

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0693 of 19 December 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TOGE concrete screw TSM E

Mechanical fasteners for use in concrete

TOGE Dübel GmbH & Co. KG Illesheimer Straße 10 90431 Nürnberg

TOGE Dübel GmbH & Co. KG

16 pages including 3 annexes which form an integral part of this assessment

330232-01-0601, Edition 05/2021

European Technical Assessment ETA-23/0693

Page 2 of 16 | 19 December 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z107555.23 8.06.01-197/23

European Technical Assessment ETA-23/0693

Page 3 of 16 | 19 December 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TOGE concrete screw TSM E is an anchor of size 8 and 10 mm made of galvanized steel or steel with zinc flake coating. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C4
Characteristic resistance for seismic performance categorie C1	No performance assessed
Characteristic resistance and displacements for seismic performance categorie C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance	
Durability	See Annex B1	

Z107555.23 8.06.01-197/23

European Technical Assessment ETA-23/0693

Page 4 of 16 | 19 December 2023

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

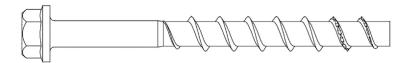
Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

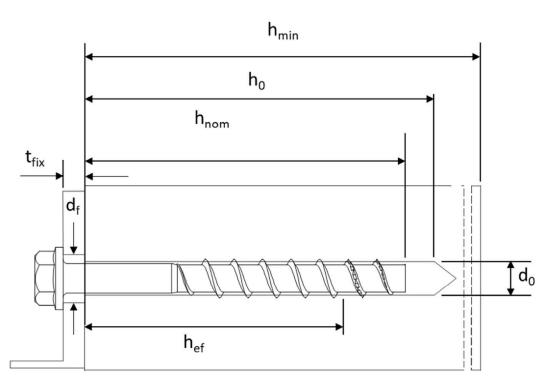
Issued in Berlin on 19 December 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:
Tempel

Z107555.23 8.06.01-197/23



Product in installed condition

TOGE concrete screw TSM E

e.g. TOGE concrete screw with hexagon head and fixture

 d_0 = nominal diameter of drill hole

t_{fix} = thickness of fixture

d_f = diameter of clearance hole

h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

 h_0 = depth of drill hole

h_{ef} = effective embedment depth

TOGE concrete screw TSM E

Product description

Product in installed condition

Annex A1

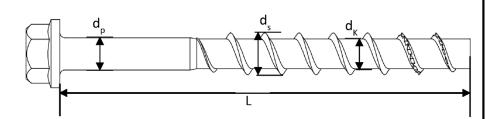
	Version with internal thread and hexagon drive e.g. TSM 6x55 IM M	3/10; Type I
	Version with hexagon drive and connection thread e.g. TSM 6x55 N	18 SW10; Type ST-6
	Version with countersunk head and connection thread e.g. TSM 6x55 A	
(SM)	Version with large pan head and TC drive e.g. TSM 8x80 LP VZ 40; Type	
(154) (2)	Version with pan head and TORX drive e.g. TSM 8x80 P VZ 40; Type F	,
(1.54) (0) (0)	Version with countersunk head and TSM 8x80 C VZ 40; Type SK	TORX drive e.g.
(SA)	Version with hexagon head e.g. TSM 8x80 SW13 OS; Type S	
(SA)	Version with washer, hexagon head TORX drive e.g. TSM 8x80 SW13; Ty	
(TSA)	Version with washer and hexagon he.g. TSM 8x80 SW13 VZ 40; Type S	ead
0	Version with metric connection throand hexagon drive e.g. TSM 8x105	

Z107557.23 8.06.01-197/23

Table 1: Material

Part	Product name	Material				
all types	TSM E	-carbon Steel galvanized -carbon Steel with zinc flake coating -carbon steel with zinc flake duplex coating -carbon steel with zinc flake special coating TOGE KORR				
Part	Product name	Yield strength	Ultimate strength	Rupture elongation A₅ [%]		
all types			≤8			

Table 2: Dimensions


Anchor size				8		10			
Nominal		h_{nom}	1	2	3	1	2	3	
embedment dept	h	[mm]	45	55	65	55	75	85	
Screw length	≤L	[mm]	500						
Core diameter	dĸ	[mm]	7,2 9,2						
Thread outer diameter	d _s	[mm]	10,5						
Thickness of filling washer	t _v	[mm]		5			5		

Marking:

TSM E

Screw type: TSM E
Screw size: 10
Screw length: 100

TOGE concrete screw TSM E

Product description

Material, dimensions and markings

Annex A3

Specification of Intended use

Anchorages subject to:

- Static or quasi-static loading
- Fire exposure

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

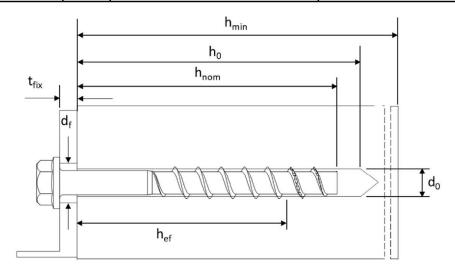
Concrete structures subject to dry internal conditions

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed for static or quasi-static actions according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters df of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B5
- Cleaning of borehole is not necessary, if using a hollow drill.


TOGE concrete screw TSM E	
Intended use	Annex B1
Specification	

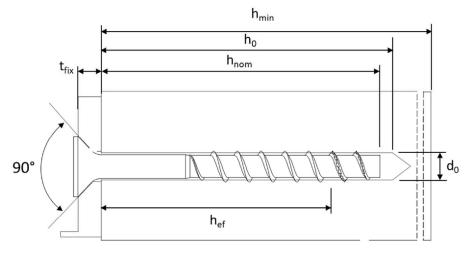

Z107557.23 8.06.01-197/23

Table 3: Installation parameters

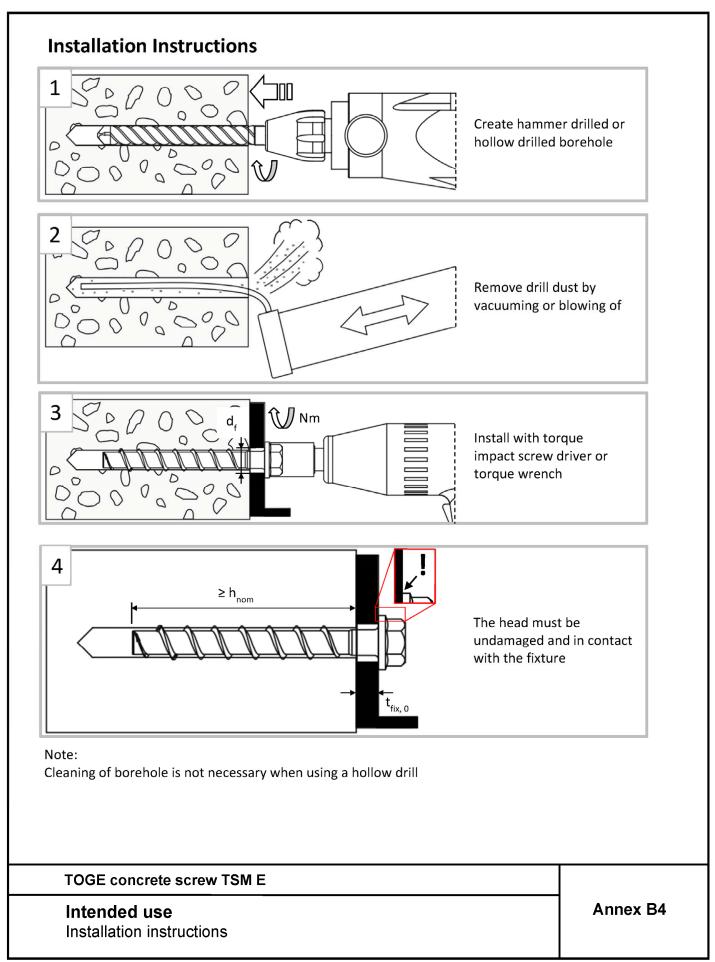
TSM concrete screw size	TSM concrete screw size				8			10		
Naminal ambadmant danth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment depth		[mm]	45	55	65	55	75	85		
Nominal drill hole diameter	d ₀	[mm]	8			10				
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45			10,45				
Depth of drill hole	h ₀ ≥	[mm]	55	65	75	65	85	95		
Clearance hole diameter	d _f ≤	[mm]	12			14				
Installation torque (version with metrical connection thread)	T _{inst}	[Nm]	20		40					
Torque impact scrow driver		[]	Max.	torque acc	ording to r	nanufactur	er's instruc	ctions		
Torque impact screw driver		[-]		300			450			

TOGE concrete screw TSM E

Intended use Installation parameters

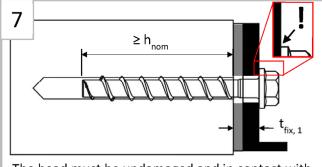
Annex B2

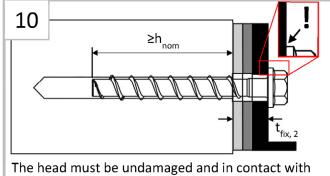
Table 4: Minimum thickness of member, minimum edge distance and minimum spacing


TSM concrete screw s	size			8		10			
h _{nom}		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment d	aeptn	[mm]	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	80	100	120	100	130	130	
Minimum edge distance	C _{min}	[mm]	35	35	35	40	40	40	
Minimum spacing	S _{min}	[mm]	35	35	35	40	40	40	

TOGE concrete screw TSM E

Intended use
Minimum thickness of member, minimum edge distance and minimum spacing


Annex B3



1. Adjustment 2. Adjustment 10mm 10mm Screw may be untightened maximum 10mm Screw may be untightened maximum 10mm - max. 9 6 10mm NmNm After adjustment, tighten the screw again After adjustment, tighten the screw again 10 7 $\geq h_{nom}$ ≥h_{nom}

The head must be undamaged and in contact with the fixture

Note:

The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

the fixture

TOGE concrete screw TSM E	
Intended use	Annex B5
Installation instructions - Adjustment	

Z107557.23 8.06.01-197/23

TSM concrete sc	rew size			8			10			
Nominal embedm	ont donth		h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Normal embedment depth			[mm]	45	55	65	55	75	85	
Steel failure for t	tension a	nd shea	ar load	ding						
Characteristic resi		$N_{Rk,s}$	[kN]		27,0			45,0		
Partial factor		γ Ms,N	[-]			1,	,5			
Characteristic resi	istance	V ⁰ _{Rk,s}	[kN]	13	3,5	17,0	22,5	34	1,0	
Partial factor		γ Ms,V	[-]			1,				
Ductility factor		k ₇	[-]			0	,8			
Characteristic ber moment	M ⁰ Rk,s	[Nm]		26,0			56,0			
Pull-out failure i	n uncrack	ed con	crete							
Characteristic resistance to tension load in C20/25		N _{Rk,p}	[kN]	9,0	12,0	17,0	11,0	19,0	25,0	
Increasing C25/3										
factor for $N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \psi_c$	C30/37		[-]	0.41	0,41 0,33	22	0,5	0,39		
with $(f,)^m$	C40/50	m	ן נ־ן	0,41),. 	55	0,3			
$\psi_c = \left(\frac{f_{ck}}{20}\right)^m$	C50/60									
Pull-out failure i	n cracked	concre	ete							
Characteristic resito tension load in		N _{Rk,p}	[kN]	3,0	5,5	8,0	6,0	13,0	17,0	
Increasing	C25/30				•					
factor for $N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \psi_c$	C30/37		,	0,49	0	0,39			0.27	
with	C40/50	m	[-]	0,43]	<i></i>	0,42	0,27		
$\psi_{c} = \left(\frac{f_{ck}}{20}\right)^{m}$	C50/60									
nstallation factor		γinst	[-]	1,0						

TOGE concrete screw TSM E	
Performances Characteristic values for static and quasi-static loading	Annex C1

TSM concre	ete screw size		8		10					
Ni		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
Nominal em	bedment depth		h _{nom} [mm]	45	55	65	55	75	85	
Concrete fa	ailure: concrete	cone f	failure	and split	ting failure	<u> </u>				
Effective en depth	nbedment	[mm]	35	44	52	43	60	69		
k-factor	cracked	k _{cr}	[-]	7,7						
K-IdCtOI	uncracked	k _{ucr}	[-]			11	.,0			
Concrete	spacing	S _{cr,N}	[mm]	3 x h _{ef}						
cone failure	edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}						
Splitting	resistance	N ⁰ Rk,sp	[kN]	9,0	12,0	17,0	11,0	19,0	25,0	
failure	spacing	S _{cr,sp}	[mm]	200	240	290	230	280	320	
case 1	edge distance	C _{cr,sp}	[mm]	100	120	145	115	h _{nom2} 75 60 19,0	160	
Splitting	resistance	N ⁰ Rk,sp	[kN]	5,5	8,0	11,0	7,0	15,0	20,0	
failure	spacing	S _{cr,sp}	[mm]	128	164	196	160	224	260	
case 2	edge distance	C _{cr,sp}	[mm]	64	82	98	80	114	130	
Installation Yinst [-]				1,0						
Pry-out fail	ure									
Factor for p	ry-out failure	k ₈	[-]	2,1 2,8 2,5				2,5		
Installation factor γ _{inst}			[-]	1,0						
Concrete e	dge failure									
Effective length in concrete		I _f	[mm]	45	55	65	55	75	85	
Nominal outer diameter of screw		d_{nom}	[mm]	8				10	_	

TOGE concrete screw TSM E	
Performances Characteristic values for static and quasi-static loading	Annex C2 ng continuation

Z107557.23 8.06.01-197/23

TSM concrete scr	ew size				8			10	
Namainal anabadna	h _{nom}	1	2	3	1	2	3		
Nominal embedme	[mm]	45	55	65	55	75	85		
Steel failure for to	ension and	shear Ioad			•				
	R30	N _{Rk,s,fi30}	[kN]		2,4			4,4	
	R60	N _{Rk,s,fi60}	[kN]		1,7			3,3	
	R90	N _{Rk,s,fi90}	[kN]		1,1			2,3	
	R120	N _{Rk,s,fi120}	[kN]		0,7			1,7	
	R30	$V_{Rk,s,fi30}$	[kN]		2,4			4,4	
Characteristic	R60	V _{Rk,s,fi60}	[kN]		1,7			3,3	
Resistance	R90	$V_{Rk,s,fi90}$	[kN]		1,1			2,3	
	R120	$V_{Rk,s,fi120}$	[kN]	0,7			1,7		
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	2,4			5,9		
	R60	M ⁰ Rk,s,fi60	[Nm]	Nm] 1,8			4,5		
	R90	M ⁰ Rk,s,fi90	[Nm]	1,2			3,0		
	R120	M ⁰ Rk,s,fi120	[Nm]	0,9			2,3		
Pull-out failure									
Characteristic	R30-90	N _{Rk,p,fi}	[kN]	0,8	1,4	2,0	1,5	3,3	4,3
Resistance	R120	N _{Rk,p,fi}	[kN]	0,6	1,1	1,6	1,2	2,6	3,4
Concrete cone fa	ilure								
Characteristic	R30-90	N ⁰ Rk,c,fi	[kN]	1,0	1,9	2,9	1,7	4,2	5,9
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,8	1,5	2,3	1,4	3,4	4,7
Edge distance									
R30 - R120		C _{cr,fi}	[mm]			2 x	h _{ef}		
In case of fire attac	k from more	e than one s	ide, the	minimur	n edge di	istance sh	nall be ≥3	00mm.	
Spacing									
R30 - R120		S _{cr,fi}	[mm]			4 x	h _{ef}		
The anchorage dervalue.	oth has to be		or wet o	oncrete	by at leas	st 30 mm	compare	d to the	given

TOGE concrete screw TSM E	
Performances	

Fire exposure – characteristic values of resistance

Annex C3

Tabl	le 8: Dis	placements un	der static and	duasi-static	tension load

TSM concre	ete screw size			8			10			
Nominal em	bedment depth	h _{nom}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
140111111ai Cili	beament acptin		[mm]	45	55	65	55	75	85	
Cracked concrete	tension load	N	[kN]	1,63	2,74	4,06	3,04	6,22	8,46	
	displacement	δ_{N0}	[mm]	0,27	0,53	0,45	0,26	0,58	0,61	
		$\delta_{\text{N}^{\infty}}$	[mm]	0,49	0,66	0,61	0,69	0,92	1,1	
	1	_				1				
l	tension load	N	[kN]	4,24	5,97	8,03	5,42	9,17	12,28	
Uncracked concrete	diamina and	δ_{N0}	[mm]	0,33	0,49	0,58	0,84	0,62	0,79	
Concrete	displacement	$\delta_{\text{N}^{\infty}}$	[mm]		0,58			0,79		

Table 9: Displacements under static and quasi-static shear load

TSM concre	te screw size			8			10		
Nominal emi	oedment depth	h _{nom}	h_{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
- Norminar Cim	scament acptin		[mm]	45	55	65	55	75	85
Cracked and	shear load	٧	[kN]	8,6			16,2		
uncracked concrete	dia alamana at	δ_{V0}	[mm]		2,7				
	displacement	$\delta_{V^{\infty}}$	[mm]	4,1			4,3		

TOGE concrete screw **TSM** E

Performances

Displacements under static and quasi-static loads

Annex C4