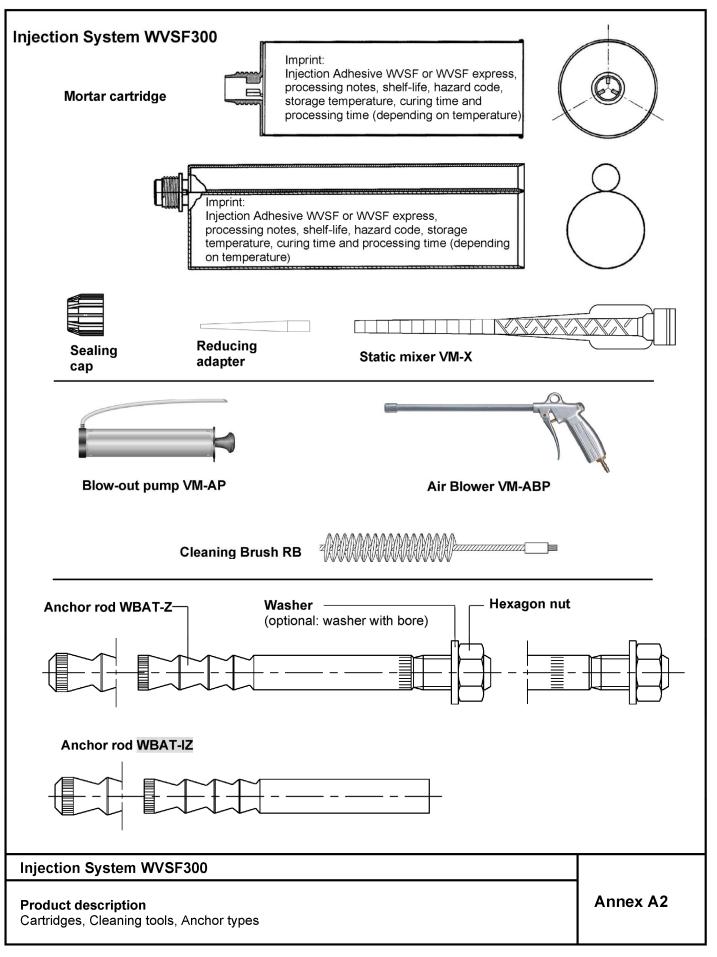
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330499-01-0601 the applicable European legal act is: [96/582/EC] The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 26 June 2023 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 6 of European Technical Assessment ETA-23/0343 of 26 June 2023

			St	teel, zinc	plated								
Part	Designation	galvanis ≥ 5µm		hot-dip galvanise : 40µm (50 in averag	ed 0µm	sherardiz ≥ 45µn			ess stee A4 CIII)		High corrosion resistant steel HC (CRC V)		
		SI	teel acc	c. to EN IS	SO 683	-1:2018		Stainles 1.4401,			gh corro sistant s		
1	Anchor rod	galvanisec and coated	ג d ga	ot-dip alvanised oated	and	sherardize and coated		1.4571, EN 1008 coated		1.4 1, EN	4529, 1. I 10088 ated	4565	
2a	Washer		_					Stainles	s steel.		gh corro sistant s		
2b	Filling washer		S	Steel, zinc	plated			EN 1008		4 1.4	1529, 1. 10088	4565	
			F	Property c	class 8	EN ISO		^{::} Pro	I ISO 3 operty c	lass 7	,		
3	2020, A4-70,										gh corro sistant s 1529, 1. 10088	steel 4565	
4	Mortar cartridge	Vinylester	resin, s	styrene fre	ee, mixi	ing ratio 1:1	10						
Mark		<>80 VMZ	12-25			irking of chorage de 3			=[-			63)	
Vark	identifying ma anchorage de z fastener iden size of thread maximum thi	L ark of manuf epth tity ckness of fix	facturing	g plant (when usir		chorage de	pth 	t _{fix}		٦	Marking – of length	G3 2b	
1 0 0 0 0 0 0 0 0 0 0 0 0 0	identifying ma anchorage de fastener iden size of thread maximum thi additional ma R additional ma	L ark of manuf epth tity ckness of fix arking of stai	facturing facture t _{fix}	g plant (when usir teel	And 2a t _{fix}	her 2a)			Fill	٦	Marking – of length	G3 2b	
1 0 0 0 0 0 0 0 0 0 0 0 0 0	identifying ma anchorage de Z fastener iden size of thread maximum thi additional ma R additional ma	L ark of manuf epth tity ckness of fix arking of stai arking of high	facturing ture t _{fix} nless st n corros C	g plant (when usir teel sion resista	And 2a t _{fix} ng wash ant stee	her 2a)		t _{fix}	J	ing wa	Marking – of length sher	M	N 203.2
1 0 0 0 0 0 0 0 0 0 0 0 0 0	identifying ma anchorage de Z fastener iden size of thread maximum thi additional ma R additional ma king of length th of <u>min</u>	L ark of manuf epth tity ckness of fix arking of stai arking of high ■ B ≥ 50,8	facturing ture t _{fix} nless st n corros	g plant (when usin teel sion resista D I 76,2 88	And 2a t _{fix} t _{fix} ant stee E 8,9 10	her 2a)		t _{fix} I 139,7		ing wa	Marking – of length sher	Ö	N 203,2 215,9
1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	identifying ma anchorage de z fastener iden size of thread maximum thi additional ma additional ma cling of length th of <u>min</u> max cling of length	L ark of manuf epth tity ckness of fix arking of stai arking of high B ≥ 50,8 < 63,5 O	facturing nless st n corros C 63,5 76,2 P	g plant (when usin teel sion resista 76,2 88 88,9 10 Q I	And 2a 2 t fix t fix ant stee E 8,9 10 01,6 11 R	chorage de 3 4 5 6 7 6 7 6 7 7 7 7 7 7 7 7	H 127,0 139,7	I 139,7 152,4 V	J 152,4 165,1 W	ing wa K 165,1 177,8 X	Marking – of length sher L 177,8 190,5	M 190,5 203,2 Z	203,2 215,9 >Z
1	identifying ma anchorage de Z fastener iden size of thread maximum thie additional ma R additional ma cling of length th of min par max	L ark of manuf epth tity ckness of fix arking of stai arking of high \mathbf{B} $\geq 50,8$ < 63,5 \mathbf{O} $\geq 215,9$	facturing facturing nless st n corros C 63,5 76,2	when usin g plant (when usin sion resista D 76,2 88,9 10 Q 241,3 25	And 2a 2a t fix t fix ant stee E 8,9 10 01,6 11 R R 54,0 27	chorage de 3 4 5 6 7 6 7 7 7 7 7 7 7 7	H 127,0 139,7	I 139,7 152,4 V 2 355,6	J 152,4 165,1	ing wa K 165,1 177,8	Marking – of length sher L 177,8 190,5	M 190,5 203,2	203,2 215,9 >Z
1	identifying ma anchorage de Z fastener iden size of thread maximum thie additional ma R additional ma cling of length th of min par max	L ark of manuf epth tity ckness of fix arking of stai arking of high E \leq 50,8 < 63,5 \bigcirc O \geq 215,9 < 228,6	facturing dure t _{fix} nless st n corros C 63,5 76,2 P 228,6 241,3	when usin g plant (when usin sion resista D 76,2 88,9 10 Q 241,3 25	And 2a 2a t fix t fix ant stee 8,9 10 11,6 11 R 54,0 27	chorage de 3 6 7 7 7 9 1 1 1 1 1 1 1 1	H 127,0 139,7 U 330,2	I 139,7 152,4 V 2 355,6	J 152,4 165,1 W 381,0	ing wa <u>K</u> 165,1 177,8 <u>X</u> 406,4	Marking – of length sher 177,8 190,5 Y 431,8	M 190,5 203,2 203,2 457,2	203,2 215,9

Та	Table A2: Dimensions of anchor rod WBAT-Z M8 – M12												
Ar	Anchor size WBAT-Z		-Z 40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 М12	125 M12
Ac	ditio	nal marking	1	2	1	2	1	2	3	4	5	6	7
		Threa	d N	/18	М	10				M12			
	po	Number of cone	es 2	3	3	3	3	3	4	4	6	6	6
1		d	.= 8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
	Anchor	Length (with washer 2		63+t _{fix}	75+t _{fix}	90+t _{fix}	95+t _{fix}	90+t _{fix}	100 +t _{fix}	115 +t _{fix}	120 +t _{fix}	130 +t _{fix}	145 +t _{fix}
		Reduction t _{লি} (with washer with bore 2	54	3,4	3	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5
3	Hex	agon nut SV	V 13	13	17	17	19	19	19	19	19	19	19

¹⁾ When using filling washer (2b) the thickness of fixture is reduced by the specified value.

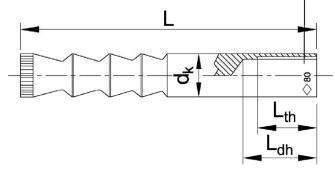
Dimensions in mm

Table A3: Dimensions of anchor rod, WBAT-Z M16 – M24

Aı	nchor s	ize WBAT-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Ado	ditional r	marking	1	2	3	4	5	1	2	3	1	2	3
		Thread			M16				M20			M24	
	rod	Number of cones	3	4	6	6	6	3	6	6	6	6	6
		d _k =	16,5	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
	Anchor	Length L (with washer 2a)	114 +t _{fix}	129 +t _{fix}	150 +t _{fix}	170 +t _{fix}	185 +t _{fix}	143 +t _{fix}	203 +t _{fix}	223 +t _{fix}	210 +t _{fix}	240 +t _{fix}	265 +t _{fix}
		$\begin{array}{c} \textbf{Reduction } t_{\text{fix}^{1j}} \\ \text{(with washer with bore 2b)} \end{array}$	2	2	2	2	2	2	2	2	2	2	2
3	Hexago	on nut SW	24	24	24	24	24	30	30	30	36	36	36

¹⁾ When using filling washer (2b) the thickness of fixture is reduced by the specified value.

Dimensions in mm


Injection System WVSF300

Product description WBAT-Z: Anchor dimensions Annex A4

Tab	Table A4: Materials WBAT-IZ													
Part	Designation	Steel, zinc plated ≥ 5µm	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)										
1	Anchor rod	Steel acc. to EN ISO 683-4:2018, galvanized and coated	Stainless steel, 1.4401, 1.4404, 1.4571 acc. to EN 10088:2014, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088:2014, coated										
4	galvanized and coated EN 10088:2014, coated EN 10088:2014, coated 4 Mortar cartridge Vinylester resin, styrene free, mixing ratio 1:10													

Marking: e.g. > 80 VMZ M10-

identifying mark of manufacturing plant

- 80 anchorage depth
- VMZ fastener identity
- M10 size of internal thread
- A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

Table A5: Dimensions of anchor rod WBAT-IZ

Anchor size	WBA ⁻	T-IZ	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20	
Internal thread	Internal thread -		N	16	N	18	М	M10		M12			M16		
Number of cones		-	2	3	3	3	3	4	3	4	6	3	6	6	
Outer diameter	dĸ	[mm]	8,0	8,0	9,7	10,7	12,5	12,5	16,5	16,5	16,5	19,7	22,0	24,0	
Thread length	Lth	[mm]	12	15	16	19	20	23	24	27	30	32	32	40	
Total length	L	[mm]	41	52	63	78	74	84	94	109	130	120	180	182	
Length identifier		[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22,5	L _{dh} > 23,5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31,5	32,5 < L _{dh} < 34,5	L _{dh} > 35,5	d _k < 21	d _k > 21	-	

Requirements of the fastening screw or the threaded rod and nut

- Minimum screw-in depth L_{sdmin} see Table B7
 - The length of screw or the threaded rod must depending on the thickness of fixture t_{fix}, available thread length
 - L_{th} (=maximum available thread length, see Table B7) and the minimum screw-in depth L_{sdmin} be established $A_5 > 8$ % ductility
- Material
 - Steel, zinc plated: Minimum property class 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2022
 - Stainless steel A4 or high corrosion resistant steel (HCR): Minimum property class 70 according to EN ISO 3506-1:2020 or according to EN ISO 3506-2:2020

Injection System WVSF300

Product description

WBAT-IZ: Materials, Marking, Anchor dimensions

Specifications of inter	nded use							
Injection System WVSF300) with anchor rod	WBAT-Z	M8	M10	M12	M16	M20	M24
Static and quasi-static action				1	,	(
Seismic action (Category C1			_3)	✓	✓	✓	✓	✓
Cracked or uncracked concr						/		
Strength classes acc. to EN					C20/25 t	o C50/60		
Compacted reinforced or un concrete acc. to EN 206-1: 2		weight				(
Temperature Range I	-40 °C	C to +80 °C	m	ax. long t	term temp erm temp	erature +	50 °C	
Temperature Range II	-40 °C	to +120 °C			term temp erm temp			
_		mer drill bit			, ,	/		
Making of drill hole		um drill bit ¹⁾	_3)	✓	✓	 ✓ 	✓	✓
3		ond drill bit	_3)	✓	✓	 ✓ 	✓	 ✓
	(seismic actio							
Installation allowable in		ry concrete			•	/		
Installation allowable in		et concrete r-filled hole	_3)	_	√ 2)		 ✓ 	✓
Overhead installation	wale		/	-		· ·	v	v
						/		
Pre-setting installation Trough-setting installation			_3)	 ✓ 	``````````````````````````````````````		 ✓ 	√
Exception: WBAT-Z 75 M12 (Ir No performance assessed		WBAT-IZ		M8	M40	M12	M16	Maa
Injection System WVSF300		WBAT-IZ	M6		M10		IVITO	M20
Static and quasi-static action Seismic action (Category C1					-	2)		
Cracked and uncracked con								
Strength classes acc. to EN		116				, o C50/60		
Compacted reinforced or un concrete acc. to EN 206-1:2	reinforced normal				<u> </u>	/		
Temperature Range I		C to +80 °C			term temp erm temp			
Temperature Range II	-40 °C	to +120 °C	m	ax. short	term temp erm temp	oerature +	-120 °C	
	Ham	mer drill bit			,	(
Making of drill hole	Vacut	um drill bit ¹⁾	_2)	✓	✓	✓	✓	✓
	Diam	ond drill bit	_2)	✓	✓	✓	✓	√
	d	ry concrete			,	1		
Installation - allowable in -	W	et concrete				(
	wate	r-filled hole	_2)	_2)	✓	✓	✓	✓
Overhead installation					,	(
Pre-setting installation					,	/		
e.g. MKT vacuum drill bit, Würt No performance assessed	h hammer drill bit wi	th suction or H	leller Dust	ter Expert				
Injection System WVSF3	300							
Intended use Specifications and installatio	n conditions				Annex	B1		

Specifications of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions WBAT-Z and WBAT-IZ
- For all other conditions: Intended use of materials according to Annex A3, Table A1 and Annex A5, Table A4 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

Installation:

- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive WVSF300 using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

Injection System WVSF300

Intended use Specifications Annex B2

$-9 \degree C$ to $-5 \degree C$ $-4 \degree C$ to $-1 \degree C$ $0 \degree C$ to $+4 \degree C$ $+5 \degree C$ to $+9 \degree C$ $+10 \degree C$ to $+19 \degree C$ $+20 \degree C$ to $+29 \degree C$ $+30 \degree C$ to $+34 \degree C$	Maximum working time	Minimum curing time dry concrete ¹⁾
- 15 °C to - 10 °C	45 min	7 d
- 9 °C to - 5 °C	45 min	10:30 h
- 4 °C to - 1 °C	45 min	6:00 h
0 °C to +4 °C	20 min	3:00 h
+5 °C to +9 °C	12 min	2:00 h
+10 °C to +19 °C	6 min	1:20 h
+20 °C to +29 °C	4 min	45 min
+30 °C to +34 °C	2 min	25 min
+35 °C to +39 °C	1,4 min	20 min
+ 40 °C	1,4 min	15 min
artridge temperature	≥ 5	i°C

¹⁾ Curing time in wet concrete shall be doubled.

Table B2: Working and curing time WVSF300 express

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete ¹⁾						
- 5 °C to - 1 °C	20 min	4:00 h						
0 °C to +4 °C	10 min	2:00 h						
+ 5 °C to + 9 °C	6 min	1:00 h						
+10 °C to +19 °C	3 min	40 min						
+20 °C to +29 °C	1 min	20 min						
+ 30 °C	1 min	10 min						
Cartridge temperature	≥ 5°C							

¹⁾ Curing time in wet concrete shall be doubled.

Injection System WVSF300

Intended use Working and curing time Annex B3

Anchor size	WB	AT-Z	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	75	85	100	105	115	130
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Installation torque	$T_{inst} \leq$	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Diameter of clearance hole in the fixture													
Pre-setting installation	$d_{\rm f} \leq$	[mm]	9	9	12	12	14	14	14	14	14	14	14
Through-setting installation	$d_{\rm f} \leq$	[mm]	_2)	_2)	14	14	14 ¹⁾ / 16	16	16	16	16	16	16
 ¹⁾ see Annex B11 ²⁾ No performance assessed Table B4: Installation parameters, WBAT-Z M16 – M24 													
									M20 (LG)	M24 (LG)	M24 (LG)	M24 (LG)	
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Nominal diameter of drill hole	d ₀ =	[mm]	18	18	18	18	18	22	24	24	26	26	26
Depth of drill hole	$h_0 \geq$	[mm]	98	113	133	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19,0	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Installation torque	T _{inst} ≤	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Diameter of clearance hole	in the	fixture											
Pre-setting installation	$d_{\rm f} \leq$	[mm]	18	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Through-setting installation	$d_{\rm f} \leq$	[mm]	20	20	20	20	20	24	26	26	28	28	28
Pre-sett	ing in	stallat	ion					Th	rough	-settin	g insta	llation	
Size M8 to M16, M20 LG, M24 LG			-	ize 20 + M2 ≥ 0,5			N	ize 110 to N 120 LG,		I	Size VI20 + N ≥ 0,	/124 ,5 tfix	
h h h													
	Injection System WVSF300												

Table B5: Minimum spacing and edge distance, WBAT-Z M8 – M12													
Anchor size	WBAT-Z		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	\mathbf{h}_{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Cracked concrete													
Minimum spacing	Smin	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	55	50	50	50	50	50
Uncracked concrete													
Minimum spacing	Smin	[mm]	40	40	50	50	50	55	55	55	80 ²⁾	80 ²⁾	80 ²⁾
Minimum edge distance	Cmin	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

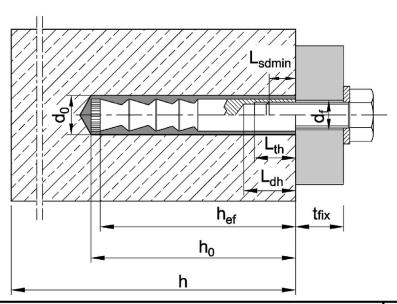
¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

²⁾ For an edge distance $c \ge 80$ mm a minimum spacing $s_{min} = 55$ mm is applicable.

Table B6: Minimum spacing and edge distance, WBAT-Z M16 – M24

Anchor size	WBA	AT-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Minimum thickness of concrete	\mathbf{h}_{\min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 ¹⁾	270 260 ¹⁾	300 290 ¹⁾
Cracked concrete									-				
Minimum spacing	Smin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimum edge distance	Cmin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Uncracked concrete													
Minimum spacing	Smin	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimum edge distance	Cmin	[mm]	50	60	60	60	60	80	80	80	80	105	105

¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.


Injection System

Intended use Minimum spacing and edge distance, WBAT-Z

Annex B5

Deutsches Institut für Bautechnik

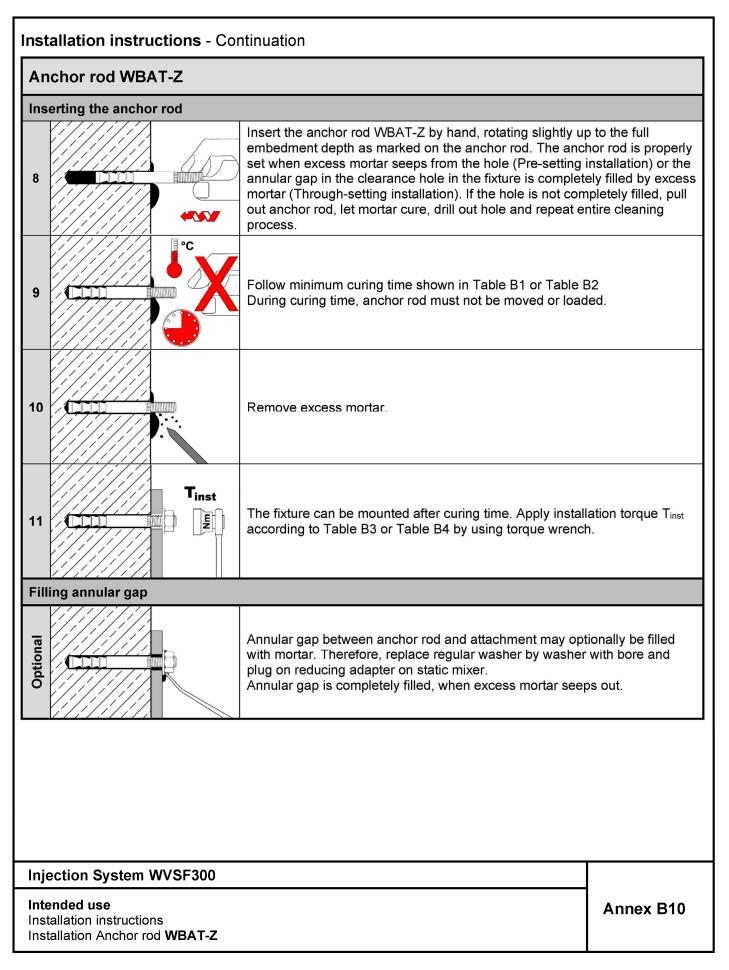
Anchor size	WB.	AT-IZ	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Effective anchorage depth	\mathbf{h}_{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d_0	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Installation torque	T _{inst} ≤	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	$d_{\rm f}$ \leq	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Available thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L_{sdmin}	[mm]	7	7	თ	9	12	12	14	14	14	18	18	22
Minimum thickness of concrete	\mathbf{h}_{\min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220
Cracked concrete														
Minimum spacing	Smin	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Uncracked concrete														
Minimum spacing	Smin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

Injection System WVSF300

Intended use

Installation parameters WBAT-IZ

Ha	mmer drill bit		
Hol	e drilling		
1		Use hammer drill or compressed air drill with drill bit and depth g perpendicular to concrete surface.	auge. Drill
Clea	aning		
	Cleaning with compres	ssed air (all sizes)	
2a	min. 6 bar 2x	Connect Air Blower to compressed air (min. 6 bar, oil-free). Ope blow out drill hole along the entire depth with back and forth mot times.	
3a		Check diameter of cleaning brush. If the brush can be pushed in without any resistance, it must be replaced. Chuck brush into dri on drill machine and brush drill hole back and forth along the ent at least two times while rotated by drill machine.	ll machine. Turn
4a	min. 6 bar 2x	Connect Air Blower to compressed air (min. 6 bar, oil-free). Ope blow out drill hole along the entire depth with back and forth mot times.	
	Manual cleaning (alterr	natively, up to drill hole diameter 18mm)	
2b		Blow out drill hole from the bottom with Blow-out pump at least t	wo times.
3b		Check diameter of cleaning brush. If the brush can be pushed in without any resistance, it must be replaced. Chuck brush into dri on drill machine and brush drill hole back and forth along the en- at least two times while rotated by drill machine.	ll machine. Turn
4b		Blow out drill hole from the bottom with Blow-out pump at least t	wo times.
Inic	ection System WVSF3	00	



Installation instructions -	Vacuum drill bit	
Vacuum drill bit		
Hole drilling and cleaning		
	Drill hole perpendicular to concrete surface by using a vacuum Annex B1). The nominal underpressure of the vacuum cleane 230 mbar / 23kPa. Pay attention to the function of the dust extraction system Make sure the dust extraction is working properly throughout process.	er must be at least m!
Additional cleaning is not nec	essary - continue with step 5!	
nstallation instructions - I	Diamond drilling	
Diamond drilling		
Hole drilling		
	Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface.	
Cleaning		
2	Remove drill core at least up to the nominal hole depth and c depth.	heck drill hole
3	Flushing of drill hole: Flush drill hole with water, starting from the bottom, until clea the drill hole.	r water gets out of
4 min. 6 bar	Connect Air Blower to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth w motion at least two times.	vith back and forth
Inication System MA/SE200		
Injection System WVSF300		
Intended use Installation instructions	um drill bit and diamond drill bit)	Annex B8

Inje	ection		
5	THE RESIDENCE	Check expiration date on cartridge. Never use when expired from cartridge. Attach the supplied static mixer to the cartrid working interruption longer than the recommended working or Table B2) as well as for a new cartridge always use a new Never use static mixer without helix inside.	ge. For every time (Table B1
6	min.2x → min. 10cm	Insert cartridge in Dispenser. Before injecting discard mortal strokes or a line of 10 cm) until it shows a consistent grey co this mortar.	
7		Prior to injection, check if static mixer reaches the bottom of it does not reach the bottom, plug Mixer Extension onto stati to fill the drill hole properly. Fill hole with a sufficient quantity mortar. Start from the bottom of the drill hole and work out to air pockets.	ic mixer in order of injection
nje	ection System WVSF300		

	n with Anchor rod WBAT-Z 75 M12 of clearance hole in the fixture dr ≤ 14 mm	
Nork step 1-7 as illustrate	ed in Annexes B7 – B9	
8	Insert the anchor rod WBAT-Z by hand, rotating embedment depth.	slightly up to the full
	Check if excess mortar seeps from the hole. If th filled, pull out anchor rod, let mortar cure, drill ou cleaning process. The annular gap in the fixture does not have	t hole and repeat the entire
	During curing time according to Table B1 or Table be moved or loaded.	le B2 anchor rod must not
1	T inst Washer and nut can be mounted after curing tim plate. Apply installation torque T _{inst} according to wrench.	
njection System WVS	\$F300	

Inst	tallation instructions - Cor	ntinuation	
Ar	nchor rod WBAT-IZ		
Set	tting of anchor		
Wo	ork step 1-7 as illustrated in Anne	exes B7 – B9	
8		Insert the anchor rod WBAT-IZ by hand, rotating slightly us below the concrete surface in the drill hole. The anchor ro when excess mortar seeps from the hole. If the hole is no pull out anchor rod, let mortar cure, drill out hole and repe cleaning process.	d is properly set t completely filled,
9		Follow minimum curing time shown in Table B1 and Table During curing time anchor rod must not be moved or load	
10		Remove excess mortar.	
11	Tinst	The fixture can be mounted after curing time. Apply instal according to Table B7 by using torque wrench.	lation torque T _{inst}
Inj	ection System WVSF300		
Ins	ended use tallation instructions chor installation WBAT-IZ		Annex B12

Anchor size			BAT-Z AT-IZ	all sizes
Concrete con	e failure			
Factor for	<u>uncracked</u> concrete	K ucr,N	[-]	11,0
Factor for	<u>cracked</u> concrete	k cr,N	[-]	7,7
Characteristic	edge distance	C cr,N	[mm]	1,5 ∙ h _{ef}
Characteristic	spacing	S cr,N	[mm]	2 • c _{cr,N}
For each proc higher value f	of of splitting failure, N_{Rk} for $N_{Rk,sp}$ of case 1 and 0			ulated according to EN 1992-4:2018, equation (7.23). The applied for the design.
	or N _{Rk,sp} of case 1 and	case 2 m	ay be a	applied for the design.
For each proc higher value f Case 1 Characteristic	or N _{Rk,sp} of case 1 and			•
For each proc higher value f Case 1 Characteristic Characteristic	or N _{Rk,sp} of case 1 and resistance edge distance	N ⁰ _{Rk,sp}	ay be a	applied for the design. see following tables
For each proc higher value f Case 1 Characteristic Characteristic Characteristic	or N _{Rk,sp} of case 1 and resistance edge distance	N ⁰ _{Rk,sp}	ay be a [kN] [mm]	see following tables 1,5 • h _{ef}
For each proc higher value f Case 1 Characteristic Characteristic Characteristic Case 2	or N _{Rk,sp} of case 1 and resistance edge distance spacing	N ⁰ _{Rk,sp}	ay be a [kN] [mm]	see following tables 1,5 • h _{ef}
For each proc higher value f Case 1 Characteristic Characteristic Characteristic Case 2 Characteristic	or N _{Rk,sp} of case 1 and resistance edge distance spacing	N ⁰ _{Rk,sp} C _{cr,sp}	ay be a [kN] [mm] [mm]	see following tables 1,5 • h _{ef} 2 • c _{cr,sp}

Injection System WVSF300

Performance Characteristic values for concrete failure and splitting, WBAT-Z and WBAT-IZ

Table C2: Characteristic static and quart				load	s, WE	BAT-Z	2 M8 ·	– M12	2,				
Anchor size	WE	BAT-Z	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor	γinst	[-]						1,0					
Steel failure													
Characteristic resistance	N _{Rk,s}	[kN]	15	18	2	25	35	49	5	54		57	
Partial factor	γMs	[-]						1,5					
Pull-out													
Characteristic resistance (c	oncrete C2	0/25)											
uncracked 50°C / 80°	C ¹⁾	[kN]	9	17,4	22,9	32	32	28,8	35,2	40	49,2	50	50
concrete 72°C / 120°		[kN]	6	9	16	16	16	16	25	25	30	30	30
cracked 50°C / 80°	C ¹⁾	[kN]	8,7	12,2	16	22,4	22,4	20,2	24,6	31,9	34,4	39,7	48,1
concrete 72°C / 120°		[kN]	5	7,5	12	12	12	16	20	20	30	30	30
Splitting													
Splitting for standard thickr	ness of cor	ncrete	meml	ber	•		•						
Standard thickness of concrete	$h_{\text{min},1} \geq$	[mm]	1	00	120	150	150	140	160	190	200	220	250
Case 1								1	1		1	1	
Characteristic resistance (concrete C20/25)	N ⁰ Rk,sp	[kN]	7,5	9	16	20	2	:0	35,2	30		40	
Case 2				1			•				1		
Characteristic edge distance	e C _{cr,sp}	[mm]	3	h _{ef}	2,5h _{ef}	3,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}	2,5h _{ef}	2 h _{ef}	3 h _{ef}	2,5h∉
Splitting for minimum thick	ness of co	ncrete	mem	ber				1	1		I	1	
Minimum thickness of concrete	$h_{\text{min},2} \geq$	[mm]	8	30	1	00		110		125	130	140	160
Case 1					-								
Characteristic resistance (concrete C20/25)	$N^0_{Rk,sp}$	[kN]	7,5	2)	1	6	16	20	25	25		30	
Case 2							•						
Characteristic edge distance	e C _{cr,sp}	[mm]	$3h_{\text{ef}}$	3,5h _{ef}	3 h _{ef}	3,5h _{ef}	3,5	5h _{ef}	3h _{ef}	3,5h _{ef}		$3h_{\text{ef}}$	
$ \begin{array}{l} \mbox{Increasing factor for} \\ N_{Rk,p} = \psi_c \cdot N_{Rk,p} \left(C20/25 \right) a \\ N^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp} \left(C20/25 \right) \end{array} $	•	[-]					($\left(\frac{f_{ck}}{20}\right)^{0,5}$	5				
Concrete cone failure													
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	75	70	80	95	100	110	125
 Maximum long-term tempera No performance assessed Increasing factor for N⁰_{Rk,sp} c 			ort-tern	n tempe	erature		_						
Injection System WVSF	300												
Performance Characteristic values for ter static and quasi-static action		s, WBA	AT-Z N	/18 – M	12,						Anr	nex C	2

Anchor size WE	BAT-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)			
Installation factor γ_{inst}	[-]						1,0								
Steel failure															
Characteristic Steel, zinc plated	[kN]	88	95	1	11	97	96	18	38		222				
resistance N _{Rk,s} A4, HCR	[kN]	88	95	1	11	97	114	16	65						
Partial factor γ _{Ms}	[-]			1,5			1,68	1,	,5						
Pull-out							•			1,5					
Characteristic resistance (concrete C20/25)															
uncracked 50°C/80°C ¹⁾	[kN]	42	52,9	68,8	75	90	60,7	109	128,8	109	139,1	166			
concrete 72°C/120°C ¹ N _{Rk,p}	[kN]	25	35	5	0	53	40	7	5		95				
cracked 50°C/80°C ¹⁾ No.	[kN]	29,4	37,1	48,1	60,1	69,7	42,5	76,3	90,2	76,3	97,4	116,2			
concrete 72°C/120°C ¹⁾ N _{Rk,p}	[kN]	25	30	5	0	51	30	6	0		75				
Splitting															
Splitting for standard thickness of concrete															
$\begin{array}{ll} \mbox{Standard thickness of} & $h_{min,1} \geq $ \end{array}$	[mm]	180	200	250	290	320	230	340	380	340	400	450			
Case 1							-								
$\begin{array}{ll} Characteristic resistance \\ (concrete C20/25) \end{array} N^{0}{}_{Rk,sp} \end{array}$	[kN]	40	5	0	60	80	60,7	109	115	109	139,1	140			
Case 2							_								
Characteristic edge distance	[mm]			2 h _{ef}			1,5	h _{ef}	2 h _{ef}	1,5 h _{ef} 7		1,8 h _{ef}			
Splitting for minimum thickness of	fconc	rete		-			_								
$\begin{array}{ll} \mbox{Minimum thickness of} & & \mbox{$h_{min,2} \geq $} \\ \mbox{concrete} & & \mbox{$h_{min,2} \geq $} \end{array}$	[mm]	130	150	160	180	200	160	220	240	220	260	290			
Case 1															
$\begin{array}{c} Characteristic \ resistance \\ (concrete \ C20/25) \end{array} N^{0}_{Rk,sp} \end{array}$	[kN]	35	50	40	50	71	2)	7	5	109	1	15			
Case 2															
Characteristic edge distance C _{cr,sp}	[mm]	2,5	5h _{ef}	3h _{ef}	2,5	bh _{ef}	2,5h _{ef}	2,6h _{ef}	2,2h _{ef}	2,6h _{ef}	2,2	2h _{ef}			
$ \begin{split} &\text{Increasing factor for} \\ &N_{\text{Rk,p}} = \psi_c \cdot N_{\text{Rk,p}} \left(\text{C20/25}\right) \text{and} \psi_c \\ &N^0_{\text{Rk,sp}} = \psi_c \cdot N^0_{\text{Rk,sp}} \left(\text{C20/25}\right)^{3)} \end{split} $	[-]						$\left(\frac{f_{ck}}{20}\right)^{0,5}$	5							
Concrete cone failure															
Effective anchorage depth hef	[mm]	90	105	125	145	160	115	170	190	170	200	225			
¹⁾ Maximum long-term temperature / Ma ²⁾ No performance assessed ³⁾ Increasing factor for N ⁰ _{Rk,sp} only for Ca		short-te	erm tem	peratur	e										
Injection System WVSF300															
Performance Characteristic values for tension I	oads,	WBAT	-Z M10	6 – M2	4,					Annex C3		:3			

Anchoreine	WBA	т 7	40	50	60	75	75	70	80	95	100	110	125	
Anchor size	WBA	1-2	M8	M8	M10	M10	M12	M12	M12	M12	M12	M12	M12	
Installation factor	1	[-]						1,0						
Steel failure wit	hout lever arm				-									
Characteristic resistance	Steel, zinc plated	[kN]	1	14 21 34						34	1			
V ⁰ _{Rk,s}	A4, HCR	[kN]	15 23 34						4					
Partial factor	γMs	[-]						1,25						
Ductility factor	k 7	[-]						1,0						
Steel failure with lever arm														
								105						
bending resistance M ⁰ _{Rk,s} A4, HCR [Nm] 30 60								105						
Partial factor	γMs	[-]						1,25	;					
Concrete pry-ou	ıt failure													
Pry-out factor	k ₈	[-]						2						
Concrete edge f	failure													
Effective length of in shear load	of anchor I _f	[mm]	40	50	60	75	75	70	80	95	100	110	125	
Outside diameter	r of anchor d _{nom}	[mm]	1	0	1	2	12			1	14			
Injection Syst	em WVSF300										۸	nex (

Characteristic values for **shear load**, **WBAT-Z M8 – M12**, static and quasi-static action

Anchor size	WB	AT-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation factor	γinst	[-]						1,0					
Steel failure withou	ıt lever arm												
Characteristic resistance -	Steel, zinc plated	[kN]			63			70	149 (9	8)	178 ¹⁾ (141)		
V ⁰ _{Rk,s}	A4, HCR	[kN]	63 86 ^{131 1)} (86)								156 ¹⁾ (123)		
Partial factor	γMs	[-]	1,25 1,4 1,25								1,25		
Ductility factor	k 7	[-]	1,0										
Steel failure with lever arm													
CharacteristicSteel, zinc plated[Nm]266392519												896	
M ⁰ Rk,s	A4, HCR				266				454			784	
Partial factor	γMs	[-]			1,25			1,4	1,2	25		1,25	
Concrete pry-out failure													
Pry-out factor	k ₈	[-]						2,0					
Concrete edge failu Effective length of an						I	[]				[]	T	
in shear load Outside diameter of	If	[mm] [mm]	90	105	125 18	145	160	115 22	170 2	190 4	170	200 26	225
anchor ¹⁾ This value may only b		_			10			22	2	4		20	
						M20 + I _t ≥ 0,	,5 tfix						
Injection System Performance	WVSF300 s for shear I										An	inex C	5

36,0 41,5 30,0 17,6	42,8
36,0 41,5 30,0	42,8
36,0 41,5 30,0	42,8
36,0 41,5 30,0	42,8
30,0	42,8
30,0	42,8
30,0	42,8
,	
17,6	
12,3	
2	
-	
2	
2	

Page 28 of European Technical Assessment ETA-23/0343 of 26 June 2023

English translation prepared by DIBt

Anchor size	WBA	T-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	
Tension loads													
Installation factor	γinst	[-]						1,0					
Steel failure, steel	zinc plated												
Characteristic resistance	Nrk,s,C1 Nrk,s,C2	[kN]	88	95	11	1	97	96	18	8		222	
Steel failure, stainl	ess steel A4, HC	R											
Characteristic resistance	Nrk,s,C1 Nrk,s,C2	[kN]	88	95	11	1	97	114	16	5		194	
Partial factor	γMs	[-]			1,5			1,68	1,	5		1,5	
Pull-out (concrete C	20/25 to C50/60)												
	50°C / 80°C ¹⁾	[kN]	30,7	38,7		43,7		44,4	88	,2		90,7	
Charac-	¹ 72°C / 120°C ¹⁾	[kN]	25,0	30,0		38,5		29,4	55	,8		59,3	
registeres	50°C / 80°C ¹⁾	[kN1	16,3	22,1		26,1		30,9	59	,7		59,7	
I N RK,p,C	² 72°C / 120°C ¹⁾	[kN]	10,5	14,4		19,5		16,2	44	·, 4		44,4	
Shear loads				_									
Steel failure withou			plate I	d									
Characteristic	V _{Rk,s,C1}	[kN]			39,1			39,1	82, 108,8			107	
resistance	V _{Rk,s,C2}	[kN]			50,4			51	(71,			4,9 ¹⁾ 22,7)	
Partial factor	γMs	[-]			1,25			1,4	1,2	<u> </u>		1,25	
Steel failure withou	ıt lever arm, staiı	nless	steel /	A4, HC	R								
Characteristic	VRk,s,C1	[kN]			39,1			39,1	72,			93	
resistance	VRk,s,C2	[kN]			50,4			62,6	95,6 (62,			5,7 ¹⁾ 107)	
Partial factor	γMs	[-]			1,25			1,4	1,2	5	-	1,25	
	nnular gap α_{gap}	[-]						1,0					
with	ed annular gap ^{αgap}	[-]						0,5					
⁾ This value may only b	e applied if lt ≥ 0,5 t	fix, (SEE	Annex	(C4)									

Injection System WVSF300

Performance

Characteristic values for **seismic action**, **WBAT-Z M16 – M24**, performance category **C1** and **C2**

Anchor size	WB	AT-Z	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
Displacement	δΝΟ	[mm]	0	,5	0,5	0,6			0,6			0	,7
Displacement -	δN∞	[mm]						1,3					
Tension load in uncracked concrete	Ν	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
Displacement	δνο	[mm]	0,2	0,4	0	,4			0,4			0	,6
Displacement -	δ _{N∞}	[mm]						1,3					
Displacements under seismic ter	nsion	loads	C2										
Displacements for DLS $\delta_{N,C}$	C2(DLS)	[mm]		erfor-	1,	0	1,	0	1	,3		1,1	
Displacements for ULS $\delta_{N,C}$	2(ULS)	[mm]	ma asse	nce ssed	3,	0	3,	0	3	,9		3,0	

Table C9: Displacements under tension loads, WBAT-Z M16 – M24

Anchor size	WB.	AT-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	Ν	[kN]	14,6	18,4	24,0	30,0	34,7	21,1	38,0	44,9	38,0	48,5	57,9
Dianlacoment	δνο	[mm]		0,7	-	0,8	1,2	0,7	0	,8	0,8	0,	,9
Displacement	δn∞	[mm]		1	,3		1,6	1,1	1	,3		1,3	
Tension load in uncracked concrete	Ν	[kN]	20,5	25,9	33,0	35,7	48,1	29,6	53,3	63,0	53,3	67,9	81,1
Displacement	δνο	[mm]		0	,6		0,8	0,5	0	,6		0,6	
Displacement	δ _{N∞}	[mm]		1	,3		1,6	1,1	1	,3		1,3	
Displacements under seismic te	nsion	loads	C2										
Displacements for DLS $\delta_{N,C}$	C2(DLS)	[mm]	1	,6		1,5		1,7	1	,9		1,9	
Displacements for ULS $\delta_{N,C}$	C2(ULS)	[mm]	3	,7		4,4		4,0	4	,5		4,5	

Injection System WVSF300

Performance Displacements under tension loads, WBAT-Z

Anchor size	WB	AT-Z	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12		
Shear load	V	[kN]	8,		13				19,3						
Dianta anno 16	δνο	[mm]	2,4	2,5	2,	9			3,3						
Displacements	δv∞	[mm]	3,6	3,8	4,	4				5,0					
Displacements under se	ismic shea	r load	s C2												
Displacements for DLS	$\delta_{V,C2(DLS)}$	[mm]		erfor-	2,	1				2,5					
Displacements for ULS	δv,c2(ULS)	[mm]		nce ssed	3,	7				5,1					

Table C11: Displacements under shear loads WBAT-Z M16 – M24

Anchor size	WB/	AT-Z	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Shear load	V	[kN]			36			44	-	5 9)		89 (71)	
Dianlacamenta	δvo	[mm]			3,8			3,0	4 (3	,3 ,0)		4,6 (3,5)	
Displacements	δν∞	[mm]			5,7			4,5	6 (4	5 5)		6,9 (5,3)	
Displacements under seismi	ic shea	r load	s C2										
Displacements for DLS δ_V	,C2(DLS)	[mm]			2,9				3,5			3,7	
Displacements for ULS δ_V	,C2(ULS)	[mm]			6,8				9,3			9,3	

Injection System WVSF300

Performance Displacements under shear loads, WBAT-Z

Table C12: Characteristic v	alues	for te	ensio	on loa	ad, W	/BAT	-IZ							
Anchor size	WB4	AT-IZ	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation factor	γinst	[-]						1	,0	•				
Steel failure														
Characteristic Steel, zinc	plated	[kN]	15	16	19	29	3	5		67		52	125	108
resistance N _{Rk,s} A4	, HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Partial factor	γMs	[-]						1	,5					
Pull-out														
Characteristic resistance (concre	te C20	/25)												
uncracked 50°C / 80°C ¹⁾		[kN]	9	17,4	22,9	32	28,8	35,2	42	52,9	68,8	60,7	109	109
concrete 72°C / 120°C ¹⁾	N Rk,p	[kN]	6	9	16	16	16	25	25	35	50	40	75	95
cracked 50°C / 80° C ¹⁾		[kN]	8,7	12,2	16	22,4	20,2	24,6	29,4	37,1	48,1	42,5	76,3	76,3
concrete 72°C / 120° C ¹⁾	N _{Rk,p}	[kN]	5	7,5	12	12	16	20	20	30	50	30	60	75
Splitting														•
Splitting for standard thicknes	s of co	oncret	е											
Standard thickness of concrete	າ _{min,1} ≥	[mm]	1	00	120	150	140	160	180	200	250	230	340	340
Case 1							-							
Characteristic resistance (concrete C20/25) Case 2	N ⁰ Rk,sp	[kN]	7,5	9	16	20	20	35,2	40	50	50	60,7	109	109
Characteristic edge distance	C cr,sp	[mm]	3	h _{ef}	2,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}		2 h _{ef}		1,5	h _{ef}	1,5h _{ef}
Splitting for minimum thicknes	s of c	oncret	e											
Minimum thickness of concrete	າ _{min,2} ≥	[mm]	8	80	100	110	1	10	130	150	160	160	220	220
Case 1		1								1				
Characteristic resistance (concrete C20/25)	¶ ⁰ Rk,sp	[kN]	7,5	2)	1	6	20	25	35	50	40	2)	75	109
Case 2		1												
Characteristic edge distance	C _{cr,sp}	[mm]	3h _{ef}	3,5h _{ef}	3h _{ef}	3,5h _{ef}	3,5h _{ef}	3h _{ef}	2,5h _{ef}	2,5h _{ef}	3h _{ef}	2,5h _{ef}	2,6h _{ef}	2,6h _{ef}
$ \begin{split} &\text{Increasing factor for} \\ &N_{\text{Rk},\text{p}} = \psi_{\text{c}} \cdot N_{\text{Rk},\text{p}} \left(\text{C20/25}\right) \text{and} \\ &N^{0}_{\text{Rk},\text{sp}} = \psi_{\text{c}} \cdot N^{0}_{\text{Rk},\text{sp}} \left(\text{C20/25}\right)^{3)} \end{split} $	Ψc	[-]						$\left(\frac{f_{ck}}{20}\right)$	-) ^{0,5}					
Concrete cone failure														
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
 Maximum long-term temperature / No performance assessed Increasing factor for N⁰_{Rk,sp} only for 		m shori	t-term	temper	ature									
Injection System WVSF300														
Performance Characteristic values for tension	loads,	WBA [.]	T-IZ									Ann	ex C	10

Anchor size	WBA	AT-IZ	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M2
Installation factor	γinst	[-]						1	,0					
Steel failure without lever arm														
Characteristic Steel, zinc p	blated	[kN]	8,	0	9,5	15	1	8		34		26	63	54
resistance $V_{Rk,s}$ A4,	HCR	[kN]	5,	5	9,5	10	1	6		24		32	44	47
Partial factor	γMs	[-]						1,	25					
Ductility factor	k 7	[-]						1	,0					
Steel failure with lever arm														
Characteristic Steel, zinc p	blated	[kN]	1	2	3	0	6	0		105		212	266	51
bending resistance $M^{0}_{Rk,s}$ A4,	HCR	[kN]	8,	5	2	1	4	2		74		187	187	36
Partial factor		[-]	,	-			I		25	•••				<u> </u>
Concrete pry-out failure	γMs	[[-]						1,	20					
Pry-out factor	k ₈	[-]						2	,0					
Concrete edge failure	N ₀	LJ						2	,0					
Effective length of anchor in														
shear load	lf	[mm]	40	50	60	75	70	80	90	105	125	115	170	17
Outside diameter of anchor	dnom	[mm]	1	0	1	2	1	4		18	1	22	24	26
Anchor size	WB.	AT-IZ	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	
Anchor size	WB.		M6	M6	M8	M8	M10	M10	M12	M12	M12	M16	M16	17 M2
Tension load in cracked concrete	N	[kN]	M6 4,3	M6 6,1	M8 8,0	M8 11,1	M10 10,0	M10 12,3		M12 18,4		M16 21,1	M16 38,0	M2 38,
	Ν δ _{N0}	[k N] [mm]	M6	M6 6,1	M8	M8	M10 10,0 0,	M10 12,3	M12	M12	M12	M16 21,1 0,7	M16 38,0 0,8	M2 38, 0,8
Tension load in cracked concrete Displacement	Ν δ _{N0} δ _{N∞}	[kN] [mm] [mm]	M6 4,3 0,	M6 6,1 5	M8 8,0 0,5	M8 11,1 0,6	M10 10,0 0, 1,3	M10 12,3 6	M12 14,6	M12 18,4 0,7	M12 24,0	M16 21,1 0,7 1,1	M16 38,0 0,8 1,3	M2 38, 0,8 1,3
Tension load in cracked concrete	Ν δ _{N0} δ _{N∞}	[kN] [mm] [mm] [kN]	M6 4,3 0, 4,3	M6 6,1 5 8,5	M8 8,0 0,5 11,1	M8 11,1 0,6 15,6	M10 10,0 0, 1,3 14,1	M10 12,3 6 17,2	M12	M12 18,4 0,7 25,9	M12	M16 21,1 0,7 1,1 29,6	M16 38,0 0,8 1,3 53,3	M2 38, 0,8 1,3 53,
Tension load in cracked concrete Displacement	Ν δ _{N0} δ _{N∞} Ν δ _{N0}	[kN] [mm] [mm] [kN] [mm]	M6 4,3 0,	M6 6,1 5	M8 8,0 0,5	M8 11,1 0,6 15,6	M10 10,0 1,3 14,1 0,	M10 12,3 6 17,2	M12 14,6	M12 18,4 0,7	M12 24,0	M16 21,1 0,7 1,1 29,6 0,5	M16 38,0 0,8 1,3 53,3 0,6	M2 38, 0,8 1,3 53, 0,6
Tension load in cracked concrete Displacement Tension load in uncracked concrete	Ν δ _{N0} δ _{N∞} Ν δ _{N0}	[kN] [mm] [kN] [mm] [mm]	M6 4,3 0, 4,3 0,2	M6 6,1 5 8,5 0,4	M8 8,0 0,5 11,1 0,	M8 11,1 0,6 15,6 4	M10 10,0 0, 1,3 14,1	M10 12,3 6 17,2	M12 14,6	M12 18,4 0,7 25,9	M12 24,0	M16 21,1 0,7 1,1 29,6	M16 38,0 0,8 1,3 53,3	M2 38, 0,8 1,3 53,
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement	Ν δ _{N∞} δ _{N∞} δ _{N∞} δ _{N∞}	[kN] [mm] [kN] [mm] [mm]	M6 4,3 0, 4,3 0,2	M6 6,1 5 8,5 0,4	M8 8,0 0,5 11,1 0,	M8 11,1 0,6 15,6 4	M10 10,0 1,3 14,1 0, 1,3 70	M10 12,3 6 17,2	M12 14,6	M12 18,4 0,7 25,9 0,6 105	M12 24,0	M16 21,1 0,7 1,1 29,6 0,5	M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3	M2 38, 0, 1, 53, 0, 6 1, 7
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement Table C15: Displacements u	Ν δ _{N∞} δ _{N∞} δ _{N∞} δ _{N∞}	[kN] [mm] [kN] [mm] [mm] shea	M6 4,3 0, 4,3 0,2 r loa 40	M6 6,1 5 0,4 ds, \ 50 M6	M8 8,0 0,5 11,1 0, VBA 60	M8 11,1 0,6 15,6 4 T-IZ 75	M10 10,0 1,3 14,1 0, 1,3 70	M10 12,3 6 17,2 4 80 M10	M12 14,6 20,5 90	M12 18,4 0,7 25,9 0,6 105	M12 24,0 33,0 125	M16 21,1 0,7 1,1 29,6 0,5 1,1 115	M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3	M2 38, 0,8 1,; 53, 0,6 1,;
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement Fable C15: Displacements u Anchor size Shear load Steel, zinc plated	Ν δ _{N∞} δ _{N∞} δ _{N∞} nder	[kN] [mm] [kN] [mm] [mm] shea AT-IZ	M6 4,3 0,2 r loa 40 M6	M6 6,1 5 0,4 ds, \ ds, \ 50 M6 6	M8 8,0 0,5 11,1 0, VBA 60 M8	M8 11,1 0,6 4 T-IZ 75 M8	M10 10,0 1,3 14,1 0, 1,3 70 M10	M10 12,3 6 17,2 4 80 M10 ,1	M12 14,6 20,5 90	M12 18,4 0,7 25,9 0,6 105 M12	M12 24,0 33,0 125	M16 21,1 0,7 1,1 29,6 0,5 1,1 115 M16	M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 170 M16	M2 38, 0,8 53, 0,6 1,: 1,: 30,
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement Fable C15: Displacements u Anchor size Shear load	Ν δ _{N∞} Ν δ _{N∞} nder WB, V	[kN] [mm] [kN] [mm] [mm] shea AT-IZ [kN]	M6 4,3 0,2 r Ioa 40 M6 4,	M6 6,1 5 0,4 ds, V 50 M6 6 4	M8 8,0 0,5 11,1 0, VBA 60 M8 5,4	M8 11,1 0,6 4 T-IZ 75 M8 8,4	M10 10,0 1,3 14,1 0, 1,3 70 M10	M10 12,3 6 17,2 4 80 M10 ,1 5	M12 14,6 20,5 90	M12 18,4 0,7 25,9 0,6 105 M12	M12 24,0 33,0 125	M16 21,1 0,7 1,1 29,6 0,5 1,1 1,1 115 M16 14,8	 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 1,3 1,3 1,3 1,3 35,8 	M2 38, 0, 1,; 53, 0, 0, 1,; 17 M2 30, 1,;
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement Fable C15: Displacements u Anchor size Shear load Steel, zinc plated	Ν δ _{N∞} δ _{N∞} δ _{N∞} nder WB, V δ _{ν0}	[kN] [mm] [kN] [mm] [mm] shea AT-IZ [kN] [mm]	M6 4,3 0,2 r loa 40 M6 4, 0,	M6 6,1 5 0,4 ds, \ 50 M6 6 4 7	 M8 8,0 0,5 11,1 0, ✓BA 60 M8 5,4 0,5 	M8 11,1 0,6 4 T-IZ 75 M8 8,4 0,4	M10 10,0 1,3 14,1 0, 1,3 70 M10 10 0,	M10 12,3 6 17,2 4 80 M10 ,1 5 8	M12 14,6 20,5 90	M12 18,4 0,7 25,9 0,6 105 M12 19,3 1,2	M12 24,0 33,0 125	M16 21,1 0,7 1,1 29,6 0,5 1,1 115 M16 14,8 0,8	M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 170 M16 35,8 1,9	M2 38, 0,3 1,; 53, 0,6 1,; 30, 1,; 30, 1,;
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement Fable C15: Displacements u Anchor size Shear load Steel, zinc plated Displacement Shear load Stainless steel A4 / HCR	Ν δ _{N∞} δ _{N∞} δ _{N∞} nder WB, V δ _{V∞}	[kN] [mm] [kN] [mm] [mm] shea AT-IZ [kN] [mm]	M6 4,3 0,2 r loa 40 M6 4, 0, 0,	M6 6,1 5 0,4 ds, \ 50 M6 6 4 7 2	 M8 8,0 0,5 11,1 0, ✓BA 60 M8 5,4 0,5 0,8 	M8 11,1 0,6 4 T-IZ 75 M8 8,4 0,4 0,7	M10 10,0 1,3 14,1 0, 1,3 70 M10 10 0, 0,	M10 12,3 6 17,2 4 80 M10 ,1 5 8 3	M12 14,6 20,5 90	M12 18,4 0,7 25,9 0,6 105 M12 19,3 1,2 1,9	M12 24,0 33,0 125	M16 21,1 0,7 1,1 29,6 0,5 1,1 115 M16 14,8 0,8 1,2	 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 35,8 1,9 2,8 25,2 1,4 	M2 38, 0,8 1,; 53, 0,6 1,; 1,; 17 M2
Tension load in cracked concrete Displacement Tension load in uncracked concrete Displacement Fable C15: Displacements u Anchor size Shear load Steel, zinc plated Displacement Shear load	Ν δN0 δN∞ Ν δN∞ δN∞ δN∞ Λ δN∞ δN∞ V δv0 δv∞ V	[kN] [mm] [kN] [mm] [mm] shea AT-IZ [kN] [mm] [mm] [kN]	M6 4,3 0,2 r loa 40 M6 4, 0, 0, 3,	M6 6,1 5 0,4 ds, V 50 M6 6 4 7 2 3	M8 8,0 0,5 11,1 0, VBA 60 M8 5,4 0,5 0,8 5,4	M8 11,1 0,6 4 T-IZ 75 M8 8,4 0,4 0,7 5,9	M10 10,0 1,3 14,1 0, 1,3 70 M10 10 0, 0, 9,	M10 12,3 6 17,2 4 80 M10 ,1 5 8 3 5	M12 14,6 20,5 90	 M12 18,4 0,7 25,9 0,6 4 105 M12 19,3 1,2 1,9 13,5 	M12 24,0 33,0 125	 M16 21,1 0,7 1,1 29,6 0,5 1,1 115 M16 14,8 0,8 1,2 18,5 	 M16 38,0 0,8 1,3 53,3 0,6 1,3 1,3 4,3 35,8 1,9 2,8 25,2 	M2 38, 0,8 53, 0,6 1,; 53, 0,6 1,; 30, 1,; 26,