

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0419 of 31 July 2023

Deutsches Institut für Bautechnik

Bonded fastener for use in concrete

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Rotho Blaas s.r.l Via dell'Adige 2/1 39040 CORTACCIA (BZ) ITALIEN

Plant C2

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

46 pages including 3 annexes which form an integral part of this assessment

Rotho Blaas Injection System EPO-FIX Injection system

330499-01-0601; Edition 04/2020

European Technical Assessment ETA-23/0419 English translation prepared by DIBt

Page 2 of 46 | 31 July 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 46 | 31 July 2023

European Technical Assessment ETA-23/0419 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Rotho Blaas Injection system EPO-FIX for concrete" is a bonded anchor consisting of a mortar cartridge with injection mortar EPO-FIX and a steel element according to Annex A 3.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi- static loading)	See Annex C 1 to C 6, C 8 to C 11, C 13 to C 16, B 3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 7, C 12, C 17
Displacements under short-term and long-term loading	See Annex C 18 to C 20
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 21 to C 28

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

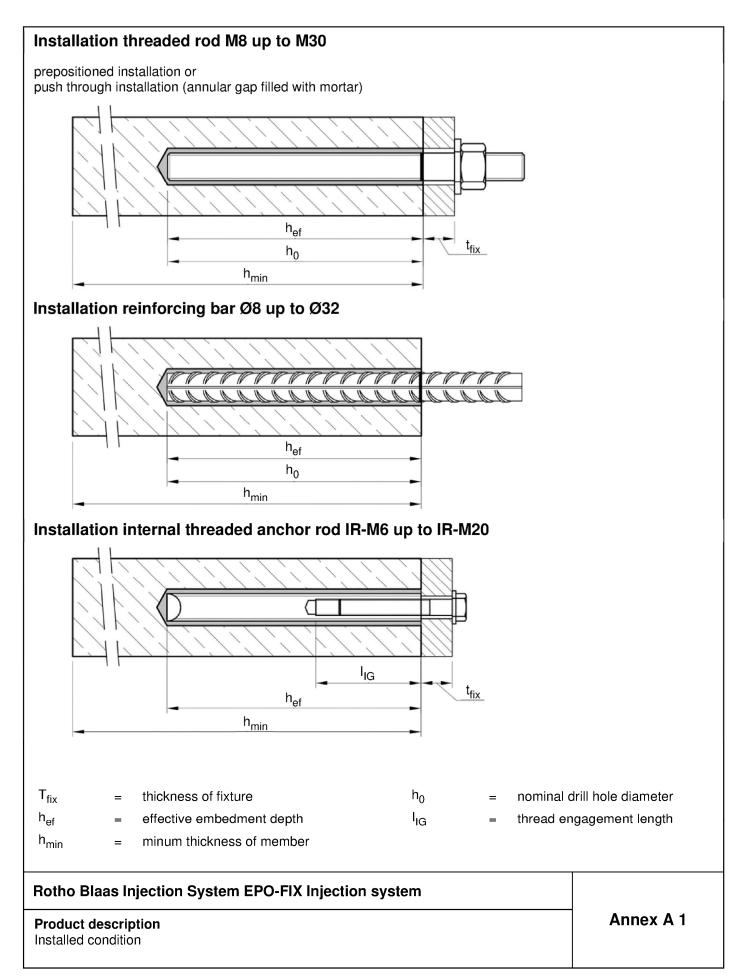
European Technical Assessment ETA-23/0419 English translation prepared by DIBt

Page 4 of 46 | 31 July 2023

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

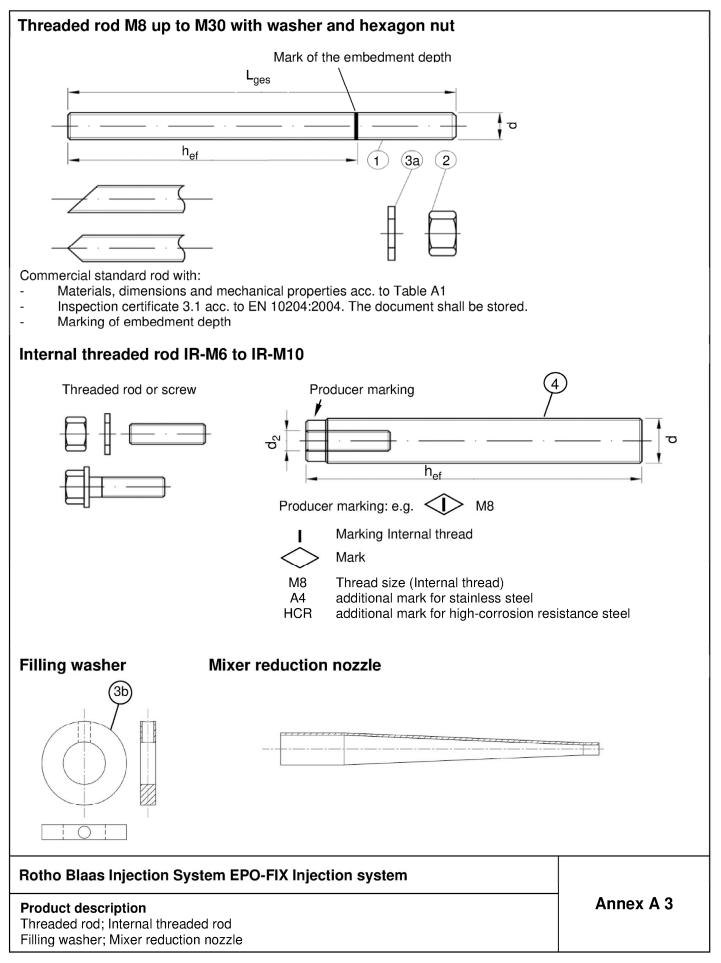
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 31 July 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Baderschneider



Cartridge system		
Side-by-Side Cartridge: 440 ml, 585 ml and 1400 ml	Imprint: EPO-FIX Processing and safety instructions, so number, manufacturer's information,	shelf life, charge quantity information
Static mixer		
Piston plug PL and mixer	extension	
	em EPO-FIX Injection system	
Product description Injection system		Annex A 2

	t Designation	Material				
	el, zinc plated (Steel a		2018	or EN 10263:2017)		
		µm acc. to EN ISO				
		0 μm acc. to EN ISO 5 μm acc. to EN ISO		1:2022 and EN ISO 10684: 38:2016	:2004+AC:2009 or	
6		· ·	170	Characteristic steel	Characteristic steel	Elongation at
		Property class		ultimate tensile strength	yield strength	fracture
				f _{uk} = 400 N/mm²	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%
	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
		acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		EN 130 090-1.2013	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	$A_5 \ge 12\%^{(3)}$
			4	for anchor rod class 4.6 o	r 4.8	
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for anchor rod class 5.6 o	r 5.8	
			8	for anchor rod class 8.8		
3a	Washer			galvanised or sherardized		77004.2000
3b	Filling washer			EN ISO 7089:2000, EN ISC galvanised or sherardized		5 / 034.2000)
<u> </u>				Characteristic steel	Characteristic steel	Elongation at
	Internal threaded	Property class		ultimate tensile strength	yield strength	fracture
4	anchor rod	acc. to	5.8	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 400 N/mm ²	A ₅ > 8%
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ > 8%
Sta	inless steel A2 (Mater	rial 1.4301 / 1.4307 / 1	.431	1 / 1.4567 or 1.4541, acc. t	to EN 10088-1:2014)	
				1 / 1.4362 or 1.4578, acc. t		
Hig	h corrosion resistand	:e steel (Material 1.45	29 0	r 1.4565, acc. to EN 10088		
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at
			50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{vk} = 210 \text{ N/mm}^2$	A ₅ ≥ 8%
1	Threaded rod ¹⁾⁴⁾	acc. to		f _{uk} = 700 N/mm ²	$f_{vk} = 450 \text{ N/mm}^2$	$A_5 \ge 12\%^{3}$
		EN ISO 3506-1:2020		$f_{uk} = 800 \text{ N/mm}^2$,	-
			80	•	$f_{yk} = 600 \text{ N/mm}^2$	$A_5 \ge 12\%^{(3)}$
		acc. to	50 70	for anchor rod class 50 for anchor rod class 70		
2			10	for anchor rod class 80		
2	Hexagon nut ¹⁾⁴⁾	EN ISO 3506-1:2020	80			
2	Hexagon nut ¹⁾⁴⁾			07 / 1.4311 / 1.4567 or 1.4	541, acc. to EN 1008	8-1:2014
		A2: Material 1.4301 / A4: Material 1.4401 /	1.43 1.44	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4	578, acc. to EN 1008	
	Hexagon nut ¹⁾⁴⁾ Washer	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452	′ 1.43 ′ 1.44 9 or 1	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 I.4565, acc. to EN 10088-1	578, acc. to EN 1008 : 2014	8-1:2014
3a	Washer	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	′ 1.43 ′ 1.44 9 or 1 ′06, E	07 / 1.4311 / 1.4567 or 1.4 .04 / 1.4571 / 1.4362 or 1.4 I.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC	578, acc. to EN 1008 : 2014	8-1:2014
3a		A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H	′ 1.43 ′ 1.44 9 or 1 ′06, E	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel	578, acc. to EN 1008 1: 2014 0 7093:2000 or EN IS(8-1:2014 D 7094:2000)
3a 3b	Washer Filling washer	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	1.43 1.44 9 or 1 06, E igh c	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength	578, acc. to EN 1008 2014 7093:2000 or EN ISC Characteristic steel yield strength	8-1:2014 D 7094:2000)
3a 3b	Washer	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H	1.43 1.44 9 or 1 06, E igh c	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	578, acc. to EN 1008 2014 7093:2000 or EN ISC Characteristic steel	8-1:2014 D 7094:2000) Elongation at
3a 3b	Washer Filling washer Internal threaded	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class	1.43 1.44 9 or 1 06, E igh c	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength	578, acc. to EN 1008 2014 7093:2000 or EN ISC Characteristic steel yield strength	8-1:2014 D 7094:2000) Elongation at fracture
3a 3b 4	Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 fo	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 r anchor rods and hexago	1.43 1.44 9 or 1 06, E igh c 50 70	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
3a 3b 1 2)	Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 fo for IR-M20 only property of	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 r anchor rods and hexago class 50	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	$\begin{array}{l} 07 \ / \ 1.4311 \ / \ 1.4567 \ \text{or} \ 1.4\\ 04 \ / \ 1.4571 \ / \ 1.4362 \ \text{or} \ 1.4\\ 1.4565, \ \text{acc. to EN 10088-1}\\ \hline 1.4565, \ \text{acc. to EN 1008-1}\\ \hline 1.4565, \ acc. to EN$	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
3a 3b 4 1) 2) 3)	Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 for for IR-M20 only property class 70 or 80 for for JR-M20 only property class 70 or 80 for S = 8% fracture elongation	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 or anchor rods and hexago class 50 on if no use for seismic pe	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	$\begin{array}{l} 07 \ / \ 1.4311 \ / \ 1.4567 \ \text{or} \ 1.4\\ 04 \ / \ 1.4571 \ / \ 1.4362 \ \text{or} \ 1.4\\ 1.4565, \ \text{acc. to EN 10088-1}\\ \hline 1.4565, \ \text{acc. to EN 1008-1}\\ \hline 1.4565, \ acc. to EN$	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
3a 3b 4 1) 2) 3)	Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 fo for IR-M20 only property of	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 or anchor rods and hexago class 50 on if no use for seismic pe	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	$\begin{array}{l} 07 \ / \ 1.4311 \ / \ 1.4567 \ \text{or} \ 1.4\\ 04 \ / \ 1.4571 \ / \ 1.4362 \ \text{or} \ 1.4\\ 1.4565, \ \text{acc. to EN 10088-1}\\ \hline 1.4565, \ \text{acc. to EN 1008-1}\\ \hline 1.4565, \ acc. to EN$	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
3a 3b 4 1) 2) 3)	Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 for for IR-M20 only property class 70 or 80 for for JR-M20 only property class 70 or 80 for S = 8% fracture elongation	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 or anchor rods and hexago class 50 on if no use for seismic pe	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	$\begin{array}{l} 07 \ / \ 1.4311 \ / \ 1.4567 \ \text{or} \ 1.4\\ 04 \ / \ 1.4571 \ / \ 1.4362 \ \text{or} \ 1.4\\ 1.4565, \ \text{acc. to EN 10088-1}\\ \hline 1.4565, \ \text{acc. to EN 1008-1}\\ \hline 1.4565, \ acc. to EN$	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
3a 3b 4 1) 2) 3) 4)	Washer Filling washer Internal threaded anchor rod $^{1)2}$ Property class 70 or 80 for for IR-M20 only property class 70 or 80 for A ₅ > 8% fracture elongati Property class 80 only for	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 r anchor rods and hexago class 50 on if no use for seismic pe stainless steel A4 and HC	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ sup to M24 and Internal threade ance category C2	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
2) 3) 4)	Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 for for IR-M20 only property class 70 or 80 for for JR-M20 only property class 70 or 80 for S = 8% fracture elongation	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 r anchor rods and hexago class 50 on if no use for seismic pe stainless steel A4 and HC	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ sup to M24 and Internal threade ance category C2	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%
3a 3b 4 1) 2) 3) 4) R (Washer Filling washer Internal threaded anchor rod ¹⁾²⁾ Property class 70 or 80 for for IR-M20 only property class 70 or 80 for for IR-M20 only property class 80 only for Property class 80 only for Property class 80 only for Description Description Description Description Property class 80 only for	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 r anchor rods and hexago class 50 on if no use for seismic pe stainless steel A4 and HC	1.43 1.44 9 or 1 06, E igh c 50 70 n nuts	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ sup to M24 and Internal threade ance category C2	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8% 16
3a 3b 4 1) 2) 3) 4) R (Washer Filling washer Internal threaded anchor rod $^{1)2}$ Property class 70 or 80 for for IR-M20 only property class 70 or 80 for A ₅ > 8% fracture elongati Property class 80 only for	A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H Property class acc. to EN ISO 3506-1:2020 or anchor rods and hexago class 50 on if no use for seismic pe stainless steel A4 and HC	1.43 1.44 9 or 1 06, E igh c 70 70 70 70 70 70 70 8 8	07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISC orrosion resistance steel Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ sup to M24 and Internal threade ance category C2	578, acc. to EN 1008 : 2014 0 7093:2000 or EN ISC Characteristic steel yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$	8-1:2014 D 7094:2000) Elongation at fracture A ₅ > 8% A ₅ > 8%

Re			
	inforcing bar: ø8 up to ø32		
Rik (d:	nimum value of related rip area f _{R,min} accord o height of the bar shall be in the range 0,0 Nominal diameter of the bar; h _{rib} : Rib height able A2: Materials Reinforcing H	05d ≤ h _{rib} ≤ 0,07d ght of the bar)	<u>nanana</u> (
	Designation	Material	
eb			
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according $f_{uk} = f_{tk} = k \cdot f_{yk}$	to EN 1992-1-1/NA

Specification of the intend	led use					
Fasteners subject to (Static	and quasi-static loa	ıds):				
	Working life	50 years	Working life	100 years		
Base material	uncracked concrete	cracked concrete	uncracked concrete	cracked concrete		
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø IR-M6 to I	Ø32,	M8 to M30, Ø8 to Ø32, IR-M6 to IR-M20			
DD: Diamond drilling	M8 to M30, ∅8 to ∅32, IR-M6 to IR-M20	No performance assessed	M8 to M30, ∅8 to ∅32, IR-M6 to IR-M20	No performance assessed		
Temperature Range:	l: - 40 C t ll: - 40 C t		$\begin{array}{ c c c c c c c c } I: & -40 \ C & to & +40 \ C^{1)} \\ II: & -40 \ C & to & +72 \ C^{2)} \end{array}$			
Fasteners subject to (seismi	c action):					
	Performance C	Category C1	Performance Category C2			
Base material	Cracked and uncr	acked concrete	Cracked and uncr	acked concrete		
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to № Ø8 to Ø	-	M12 to M24			
DD: Diamond drilling	No performanc	e assessed	No performanc	e assessed		
Temperature Range:	l: - 40 C t II: - 40 C t		I: - 40 C t II: - 40 C t			

 $^{1)}$ (max. long-term temperature +24°C and max. short-term temperature +40°C)

²⁾ (max. long-term temperature +50°C and max. short-term temperature +72°C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Rotho Blaas Injection System EPO-FIX Injection system

Intended Use Specifications

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB), compressed air (CD) or diamond drill mode (DD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Rotho Blaas Injection System EPO-FIX Injection system

Intended Use Specifications (Continued)

					1 -								
Threaded rod			al al				M10	M12	M16	M20	M24	M27	M30
Diameter of elemen			d = d _{no}			8	10	12	16	20	24	27	30
Nominal drill hole di	ameter			l _o [mr		10	12	14	18	22	28	30	35
Effective embedmer	nt depth	-	h _{ef,m}			<u>30</u>	60	70	80	90	96	108	120
Diamatan af			h _{ef,m}			60	200	240	320	400	480	540	600
Diameter of clearance hole in	Prepositio			`	n]	9	12	14	18	22	26	30	33
the fixture	Push th	rough insta	allation	d _f [mr	n] ⁻	12	14	16	20	24	30	33	40
Maximum installatio	n torque		max T _{inst} [Nm]			10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness	of member		h _m	in [mr	n]		+ 30 m 100 mn			h	_{ef} + 2d₀		
Minimum spacing			s _m	in [mr	n] 4	40	50	60	75	95	115	125	140
Minimum edge distance			с _т	in [mr	n] (35	40	45	50	60	65	75	80
1) Maximum installa	tion toraue f	or M12 wit	n steel (Grade 4.6	6 is 35 N	lm							
Table B2:	Installati	on para	metei	s for	reinfo	rcing	g bar						
Reinforcing bar				Ø 81)	Ø 10 ¹⁾	Ø 12	1) Ø 1 -	4 Ø 10	5 Ø 20) Ø 24 ¹⁾	Ø 25 1)	Ø 28	Ø 32
Diameter of element		d = d _{non}	ן [mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole dia	ameter	d		10 12	12 14	14 10	6 18	20	25	30 32	30 32	35	40
Effective evelopely a	t al a setla	h _{ef,mi}	ղ [mm]	60	60	70	75	80	90	96	100	112	128
Effective embedmer	t depth	h _{ef,ma}	([mm]	160	200	240	280) 320	400	480	500	560	640
Minimum thickness	of member	h _{mi}	ח [mm]		30 mm)0 mm								
Minimum spacing		s _{mi}	ղ [mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge dista	nce	C _{mi}		35	40	45	50	50	60	70	70	75	85
Table B3:	Installati												
		on para	meter	s for l	ntern	al th	reade	d anc	hor ro	d			
Internal threaded a	nchor rod			s for l	ntern IR-M6		reade R-M8	d anc		od R-M12	IR-M1	6 IF	R-M20
Internal diameter of	anchor rod		d ₂	[mm]	IR-M6 6		R-M8 8	IR-M	10 I	R-M12 12	16	6 IF	20
	anchor rod			[mm]	IR-M6		R-M8	IR-M	10 I	R-M12		6 IF	
Internal diameter of Outer diameter of a	anchor rod nchor rod ¹⁾	d =	d ₂ = d _{nom} d ₀	[mm]	IR-M6 6		R-M8 8	IR-M	10 I	R-M12 12	16	6 IF	20
Outer diameter of an Nominal drill hole di	anchor rod nchor rod ¹⁾ ameter	d =	d ₂ = d _{nom} d ₀ Pef,min	[mm] [mm] [mm]	IR-M6 6 10 12 60		R-M8 8 12 14 70	IR-M 10 16 18 80	110 I)	R-M12 12 20 22 90	16 24 28 96		20 30 35 120
Internal diameter of Outer diameter of a Nominal drill hole di Effective embedmen	anchor rod nchor rod ¹⁾ ameter nt depth	d =	d ₂ = d _{nom} d ₀	[mm] [mm] [mm]	IR-M6 6 10 12		R-M8 8 12 14	IR-M 10 16 18	110 I)	R-M12 12 20 22	16 24 28		20 30 35
Internal diameter of Outer diameter of al Nominal drill hole di Effective embedmer Diameter of clearan hole in the fixture	anchor rod nchor rod ¹⁾ ameter nt depth ce	d =	d_2 = d_{nom} d_0 $P_{ef,min}$ $d_f \leq$	[mm] [[mm] [[mm] [[mm] [[mm]]	IR-M6 6 10 12 60 200 7		R-M8 8 12 14 70 240 9	IR-M 10 16 18 80 32 12	110 I)	R-M12 12 20 22 90 400 14	16 24 28 96 480 18		20 30 35 120 600 22
Internal diameter of Outer diameter of an Nominal drill hole di Effective embedmen Diameter of clearan hole in the fixture Maximum installatio	anchor rod nchor rod ¹⁾ ameter nt depth ce n torque	d =	d ₂ = d _{nom} d ₀ n _{ef,min}	[mm] [mm] [mm] [mm]	IR-M6 6 10 12 60 200		R-M8 8 12 14 70 240	IR-M 10 16 18 80 32	110 I)	R-M12 12 20 22 90 400	16 24 28 96 480		20 30 35 120 600
Internal diameter of Outer diameter of an Nominal drill hole di Effective embedmen Diameter of clearan hole in the fixture Maximum installatio Thread engagemen	anchor rod nchor rod ¹⁾ ameter nt depth ce n torque	d =	d_2 = d_{nom} d_0 $P_{ef,min}$ $d_f \leq$	[mm] [[mm] [[mm] [[mm] [[mm]]	IR-M6 6 10 12 60 200 7 10 8/20		R-M8 8 12 14 70 240 9 10 8/20	IR-M 10 16 18 80 32 12	110 I)	R-M12 12 20 22 90 400 14	16 24 28 96 480 18		20 30 35 120 600 22
Internal diameter of Outer diameter of an Nominal drill hole di Effective embedmen Diameter of clearan hole in the fixture Maximum installatio	anchor rod nchor rod ¹⁾ ameter nt depth ce n torque t length	d =	$\frac{d_2}{d_{nom}}$ $\frac{d_0}{d_0}$ $\frac{d_{r,min}}{d_{r,min}}$ $\frac{d_{r,min}}{d_{r,min}}$ $\frac{d_r}{d_r} \leq \frac{1}{2}$	[mm] [mm] [mm] [mm] [mm] [Nm]	IR-M6 6 10 12 60 200 7 10 8/20 h _{ef}		R-M8 8 12 14 70 240 9 10 8/20 nm	IR-M 10 16 18 80 32 12 20	110 I)	R-M12 12 20 22 90 400 14 40	16 24 28 96 480 18 60 16/32		20 30 35 120 600 22 100
Internal diameter of Outer diameter of an Nominal drill hole di Effective embedmen Diameter of clearan hole in the fixture Maximum installatio Thread engagemen min/max	anchor rod nchor rod ¹⁾ ameter nt depth ce n torque t length	d =	$\begin{array}{c} d_2 \\ = d_{nom} \\ d_0 \\ \hline \\ e_{f,min} \\ d_{f,max} \\ d_f \leq \\ x T_{inst} \\ \hline \\ I_{IG} \end{array}$	[mm] [mm] [mm] [mm] [mm] [Nm]	IR-M6 6 10 12 60 200 7 10 8/20 h _{ef}	+ 30 n	R-M8 8 12 14 70 240 9 10 8/20 nm	IR-M 10 16 18 80 32 12 20	110 I)	R-M12 12 20 22 90 400 14 40 12/30	16 24 28 96 480 18 60 16/32	2 2	20 30 35 120 600 22 100

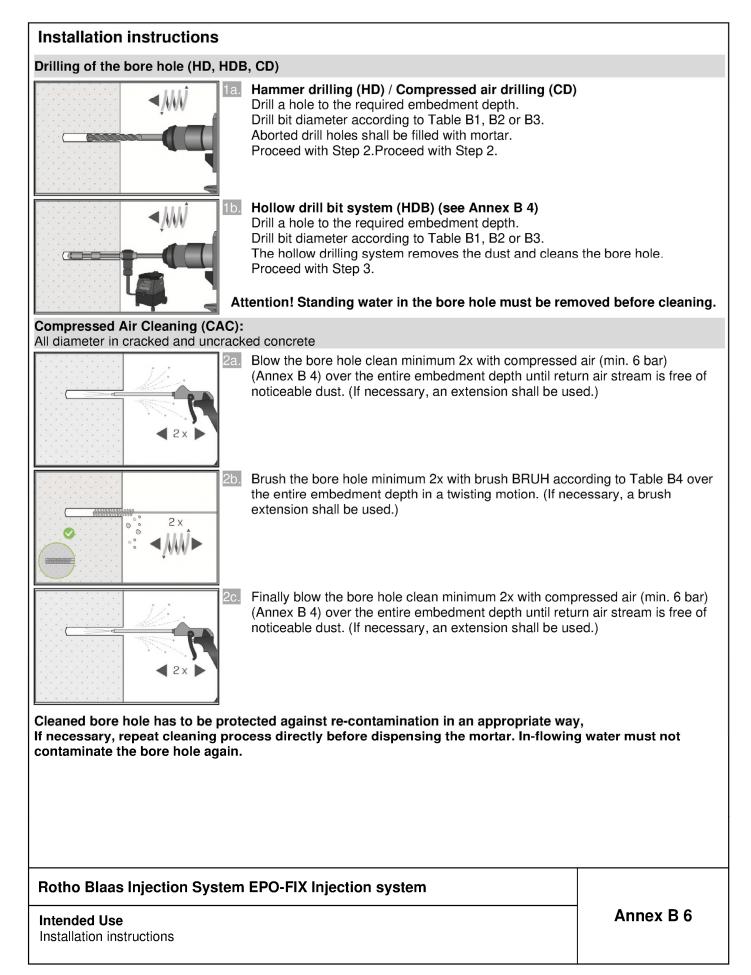
1) With metric threads according to EN 1993-1-8:2005+AC:2009

Rotho Blaas Injection System EPO-FIX Injection system

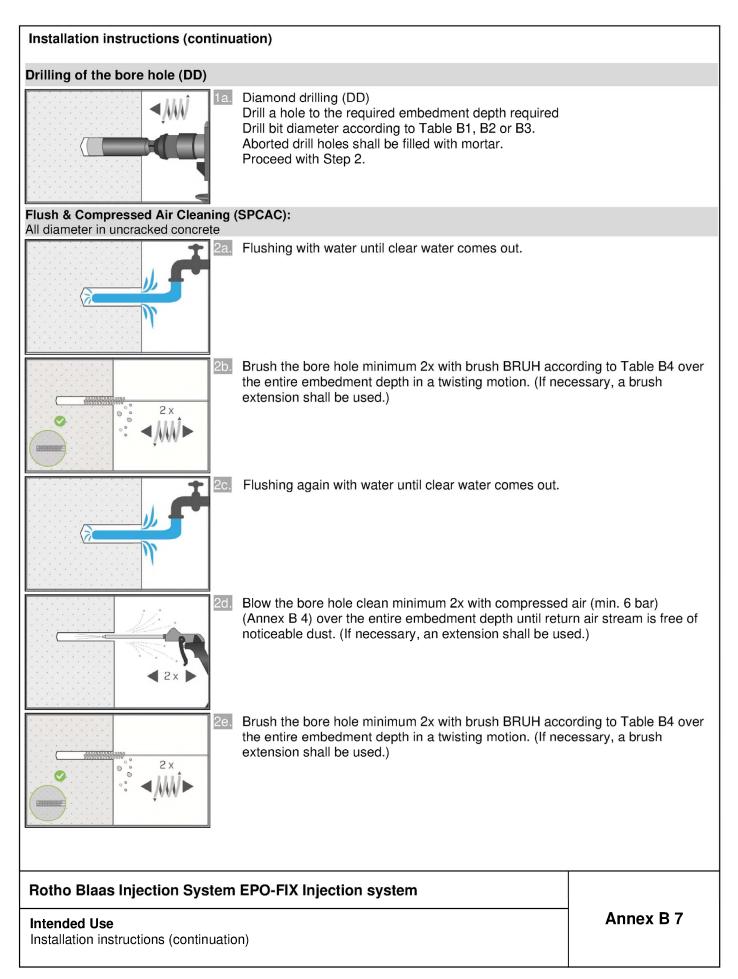
Intended Use

Installation parameters

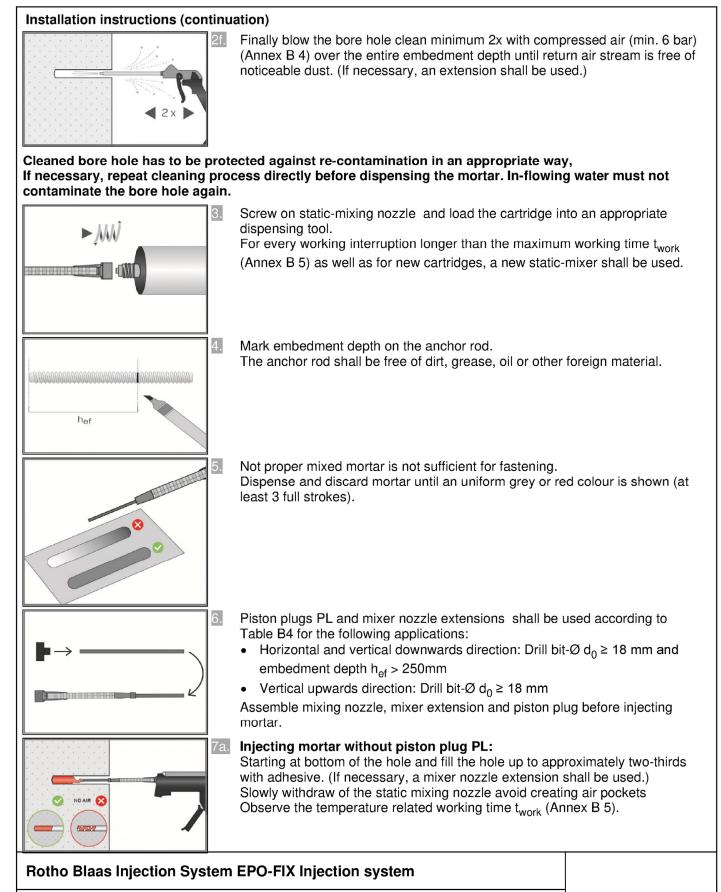
	LLLLL				manna	HARRANK.		6		
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD, DD	d Brusl	- -	d _{b,min} min. Brush - Ø	Piston plug		on direction i piston plu	
[mm]	[mm]	[mm]	[mm]	BRU	[mm]	[mm]			\rightarrow	1
M8	8	224 12	10	H10	11,5	10,5			Ŷ	_
M10	8 / 10	IR-M6	10	H12	13,5	12,5				
M12	10/12	IR-M8	14	H14	15,5	14,5		No plug	required	
	12		16	H16	17,5	16,5	1			
M16	14	IR-M10	18	H18	20,0	18,5	PL18			
	16		20	H20	22,0	20,5	PL20	1		
M20		IR-M12	22	H22	24,0	22,5	PL22	1		
	20		25	H25	27,0	25,5	PL25			all
M24		IR-M16	28	H28	30,0	28,5	PL28	h _{ef} >	h _{ef} >	
M27	24 / 25		30	H30	31,8	30,5	PL30	250 mm	250 mm	
	24 / 25		32	H32	34,0	32,5	PL32			
			35	H35	37,0	35,5	PL35	1		
M30	28	IR-M20	- 55	1100	01,01	00,0	1 200			
Cleaning	32	allation to	40	H40	43,5	40,5	PL40		aller Duster F	Export
Cleaning HDB – Ho	32 g and insta llow drill bit	allation to	40		43,5		PL40 I system co and a class ure of 253	s M hoover v	vith a minimu	um
Cleaning HDB – Ho	32 g and insta llow drill bit sed air tool	allation to	40		43,5	40,5 The hollow dril hollow drill bit a negative press	PL40 I system cr and a class ure of 253 s).	s M hoover v	vith a minimu	um
Cleaning HDB – Ho Compress (min 6 bar)	32 g and insta llow drill bit Sed air tool	allation to	40		43,5	40,5 The hollow dril hollow drill bit a negative press 150 m ³ /h (42 l/	PL40 I system cr and a class ure of 253 s).	s M hoover v	vith a minimu	um
Cleaning HDB – Ho Compress (min 6 bar) Brush BR Brush BR	32 g and insta llow drill bit sed air tool UH uH	allation to	40	H40	43,5	40,5 The hollow drill hollow drill bit a negative press 150 m ³ /h (42 l/	PL40 I system cr and a class ure of 253 s).	s M hoover v	vith a minimu	um

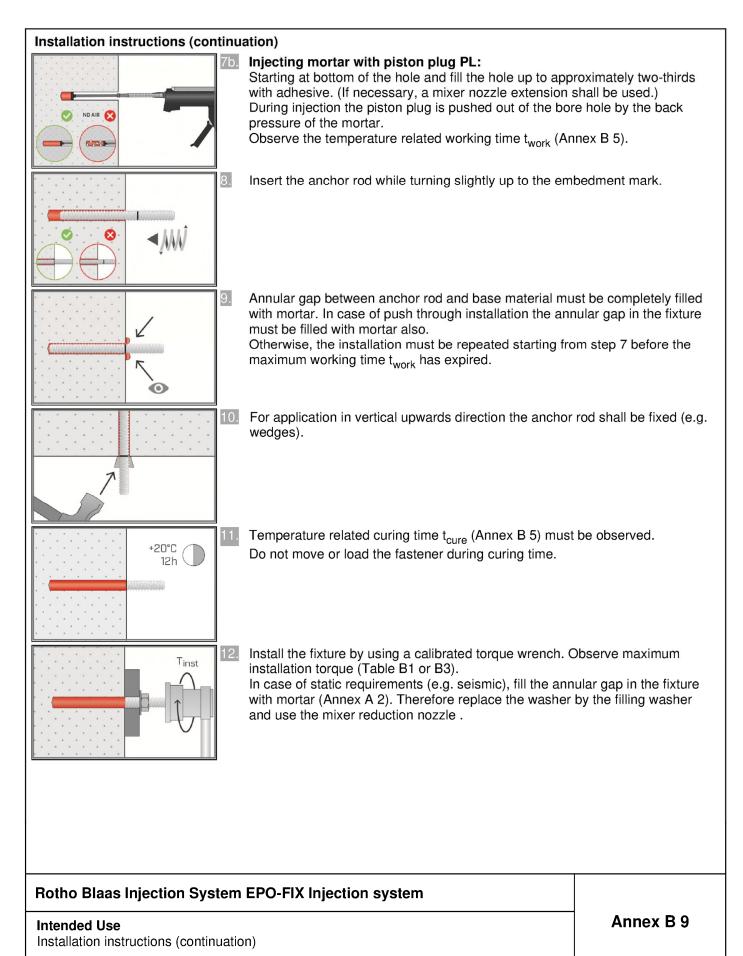

Table B5:	Worki	Working and curing time									
Tempera	ture in bas	se material	Maximum working time	Minimum curing time ¹⁾							
	Т		t _{work}	t _{cure}							
+ 0°C	to	+ 4 °C	90 min	144 h							
+ 5°C	to	+ 9°C	80 min	48 h							
+ 10°C	°C to + 14 °C		60 min	28 h							
+ 15°C	to	+ 19°C	40 min	18 h							
+ 20 °C	to	+ 24 °C	30 min	12 h							
+ 25 °C	to	+ 34 °C	12 min	9 h							
+ 35 °C	to	+ 39 °C	8 min	6 h							
	+ 40 °C		8 min	4 h							
Cartr	idge tempe	erature	+5°C to +40°C								

 The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Rotho Blaas Injection System EPO-FIX Injection system

Intended Use Working time and curing time





Intended Use Installation instructions (continuation)

Т	able C1: Characteristic values resistance of threade			ension	resista	ancea	and st	teel s	hear		
Tł	nreaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
CI	naracteristic tension resistance, Steel failu	re ¹⁾									
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
CI	Characteristic tension resistance, Partial factor ²⁾										
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-] 2,0								
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	7			
	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]				1,6	6			
CI	naracteristic shear resistance, Steel failure	, 1)									
E	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk.s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
out	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
5	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
-	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
CI	naracteristic shear resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			
1) Values are only valid for the given stress area		e in hra	ockote ar	a valid for	undore	ized thr	and ad r	ode with	emallo	r

 Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

3) Fastener type not part of the ETA

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Table C2: Characteristic values of tension loads under static and quasi-static action for a working life of 50 and 100 years All Fastener type and sizes Fastener Concrete cone failure Uncracked concrete k_{ucr,N} [-] 11,0 Cracked concrete k_{cr,N} [-] 7,7 1,5 h_{ef} Edge distance C_{cr,N} [mm] Axial distance 2 c_{cr.N} s_{cr,N} [mm] Splitting 1,0 h_{ef} $h/h_{ef} \ge 2,0$ h 2 · h_{ef} 2,0 > h/h_{ef} > 1,3 2,5 -Edge distance c_{cr,sp} [mm] h_{ef} $h/h_{ef} \le 1,3$ 2,4 h_{ef} 2 c_{cr,sp} Axial distance s_{cr,sp} [mm]

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values of tension loads under static and quasi-static action for a working life of 50 and 100 years

	acteristic val working life			ls uno	der st	atic a	and q	uasi-	statio	actio	on
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel failure							10	Refuence 14			
Characteristic tension resi	istance	N _{Rk,s}	[kN]			A _s ∙ f	_{uk} (or s	ee Tab	le C1)		
Partial factor		γ _{Ms,N}	[-]	see Table C1							
Combined pull-out and c											
Characteristic bond resista (CD)	ance in uncracked	d concrete C20	/25 in hamı	mer dril	lled hol	es (HD) and c	ompre	ssed a	ir drilleo	d holes
I: 72°C/20°C	Dry, wet concrete and	⁷ Rk,ucr	[N/mm²]	20	20	19	19	18	17	16	16
E II: 72°C/50°C	flooded bore hole			15	15	15	14	13	13	12	12
Characteristic bond resista	ance in uncracked	d concrete C20	/25 in hamı	ner dril	lled hol	es with	hollow	drill bi	t (HDB	5)	
₽ <u> </u> <u> : 40°C/24°C</u>	Dry, wet			17	16	16	16	15	14	14	13
e I: 40°C/24°C iii: 72°C/50°C ii: 40°C/24°C ii: 72°C/50°C ii: 72°C/50°C	concrete	τ	[N/mm²]	14	14	14	13	13	12	12	11
ਿਊ ਇੱ I: 40°C/24°C	flooded bore	^τ Rk,ucr	[IN/IIII-]	16	16	16	15	15	14	14	13
⊢ II: 72°C/50°C	hole			14	14	14	13	13	12	12	11
Characteristic bond resista and in hammer drilled hole			in hamme	r drilleo	d holes	(HD) ,	compre	essed a	air drille	ed hole	s (CD)
₽ ₽ I: 40°C/24°C Dry, wet	concrete and		[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
und ter und ter un	flooded bore hole	^T Rk,cr	[[IN/IIIII-]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
Reduction factor ψ^0_{sus} in the holes (CD) and in hamme				hamme	er drille	d holes	s (HD),	compr	essed	air drille	əd
Temperature ange II: 72°C/2°C C) C) C) C) C) C) C) C) C) C) C) C) C)	Dry, wet concrete and	ψ ⁰ sus	[-]	0,80							
E II: 72°C/50°C	flooded bore hole						,	68			
Increasing factors for cond	crete	Ψc	[-]				(f _{ck} /)	20) ^{0,1}			
Characteristic bond resista	ance depending	τ _{Rk,ucr} =				Ψα	^{•τ} Rk,ι	ucr,(C20	/25)		
on the concrete strength c		τ _{Rk,cr} =						cr,(C20/			
Concrete cone failure											
Relevant parameter							see Ta	able C2	2		
Splitting											
Relevant parameter							see Ta	able C2	2		
Installation factor		1						0			
for dry and wet concrete (I for flooded bore hole (HD;		γinst	[-]					,0 ,2			
		I	<u> </u>	1			1	,2			
Rotho Blaas Injectio	on System EPC	-FIX Injectio	on syster	n							
Rotho Blaas Injection System EPO-FIX Injection system Performances Characteristic values of tension loads under static and quasi-static action for a working life of 50 years (threaded rod)								Annex C 3			

	for a working life of 100 years											
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure	• • • • • • • • • • • • • • • • • • • •	N	11 N 17			Δ f	(or 0	00 Tob				
Characteristic tension resi	stance	N _{Rk,s}	[kN]			A _s • T		ee Tab	le CT)			
Partial factor	anarata failura	^γ Ms,N	[-]				see Ta	able C1				
(CD)		l concrete C20,	/25 in hamr	mer drilled holes (HD) and compressed air drilled holes							l holes	
I: 72°C/20°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	20	20	19	19	18	17	16	16	
E II: 72°C/50°C	flooded bore hole			15	15	15	14	13	13	12	12	
Characteristic bond resista	ance in uncracked	concrete C20	/25 in hamr	mer dril	lled hole	es with	hollow	drill bit	t (HDB)			
୍ର ା: 40°C/24°C	Dry, wet			17	16	16	16	15	14	14	13	
end I: 40°C/24°C initiation II: 72°C/50°C II: 40°C/24°C II: 72°C/50°C II: 72°C/50°C	concrete	-	[]]	14	14	14	13	13	12	12	11	
କୁ ହିଁ l: 40°C/24°C	flooded bore	^τ Rk,ucr,100	[N/mm²]	16	16	16	15	15	14	14	13	
⊢ II: 72°C/50°C	hole			14	14	14	13	13	12	12	11	
Characteristic bond resista			in hamme	r drilleo	d holes	(HD) ,	compre	essed a	ir drille	d holes	s (CD)	
and in hammer drilled hole												
conc	Dry, wet concrete and flooded bore	^τ Rk,cr,100	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	
E II: 72°C/50°C	hole			5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	
Increasing factors for cond	crete	Ψc	[-]	(f _{ck} / 20) ^{0,1}								
Characteristic bond resista		^τ Rk,ucr,100 =				$\psi_{\mathbf{C}}$.	^τ Rk,ucr	,100,(C2	20/25)			
on the concrete strength c	lass	τ _{Rk,cr,100} =				Ψ_{c} .	^τ Rk,cr,	100,(C2	0/25)			
Concrete cone failure							T-					
Relevant parameter Splitting							see 12	ble C2				
Relevant parameter							see Ta	ble C2				
Installation factor		1										
for dry and wet concrete (I		γinst	[-]					,0				
for flooded bore hole (HD;	HDB, CD)						1	,2				
Rotho Blaas Injectio	n System EPC	-FIX Injectio	on systen	n								
Performances Characteristic values of for a working life of 100			quasi-stat	ic actio	on				Anne	x C 4		

	for a working life of 50 years												
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic tension resis	tance	N _{Rk,s}	[kN]			A _s • f	_{uk} (or s	ee Tab	le C1)				
Partial factor		γ _{Ms,N}	[-]				see Ta	able C1					
Combined pull-out and co	oncrete failure												
Characteristic bond resista		d concrete C20/	25 in diam	ond dr	lled ho	les (DD	D)						
range	Dry, wet concrete and flooded bore hole	^τ Rk,ucr	[N/mm²]	15	14	14	13	12 9,5	12 9,5	11 9,0	11 9,0		
· · · · · · · · · · · · · · · · · · ·		to C20/25 in di	omond dril					0,0	0,0	0,0			
Reduction factor ψ^0_{sus} in u	ncracked concre	te 620/25 in di	amond drii	iea noi	es (DD)								
	Dry, wet concrete and	Ψ ⁰ sus	[-]				0,	77					
⊡ = = = = = = = = = = = = =	flooded bore hole	Ŷ SUS					0,	72					
Increasing factors for concr	rete	Ψc	[-]				(f _{ck} /)	20) ^{0,2}					
Characteristic bond resistant on the concrete strength cla		τ _{Rk,ucr} =				Ψ	c ^{•τ} Rk,ι		25)				
Concrete cone failure													
Relevant parameter							see Ta	able C2					
Splitting													
Relevant parameter							see Ta	able C2					
							4	0					
·	0)	γinst	[-]	<u> </u>	12			,0	14				
nstallation factor													
Rotho Blaas Injection System EPO-FIX Injection system Performances Characteristic values of tension loads under static and quasi-static action for a working life of 50 years (threaded rod)										ex C :	5		

	for a working life of 100 years eaded rod M8 M10 M12 M16 M24 M27 M30												
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic tension resis	stance	N _{Rk,s}	[kN]			A _s ∙f	_{uk} (or s	ee Tab	le C1)				
Partial factor		γ _{Ms,N}	[-]				see Ta	able C1					
Combined pull-out and c	oncrete failure	, ·											
Characteristic bond resista	ince in uncracked	d concrete C20/	25 in diam	ond dri	lled ho	les (DD))						
I: 40°C/24°C	Dry, wet concrete and flooded bore	^τ Rk,ucr,100	[N/mm²]	15	14	14	13	12	12	11	11		
	hole			11	11	10	10	9,5	9,0	8,5	8,5		
Increasing factors for conc		Ψc	[-]				(†ck /	20) 0,2					
Characteristic bond resista on the concrete strength cl		$\tau_{\text{Rk,ucr,100}} =$				Ψ c ・	^τ Rk,uci	r,100,(C2	20/25)				
Concrete cone failure													
Relevant parameter					see Ta	able C2							
Splitting													
Relevant parameter	see Ta	able C2											
for dry and wet concrete (E	וחנ			1	,0								
for flooded bore hole (DD)		[-]		1,2			,0	1,4					
Rotho Blaas Injectio Performances Characteristic values of for a working life of 100		-	Anne	ex C (6								

Table C7: Characteristic for a working I					nder s	tatic a	nd qu	asi-sta	atic acti	on
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ _{Rk,s}	[kN]			0,5 ·	A _s ∙f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]			1,2 • 1	W _{el} ∙f _u ⊧	、(or see	Table C	51)	
Elastic section modulus W _{el} [mm³] 31 62 109 277 541 935 1387 187										
Partial factor γ _{Ms,V} [-] see Table C1										
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	۱ _f	[mm]		r	nin(h _{ef} ; 1	2 · d _{nor}	m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values of shear loads under static and quasi-static action for a working life of 50 and 100 years (threaded rod)

Internal threaded anchor r	ods			IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20		
Steel failure ¹⁾											
Characteristic tension resist	ance, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial factor, strength class		γMs,N	[-]			0.000	,5				
Characteristic tension resist		8.8		649. TB				2 AL-2	101000-001		
Steel A4 and HCR, Strength		N _{Rk,s}	[kN]	14	26	41	59	110	124		
Partial factor		γMs,N	[-]			1,87			2,86		
Combined pull-out and co	ncrete cone fail	ure									
Characteristic bond resistan (CD)	ce in uncracked	concrete C	20/25 in h	ammer dr	illed holes	(HD) and	compress	sed air dri	lled hole		
- I: 40°C/24°C	Dry, wet			20	19	19	18	17	16		
Temperature	concrete and flooded bore hole	T-I	[N/mm²]	15	15	14	13	13	12		
Characteristic bond resistan		concrete C	20/25 in h	ammer dr	illed holes	with hollo	w drill bit	(HDB)			
I: 40°C/24°C	Dry, wet			16	16	16	15	14	13		
Temperature II: 72°C/50°C	concrete		[N/mm ²]	14	14	13	13	12	11		
range I: 40°C/24°C		^τ Rk,ucr		16	16	15	15	14	13		
II: 72°C/50°C				14	14	13	13	12	11		
Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (C and in hammer drilled holes with hollow drill bit (HDB)											
Temperature I: 40°C/24°C	concrete and	TD	[N/mm²]	7,0	8,5	8,5	8,5	8,5	8,5		
range II: 72°C/50°C	noie			6,0	7,0	7,0	7,0	7,0	7,0		
Reduction factor $\psi^0{}_{{ m SUS}}$ in cr holes (CD) and in hammer c				25 in hamı	mer drilled	holes (HI	D), compre	essed air o	drilled		
I: 40°C/24°C	Dry wet					0	80				
range II: 72°C/50°C	flooded bore	- 110	[-]				68				
Increasing factors for concre	hole))/~	[-]			(f . / !	20) ^{0,1}				
		Ψc									
Characteristic bond resistan the concrete strength class	ce depending or	۱ 	$\tau_{\text{Rk,ucr}} = $ $\tau_{\text{Rk,cr}} = $			Ψc ^{•τ} Rk,u Ψc ^{•τ} Rk,i	icr,(C20/25)				
Concrete cone failure			*RK,Cr			ΨC ⁻ ΠK,0	31,(020/25)				
Relevant parameter						see Ta	ble C2				
Splitting failure											
Relevant parameter						see Ta	ble C2				
Installation factor											
for dry and wet concrete (HI		γ _{inst}	[-]				,0				
for flooded bore hole (HD; H							,2				
 Fastenings (incl. nut and v The characteristic tension For IR-M20 strength class 	resistance for ste								ed rod.		
Rotho Blaas Injection	System EPO	-FIX Injec	tion sys	tem							
Performances Characteristic values of tension loads under static and quasi-static action											

Table C9: Characteristic values of tension loads under static and quasi-static action for a working life of 100 years Internal threaded anchor rods IR-M6 IR-M8 IR-M10 IR-M12 IR-M16 IR-M20												
Internal threaded anchor rod	S			IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20			
Steel failure ¹⁾												
Characteristic tension resistance	ce, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123			
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196			
Partial factor, strength class 5.8	8 and 8.8	γMs,N	[-]			[-]					
Characteristic tension resistant Steel A4 and HCR, Strength cla	,	N _{Rk,s}	[kN]	[kN]	26	41	59	110	124			
Partial factor		γMs,N	[-]			[-]			2,86			
Combined pull-out and conci	rete cone failu							1				
Characteristic bond resistance (CD)		oncrete C20)/25 in hai	mmer drill	led holes	(HD) and	compress	sed air dril	led holes			
Temperature I: 40°C/24°C	Dry, wet concrete and	⁷ Rk,ucr,100	[N/mm²]	20	19	19	18	17	16			
range II: 72°C/50°C	flooded bore hole			15	15	14	13	13	12			
Characteristic bond resistance	1	oncrete C20)/25 in hai					<u>`</u>	10			
I: 40°C/24°C	Dry, wet concrete			16 14	16 14	16 13	15	14	13			
Temperature II: 72°C/50°C range I: 40°C/24°C	13	12	11 13									
range <u>I: 40°C/24°C</u> II: 72°C/50°C	flooded bore hole	^τ Rk,ucr,100		16 14	16 14	15 13	15 13	14 12	13			
Characteristic bond resistance		L Crete C20/2	5 in hamn									
and in hammer drilled holes wit												
Temperature I: 40°C/24°C	Dry, wet concrete and	⁷ Rk,cr,100	[N/mm²]	6,5	7,5	7,5	7,5	7,5	7,5			
range II: 72°C/50°C	flooded bore hole		[]	5,5	6,5	6,5	6,5	6,5	6,5			
Increasing factors for concrete		Ψ_{c}	[-]			(f _{ck} / 2	20) ^{0,1}					
Characteristic bond resistance	dependina on	^τ Rk.	ucr,100 =		ψ	c ^{•τ} Rk.ucr	,100,(C20/2	00,(C20/25)				
the concrete strength class		τ _B	_{k,cr,100} =			^ν c ^{•τ} Rk,cr,						
Concrete cone failure			, , , , , , , , , , , , , , , , , , , ,									
Relevant parameter						see Ta	able C2					
Splitting failure												
Relevant parameter						see Ta	able C2					
Installation factor												
for dry and wet concrete (HD; H for flooded bore hole (HD; HDE		γinst	[-]				,0 ,2					
 Fastenings (incl. nut and was The characteristic tension res For IR-M20 strength class 50 	sher) must comp sistance for stee	ly with the a I failure is va	ppropriate alid for the	material a internal th	and prope preaded ro	rty class of	f the intern	al threade element.	d rod.			
Rotho Blaas Injection Sy	ystem EPO-F	IX Injecti	on syste	em								
	Rotho Blaas Injection System EPO-FIX Injection system Annex C 9 Performances Annex C 9 Characteristic values of tension loads under static and quasi-static action For a working life of 100 years (Internal threaded anchor rod)											

Table C10: Characteristic values of tension loads under static and quasi-static action for a working life of 50 years Iternal threaded anchor rods IR-M6 IR-M8 IR-M10 IR-M12 IR-M16 IR-M20												
Internal threaded anchor rods	;			IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20			
Steel failure ¹⁾												
Characteristic tension resistance	e, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123			
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196			
Partial factor, strength class 5.8	and 8.8	γ _{Ms,N}	[-]			1	,5					
Characteristic tension resistance												
Steel A4 and HCR, Strength cla		N _{Rk,s}	[kN]	14	26	41	59	110	124			
Partial factor		γ _{Ms,N}	[-]			1,87			2,86			
Combined pull-out and concre	ete cone failu	,						1				
Characteristic bond resistance in			0/25 in dia	mond dril	led holes	(DD)						
Temperature 1. 40°C/24°C	Dry, wet concrete and	TDk war	[N/mm ²]	14	14	13	12	12	11			
	flooded bore hole	^τ Rk,ucr		12	11	10	9,5	9,5	9,0			
Reduction factor $\psi^{0}{}_{sus}$ in uncra	cked concrete	C20/25 in	diamond c	Irilled hole	es (DD)							
Temperature I: 40°C/24°C	0,	77										
range II: 72°C/50°C			0,	72								
Increasing factors for concrete		Ψc	[-]			(f _{ck} /	20) ^{0,2}					
Characteristic bond resistance d the concrete strength class	lepending on		τ _{Rk,ucr} =	Ψ c [•] ^τ Rk,ucr,(C20/25)								
Concrete cone failure												
Relevant parameter						see Ta	able C2					
Splitting failure												
Relevant parameter						see Ta	able C2					
Installation factor												
for dry and wet concrete (DD)		γ _{inst}	[-]		0	1	,0	4				
for flooded bore hole (DD) ¹⁾ Fastenings (incl. nut and wash				1,			1,					
The characteristic tension resi 2) For IR-M20 strength class 50 i												
Rotho Blaas Injection System EPO-FIX Injection system Annex C 10 Performances Annex C 10 Characteristic values of tension loads under static and quasi-static action Annex C 10 for a working life of 50 years (Internal threaded anchor rod) Annex C 10												

Table C11: Characteristic values of tension loads under static and quasi-static action for a working life of 100 years Internal threaded anchor rods IR-M6 IR-M8 IR-M10 IR-M12 IR-M16 IR-M20													
	S			IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20				
Steel failure ¹⁾					1	1							
Characteristic tension resistance	ce, <u>5.8</u>	N _{Rk,s}	[kN]	10	17	29	42	76	123				
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196				
Partial factor, strength class 5.8	8 and 8.8	γ _{Ms,N}	[-]			1	,5						
Characteristic tension resistant	ce, Stainless			- 4.4	00	4.4	50	110	104				
Steel A4 and HCR, Strength cla	ass 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124				
Partial factor		γMs,N	[-]			1,87			2,86				
Combined pull-out and conc	rete cone failu	re											
Characteristic bond resistance	in uncracked c	oncrete C20)/25 in dia	mond dri	led holes	(DD)							
Temperature I: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	14	14	13	12	12	11				
range II: 72°C/50°C	flooded bore hole			11	10	10	9,5	9,0	8,5				
Increasing factors for concrete		Ψc	[-]			(f _{ck} /)	20) ^{0,2}						
Characteristic bond resistance the concrete strength class	depending on	^τ Rk,	ucr,100 =	Ψ c [•] ^τ Rk,ucr,100,(C20/25)									
Concrete cone failure													
Relevant parameter	see Ta	able C2	ole C2										
Splitting failure													
						see la	able C2						
							0						
· · · · · · · · · · · · · · · · · · ·		γinst	[-]		2	I		4					
²) For IR-M20 strength class 50	Relevant parameter see Table C2 Installation factor 1.0												
Rotho Blaas Injection Sy	ystem EPO-F	IX Injecti	on syste	em				nnex C	11				
Performances Characteristic values of tens for a working life of 100 year				11									

Internal threaded anchor rods				IR-M6	IR-M8	IR-M10	IR-M12	IR-M16	IR-M20
Steel failure without lever arm ¹⁾									1
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]			_	1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	nd 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure		-1							
Effective length of fastener		l _f	[mm]		min((h _{ef} ; 12 • d	d _{nom})		min(h _{ef} ; 300mm
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]				1,0	1	1
 Fastenings (incl. nut and washe The characteristic tension resist For IR-M20 strength class 50 is 	ance for								
Rotho Blaas Injection System EPO-FIX Injection system Performances Characteristic values of shear loads under static and quasi-static action for a working life of 50 and 100 years (Internal threaded anchor rod)								Ar	inex C 12

1	action for a working life of 50 years												
Reinforcing bar					Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure													
Characteristic tension	resistance	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}$	f _{uk} 1)				
Cross section area		A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
Combined pull-out ar													
Characteristic bond res (CD)	sistance in uncra	cked concre	te C20/25	in han	nmer d	Irilled I	noles (HD) aı	nd com	npress	ed air	drilled	holes
L: 40°C/24°C	Dry, wet concrete and	^τ Rk,ucr	[N/mm²]	16	16	16	16	16	16	15	15	15	15
und to the second seco	flooded bore hole	- nk,uci	[]	12	12	12	12	12	12	12	12	11	11
Characteristic bond res	sistance in uncra	cked concre	te C20/25	in han	nmer d	Irilled I	noles v	vith ho	llow dı	rill bit (HDB)		
<u></u> <u>l: 40°C/24°C</u>	Dry, wet			14	14	13	13	13	13	13	13	13	13
II: 72°C/20°C	concrete	7	[N/mm²]	12	12	12	11	11	11	11	11	11	11
I: 40°C/24°C II: 72°C/50°C II: 72°C/50°C II: 72°C/50°C	flooded bore	^τ Rk,ucr	[[N/1111-]	13	13	13	13	13	13	13	13	13	13
⊢ II: 72°C/50°C	hole			11	11	11	11	11	11	11	11	11	11
Characteristic bond res and in hammer drilled				hamm	er drill	ed hol	es (HC), con	npress	ed air	drilled	holes	(CD)
I: 40°C/24°C	L: 40°C/24°C Dry, wet concrete and flooded bore ^τ Rk,cr [N/r							8,5	8,5	8,5	8,5	8,5	8,5
ق بق E II: 72°C/50°C	end to be and the second se							7,0	7,0	7,0	7,0	7,0	7,0
Reduction factor ψ^0_{SUS} holes (CD) and in han	-				in ham	ımer d	rilled h	oles (l	HD), c	ompre	ssed a	ir drille	ed
I: 40°C/24°C	Dry, wet concrete and flooded bore	Ψ^0 sus	[-]	0,80									
Ë II: 72°C/50°C ⊢	hole								68				
Increasing factors for c		Ψc	[-]					(f _{ck} / 2	20) ^{0,1}				
Characteristic bond residepending on the cond			τ _{Rk,ucr} =				ψ_{c}	• ^τ Rk,ι	icr,(C20)/25)			
class	rete strengtri		^τ Rk,cr =				Ψ_{c}	• ^τ Rk,ι	icr,(C20)/25)			
Concrete cone failure)												
Relevant parameter				-			:	see Ta	able C2	2			
Splitting													
Relevant parameter							;	see Ta	able C2	2			
Installation factor		1	1										
for dry and wet concrete (HD; HDB, CD) γ _{inst} [-] 1,0													
for flooded bore hole (I	HD; HDB, CD)	_ ^γ inst	[-]					1	,2				
1) fuk shall be taken fro	om the specification	ons of reinford	cing bars										
²⁾ in absence of nation													
Rotho Blaas Injec	ction System	EPO-FIX lr	njection	syste	em								

	for a working life of 100 years Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32												
Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure Characteristic tension	resistance	N _{Rk,s}	[kN]					Δ.	f _{uk} 1)				
Cross section area	esistance	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]	00	70	110	104		4 ²⁾	402	401	010	004
Combined pull-out an	d concrete failu							• •					
Characteristic bond res (CD)	sistance in uncra	cked concre	te C20/25	in han	nmer d	Irilled h	noles (HD) ar	nd com	npress	ed air	drilled	holes
Temperature range II: 72°C/2°C II: 72°C/50°C	Dry, wet concrete and	⁷ Rk,ucr,100	[N/mm²]	16	16	16	16	16	16	15	15	15	15
	flooded bore hole			12	12	12	12	12	12	12	12	11	11
Characteristic bond res		cked concre	te C20/25								í í	10	10
I: 40°C/24°C II: 72°C/50°C II: 72°C/50°C II: 72°C/50°C	Dry, wet concrete			14 12	14 12	13 12	13 11	13 11	13 11	13 11	13 11	13 11	13 11
II: 72°C/20°C	flooded bore	^τ Rk,ucr,100	[N/mm ²]	13	12	13	13	13	13	13	13	13	13
E 1: 40 0/24 0 II: 72°C/50°C	hole			11	11	11	11	11	11	11	11	11	11
Characteristic bond res								2000 P		13 1240			1000
concrete and Tay Loss [N/mm ²]												7,5	
	flooded bore hole	⁻ RK,Cr,100	[]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Increasing factors for c	oncrete	Ψc	[-]					(f _{ck} / 2	20) ^{0,1}				
Characteristic bond res depending on the conc class			a,ucr,100 = Rk,cr,100 =						<u>,100,(C</u> 100,(C2				
Concrete cone failure	2							,,	,(01				
Relevant parameter								see Ta	able C2	2			
Splitting													
Relevant parameter								see la	able C2	2			
Installation factor for dry and wet concret	e (HD: HDB.								•				
CD)		γ _{inst}	[-]						,0				
for flooded bore hole (H								1	,2				
for flooded bore hole (HD; HDB, CD) 1,2 1) f _{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation													
Rotho Blaas Injec	tion System I	EPO-FIX Ir	njection	syste	m								
	Performances Annex C 14 Characteristic values of tension loads under static and quasi-static action or a working life of 100 years (reinforcing bar)												

Table C15: Characteristic values of tension loads under static and quasi-static action for a working life of 50 years Reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 24 Ø 25 Ø 28 Ø 32													
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure													
Characteristic tension resistance	N _{Rk,s}	[kN]					A _s •	f _{uk} 1)					
Cross section area	A _s	[mm ²]	50	79	113	154	201	314	452	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,	42)					
Combined pull-out and concrete fai													
Characteristic bond resistance in uncr	acked concre	te C20/25	in diar	mond o	drilled	holes	(DD)						
L: 40°C/24°C Dry, wet concrete and flooded bore hole	^τ Rk,ucr	[N/mm²]	14	13	13	13	12	12	11	11	11	11	
			11	11	10	10	10	9,5	9,5	9,5	9,0	9,0	
Reduction factor $\psi^0{}_{sus}$ in uncracked ϕ	concrete C20/	/25 in diam	nond d	rilled h	noles (I	DD)							
L: 40°C/24°C Dry, wet concrete and flooded bore hole	Ψ ⁰ sus	[-]					0,	,77					
ال: 72°C/50°C hole	♥ sus			0,72									
Increasing factors for concrete	Ψc	[-]					$(f_{ck} /$	20) ^{0,2}					
Characteristic bond resistance depending on the concrete strength class	^τ Rk,ucr =	Ψc [•] ^τ Rk,ucr,(C20/25)											
Concrete cone failure													
Relevant parameter							see Ta	able C	2				
Splitting													
Relevant parameter							see Ta	able C	2				
Installation factor		1	10										
	γ _{inst}	[-]	1,0										
				1	,2				1	,4			
for dry and wet concrete (DD) γ _{inst} [-] 1,0 for flooded bore hole (DD) γ _{inst} [-] 1,2 1,4 1) f _{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation 2 1 1													
Rotho Blaas Injection System Performances Characteristic values of tension loa for a working life of 50 years (reinfo		-		tion				A	nnex	C 1	5		

1	for a working life of 100 years													
Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure		1		rs $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Characteristic tension r	resistance	N _{Rk,s}	[kN]					A _s ·	$f_{uk}^{(1)}$					
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804	
Partial factor		γ _{Ms,N}	[-]					1,	42)					
Combined pull-out an														
	istance in uncra	cked concre	te C20/25	in diar	nond o	drilled	holes	(DD)						
I: 72°C/20°C	Dry, wet concrete and flooded bore	⁷ Rk,ucr,100	[N/mm²]	14	13	13	13	12	12	11	11	11	11	
	hole			11	10	10	10	,			9,0	8,5	8,5	
Increasing factors for c		Ψc	[-]					(f _{ck} / 2	20) ^{0,2}					
Characteristic bond res depending on the conc class		^τ Rk	,ucr,100 =	 Ψc * ^TRk,ucr,100,(C20/25) see Table C2 see Table C2 1,0 										
Concrete cone failure	•			see Table C2										
Relevant parameter			see Table C2											
Splitting														
Relevant parameter							see Ta	able C	2					
		1												
	. ,	γ _{inst}	[-]											
	,	l	ing bars		1	<i>,</i> د				1	,4			
Installation factor for dry and wet concrete (DD)														
Rotho Blaas Injec	tion System I	EPO-FIX Ir	njection	syste	m					-		•		
Performances Characteristic values of tension loads under static and quasi-static action for a working life of 100 years (reinforcing bar)										A	nnex	C 16)	

Table C17: Characteristic a working life					unde	r sta	tic a	nd q	uasi-	static	actior	n for
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]					0,5	• A _s •	f _{uk} 1)			
Cross section area	Ασ	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms} ,v	[-]						1,5 ²⁾	I			
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]					1,2	• w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure												
Effective length of fastener	lf	[mm]			min(h	_{ef} ; 12	• d _{nor}	n)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]						1,0				
 f_{uk} shall be taken from the specification in absence of national regulation 	ons of reinfo	orcing bar	ſS									
Rotho Blaas Injection System	EPO-FIX	Injectio	on sy	stem	Ì					A		-
Performances Characteristic values of shear loads for a working life of 50 and 100 year			luasi-	static	actior					Ann	ex C 1	1

Table C18:Displacements under tension load1)in hammer drilled holes (HD), compressed air drilled holes (CD) and in
hammer drilled holes with hollow drill bit (HDB)

2017	16 Re 1 120 1	(A) C(b) [O ₁) (O(b) (O(b))]	C2A							
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete un	der static and	d quasi-static act	ion for a	a workin	g life of	50 and	100 yeai	´S		
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Cracked concrete unde	r static and q	uasi-static action	n for a w	orking l	ife of 50	and 10	0 years			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,171
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,229
1) Coloulation of the dian		-								

1) Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \ \cdot \ \tau;$

 τ : action bond stress for tension

Table C19:Displacements under tension load1)in diamond drilled holes (DD)

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete	under static and	quasi-static act	ion for a	a workin	g life of	50 year	s			
Temperature range	l: δ _{N0} -factor	[mm/(N/mm ²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,018	0,019	0,019	0,020	0,022	0,023	0,024	0,025
Temperature range I	I: δ _{N0} -factor	[mm/(N/mm²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,052	0,053	0,055	0,058	0,062	0,065	0,068	0,070
Uncracked concrete	under static and	quasi-static act	ion for a	a workin	g life of	100 yea	rs			
Temperature range	I: δ _{N0} -factor	[mm/(N/mm ²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm ²)]	0,020	0,021	0,021	0,023	0,024	0,025	0,026	0,027
Temperature range I	I: δ _{N0} -factor	[mm/(N/mm ²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,038	0,039	0,040	0,043	0,045	0,047	0,049	0,051
			70							
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked and crac	ked concrete und	er static and qu	asi-stati	c action	for a w	orking li	ife of 50	and 100) years	
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked and cra	cked concrete unde	er static and qua	asi-stati	c action	for a wo	orking li	fe of 50	and 100) years	
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
¹⁾ Calculation of the $\delta v_0 = \delta v_0$ -factor · · · · · · · · · · · · · · · · · · ·	V; V;	V: action shear		•						
Performances Displacements un	der static and quasion for the static and quasion of the static and static stat	-static action	on sys	tem				Anı	nex C ⁻	18

Internal threaded anch		illed holes		IR-M6	IR-M8	· , , , , , , , , , , , , , , , , , , ,) IR-M12	IR-M16	IR-M20
Uncracked concrete un		nd quasi-static	actio						111-10120
Temperature range I:	δ _{N0} -factor	[mm/(N/n		0,029	0,030			0,038	0,041
40°C/24°C	δ _{N∞} -factor	[mm/(N/n	/-	0,029	0,030			0,038	0,041
Temperature range II:	δ _{N0} -factor	[mm/(N/n	<u> </u>	0,039	0,040			0,051	0,055
72°C/50°C	δ _{N∞} -factor			0,049	0,051			0,064	0,070
Cracked concrete und			/-					0,001	0,0.0
Temperature range I:	δ _{N0} -factor	[mm/(N/n		0,071	0,072			0,079	0,082
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/n		0,115	0,122			0,142	0,171
Temperature range II:	δ _{N0} -factor	[mm/(N/n		0,095	0,096			0,106	0,110
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/n		0,154	0,163			0,189	0,229
1) Calculation of the disp				-,	-,		-,	-,	
		τ: action b ts under ter rilled holes	nsion	load ¹⁾					
Internal threaded anch			(22)	IR-M6	IR-M	3 IR-M10) IR-M12	IR-M16	IR-M20
Uncracked concrete u		ad augei-etatio	a actio						
	δ _{N0} -factor	[mm/(N/n		0,012	0,012			0,014	0,015
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/n		0,012	0,012			0,014	0,015
	δ _{N0} -factor	[mm/(N/n		0,019	0,014	´		0,023	0,023
Temperature range II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/n	/-	0,014	0,014			0,010	0,010
Uncracked concrete u			/-					0,000	0,070
Temperature range I:	δ _{N0} -factor	[mm/(N/n		0,012	0,012			0,014	0,015
40°C/24°C	δ _{N∞} -factor			0,021	0,021			0,025	0,027
Temperature range II:	δ _{N0} -factor	[mm/(N/n	× -	0,014	0,014	_		0,016	0,018
72°C/50°C	δ _{N∞} -factor	[mm/(N/n	/-	0,039	0,040			0,047	0,051
¹⁾ Calculation of the disp $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$; Table C23: Dis for					ension				
Internal threaded anch		methous	IR-N	/16 I	R-M8	IR-M10	IR-M12	IR-M16	IR-M20
Uncracked and cracke	d concrete u	nder static and	d quas	si-static a	action for	a working	life of 50 a	nd 100 yeai	'S
All temperature δ_{V0}	factor	[mm/kN]	0,0	7	0,06	0,06	0,05	0,04	0,04
	factor	[mm/kN]	0,1	0	0,09	0,08	0,08	0,06	0,06
1) Calculation of the disp $\delta_{V0} = \delta_{V0}$ -factor \cdot V; $\delta_{V\infty} = \delta_{V\infty}$ -factor \cdot V;		V: action s							
Rotho Blaas Injecti	on System	EPO-FIX Inj	jectio	n syste	m				
								Annex	0 10

Table C24:	in hamme	nents unde er drilled ho drilled holes	les (H	ID), co	mpre			lled ho	oles (CD) a	nd in	
Reinforcing bar			Ø 8	Ø 10	Ø 12	`	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concre	ete under sta	tic and quasi-	static a	ction fo	r a wor	king life	e of 50 a	and 100	years			
Temp range I:	δ _{N0} -factor	[mm/(N/mm ²)]	0,028	-	0,030		0,033	1	-	0,038	0,040	0,043
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,028		0,030	+ '	0,033	-		0,038	0,040	0,043
Temp range II:	δ _{N0} -factor	[mm/(N/mm ²)]	0,038	-		-	0,044			0,051	0,054	0,058
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	· ·	0,051		0,055		0,065	0,065	0,068	0,072
Cracked concrete		,-	<i>`</i>	,						-,	-,	-,
Temp range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,069		0,072	-	0,074	-		0,079	0,081	0,084
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,115		0,128		0,142	0,155		0,171	0,181	0,194
Temp range II:	δ _{N0} -factor	[mm/(N/mm ²)]	0,092	-			0,099	0,102		0,106	0,109	0,113
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,154		100		0,189	0,207	0,229	0,229	0,242	0,260
1) Calculation of th	1.4-5	-	- /		- /			- 1	- /	- /	-,	-,
$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-}\text{factor} \\ \delta_{\text{N\infty}} &= \delta_{\text{N\infty}}\text{-}\text{factor} \end{split}$	·τ;		tion bor	d stress	for tens	ion						
Table C25:	•	nents unde nd drilled ho			ad ¹⁾							
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concre	ete under sta	tic and quasi-	static a	ction fo	r a wor	king life	e of 50 y	years				
Temp range I:	δ_{N0} -factor	[mm/(N/mm ²)]			0,009		0,011	-	0,013	0,013	0,014	0,015
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]		3 0,018	0,019	0,020	0,021	0,024	0,027	0,027	0,028	0,031
Temp range II:	δ _{N0} -factor	[mm/(N/mm ²)]	- ·	0,011	0,011	<u> </u>	0,013	0,014		0,015	0,016	0,018
72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]			0,054		0,061	0,068	0,076	0,076	0,081	0,088
Uncracked concre	1	//		,				1 '			,	,
Temp range I:	δ_{N0} -factor	[mm/(N/mm ²)]	-		0,009		0,011	· · · · · · · · · · · · · · · · · · ·	0,013	0,013	0,014	0,015
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	-	-		-	0,024	-		0,029	0,031	0,034
Temp range II:	δ _{N0} -factor	[mm/(N/mm ²)]			0,011		-	-		0,015	0,016	0,018
72°C/50°C		[mm/(N/mm ²)]							100000000000000000000000000000000000000			ALCONTRACTOR STATES
1) Calculation of th			0,000	,00,	0,010	0,012	0,010	0,010	0,000	0,000	0,000	0,001
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$	· τ;		tion bor	d stress	for tens	ion						
Table C26:	•	nents unde lling metho		ar load	1)							
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and cr	acked concr	ete under stati	c and c	quasi-st	atic act	tion for	a worki	ng life	of 50 ai	nd 100	years	
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04
¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor	· V;		ction she	ear load		Ì						
Rotho Blaas Ir Performances Displacements u			-	ction sy	/stem					Ann	ex C 2	:0
for a working life of)								

Table C27: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years M10 M12 M16 M20 M24 Threaded rod M8 M27 M30 Steel failure 1,0 • N_{Rk,s} Characteristic tension resistance N_{Rk,s,eq,C1} [kN] Partial factor see Table C1 [-] γMs,N Combined pull-out and concrete failure Characteristic bond resistance in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB) Temperature Dry, wet I: 40°C/24°C [N/mm²] 7,0 7,0 8,5 8,5 8,5 8,5 8,5 8,5 ^τRk,eq,C1 range concrete and flooded bore II: 72°C/50°C [N/mm²] 6,0 6,0 7,0 7,0 7,0 7,0 7,0 7,0 hole ^τRk,eq,C1 Increasing factors for concrete [-] 1,0 Ψ_{c} Characteristic bond resistance depending $\tau_{Rk,eq,C1} =$ Ψc [•] ^τRk,eq,C1,(C20/25) on the concrete strength class Installation factor for dry and wet concrete (HD; HDB, CD) 1,0 [-] γinst for flooded bore hole (HD; HDB, CD) 1,2

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 years (threaded rod)

Table C28: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years M10 M12 M16 M20 M24 Threaded rod M8 M27 M30 Steel failure 1,0 • N_{Rk,s} Characteristic tension resistance N_{Rk,s,eq,C1} [kN] Partial factor see Table C1 [-] γMs,N Combined pull-out and concrete failure Characteristic bond resistance in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB) emperature Dry, wet 7,5 I: 40°C/24°C [N/mm²] 6.5 6.5 7,5 7,5 7,5 7,5 7,5 ^τRk,eq,C1 range concrete and flooded bore II: 72°C/50°C [N/mm²] 5,5 5,5 6,5 6,5 6,5 6,5 6,5 6,5 hole ^τRk,eq,C1 Increasing factors for concrete [-] 1,0 Ψc Characteristic bond resistance depending $\tau_{Rk,eq,C1} =$ Ψc [•] ^τRk,eq,C1,(C20/25) on the concrete strength class Installation factor for dry and wet concrete (HD; HDB, CD) 1,0 [-] γinst for flooded bore hole (HD; HDB, CD) 1,2

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values of tension loads under seismic action (performance category C1) for a working life of 100 years (threaded rod)

Threaded rod			840	8440	8440	8440	8400		8407	8400
			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure Characteristic shear resistance										
Seismic C1)	V _{Rk,s,eq,C1}	[kN]				0,70	℃・V ⁰ Rk	.,S		
Partial factor	γ _{Ms,V}	[-]				see	Table C	21		
Factor for annular gap	α_{gap}	[-]				0,9	5 (1,0) ¹⁾)		

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values of shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod)

	aracteristic rformance o									n			
Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure Characteristic tension re	eistance		[kN]					1 O • A	s • f _{uk})			
Cross section area	515101100	N _{Rk,s,eq,C1} A _s	[mm ²]	50	79	113	154	201	s 'uk 314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]	- 50	/3	110	134		4 ²⁾	452	401	010	004
Combined pull-out and	d concrete failu	,	[]					۰,	•				
Characteristic bond resi drilled holes (CD) and ir						in har	nmer o	drilled	holes	(HD), (compre	essed	air
I: 40°C/24°C	Dry, wet concrete and	[⊤] Rk,eq,C1	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
und terms und terms	flooded bore hole	⁷ Rk,eq,C1	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Increasing factors for co	oncrete	Ψc	[-]		1			1	,0	1			
Characteristic bond resi depending on the concr class		τ _R	ik,eq,C1 =				ψ_{c} .	^τ Rk,eq	I,C1,(C2	20/25)			
Installation factor		1											
for dry and wet concrete	e (HD; HDB,	24						1	,0				
for flooded bore hole (H	D; HDB, CD)	γinst	[-]					1	,2				
1) f _{uk} shall be taken from		ns of reinford	ing bars	I									
Rotho Blaas Inject	ion System E	PO-FIX Ir	njection	syste	m								
Performances Characteristic values	of tension load	s under sei	smic actio	n (per	forma	nce ca	ategor	y C1)		Α	nnex	C 24	ŀ

for a working life of 50 years (reinforcing bar)

Table C31: Ch	aracteristic	values of	f tensio	n Ioa	ds ui	nder	seis	mic a	actio	n			
(pe	erformance of	category	C1) for	a wo	rking	life	of 10	0 ye	ars				
Reinforcing bar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure			1										
Characteristic tension r	esistance	N _{Rk,s,eq,C1}	[kN]				-	I,0 ∙ A	s • f _{uk})	-		
Cross section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor		γ _{Ms,N}	[-]					1,	42)				
Combined pull-out an													
Characteristic bond res drilled holes (CD) and in						in har	nmer o	drilled	holes	(HD), (compre	essed	air
I: 40°C/24°C	Dry, wet concrete and flooded bore	^τ Rk,eq,C1	[N/mm ²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
ll: 72°C/50°C	hole	^τ Rk,eq,C1	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Increasing factors for co	oncrete	Ψc	[-]					1	,0				
Characteristic bond res depending on the conci class		τ _F					ψ_{c} .	^τ Rk,ec	I,C1,(C2	20/25)			
Installation factor													
for dry and wet concrete	e (HD; HDB,							1	,0				
for flooded bore hole (H		γinst	[-]					1	,2				
¹⁾ f_{uk} shall be taken from		ns of reinford	i Sing bars					<u> </u>	,				
Rotho Blaas Injec	tion System E	EPO-FIX Ir	ijection	syste	m								
Performances Characteristic values	of tension load	s under sei	smic actio	on (per	forma	nce ca	ategor	y C1)		Α	nnex	C 25	5

for a working life of 100 years (reinforcing bar)

Table C32: Characteristic (performance										ears		
Reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø1	6 Ø 2	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]					0,3	5∙A _s	• f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	20 [.]	1 314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²)			
Factor for annular gap	α _{gap}	[-]						0,5 (1,	D) ³⁾			
 ²⁾ in absence of national regulation ³⁾ Value in brackets valid for filled annu Annex A 3 is recommended. 	ılar gab betwe	een faster	ner and	d cleai	rance	hole in	the f	fixture.	Use of	special	filling wa	sher

Rotho Blaas Injection System EPO-FIX Injection system

Performances

Characteristic values of shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (reinforcing bar)

Table C33:Characteristic va (performance ca						
Threaded rod			M12	M16	M20	M24
Steel failure						
Characteristic tension resistance,						
Steel, strength class 8.8 Stainless Steel A4 and HCR,	N _{Rk,s,eq,C2}	[kN]		1,0 •	N _{Rk.s}	
Strength class ≥70						
Partial factor	γMs.N	[-]		see T	able C1	
Combined pull-out and concrete failure		L]				
Characteristic bond resistance in cracked drilled holes (CD) and in hammer drilled h	and uncracked			mer drilled ho	oles (HD), comp	pressed air
L: 40°C/24°C Dry, wet concrete and flooded bore	⁷ Rk,eq,C2	[N/mm²]	5,8	4,8	5,0	5,1
L: 40°C/24°C Dry, wet concrete and flooded bore hole	⁷ Rk,eq,C2	[N/mm²]	5,0	4,1	4,3	4,4
Increasing factors for concrete	Ψc	[-]			1,0	
Characteristic bond resistance depending						
on the concrete strength class	l í	Rk,eq,C2 =		Ψc [•] Rk,e	q,C2,(C20/25)	
Installation factor	1					
for dry and wet concrete (HD; HDB, CD) for flooded bore hole (HD; HDB, CD)	γinst	[-] -			1,0 1,2	
(performance ca	tegory C2)	for a wor	king life c	of 50 and 1	00 years	M24
Steel failure						
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]		0,70	• V ⁰ _{Rk,s}	
Partial factor	γ _{Ms,V}	[-]		see T	able C1	
Factor for annular gap	α _{gap}	[-]		0,5	(1,0) ¹⁾	
¹⁾ Value in brackets valid for filled annular <u>c</u> Annex A 3 is recommended.	ab between fa	stener and clo	earance hole i	n the fixture. L	Jse of special fill	ing washer
Rotho Blaas Injection System EP Performances Characteristic values of tension and sh		-	n		Anne	x C 27

Threaded rod			M12	M16	M20	M24
Jncracked and cracked concret		n (perform	ance catego	ry C2)		
or a working life of 50 and 100 y	δ _{N,eq,C2(DLS)}	[mm]	0,21	0,24	0,27	0,36
All temperature ranges	δ _{N,eq,C2(ULS)}	[mm]	0,54	0,51	0,54	0,63
Table C36: Displacem	ents under shear					
Threaded rod			M12	M16	M20	M24
Uncracked and cracked concret		n (perform				1
for a working life of 50 and 100 y		[mm]	3,1	3,4	3,5	4,2
All temperature ranges	$\frac{\delta_{V,eq,C2(DLS)}}{\delta_{V,eq,C2(ULS)}}$	[mm]	6,0	7,6	7,3	10,9