

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0420 of 2 November 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Rotho Blaas Injection System EPO-FIX for rebar connection

Systems for post-installed rebar connections with mortar

Rotho Blaas s.r.l Via dell'Adige 2/1 39040 CORTACCIA (BZ) ITALIEN

Plant C2

20 pages including 3 annexes which form an integral part of this assessment

330087-01-0601, Edition 06/2021

European Technical Assessment ETA-23/0420

Page 2 of 20 | 2 November 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-23/0420

English translation prepared by DIBt

Page 3 of 20 | 2 November 2023

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Rotho Blaas Injection system EPO-FIX for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 mm to Annex A and injection mortar EPO-FIX are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading	See Annex B 3 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

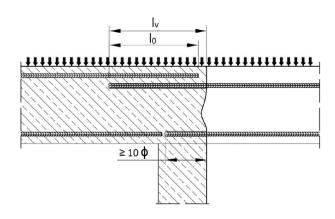
European Technical Assessment ETA-23/0420

Page 4 of 20 | 2 November 2023

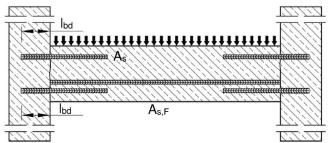
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

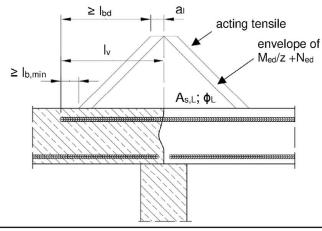
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

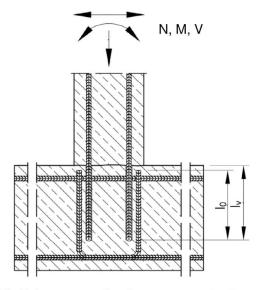

Issued in Berlin on 2 November 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider



Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams


Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)

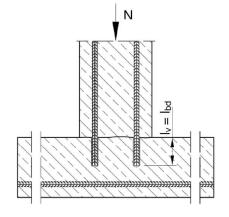
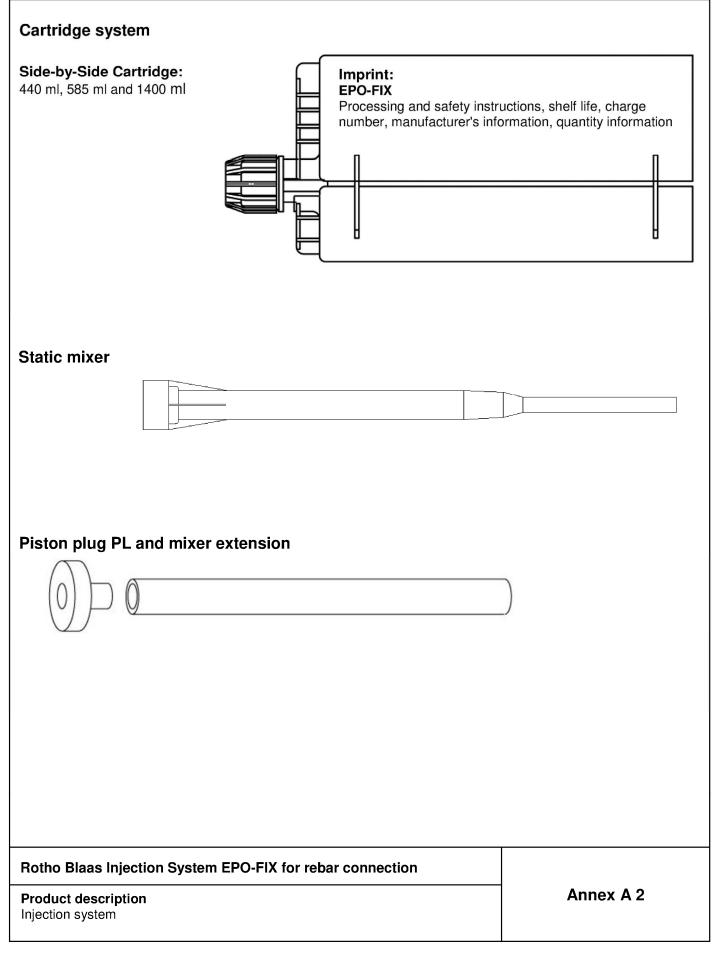

Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

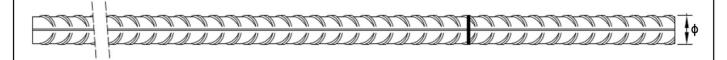
Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression


Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2


Rotho Blaas Injection System EPO-FIX for rebar connection	
Product description Installed condition and examples of use for rebars	Annex A 1

Reinforcing bar (rebar): ø8 up to ø40

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05φ ≤ h_{rib} ≤ 0,07φ
 (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Table A1: Materials Rebar

Designation	Material
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Rotho Blaas Injection System EPO-FIX for rebar connection

Product description
Specifications Rebar

Annex A 3

Specification of the intended use									
Anchorages subject to:		Working life 50 years	Working life 100 years						
HD: Hammer drilling HDB: Hammer drilling with	static and quasi-static loads	Ø8 to Ø40	Ø8 to Ø40						
hollow drill bit CD: Compressed air drilling	seismic action	Ø10 to Ø40	Ø10 to Ø40						
DD: Diamond drilling	fire exposure	Ø8 to Ø40	Ø8 to Ø40						
Temperature Range:	(max long-term ten	- 40°C to +80°C nperature +50 °C and max short-	term temperature +80 °C)						

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A2:2021.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A2:2021.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A2:2021.
- Non-carbonated concrete.

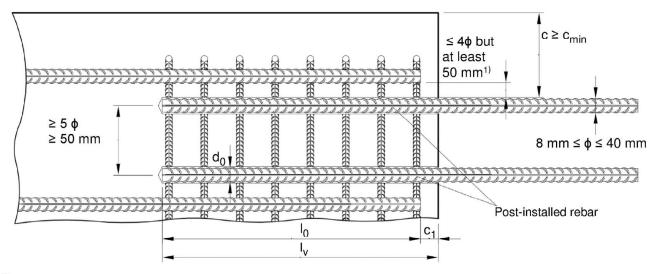
Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of $\phi + 60$ mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010. EN 1992-1-2:2004+AC:2008 and Annex B 2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete. It must not be installed in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB), diamond drill (DD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

1) If the clear distance between lapped bars exceeds 4φ but at least 50 mm, then the lap length shall be increased by the difference between the clear bar distance and 4φ but at least 50 mm.

The following applies to Figure B1:

c concrete cover of post-installed rebar concrete cover at end-face of existing rebar

c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2

φ diameter of post-installed rebar

 I_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3

 I_v effective embedment depth, $\geq I_0 + c_1$ d₀ nominal drill bit diameter, see Annex B 4

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use General construction rules for post-installed rebars	Annex B 2

Table B1: Minimum concrete cover c_{min}¹⁾ of post-installed rebar depending of drilling method

Drilling method	Rebar diameter	Without drilling aid	With drilling aid				
HD: Hammer drilling HDB: Hammer drilling	< 25 mm	$30 \text{ mm} + 0.06 \cdot \text{l}_{\text{v}} \ge 2 \phi$	$30 \text{ mm} + 0.02 \cdot \text{I}_{\text{V}} \ge 2 \phi$				
with hollow drill bit	≥ 25 mm	40 mm + 0,06 · l _v ≥ 2 φ	40 mm + 0,02 · I _V ≥ 2 φ	Drilling aid			
DD: Diamond drilling	< 25 mm	Drill rig used as drilling	$30 \text{ mm} + 0.02 \cdot \text{l}_{\text{V}} \ge 2 \phi$				
DD. Diamond drilling	≥ 25 mm	aid	40 mm + 0,02 · l _v ≥ 2 φ				
CD: Compressed air	< 25 mm	50 mm + 0,08 · l _v	50 mm + 0,02 · I _v	7 H			
drilling	≥ 25 mm	60 mm + 0,08 · l _v ≥ 2 ф	60 mm + 0,02 · I _V ≥ 2 φ				

¹⁾ see Annex B 2, Figure B1

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed. For the minimum concrete cover cmin,seis in case of a seismic action, see Table B2.

Table B2: Minimum concrete cover min $c_{min,seis}$

Drilling method	Design conditions	Distance to 1st edge	Distance to 2nd edge
HD: Hammer drilling HDB: Hammer drilling with	Edge	≥ 2 ф	≥ 2 ф
hollow drill bit CD: Compressed air drilling	Corner	≥ 2 ф	≥ 2 ф
DD: Diamond delling	Edge	≥ 4 ф	≥ 8 ф
DD: Diamond drilling	Corner	≥ 6 ф	≥ 6 ф

Table B3: Dispensing tools

Cartridge type/size	Hand tool	Pneumatic tool
Side-by-side cartridges 440, 585 ml		-
	e.g. MAMDB	
Side-by-side cartridges 1400 ml	-	
		e.g. TS 472

All cartridges could also be extruded by a battery tool.

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Minimum concrete cover Dispensing tools	Annex B 3

55

55

H55

58,0

55,5

Table	B4:								age depth a d air (CD) d			ision,	hammer		
D.:II		Drill				d _{b,min}		Cartridge: 440 ml or 585 ml				Cartridge: 1400 ml			
Bar size	ı	bit - Ø	5	d Brus		min. Brush -	Piston plug		Hand or ttery tool	Phelimatic tool		Pne	umatic tool		
ф	HD	DD	CD	bius	11-10	Ø	piug	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension		
[mm]		[m	m]	BRU	[mm]	[mm]		[mm]		[mm]		[mm]			
8	-	0		H10	11,5	10,5	-	250		250		250			
0	10			H12	13,5	12,5		700		800		800	V10/0,75		
10	١ ,	2	_	ПІ	13,5	12,5		250		250		250	or		
10	'		_	H14	15,5	14,5	PL14	700		1000	000	1000	V16/1,8		
12	1	4	-	П14	15,5	14,5	FL14	250		250		250			
12		16		H16	17,5	16,5	PL16							1200	
14		18		H18	20,0	18,5	PL18	700	V4.0/0.75	1300		1400			
16		20		H20	22,0	20,5	PL20		V10/0,75 or V16/1,8					1600	
20	2	.5	-	H25	27,0	25,5	PL25		V 10/ 1,0		V10/0,75 or				
20			26	H26	28,0	26,5	PL25					V16/1,8			
22		28		H28	30,0	28,5	PL28								
24/25		30		H30	32,0	30,5	PL30	500					V16/1,8		
24/23	32 H32 34,0 32,5 PL3		PL32	PL32		1000		2000							
28		35		H35	37,0	35,5	PL35			1000		2000			
32/34		40		H40	43,5	40,5	PL40								
36		45		H45	47,0	45,5	PL45			1					
40	-	52	52	H52	54,0	52,5	PL52	-	-						
40	55	_	55	H55	58.0	55.5	PI 55								

Table B5: Brushes, piston plugs, max anchorage depth and mixer extension, hammer drilling with hollow drill bit system (HDB)

PL55

	Drill		d _{b,min}			Cartridge: 440	Cartridge: 1400 ml					
Bar size	bit - Ø	d _b	min.	Piston	Hand o	r battery tool	Pneu	matic tool	Pneu	matic tool		
ф	HDB	Brush - Ø	Brush -	plug	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension		
[mm]	[mm]				[mm]		[mm]		[mm]			
8	10			-	250		250		250			
0	12				700		800		800			
10	12			_	250		250		250			
10	14				DIAA	PL14	700		1000		1000	
12	14				250		250		250			
12	16	Nie elee		PL16								
14	18	No clea Requi		PL18	700	V10/0,75 or		V10/0,75 or		V10/0,75 or		
16	20	nequi	iieu	PL20		V16/1,8		V16/1,8		V16/1,8		
20	25			PL25								
22	28						1000		1000			
24/25	30	PL30			500							
24/25	32			PL32	500							
28	35			PL35								
32/34	40			PL40								

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Parameter brushes, piston plugs, max anchorage depth and mixer extension	Annex B 4

Cleaning and installation tools

HDB - Hollow drill bit system

Hand pump

(Volume 750 ml, h₀ ≥ 10 d_s, d₀ ≤ 20mm)

Brush BRUH

Brush extension

The hollow drill system consists of Heller Duster Expert hollow drill bit and a class M hoover with a minimum negative pressure of 253 hPa and a flow rate of minimum 150 m^3/h (42 l/s).

Manual slide valve

(min 6 bar)

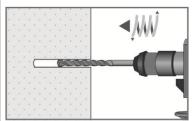
Piston Plug PL

Table B6:	Working	time and	curing	time

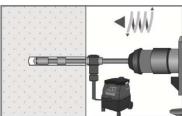
Tempera	ature in bas	e material	Maximum working time	Initial curing time ¹⁾	Minimum curing time ²⁾	
	T		t _{work}	t _{cure,ini}	t _{cure}	
0°C	up to	+ 4 °C	80 min	30 h	144 h	
+ 5 °C	up to	+ 9 °C	80 min	20 h	48 h	
+ 10°C	up to	+ 14°C	60 min	15 h	28 h	
+ 15°C	up to	+ 19°C	40 min	9 h	18 h	
+ 20 °C	up to	+ 24 °C	30 min	6 h	12 h	
+ 25 °C	up to	+ 34°C	12 min	4 h	9 h	
+ 35 °C	up to	+ 39°C	8 min	3 h	6 h	
	+40°C		8 min	1,5 h	4 h	
Car	tridge tempe	rature	+5°C up to +40°C			

¹⁾ After Initial curing time has elapsed, the installation of the connecting reinforcement and the construction of the formwork can be continued

²⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Cleaning and installation tools Working time and curing time	Annex B 5

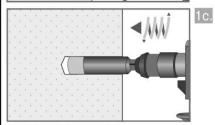
Installation instructions


Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B1) In case of aborted drill hole: the drill hole shall be filled with mortar.

Drilling of the bore hole

1a. Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.
Drill bit diameter according to Table B4.
Proceed with Step 2 (MAC or CAC).


Hollow drill bit system (HDB) (see Annex B 5)

Drill a hole to the required embedment depth.

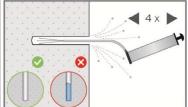
Drill bit diameter according to B5.

The hollow drilling system removes the dust and cleans the bore hole.

Proceed with Step 3.

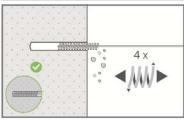
Diamond drilling (DD)

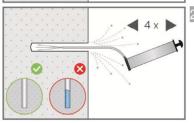
Drill a hole to the required embedment depth required Drill bit diameter according to Table B4. Proceed with Step 2 (SPCAC).


Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Installation instruction	Annex B 6

Installation instructions (continuation)

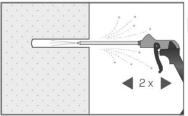
Manual Air Cleaning (MAC)


for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10$ with drilling method HD/CD

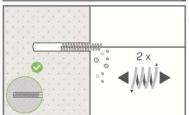

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Blow the bore hole clean minimum 4x from the bottom or back by hand pump

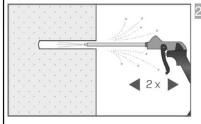
(Annex B 5).


Brush the bore hole minimum 4x with brush BRUH according to Table B4 over the entire embedment depth in a twisting motion (if necessary, use a brush extension).

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 5).


Compressed Air Cleaning (CAC):

All diameter with drilling method HD/CD



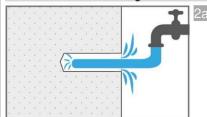
Attention! Standing water in the bore hole must be removed before cleaning.

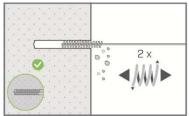
Blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 5) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Brush the bore hole minimum 2x with brush BRUH according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used.)

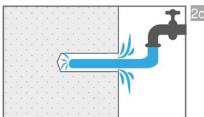
Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 5) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

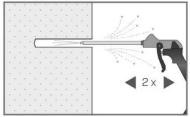
Protect cleaned bore hole against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

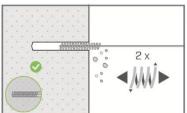

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Installation instructions (continuation)	Annex B 7

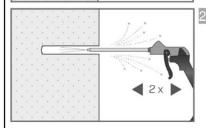

Installation instructions (continuation)

Flush & Compressed Air Cleaning (SPCAC):


All diameter with drilling method DD

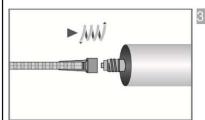

2a. Flushing with water until clear water comes out.


2b. Brush the bore hole minimum 2x with brush BRUH according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used.)


Flushing again with water until clear water comes out.

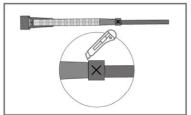
2d. Blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 5) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

2e. Brush the bore hole minimum 2x with brush BRUH according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used.)

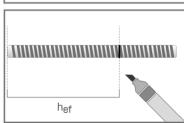

Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 5) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Protect cleaned bore hole against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Installation instructions (continuation)	Annex B 8



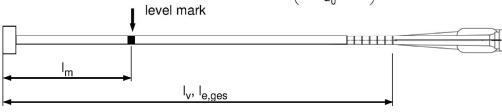
Installation instructions (continuation)



Screw on static-mixing nozzle, and load the cartridge into an appropriate dispensing tool.

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

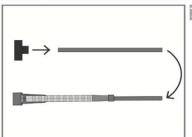
3a. In case of using the mixer extension, cut off the tip of the mixer nozzle at position "X".


Mark embedment depth on the reinforcing bar .


The reinforcing bar shall be free of dirt, grease, oil or other foreign material.

Mark mixer nozzle and extension with mortar level mark Im and anchorage depth Iv resp. $I_{\rm e,ges}$

Quick estimation: $I_m = 1/3 \cdot I_v$ Optimum mortar volume:


$$I_{m} = I_{v} \text{ resp. } I_{e,ges} \cdot \left(1,2 \cdot \frac{\phi^{2}}{d_{0}^{2}} - 0,2\right)$$

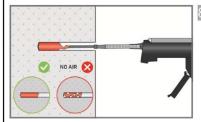
Not proper mixed mortar is not sufficient for fastening.

Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes).

Piston plugs PL and mixer nozzle extensions shall be used according to Table B4 or B5.

Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Rotho Blaas Injection System EPO-FIX for rebar connection

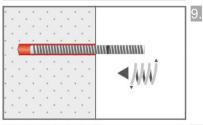

Intended use

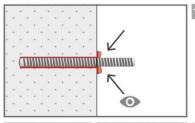
Installation instructions (continuation)

Annex B 9

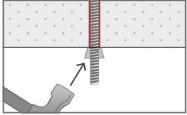
Installation instructions (continuation)

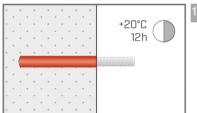
8a. Injecting mortar without piston plug PL:


Starting at bottom of the hole and fill the hole with adhesive until the mortar level mark is visible. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 5).


Injecting mortar with piston plug PL:

Insert piston plug to bottom of the hole and fill the hole with mortar until mortar level mark $l_{\rm m}$ is visible. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.


Observe the temperature related working time twork (Annex B 5).


Insert the reinforcing bar while turning slightly up to the embedment mark.

10. Annular gap between reinforcing bar and base material must be completely filled with mortar. Otherwise, the installation must be repeated starting from step 8 before the maximum working time t_{work} has expired.

11. For application in vertical upwards direction the reinforcing bar shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed. After initial curing time $t_{cure,ini}$ has elapsed, the installation of the connecting reinforcement and the formwork can be continued. The full load to the reinforcing bar may be applied after the full curing time t_{cure} has elapsed.

Rotho Blaas Injection System EPO-FIX for rebar connection	
Intended use Installation instructions (continuation)	Annex B 10

Minimum anchorage length and minimum lap length under static or quasi-static loading

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($I_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $I_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ according to Table C1.

Table C1: Amplification factor $\alpha_{lb} = \alpha_{lb,100y}$ related to concrete class and drilling method; working life 50 and 100 years

Concrete class	Drilling method	Bar size	Amplification factor $\alpha_{lb} = \alpha_{lb,100y}$
C12/15 to C50/60	all drilling methods	8 mm to 40 mm	1,0

Table C2: Reduction factor $k_b = k_{b,100y}$ for all drilling methods; working life 50 and 100 years

Rebar	Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 40 mm					1,0				

Table C3: Design values of the ultimate bond stress $f_{bd,PIR}$ and $f_{bd,PIR,100y}$ in N/mm² for all drilling methods and for good conditions; working life 50 and 100 years

 $f_{bd.PIR} = k_b \cdot f_{bd}$

 $f_{bd,PIR,100y} = k_{b,100y} \cdot f_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by η_1 =0.7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2004+AC:2010.

k_b, k_{b,100v}: Reduction factor according to Table C2

Rebar				Co	ncrete cla	ass			
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Rotho Blaas Injection System EPO-FIX for rebar connection	
Performances Minimum anchorage length and minimum lap length, Amplification factor, Reduction factor and Design values of ultimate bond resistance	Annex C 1

Minimum anchorage length and minimum lap length under seismic action

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($l_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $l_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ according to Table C4.

Table C4: Amplification factor $\alpha_{lb,seis} = \alpha_{lb,seis,100y}$ related to concrete class and drilling method; working life 50 and 100 years

Concrete class	Concrete class Drilling method		Amplification factor $\alpha_{\text{lb,seis}} = \alpha_{\text{lb,seis,100y}}$	
C16/20 to C50/60	all drilling methods	10 mm to 40 mm	1,0	

Table C5: Reduction factor $k_{b,seis} = k_{b,seis,100y}$ for all drilling methods; working life 50 and 100 years

Rebar	Concrete classes								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 40 mm	No performance assessed				1,	,0			

Table C6: Design values of the ultimate bond stress $f_{bd,PIR,seis}$ and $f_{bd,PIR,seis,100y}$ in N/mm² for all drilling methods and for good conditions; working life 50 and 100 years

 $f_{bd,PIR,seis} = k_{b,seis \cdot fbd}$

 $f_{bd,PIR,seis,100y} = k_{b,seis,100y} \cdot f_{bd}$

mit

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by $\eta_1 = 0.7$) and recommended partial factor $\gamma_c = 1,5$ according to EN 1992-1-1:2004+AC:2010.

 $k_{b,seis}, k_{b,seis,100y}$: Reduction factor according to Table C5

,									
Rebar	Concrete classes								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
10 to 32 mm		2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3
34 mm	No performance	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2
36 mm	assessed	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1
40 mm		1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0

Rotho Blaas Injection System EPO-FIX for rebar connection	
Performances	Annex C 2
Minimum anchorage length and minimum lap length, Amplification factor, Reduction factor and Design values of ultimate bond stress under seismic action	

Design value of the ultimate bond stress f_{bd.fi}, f_{bd.fi,100v} at increased temperature for concrete classes C12/15 to C50/60, (all drilling methods); working life 50 and 100 years:

The design value of the bond stress f_{bd.fi} at increased temperature has to be calculated by the following equation:

 $f_{bd,fi} = k_{fi}(\theta) \cdot f_{bd,PIR} \cdot \gamma_c / \gamma_{M,fi}$ For working life 50 years:

 $k_{fi}(\theta) = 4673.8 \cdot \theta^{-1.598} / (f_{bd,PIB} \cdot 4.3) \le 1.0$ θ ≤ 278°C: with:

> $\theta > 278^{\circ}C$: $k_{fi}(\theta) = 0$

For working life 100 years:

$$\begin{split} f_{bd,fi,100y} &= k_{fi,100y}(\theta) \, \cdot \, f_{bd,PIR,100y} \, \cdot \, \gamma_{c} \, / \, \gamma_{M,fi} \\ k_{fi,100y}(\theta) &= \, \, 4673,8 \, \cdot \, \theta^{-1,598} / \, (f_{bd,PIR,100y} \cdot \, 4,3) \leq 1,0 \end{split}$$
 $\theta \le 278^{\circ}\text{C}$: with:

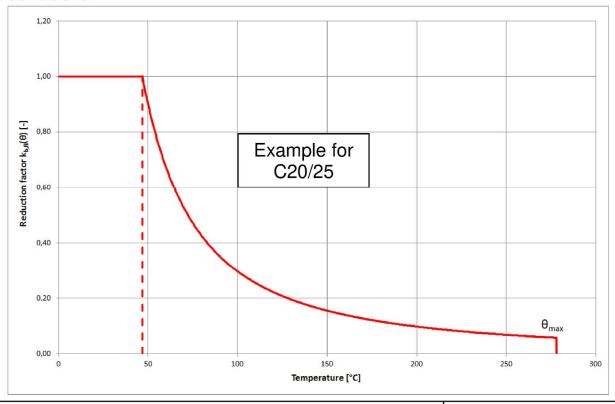
 $\theta > 278^{\circ}C$: $k_{fi,100v}(\theta) = 0$

Design value of the ultimate bond stress at increased temperature in N/mm² †bd,fi, fbd,fi,100y

Temperature in °C in the mortar layer.

 $k_{fi}(\theta), k_{fi,100v}(\theta)$ Reduction factor at increased temperature.

Design value of the bond stress $f_{bd,PIR} = f_{bd,PIR,100v}$ in N/mm² in cold condition according to f_{bd.PIR}, f_{bd.PIR.100v}


Table C4 considering the concrete classes, the rebar diameter, the drilling method and the bond

conditions according to EN 1992-1-1:2004+AC:2010.

= 1,5, recommended partial factor according to EN 1992-1-1:2004+AC:2010 γ_{C} = 1,0, recommended partial factor according to EN 1992-1-2:2004+AC:2008

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent design value of ultimate bond stress

Example graph of Reduction factor $k_{fi}(\theta)$, $k_{fi.100v}(\theta)$ for concrete classes C20/25 for good bond conditions:

Rotho Blaas Injection System EPO-FIX for rebar connection	
Performances Design value of ultimate bond stress at increased temperature	Annex C 3