

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-23/0696 vom 8. November 2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Injektionssystem XWE für Beton

Verbunddübel zur Verankerung im Beton

Tecfi S.p.A Strada Statale Appia, Km. 193 81050 PASTORANO (CE) ITALIEN

Tecfi Plant 4

46 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

330499-01-0601-v01, Edition 11/2020

Z104077.23

Europäische Technische Bewertung ETA-23/0696

Seite 2 von 46 | 8. November 2023

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-23/0696

Seite 3 von 46 | 8. November 2023

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Injektionssystem XWE für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel XWE und einem Stahlteil gemäß Anhang A3 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 und/oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 6, C 8 bis C 11, C 13 bis C 16, B3
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 7, C 12, C 17
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 18 bis C 20
Charakteristischer Widerstand und Verschiebungen für seismische Leistungskategorie C1und C2	Siehe Anhang C 21 bis C 28

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung			
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet			

Europäische Technische Bewertung ETA-23/0696

Seite 4 von 46 | 8. November 2023

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

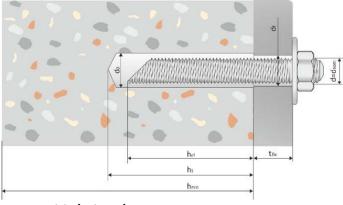
Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601-v01 gilt folgende Rechtsgrundlage: [96/582/EG].

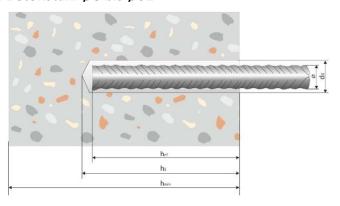
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 8. November 2023 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange ABZ-M6 bis ABZ-M20

t_{fix} = Dicke des Anbauteils

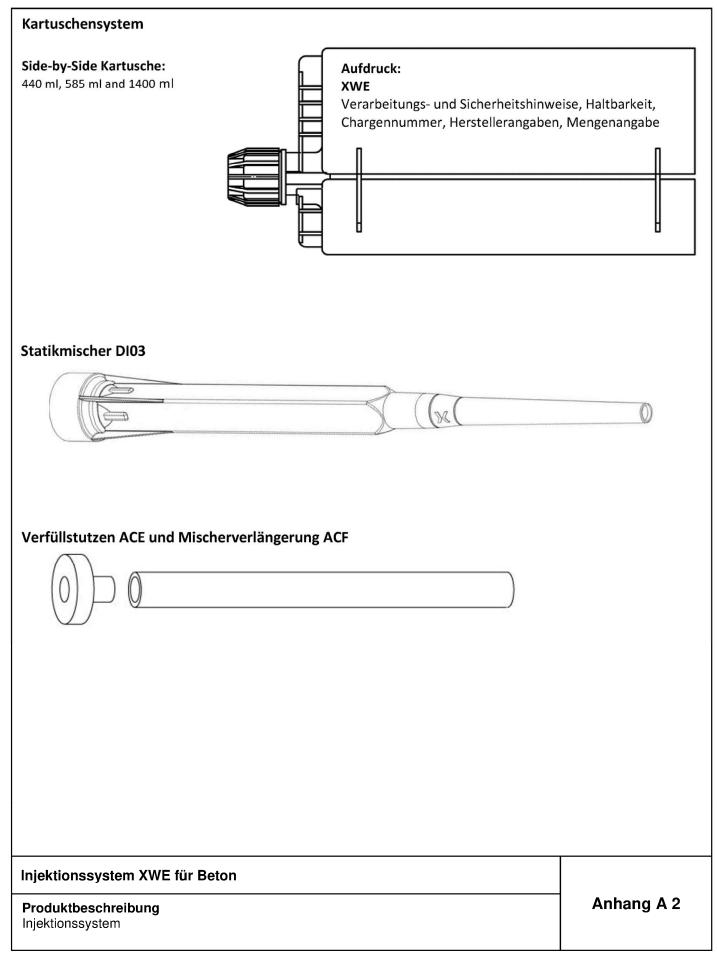
h₀ = Bohrlochtiefe

 I_{IG}

hef = Effektive Verankerungstiefe

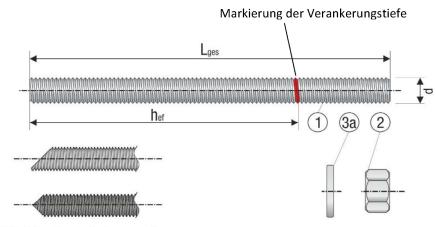
= Einschraublänge

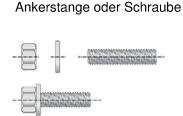
h_{min} = Mindestbauteildicke

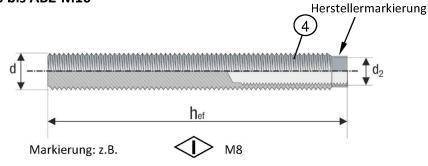

Injektionssystem XWE für Beton

Produktbeschreibung

Einbauzustand


Anhang A 1


Gewindestange M8 bis M30 mit Unterlegscheibe und Sechskantmutter



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Dokument sollte aufbewahrt werden.
- Markierung der Setztiefe

Innengewindeankerstange ABZ-M6 bis ABZ-M10

Kennzeichnung Innengewinde

Werkszeichen

M8 Gewindegröße (Innengewinde)

A4 zusätzliche Kennung für nichtrostenden Stahl

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

Verfüllscheibe ACG

Injektionssystem XWE für Beton

Produktbeschreibung

Gewindestange; Innengewindeankerstange;

Verfüllscheibe; Mischerreduzierung

Anhang A 3

Injektionssystem XWE für Beton

	Benennung	Werkstoff					
Stahlteile aus verzinktem Stahl (Stahl gemäß EN ISO 683-4:2018 oder EN 10263:2001)							
	galvanisch verzinkt	≥5µm gemäß E	N ISO 51:200	4042:2018 oder 9 und EN ISO 10684:2004			
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung	
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%	
1	Gewindestange		4.8	f _{uk} = 400 N/mm ²	f _{vk} = 320 N/mm ²	A ₅ > 8%	
	Gewindestange	acc. to	5.6	f _{uk} = 500 N/mm ²	f _{vk} = 300 N/mm ²	A ₅ > 8%	
		EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%	
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	$A_5 \ge 12\%^{3}$	
			4	für Gewindestangen der	r Klasse 4.6 oder 4.8		
	Sechskantmutter	gemäß EN ISO 898-2:2012	5	für Gewindestangen der	r Klasse 5.6 oder 5.8		
		EN 130 838-2.2012	8	für Gewindestangen der	r Klasse 8.8		
a	Unterlegscheibe	(z.B.: EN ISO 887:200	6, EN I		93:2000 oder EN ISO 7094	1:2000)	
b	Verfüllscheibe	Stahl, galvanisch verz	inkt, f	euerverzinkt oder diffusio			
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung	
	Innengewindeankerstange	gemäß	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%	
	EN ISO 898-1:2013 $8.8 \text{ f}_{uk} = 800 \text{ N/mm}^2 \text{ f}_{vk} = 640 \text{ N/mm}^2 \text{ A}_5 > 8\%$						
lich	tractandar Stabl A2 /\A/arkst	off 1 4201 / 1 4207 /	1 // 211	/ 1 AEG7 odor 1 AEA1 an	mä@ EN 10000 1,2014\		
lich	trostender Stahl A2 (Werkst trostender Stahl A4 (Werkst korrosionsbeständiger Stah	toff 1.4401 / 1.4404 /	1.4571		emäß EN 10088-1:2014)	Bruchdehnung	
lich Ioch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 o	1.4571	. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische	emäß EN 10088-1:2014) 2014) Charakteristische	Bruchdehnung A ₅ ≥ 8%	
lich Ioch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 o Festigkeitsklasse gemäß	1.4571 der 1.4 50	. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	cmäß EN 10088-1:2014) 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm²	A ₅ ≥ 8%	
lich Ioch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 o Festigkeitsklasse	1.4571 der 1.4 50	. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	cmäß EN 10088-1:2014) : 2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm² f _{yk} = 450 N/mm²	$A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$	
ich	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / hl (Werkstoff 1.4529 o Festigkeitsklasse gemäß EN ISO 3506-1:2020	1.4571 der 1.4 50 70	1/ 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ²	cmäß EN 10088-1:2014) Charakteristische Streckgrenze $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$	A ₅ ≥ 8%	
lich loch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / hl (Werkstoff 1.4529 o Festigkeitsklasse gemäß EN ISO 3506-1:2020 gemäß	1.4571 der 1.4 50 70 80	. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	cmäß EN 10088-1:2014) Charakteristische Streckgrenze $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ r Klasse 50	$A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$	
lich loch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / hl (Werkstoff 1.4529 o Festigkeitsklasse gemäß EN ISO 3506-1:2020	1.4571 der 1.4 50 70 80 50	. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ²	cmäß EN 10088-1:2014) Charakteristische Streckgrenze $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ T Klasse 50 T Klasse 70	$A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$	
Nich Hoch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / hl (Werkstoff 1.4529 of Festigkeitsklasse) gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4451	1.4571 der 1.4 50 70 80 50 70 80 1 / 1.43 2 / 1.44 29 ode	c / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangen der für Gewindestangen der 607 / 1.4311 / 1.4567 ode 604 / 1.4571 / 1.4362 ode r 1.4565, EN 10088-1: 20:	emäß EN 10088-1:2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² f _{yk} = 600 N/mm² r Klasse 50 r Klasse 70 r Klasse 80 r 1.4541, EN 10088-1:201 r 1.4578, EN 10088-1:201	$A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$	
lich loch	trostender Stahl A4 (Werkst korrosionsbeständiger Stah Gewindestange ¹⁾⁴⁾	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 of Festigkeitsklasse gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452(z.B.: EN ISO 887:200	1.4571 der 1.4 50 70 80 50 70 80 1 / 1.43 29 ode 6, EN I	c / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangen der für Gewindestangen der 607 / 1.4311 / 1.4567 ode 604 / 1.4571 / 1.4362 ode r 1.4565, EN 10088-1: 20:	emäß EN 10088-1:2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² f _{yk} = 600 N/mm² r Klasse 50 r Klasse 70 r Klasse 80 r 1.4541, EN 10088-1:201 r 1.4578, EN 10088-1:201	$A_5 \ge 8\%$ $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$	
lich loch	Gewindestange 1)4) Sechskantmutter 1)4) Unterlegscheibe Verfüllscheibe	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 of Festigkeitsklasse) Festigkeitsklasse gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 Stainless steel A4, Higher Festigkeitsklasse	1.4571 der 1.4 50 70 80 50 70 80 1 / 1.43 29 ode 6, EN I	c. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangen der für Gewindestangen der 607 / 1.4311 / 1.4567 ode 104 / 1.4571 / 1.4362 ode r 1.4565, EN 10088-1: 20: SO 7089:2000, EN ISO 70 rosion resistance steel Charakteristische Zugfestigkeit	emäß EN 10088-1:2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² r Klasse 50 r Klasse 70 r Klasse 80 r 1.4541, EN 10088-1:201 14 93:2000 oder EN ISO 7094 Charakteristische Streckgrenze	$A_5 \ge 8\%$ $A_5 \ge 12\%^3$) $A_5 \ge 12\%^3$) 4 4 4 1:2000)	
lich loch	trostender Stahl A4 (Werkst korrosionsbeständiger Stahl Gewindestange 1)4) Sechskantmutter 1)4) Unterlegscheibe	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 of Festigkeitsklasse) Festigkeitsklasse gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.4401 Stainless steel A4, Higher Festigkeitsklasse	1.4571 der 1.4 50 70 80 50 70 80 1 / 1.43 29 ode 6, EN I	c./ 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangen der für Gewindestangen der für Gewindestangen der 607 / 1.4311 / 1.4567 ode 604 / 1.4571 / 1.4362 ode r 1.4565, EN 10088-1: 20: SO 7089:2000, EN ISO 70 rosion resistance steel Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	emäß EN 10088-1:2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² f _{yk} = 600 N/mm² r Klasse 50 r Klasse 70 r Klasse 80 er 1.4541, EN 10088-1:201 14 93:2000 oder EN ISO 7094 Charakteristische Streckgrenze f _{yk} = 210 N/mm²	$A_5 \ge 8\%$ $A_5 \ge 12\%^3$) $A_5 \ge 12\%^3$) 4 4 4 1:2000) Bruchdehnung $A_5 > 8\%$	
Nich	Gewindestange 1)4) Sechskantmutter 1)4) Unterlegscheibe Verfüllscheibe Innengewindeankerstange	toff 1.4401 / 1.4404 / nl (Werkstoff 1.4529 of Festigkeitsklasse) Festigkeitsklasse gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:200 Stainless steel A4, Hi	1.4571 der 1.4 50 70 80 50 70 80 1 / 1.43 1 / 1.44 29 ode 6, EN I	c. / 1.4362 oder 1.4578, ge 4565, gemäß EN 10088-1: Charakteristische Zugfestigkeit f _{uk} = 500 N/mm² f _{uk} = 700 N/mm² f _{uk} = 800 N/mm² für Gewindestangen der für Gewindestangen der 607 / 1.4311 / 1.4567 ode 104 / 1.4571 / 1.4362 ode r 1.4565, EN 10088-1: 20: SO 7089:2000, EN ISO 70 rosion resistance steel Charakteristische Zugfestigkeit	emäß EN 10088-1:2014) Charakteristische Streckgrenze f _{yk} = 210 N/mm² f _{yk} = 450 N/mm² r Klasse 50 r Klasse 70 r Klasse 80 r 1.4541, EN 10088-1:201 14 93:2000 oder EN ISO 7094 Charakteristische Streckgrenze	$A_5 \ge 8\%$ $A_5 \ge 12\%^3$ $A_5 \ge 12\%^3$ $A_5 \ge 12\%^3$ 4 4 4 1:2000)	

Produktbeschreibung
Werkstoffe Gewindestange, Innengewindeankerstange und Verfüllscheibe

Anhang A 4

Betonstahl Ø8 bis Ø32

Mindestwerte der bezogenen Rippenfläche fR,min gemäß EN 1992-1-1:2004+AC:2010 Die Rippenhöhe muss 0,05 $\varphi \le h_{rib} \le 0,07 \varphi$ betragen (d: Nenndurchmesser des Stabes; hrib: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff						
Beto	nstahl							
1	Betonstahl gemäß EN 1992 1 1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C $f_{yk} \text{ und } k \text{ gemäß NDP oder NCI gemäß EN 1992-1-1/NA} $ $f_{uk} = f_{tk} = k \bullet f_{yk}$						

Injektionssystem XWE für Beton

Produktbeschreibung
Werkstoffe Betonstahl

Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung (Statische und quasi-statische Lasten)

		Nutzungsdaue	er 50 Jahre	Nutzungsdaue	r 100 Jahre		
	Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton		
HD: HDB: CD:	Hammerbohren Hammerbohren mit Hohlbohrer Pressluftbohren	M8 bis 1 Ø8 bis 9 ABZ -M6 bis 9	3 32,	M8 bis M30, Ø8 bis Ø32, ABZ -M6 bis ABZ -M20			
DD:	Diamantbohren	M8 bis M30, ∅8 bis ∅32, ABZ -M6 bis ABZ -M20	Leistung nicht bewertet	M8 bis M30, ∅8 bis ∅32, ABZ -M6 bis ABZ -M20	Leistung nicht bewertet		
Temp	eraturbereich:		ois +40 C ¹⁾ ois +72 C ²⁾		ois +40 C ¹⁾ ois +72 C ²⁾		

Beanspruchung der Verankerung (Seismische Einwirkung):

		Leistungskategorie C1	Leistungskategorie C2				
	Verankerungsgrund	Gerissener und ungerissener Beton	Gerissener und ungerissener Beton				
HD: HDB: CD:	Hammerbohren Hammerbohren mit Hohlbohrer Pressluftbohren	M8 bis M30, ∅8 bis ∅32	M12 bis M24				
DD:	Diamantbohren	Leistung nicht bewertet	Leistung nicht bewertet				
Temp	eraturbereich:	I: - 40 C bis +40 C ¹⁾ II: - 40 C bis +72 C ²⁾	I: - 40 C bis +40 C ¹⁾ II: - 40 C bis +72 C ²⁾				

^{1) (}max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A1:2016.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Injektionssystem XWE für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +50°C and max. Kurzzeit-Temperatur +72°C)

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluft- (CD) oder Diamantbohren (DD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Injektionssystem XWE für Beton	
Verwendungszweck Spezifikationen (Fortsetzung)	Anhang B 2

Tabelle B1: Montagekennwerte für Gewindestangen												
Dübelgröße Gewinde	stange		M8	M10	M12	M16	M20	M24	M27	M30		
Durchmesser Gewind	estange	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Bohrernenndurchmes	ser	d _o	[mm]	10	12	14	18	22	28	30	35	
Effektive Verankerungstiefe		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	
		h _{ef,max}		160	200	240	320	400	480	540	600	
Durchgangsloch im anzuschließenden	Vorsteck	montage d _f ≤	[mm]	9	12	14	18	22	26	30	33	
Bauteil	Durchste	ckmontage d _f	[mm]	12	14	16	20	24	30	33	40	
Maximales Montaged	rehmoment	max T _{inst}	[Nm]	10	20	401)	60	100	170	250	300	
Mindestbauteildicke h _r		h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimaler Achsabstar	nd	S _{min}	[mm]	40	50	60	75	95	115	125	140	
Minimaler Randabstar	nd	c _{min}	[mm]	35	40	45	50	60	65	75	80	

¹⁾ Maximales Drehmoment für M12 mit Festigkeitsklasse 4.6 ist 35 Nm

Tabelle B2: Montagekennwerte für Betonstahl

Tabelle DEI Mieritabekeimitterte für Deteriotami														
Größe Betonstahl				Ø 10	Ø	12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 2	24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	1	.2	14	16	20	2	4	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	10 12	2 12 1	4 14	16	18	20	25	30	32	30 32	35	40
h _{ef,t}		[mm]	60	60	7	0	75	80	90	9	6	100	112	128
Effektive Verankerungstiefe	h _{ef,max}	[mm]	160	200		40	280	320	400	48	30	500	560	640
Mindestbauteildicke	h _{min}	[mm]	h _{ef} +:	h _{ef} + 30 mm ≥ 100 mm					h _e	ef + 2	d ₀			
Minimaler Achsabstand	s _{min}	[mm]	40	50	6	0	70	75	95	12	20	120	130	150
Minimaler Randabstand	c _{min}	[mm]	35	40	4	15	50	50	60	7	0	70	75	85

¹⁾ beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

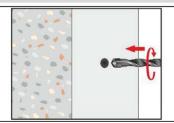
Größe Innengewindeankerstange			ABZ-M6	ABZ-M8	ABZ-M10 ABZ-M12 ABZ -M16 ABZ				
Innendurchmesser der Hülse	d ₂	[mm]	6	8	10	12	16	20	
Außendurchmesser der Hülse 1)	d = d _{nom}	[mm]	10	12	16	20	24	30	
Bohrernenndurchmesser	d ₀	[mm]	12	14	18	22	28	35	
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120	
Effektive verafikerungstiere	h _{ef,max}	[mm]	200	240	320	400	480	600	
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22	
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	10	20	40	60	100	
Einschraublänge min/max	l _{IG}	[mm]	8/20	8/20 8/20		12/30	16/32	20/40	
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} -	+ 2d ₀		
Minimaler Achsabstand	S _{min}	[mm]	50	60	75	95	115	140	
Minimaler Randabstand	c _{min}	[mm]	40	45	50	60	65	80	

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Injektionssystem XWE für Beton	
Verwendungszweck Montagekennwerte	Anhang B 3

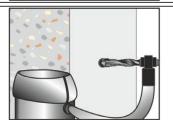
Tabelle B4: Parameter für Reinigungs- und Installationszubehör Innen $d_{b,min}$ d_b Verfüll-Gewinde-Installationsrichtung und Bohrer - Ø **Betonstahl** gewindemin. Anwendung von Verfüllstutzen stutzen stangen HD, HDB, CD, Bürsten - Ø hülse Bürsten - Ø DD [mm] [mm] [mm] [mm] [mm] [mm] 8 **M8** 10 ACD10 11,5 10,5 8/10 12 ACD12 M10 ABZ-M6 13,5 12,5 Kein Verfüllstutzen notwendig M12 10 / 12 ABZ -M8 14 ACD14 15,5 14,5 12 ACD16 17,5 16 16,5 M16 14 ABZ-M10 18 ACD18 20,0 18,5 ACE18 20 16 ACD20 22,0 20,5 ACE20 22 ACD22 24,0 22,5 ACE22 M20 ABZ-M12 ACD25 27,0 20 25 25,5 ACE25 h_{ef}> h_{ef} > M24 ABZ-M16 28 ACD28 30,0 28,5 ACE28 all 250 mm 250 mm 24 / 25 M27 30 ACD30 ACE30 31,8 30,5 24 / 25 32 ACD32 34,0 32,5 ACE32 ACD35 M30 28 ABZ-M20 35 37,0 35,5 ACE35 32 40 ACD40 43,5 40,5 ACE40 Reinigungs- und Installationszubehör HDB - Hohlbohrersystem Das Hohlbohrersystem besteht aus dem Heller Duster Expert Hohlbohrer und einem Klasse M Staubsauger mit einem minimalen Unterdruck von 253 hPa und einer Durchflussmenge von Minimum 150 m³/h (42 l/s). Druckluftpistole (min 6 bar) **Bürste ACD** Verfüllstutzen ACE ummmm Bürstenverlängerung ACH TO CONTRACT Injektionssystem XWE für Beton Anhang B 4 Verwendungszweck Reinigungs- und Installationszubehör

Tabelle B5:	Verarb	eitungs- und A	ushärtezeiten	
Temperatui	r im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit 1)
	Т		t _{work}	t _{cure}
+ 0 °C	bis	+ 4 °C	90 min	144 h
+ 5 °C	bis	+ 9 °C	80 min	48 h
+ 10 °C	bis	+ 14 °C	60 min	28 h
+ 15 °C	bis	+ 19 °C	40 min	18 h
+ 20 °C	bis	+ 24 °C	30 min	12 h
+ 25 °C	bis	+ 34 °C	12 min	9 h
+ 35 °C	bis	+ 39 °C	8 min	6 h
	+ 40 °C		8 min	4 h
Kartu	ıschentempe	eratur	+5°C to	+40°C


¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Injektionssystem XWE für Beton	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B 5

Setzanweisung


Bohrloch erstellen (HD, HDB, CD)

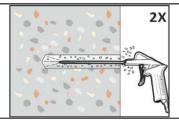
Hammerbohren (HD) / Druckluftbohren (CD)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln.

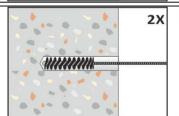
Weiter mit Schritt 2.

Hammerbohren mit Hohlbohrer (HDB) (siehe Anhang B 4)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Das Hohlbohrersystem entfernt den Staub und reinigt das Bohrloch.


Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

Weiter mit Schritt 3.


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Druckluft-Reinigung (CAC):

Alle Durchmesser in gerissenem und ungerissenem Beton

Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist

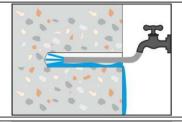
Bohrloch mindestens 2x mit Bürste ACD gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. verwenden) ausbürsten.

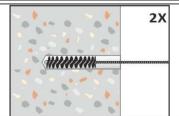
Abschließend Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

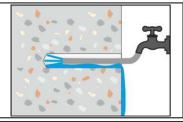
Injektionssystem XWE für Beton	
Verwendungszweck Setzanweisung	Anhang B 6

Setzanweisung (Fortsetzung)

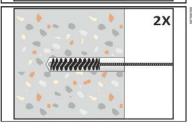

Bohrloch erstellen (DD)


Diamantbohren (DD)
Bohrloch für die erforderliche Verankerungstiefe erstellen.
Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3.
Fehlbohrungen sind zu vermörteln.
Weiter mit Schritt 2.

Spülen/Druckluft- Reinigung (SPCAC):


Alle Durchmesser in ungerissenem Beton

Mit Wasser spülen bis klares Wasser herauskommt.

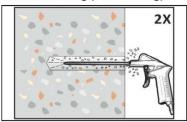

Bohrloch mindestens 2x mit Bürste ACD gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. verwenden) ausbürsten.

Mit Wasser spülen bis klares Wasser herauskommt .

Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

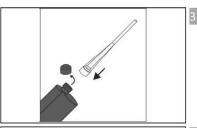
Bohrloch mindestens 2x mit Bürste ACD gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. verwenden) ausbürsten.

Injektionssystem XWE für Beton

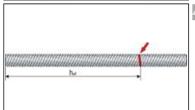

Verwendungszweck

Setzanweisung (Fortsetzung)

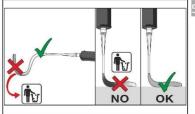
Anhang B 7

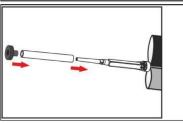


Setzanweisung (Fortsetzung)

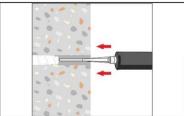


Abschließend Bohrloch mindestens 2x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.


Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.


Statikmischer, aufschrauben und Kartusche in geeignetes Auspressgerät einlegen. Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 5) und bei neuen Kartuschen, neuen Statikmischer verwenden.

Verankerungstiefe auf der Ankerstange markieren. Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.



Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue oder rote Mischfarbe eingestellt hat (mindestens 3 volle Hübe)

Verfüllstutzen ACE und Mischerverlängerung ACF sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:

- In horizontaler und vertikaler Richtung nach unten: Bohrer- \emptyset d₀ \ge 18 mm und Setztiefe h_{ef} > 250mm
- In vertikaler Richtung nach oben: Bohrer-Ø d₀ ≥ 18 mm
 Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken

Injizieren ohne Verfüllstutzen ACE:

Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung verwenden) her ca. zu 2/3 mit Mörtel befüllen.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.

Temperaturabhängige Verarbeitungszeiten twork (Anhang B 5) beachten.

Injektionssystem XWE für Beton Verwendungszweck Setzanweisung (Fortsetzung) Anhang B 8

Verwendungszweck

Setzanweisung (Fortsetzung)

Setzanweisung (Fortsetzung) 7b. Injizieren mit Verfüllstutzen ACE: Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch ca. zu 2/3 mit Mörtel befüllen. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt. Temperaturabhängige Verarbeitungszeiten twork (Anhang B 5) beachten. Ankerstange mit leichten Drehbewegungen bis zur Markierung einführen. Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit twork ab Schritt 7 wiederholen. Bei Anwendungen in vertikaler Richtung nach oben ist die Ankerstange zu fixieren (z.B. mit Holzkeilen) 11. e.g. Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 5) muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten . Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Tabelle B1 oder B3) beachten. Bei statischer Vorgabe (z.B. Erdbeben), Ringspalt im Anbauteil mit Mörtel (Anlage A 2) verfüllen. Dazu Unterlegscheibe durch Verfüllscheibe ACG ersetzen und Mischerreduzierung ACF verwenden Injektionssystem XWE für Beton

Z104075.23 8.06.01-205/23

Anhang B 9

Ge	windestange			M8	M10	M12	M16	M20	M24	M27	M30
Sp	annungsquerschnitt	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Ch	arakteristische Zugtragfähigkeit, Stahlversagen ¹	L)									
Sta	ahl, Festigkeitsklasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sta	ahl, Festigkeitsklasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Sta	ahl, Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Nic	chtrostender Stahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Ch	arakteristische Zugtragfähigkeit, Teilsicherheitsk	eiwert ²)								
Sta	ahl, Festigkeitsklasse 4.6 und 5.6	$\gamma_{Ms,N}$	[-]	2,0							
Sta	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	$\gamma_{Ms,N}$	[-]				1,5	5			
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 50	$\gamma_{Ms,N}$	[-]				2,8	6			
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,N}	[-]				1,8	7			
	chtrostender Stahl A4 und HCR, Klasse 80	$\gamma_{Ms,N}$	[-]				1,6	5			
Ch	arakteristische Quertragfähigkeit, Stahlversagen	1)			1						
	Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Stahl, Festigkeitsklasse 5.6 und 5.8	V ⁰ _{Rk,s}	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
pel	Stahl, Festigkeitsklasse 8.8	V ⁰ _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ohne Hebelarm	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
h	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
	Nichtrostender Stahl A4 und HCR, Klasse 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigkeitsklasse 4.6 und 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Ε	Stahl, Festigkeitsklasse 5.6 und 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
ebelarm	Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
Hek	Nichtrostender Stahl A2, A4 und HCR, Klasse 50		[Nm]	19	37	66	167	325	561	832	1125
Mit H	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
	Nichtrostender Stahl A4 und HCR, Klasse 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Ch	arakteristische Quertragfähigkeit, Teilsicherheit:		2)								
Sta	ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,V}	[-]				1,6	7			
Sta	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,2	5			
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 50	γ _{Ms,V}	[-]				2,3	8			
Nic	chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]				1,5	6			
N 1:	chtrostender Stahl A4 und HCR, Klasse 80	γ _{Ms,V}	[-]				1,3	3			

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt As. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Dübelvariante nicht in ETA enthalten

Injektionssystem XWE für Beton	
Leistungen Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Anhang C 1

²⁾Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer 50 und 100 Jahren

Dübel				Alle Dübelarten und -größen
Betonausbruch			_	
ungerissener Beto	on	k _{ucr,N}	[-]	11,0
gerissener Beton		k _{cr,N}	[-]	7,7
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}
Spalten				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Randabstand	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Achsabstand	·	s _{cr,sp}	[mm]	2 c _{cr,sp}

Injektionssystem XWE für Beton

Leistungen

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer 50 und 100 Jahren

Anhang C 2

	estange				M8	M10	M12	M16	M20	M24	M27	M30
Stahlver	sagen							97 1981			v.	
Charakte	eristische Zugtragf	ähigkeit	N _{Rk,s}	[kN]			A _s • f _{uk}	(oder si	ehe Tab	elle C1))	
Teilsiche	erheitsbeiwert		γ _{Ms,N}	[-]			;	siehe Ta	belle C1	L		
Kombini	iertes Versagen du	ırch Herausziehen u	nd Betonausbru	ıch								
Charakte Löchern		tragfähigkeit im ung	erissenen Beton	C20/25 in ha	ammerg	gebohrte	en Löch	ern (HD) und in	drucklı	ıftgebo	hrten
Temperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	[₹] Rk,ucr	[N/mm²]	20	20	19	19	18	17	16	16
Tempe ber	II: 72°C/50°C	wassergefülltes Bohrloch	*KK,UCT	[14/11111]	15	15	15	14	13	13	12	12
Charakte	eristische Verbund	tragfähigkeit im ung	erissenen Beton	C20/25 in ha	ammerg	gebohrte	en Löch	ern mit	Hohlbo	hrer (Hเ	OB)	
L	I: 40°C/24°C trockener und				17	16	16	16	15	14	14	13
ratu ich	II: 72°C/50°C	feuchter Beton			14	14	14	13	13	12	12	11
Temperatur- bereich	I: 40°C/24°C	wassergefülltes	^τ Rk,ucr	[N/mm²]	16	16	16	15	15	14	14	13
Ten	II: 72°C/50°C	Bohrloch			14	14	14	13	13	12	12	11
Charakte	1000	 tragfähigkeit im geri	ssenen Beton Ci	_ 20/25 in ham				100000000		TO THE STATE OF TH	200,0000	
		ergebohrten Löcher			mer gen	om ten	Locitori	(110), 1	ii di dek	artbest	Jinten	
81	I: 40°C/24°C	trockener und feuchter Beton,			7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
Temperatur- bereich	II: 72°C/50°C	wassergefülltes Bohrloch	^τ Rk,cr	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
		m gerissenen und un ergebohrten Löcher			hamme	rgebohi	ten Löc	hern (H	D), in di	ruckluft	gebohr	ten
Temperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	$\Psi^0_{ m sus}$	[-]	0,8			80	0			
Temp(II: 72°C/50°C	wassergefülltes Bohrloch	Ψ sus	[-]	0,68							
Erhöhun	gsfaktor für Beton	Ĺ	Ψ _c	[-]				(f _{ck} /	20) 0,1			
Charakte	eristische Verbund	tragfähigkeit in	τ _{Rk,ucr} =				Ψ	c • τ _{Rk II}	cr (C20/2	5)		
	gkeit von der Beto		τ _{Rk,cr} =	Ψc * τ _{Rk,ucr,} (C20/25) Ψc * τ _{Rk,cr,} (C20/25)								
Betonau			*KK,CF				7	C KK,	cr,(C2U/2))		
	te Parameter				siehe Tabelle C2							
					l.					7		
	te Parameter							siehe Ta	belle C2	2		
Spalten	ebeiwert											
Spalten Relevant		n Beton (HD; HDB,	γ _{inst}	[-]	1,0							
Spalten Relevant Montag	tenen und feuchte			1				1	,2			
Spalten Relevant Montag für trock CD)	ergefülltes Bohrlo	ch (HD; HDB, CD)										
Spalten Relevant Montag für trock CD) für wass												

Gewind	estange				M8	M10	M12	M16	M20	M24	M27	M30	
Stahlver			_	1									
Charakte	eristische Zugtragfä	ihigkeit	N _{Rk,s}	[kN]	A _s • f _{uk} (oder siehe Tabelle C1)								
Teilsiche	erheitsbeiwert		γ _{Ms,N}	[-]			9	iehe Ta	belle C	1			
		rch Herausziehen u				3 28		2207 - 2		5 19900	n 11 2		
Charakte Löchern		ragfähigkeit im ung	erissenen Betor	n C20/25 in ha	ammerg	gebohrte	en Löch	ern (HD) und in	drucklı	uftgebo	hrten	
Temperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	τ _{Rk,ucr,100}	[N/mm²]	20	20	19	19	18	17	16	16	
Temp	wassergefülltes Bohrloch		RK,UCI,100	[14,11111]	15	15	15	14	13	13	12	12	
Charakte	eristische Verbundt	ragfähigkeit im ung	erissenen Betor	n C20/25 in ha	ammerg	gebohrte	en Löch	ern mit	Hohlbo	hrer (Hi	OB)		
٢	I: 40°C/24°C	Trockener und			17	16	16	16	15	14	14	13	
Temperatur- bereich	II: 72°C/50°C feuchter Beton				14	14	14	13	13	12	12	11	
mperatu bereich	I: 40°C/24°C	wassergefülltes	^τ Rk,ucr,100	[N/mm²]	16	16	16	15	15	14	14	13	
Ter	II: 72°C/50°C	Bohrloch			14	14	14	13	13	12	12	11	
Charakte	500	ragfähigkeit im geri:	ssenen Beton C	 20/25 in ham	mergeb	ohrten	Löcherr	HD), i	n druck	luftgebo	hrten		
Löchern	(CD) und in hamme	ergebohrten Löcher	n mit Hohlbohr	er (HDB)									
Temperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton,	7	[N] /ma ma 21	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	
Tempe	II: 72°C/50°C	wassergefülltes Bohrloch	^τ Rk,cr,100	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	
		n gerissenen und un ergebohrten Löcher			hamme	rgebohi	rten Löc	hern (H	D), in d	ruckluft	gebohr	ten	
Temperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton, sowie	Ψ ⁰ sus,100	[-]	0,80			80					
Temp	II: 72°C/50°C	wassergefülltes Bohrloch	♥ sus,100	[]	0,68								
Erhöhun	gsfaktor für Beton		Ψ _c	[-]			(f _{ck} / 20) ^{0,1}						
Charakte	eristische Verbundt	ragfähigkeit in	τ _{Rk,ucr,100} =		Ψ _c • τ _{Rk,ucr,100,(C20/25)}								
	gkeit von der Betor		τ _{Rk,cr,100} =		Ψc • τ _{Rk,cr,100,(C20/25)}								
Betonau	ısbruch												
Relevan	te Parameter						9	iehe Ta	belle C	2			
Spalten													
	te Parameter						5	iehe Ta	belle C	2			
	ebeiwert	- D-+/IID IIDD											
CD)	enen und feuchter ergefülltes Bohrloc	: 	Y _{inst}	[-]	1,0								
lniekt	ionssystem XV	VE für Beton											
IIIJEKI									i				

Stahlversagen Charakteristische Zugtragfähigkeit N _{Rk,s} [kN] A _s • f _{uk} (oder siehe Tabelle C1) Teilsicherheitsbeiwert V _{Ms,N} [-] siehe Tabelle C1 Kombiniertes Versagen durch Herausziehen und Betonausbruch Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD)	Tabelle C5:		akteristische W tung für eine N					atisch	er und	d quas	i-stati	ischer	
Charakteristische Zugtragfähigkeit N _{Rk,s} [kN] A _s · f _{uk} (oder siehe Tabelle C1) Teilsicherheitsbeiwert V _{Ms,N} [-] siehe Tabelle C1 Kombiniertes Versagen durch Herausziehen und Betonausbruch Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Trockener und feuchter Beton, sowie wassergefülltes Bohrloch Reduktionsfaktor ψ ⁰ sus im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Trockener und feuchter Beton, sowie wassergefülltes Bohrloch Reduktionsfaktor ψ ⁰ sus im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Trockener und feuchter Beton, sowie wassergefülltes Bohrloch Frechöhungsfaktor für Beton Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Betonausbruch Relevante Parameter Siehe Tabelle C2 Montagebeiwert Für trockenen und feuchten Beton(DD) Verschafter Siehe Tabelle C2 Montagebeiwert Für trockenen und feuchten Beton(DD)	Gewindestange					M8	M10	M12	M16	M20	M24	M27	M30
Teilsicherheitsbeiwert V _{Ms,N} [-] siehe Tabelle C1 Kombiniertes Versagen durch Herausziehen und Betonausbruch Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton, sowie Wassergefülltes Bohrloch Reduktionsfaktor Ψ ⁰ sus im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Reduktionsfaktor Ψ ⁰ sus im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton, sowie Wassergefülltes Bohrloch Reduktionsfaktor Ψ ⁰ sus im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton, sowie Wassergefülltes Bohrloch Light Germann deuthen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton, sowie Wassergefülltes Bohrloch Light Germann deuthen C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton, sowie Wassergefülltes Bohrloch Löchern (DD) Light Germann deuthen C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton, sowie Wassergefülltes Bohrloch Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter Beton C20/25 in diamantgebohrten Löchern (DD) Light Germann deuthen C20/24°C feuchter	Stahlversagen												
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Light	Charakteristische Z	ugtragfäl	nigkeit	N _{Rk,s}	[kN]			A _s • f _{uk}	(oder si	ehe Tab	elle C1)	
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 in diamantgebohrten Löckern (DD) 1	Teilsicherheitsbeiw	/ert		Y _{Ms,N}	[-]				siehe Ta	belle C	1		
1: 40°C/24°C trockener und feuchter Beton, sowie wassergefülltes Bohrloch 1: 72°C/50°C 1: 72°	Kombiniertes Vers	agen dur	ch Herausziehen u	1 State of the sta	ch								
1. 40°C/24°C feuchter Beton, sowie wassergefülltes Bohrloch TRK, μcr [N/mm²] 15 14 14 13 12 12 11 10 9,5 9,5 9,0	Charakteristische \	erbundtr	agfähigkeit im ung	erissenen Beton	C20/25 in di	amantg	ebohrte	en Löch	ern (DD)			
Reduktionsfaktor ψ^0_{sus} im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Trockener und feuchter Beton, sowie wassergefülltes Bohrloch Erhöhungsfaktor für Beton Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Betonausbruch Relevante Parameter Relevante Parameter Relevante Parameter Relevante Parameter Relevante Parameter Siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD) Verand D. 77 10,77 0,77 0,77 0,77 10,77	ratur- eich I: 40°C/2	4°C	feuchter Beton,		[A1/ 2]	15	14	14	13	12	12	11	11
Trockener und feuchter Beton, sowie wassergefülltes Bohrloch Erhöhungsfaktor für Beton Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Betonausbruch Relevante Parameter Relevante Parameter Relevante Parameter Relevante Parameter Siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD)	ed II: 72°C/5	0°C	wassergefülltes	^t Rk,ucr	[IN/mm ⁻]	12	12	11	10	9,5	9,5	9,0	9,0
I: 40°C/24°C feuchter Beton, sowie wassergefülltes Bohrloch	Reduktionsfaktor \	$v^0_{ m sus}$ im u	ngerissenen Beton	C20/25 in diama	antgebohrte	n Löche	rn (DD)						
Erhöhungsfaktor für Beton Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Betonausbruch Relevante Parameter Siehe Tabelle C2 Spalten Relevante Parameter Siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD)	I: 40°C/2	4°C	0					0,	77				
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Betonausbruch Relevante Parameter Siehe Tabelle C2 Spalten Relevante Parameter Siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD)	II: 72°C/5	0°C	wassergefülltes	Ψ [*] sus	0,72								
Abhängigkeit von der Betonfestigkeitsklasse Relevante Parameter Relevante Parameter Relevante Parameter Relevante Parameter Siehe Tabelle C2 Spalten Relevante Parameter Siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD)	Erhöhungsfaktor fü	ir Beton		Ψ _c	[-]	(f _{ck} / 20) ^{0,2}							
Relevante Parameter siehe Tabelle C2 Spalten Relevante Parameter siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD) View [-] 1,0				τ _{Rk,ucr} =		Ψc • τ _{Rk,ucr,(C20/25)}							
Spalten Relevante Parameter Siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD) Vinctor [c]	Betonausbruch					10							
Relevante Parameter siehe Tabelle C2 Montagebeiwert für trockenen und feuchten Beton(DD) Vication [c]	Relevante Parameter					siehe Tabelle C2							
Montagebeiwert für trockenen und feuchten Beton(DD) Vince [-] 1,0	•												
für trockenen und feuchten Beton(DD)		er							siehe Ta	belle C	2		
V: -			Sec. 20 March 2						900	026			
Itur wassergefulltes Bohrloch (DD) 1.4				γ _{inst}	[-]		- 10		1	,0			
The Wasser Berances Services (SS)	tur wassergefülltes	Bohrloch	(טט)				1,2				1,4		

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren (Gewindestange)	Anhang C 5

Stahlversagen Stahlversage	Gewindestange				M8	M10	M12	M16	M20	M24	M27	M30
Teilsicherheitsbeiwert VMs,N [-] Siehe Tabelle C1	Stahlversagen					,	A /					
Tellsicherheitsbeiwert VMS,N E-] Siehe Tabelle C1	Charakteristische Zugtragfäh	nigkeit	N _{Rk,s}	[kN]			$A_s \cdot f_{uk}$	(oder si	ehe Tab	elle C1)	
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) Li	Teilsicherheitsbeiwert			[-]			9	siehe Ta	belle C	1		
I: 40°C/24°C trockener und feuchter Beton, sowie wassergefülltes Bohrloch 11 11 10 10 9,5 9,0 8,5	Kombiniertes Versagen dur	ch Herausziehen ui		ch								
1: 40°C/24°C feuchter Beton, sowie wassergefülltes Bohrloch 11 11 10 10 9,5 9,0 8,5	Charakteristische Verbundtr	agfähigkeit im unge	erissenen Beton	C20/25 in di	amantg	ebohrte	en Löch	ern (DD))			
Reduktionsfaktor $\psi^0_{sus,100}$ im ungerissenen Beton C20/25 in diamantgebohrten Löchern (DD) $\frac{1}{2} + \frac{1}{2} +$	eich I: 40°C/24°C	feuchter Beton,	Tol	[N/mm²]	15 14 14		13	12	12	11	11	
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot 1$	ลื่อ H: 72°C/50°C	wassergefülltes	*RK,ucr,100	[147111111]	11	11 10		10	9,5	9,0	8,5	8,5
Li: 40°C/24°C feuchter Beton, sowie wassergefülltes Bohrloch Ψ0 sus,100 [-] (f _{ck} / 20) 0,70 (f _{ck} / 20) 0,70	Reduktionsfaktor $\psi^0_{sus,100}$ i	m ungerissenen Be	ton C20/25 in di	amantgeboh	rten Lö	chern (I	DD)					
Erhöhungsfaktor für Beton Ψ _c [-] (f _{ck} / 20) ^{0,2} Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Betonausbruch Relevante Parameter siehe Tabelle C2 Spalten Relevante Parameter siehe Tabelle C2		trockener und feuchter Beton,			0,73							
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse Relevante Parameter Relevante Parameter Relevante Parameter Siehe Tabelle C2 Spalten Relevante Parameter Siehe Tabelle C2	มี: 72°C/50°C	wassergefülltes	Ψ sus,100	[*]								
Abhängigkeit von der Betonfestigkeitsklasse **Rk,ucr,100*** *Betonausbruch Relevante Parameter **Siehe Tabelle C2 **Spalten Relevante Parameter **siehe Tabelle C2	Erhöhungsfaktor für Beton		Ψ_{c}	[-]	(f _{ck} / 20) ^{0,2}							
Relevante Parameter Siehe Tabelle C2 Spalten Relevante Parameter Siehe Tabelle C2			τ _{Rk,ucr,100} =									
Spaltensiehe Tabelle C2Relevante Parametersiehe Tabelle C2	Betonausbruch			19								
Relevante Parameter siehe Tabelle C2	Relevante Parameter							siehe Ta	belle C	2		
Montagebeiwert	- W 110				belle C2	2						
	Park Control of the C	I	I	1.0								
V:	für wassergefülltes Bohrloch (DD)		γ _{inst}	[-]	1,0							
Tul Wassergerances bonnoch (bb)	rai wassergerantes bonnoci	1 (00)				-,-				±,¬		

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 100 Jahren (Gewindestange)	Anhang C 6

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30		
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ _{Rk,s}	[kN]			0,6 • A	s • f _{uk} (o	der siehe	: Tabelle	C1)			
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ _{Rk,s}	[kN]			0,5 • A	s•f _{uk} (o	der siehe	: Tabelle	C1)			
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	siehe Tabelle C1									
Ductility factor	k ₇	[-]					1,0					
Stahlversagen mit Hebelarm												
Charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]			1,2 • W	el • f _{uk} (c	der sieh	e Tabelle	C1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874		
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe	Tabelle (C1				
Betonausbruch auf der lastabgewandten S	eite											
Faktor	k ₈	[-]	2,0									
Montagebeiwert	γ _{inst}	[-]					1,0					
Betonkantenbruch												
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 - d _{nom}) min(h _{ef} ; 300							300mm		
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Montagebeiwert	γ _{inst}	[-]					1,0		**			
Injektionssystem XWE für Beton Leistungen									Anhang	C 7		

Tabelle C8:	Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer
	Belastung für eine Nutzungsdauer von 50 Jahren

nnengewindeankerstange			ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M2	
Stahlversagen ¹⁾									
Charakteristische Zugtragfähigkeit, Stahl, 5	.8 N _{Rk,s}	[kN]	10	17	29	42	76	123	
Festigkeitsklasse 8	.8 N _{Rk,s}	[kN]	16	27	46	67	121	196	
eilsicherheitsbeiwert 5.8 und 8.8	γ _{Ms,N}	[-]			1	,5			
Charakteristische Zugtragfähigkeit,	No	[kN]	14	26	41	59	110	124	
Nichtrostender Stahl A4 und HCR, Klasse 70 ²⁾	N _{Rk,s}	[KIV]	14	20	41	39	110	124	
eilsicherheitsbeiwert	$\gamma_{Ms,N}$	[-]			1,87			2,86	
Kombiniertes Versagen durch Herausziehen ur	nd Betonaus	bruch							
Charakteristische Verbundtragfähigkeit im unge .öchern (CD)	erissenen Be	ton C20/25	in hammer	gebohrten	Löchern (F	ID) und in a	druckluftge	bohrten	
់ 🖯 I: 40°C/24°C trockener und feuchter			20	19	19	18	17	16	
Trockener und feuchter Beton, sowie wassergefülltes Bohrlog	τ _{Rk,ucr}	[N/mm²]	15	15	14	13	13	12	
harakteristische Verbundtragfähigkeit im unge	erissenen Be	ton C20/25	in hammer	gebohrten	Löchern m	it Hohlboh	rer (HDB)		
I: 40°C/24°C trockener und feuchter			16	16	16	15	14	13	
II: 72°C/50°C Beton I: 40°C/24°C wassergefülltes Bohrlog	$$ $\tau_{Rk,ucr}$	[N/mm²]	14	14	13	13	12	11	
		[,]	16	16	15	15	14	13	
II: /2°C/50°C			14	14	13	13	12	11	
harakteristische Verbundtragfähigkeit im geris öchern (CD) und in hammergebohrten Löcherr			hammerge	bohrten Lö	chern (HD)	, in drucklu	ıftgebohrte	en	
남 성°C/24°C 등 한 II: 40°C/24°C Beton, sowie wassergefülltes Bohrlog	1127022	[B1/2]	7,0	8,5	8,5	8,5	8,5	8,5	
trockener und feuchter E	τ _{Rk,cr}	[N/mm²]	6,0	7,0	7,0	7,0	7,0	7,0	
deduktionsfaktor $\psi^0_{ ext{sus}}$ im gerissenen und unge		ton C20/25	in hammer	gebohrten	Löchern (H	ID), in druc	kluftgeboh	rten	
öchern (CD) und in hammergebohrten Löcherr		hrer (HDB)							
날 등 I: 40°C/24°C trockener und feuchter		[-]	0,80						
남 40°C/24°C E 발 II: 72°C/50°C Beton, sowie wassergefülltes Bohrlog	ψ^0_{sus}		0,68						
rhöhungsfaktor für Beton	Ψ _c	[-]				20) ^{0,1}			
harakteristische Verbundtragfähigkeit in	1,0	τ _{Rk,ucr} =							
bhängigkeit von der Betonfestigkeitsklasse		τ _{Rk,cr} =	$\Psi_{c} \cdot \tau_{Rk,ucr,(C20/25)}$ $\Psi_{c} \cdot \tau_{Rk,cr,(C20/25)}$						
Betonausbruch	**	rityer			· C TRICK	31,(020,23)			
Relevante Parameter					siehe Ta	belle C2			
palten									
Relevante Parameter					siehe Ta	belle C2			
/lontagebeiwert									
ür trockenen und feuchten Beton HD; HDB, CD)	alore to				1	,0			
ür wassergefülltes Bohrloch HD; HDB, CD)	γ _{inst}	[-]	1,2						
1)Befestigungsschrauben oder Gewindestangen Innengewindeankerstangen entsprechen. Die gelten für die Innengewindeankerstange und d	charakteristi	schen Tragfä	ihigkeiten fi						

²⁾Für ABZ-M20 Festigkeitsklasse 50 gültig

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren (Innengewindeankerstange)	Anhang C 8

900	Charakteristische Wert Belastung für eine Nutz					tischer u	nd quas	i-statisch	ier		
Innengewindeankersta	ange			ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20		
Stahlversagen ¹⁾											
Charakteristische Zugtr	ragfähigkeit, Stahl, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Festigkeitsklasse	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Teilsicherheitsbeiwert	5.8 und 8.8	γ _{Ms,N}	[-]				1,5	70.000.000	0.000		
Charakteristische Zugtr Nichtrostender Stahl A		N _{Rk,s}	[kN]	14							
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			1,87			2,86		
Kombiniertes Versagei	n durch Herausziehen und B					X-					
Charakteristische Verb Löchern (CD)	undtragfähigkeit im ungeriss	enen Beton	C20/25 in h	nammerge	ebohrter	Löchern (HD) und in	druckluftge	ebohrten		
င္ပံ့ 5္ I: 40°C/24°C	trockener und feuchter	222		20	19	19	18	17	16		
는 성 II: 40°C/24°C 로 한 III: 72°C/50°C	Beton, sowie wassergefülltes Bohrloch	^τ Rk,ucr,100	[N/mm²]	15	15	14	13	13	12		
	undtragfähigkeit im ungeriss	enen Beton	C20/25 in h	nammerge	ebohrter	Löchern n	nit Hohlbol	nrer (HDB)			
I: 40°C/24°C	trockener und feuchter		,	16	16	16	15	14	13		
H: 72°C/50°C H: 40°C/24°C H: 4	Beton	_	Fa. / 21	14	14	13	13	12	11		
ੁੱਛੇ ਹੋ : 40°C/24°C		^τ Rk,ucr,100	[N/mm²]	16	16	15	15	14	13		
II: 72°C/50°C	wassergefülltes Bohrloch			14	14	13	13	12	11		
	undtragfähigkeit im gerissen mmergebohrten Löchern mi			nmergebo	ohrten Lö	ochern (HD), in druckl	uftgebohrt	en		
占 년 I: 40°C/24°C	trockener und feuchter			6,5	7,5	7,5	7,5	7,5	7,5		
는 등 I: 40°C/24°C 를 할 II: 72°C/50°C	Beton, sowie wassergefülltes Bohrloch	^τ Rk,cr,100	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5		
Löchern (CD) und in ha	s,100 im gerissenen und unge mmergebohrten Löchern mi trockener und feuchter			in hamm	ergeboh			druckluftge	bohrten		
는 등 II: 40°C/24°C 	Beton, sowie wassergefülltes Bohrloch	Ψ ⁰ sus,100	[-]				0,80				
Erhöhungsfaktor für Be		Ψ _c	[-]			(f _{ck}	/ 20) ^{0,1}				
_	2.447=2.00							(25)			
Charakteristische Verb Abhängigkeit von der B			Rk,ucr,100 =	Ψc • τ _{Rk,ucr,100,(C20/25)}							
Betonausbruch			Rk,cr,100 =	Ψ _c • τ _{Rk,cr,100,(C20/25)}							
Relevante Parameter				Ι		siehe	Tabelle C2				
Spalten						Sierie	Tabelle CZ				
Relevante Parameter						siehe	Tabelle C2				
Montagebeiwert						0.0					
für trockenen und feuc (HD; HDB, CD)	hten Beton		.,				1,0				
für wassergefülltes Boh (HD; HDB, CD)	nrloch	Y _{inst}	[-]				1,2				
Innengewindeankers	en oder Gewindestangen (inkl stangen entsprechen. Die chal gewindeankerstange und die z eitsklasse 50 gültig	akteristische	n Tragfähig	keiten für							
Injektionssystem	XWE für Beton										
	Verte der Zugtragfähigke Nutzungsdauer von 100					ner	A	Anhang	C 9		

1,4

Tabelle C10: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren

2 2								0-20000			
Innengewindea					ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20	
Stahlversagen 1	1)		· ·			1					
Charakteristiscl	he Zugtragfähigke	eit, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength	class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Teilsicherheitsb	peiwert, strength	class 5.8 and 8.8	γ _{Ms,N}	[-]			1	.,5			
	he Zugtragfähigke rength class 70 ²⁾	eit, Stainless Stee	N _{Rk,s}	[kN]	14 26 41 59 110					124	
Teilsicherheitsk	peiwert		γ _{Ms,N}	[-]			1,87			2,86	
Kombiniertes \	/ersagen durch H	erausziehen und	Betonausbr	uch							
Charakteristiscl	he Verbundtragfä	higkeit im ungeri	ssenen Beto	n C20/25 in	diamantg	ebohrten l	Löchern (D	D)			
-	I: 40°C/24°C	trockener und feuchter			14	14	13	12	12	11	
Temperatur- bereich	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	^τ Rk,ucr	[N/mm²]	12	11	10	9,5	9,5	9,0	
Reduktionsfakto	or ${\psi^0}_{ extsf{sus}}$ im unger	issenen Beton C2	0/25 in diam	nantgebohr	ten Löcher	n (DD)					
T	I: 40°C/24°C	trockener und feuchter			0,77						
Temperatur- bereich	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	Ψ ⁰ sus	[-]	0,72						
Erhöhungsfakto	or für Beton		Ψ_{c}	[-]			$(f_{ck}/$	20) ^{0,2}			
	ne Verbundtragfäl on der Betonfestig			τ _{Rk,ucr} =			ψ _c • τ _{Rk,ι}	ucr,(C20/25)			
Betonausbruch)		•								
Relevante Para	meter						siehe Ta	abelle C2			
Spalten failure											
Relevante Para	meter						siehe Ta	abelle C2			
Montagebeiwe	ert										
für trockenen u	ınd feuchten Betc	on(DD)	γ _{inst}	[-]	1,0						
für wassergefü	lltes Bohrloch (DD	0)	rinst	[-J	1	1,2 1,4					

¹⁾Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

1,2

für wassergefülltes Bohrloch (DD)

Injektionssystem XWE für Beton	
Leistungen	Anhang C 10
Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren (Innengewindeankerstange)	

²⁾Für ABZ-M20 Festigkeitsklasse 50 gültig

Tabelle C11: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 100 Jahren

Innengewindea					ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20	
Stahlversagen ⁵	1)										
Charakteristisc	he Zugtragfähigke	it, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength	class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Teilsicherheitsk	peiwert, strength	class 5.8 and 8.8	γ _{Ms,N}	[-]			1	.,5			
	he Zugtragfähigke rength class 70 ²⁾	it, Stainless Steel	N _{Rk,s}	[kN]	14 26 41 59 110					124	
Teilsicherheitsk	peiwert		γ _{Ms,N}	[-]			1,87			2,86	
Kombiniertes \	/ersagen durch H	erausziehen und	Betonausbru	ıch							
Charakteristisc	he Verbundtragfä	higkeit im ungeri	ssenen Beton	C20/25 in	diamantg	ebohrten l	Löchern (D	D)			
Tomporatur	I: 40°C/24°C	trockener und feuchter			14	14	13	12	12	11	
Temperatur- bereich	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	^τ Rk,ucr,100	[N/mm²]	11	10	10	9,5	9,0	8,5	
Reduktionsfakt	or ${\psi^0}_{sus,100}$ im un	gerissenen Betor	n C20/25 in di	iamantgeb	ohrten Löd	chern (DD)					
T	I: 40°C/24°C	trockener und feuchter			0,73						
Temperatur- bereich	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	Ψ ⁰ sus,100	[-]	0,70						
Erhöhungsfakto	or für Beton		Ψc	[-]			(f_{ck})	20) ^{0,2}			
	ne Verbundtragfäl on der Betonfestig		τ _{Rk}	k,ucr,100 =		.0	Ψc • τ _{Rk,uci}	r,100,(C20/2	5)		
Betonausbruch	1										
Relevante Para	meter						siehe Ta	abelle C2			
Spalten failure											
Relevante Para	meter						siehe Ta	abelle C2			
Montagebeiwe	ert										
für trockenen u	ınd feuchten Beto	on(DD)	γ _{inst}	[-]	1,0						
für wassergefü	lltes Bohrloch (DD)	inst	[]	1,	,2		1,	,4		

¹⁾Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Injektionssystem XWE für Beton	
Leistungen	Anhang C 11
Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer	
Belastung für eine Nutzungsdauer von 100 Jahren (Innengewindeankerstange)	

²⁾ Für ABZ-M20 Festigkeitsklasse 50 gültig

Tabelle C12: Tabelle C12: Charakteristische Werte der Quertragfähigkeit unter statischer und quasistatischer Belastung für eine Nutzungsdauer von 50 und 100 Jahren

Innengewindeankerstange				ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20		
Stahlversagen ohne Hebelarm 1)											
Charakteristische Quertragfähigkeit,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61		
Stahl, Festigkeitsklasse	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98		
Teilsicherheitsbeiwert, 5.8 und 8.8		γ _{Ms,V}	[-]				1,25				
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und HCR, Festigkeitsklasse 70 ²⁾		V ⁰ Rk,s	[kN]	7	13	20	30	55	40		
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]	1,56 2,38					2,38		
Duktilitätsfaktor k ₇ [-]							1,0				
Stahlversagen mit Hebelarm 1)											
Charakteristisches Biegemoment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325		
Stahl, Festigkeitsklasse	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519		
Teilsicherheitsbeiwert, 5.8 und 8.8		γ _{Ms,V}	[-]				1,25				
Charakteristisches Biegemoment, nicht-rostender Stahl A4 und HCR, Festigkeitsklasse 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456		
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]			2,38					
Betonausbruch auf der lastabgewan	dten Seit	e									
Faktor		k ₈	[-]				2,0				
Montagebeiwert		γ _{inst}	[-]	[-] 1,0							
Betonkantenbruch											
Effektive Dübellänge		I _f	[mm]		min	(h _{ef} ; 12 • c	I _{nom})		min(h _{ef} ; 300mm)		
Außendurchmesser des Dübels		d _{nom}	[mm]	10	12	16	20	24	30		
Montagebeiwert		γ _{inst}	[-]				1,0				

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 und 100 Jahren (Innengewindeankerstange)	Anhang C 12

²⁾Für ABZ-M20 Festigkeitsklasse 50 gültig

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													1,000
Charakteristische Zug	tragfähigkeit	N _{Rk,s}	[kN]					A _s •	f _{uk} 1)				
Stahlspannungsquers	chnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwer		γ _{Ms,N}	[-]		12			1,4					
	en durch Herausziehen u		0.000					-,-					
	bundtragfähigkeit im ung			/25 in l	namme	ergebol	nrten L	öchern	(HD) u	nd in d	rucklut	ftgebol	irten
II: 72°C/50°C	trockener und feuchter Beton, sowie wassergefülltes	τ _{Rk,ucr}	[N/mm²]	16	16	16	16	16	16	15	15	15	15
	Bohrloch			12	12	12	12	12	12	12	12	11	11
	bundtragfähigkeit im ung	erissenen T	Beton C20										
i: 40°C/24°C	trockener und feuchter			14	14	13	13	13	13	13	13	13	13
II: 72°C/50°C	Beton	τ _{Rk,ucr}	[N/mm²]	12	12	12 13	11	11	11	11	11	11	11
1: 40°C/24°C 1: 72°C/50°C 1: 40°C/24°C 1: 72°C/50°C	wassergefülltes Bohrloch			11	11	11	11	11	11	11	11	11	11
72 c/30 c	bundtragfähigkeit im geri	ssenen Re	ton C20/2										11
	nammergebohrten Löcher				minerg	CDOTITO	en Loci		<i>D</i> ₁ , iii c	ITUCKIU	rtgeboi	in ten	
I: 40°C/24°C	trockener und feuchter Beton, sowie	τ _{Rk,cr}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
ਜੂ ਗ: 72°C/50°C	wassergefülltes Bohrloch	KK,CI	[,]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Löchern (CD) und in h	ius im gerissenen und ung nammergebohrten Löcher trockener und feuchter				namme	ergebor	irten L			n druck	luftgel	oohrter) ——
II: 40°C/24°C	Beton, sowie wassergefülltes Bohrloch	ψ^0_{sus}	[-]					0,0					
<u> </u>	ESSOCIAL ENGLISHED	Ψ _c	[-]					(f _{ck} / 2	20) ^{0,1}				
Charakteristische Ver	hundtragfähigkeit in		τ _{Rk,ucr} =										
	Betonfestigkeitsklasse		τ _{Rk,cr} =										
Betonausbruch			IN, U				10.1	L NK,C	.,(CZU/2	-3/			
Relevante Parameter							S	iehe Ta	belle C	2			
Spalten													
Relevante Parameter							S	iehe Ta	belle C	2			
Montagebeiwert für trockenen und feu	uchten Beton							1.	.0				
(HD; HDB, CD) für wassergefülltes Be	ohrloch	γ _{inst}	[-]	1,0									
(HD; HDB, CD)	tionen des Betonstahls zu e	ntnohmor						1,	,2				
	onalen Regelungen fehlen	miner	•										
Injektionssyste	m XWE für Beton												
	· Werte der Zugtragfäh e Nutzungsdauer von !				nd qua	asi-sta	tische	r		An	hanç	g C 1	3

Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Stahlversagen														
Charakteristische Zug	tragfähigkeit	N _{Rk,s}	[kN]					A _s • ·	f _{uk} 1)					
Stahlspannungsquers	chnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804	
Teilsicherheitsbeiwer	t	γ _{Ms,N}	[-]		1,42)									
Kombiniertes Versage	en durch Herausziehen			-7.										
	bundtragfähigkeit im ur			/25 in h	namme	rgeboh	rten Lö	öchern	(HD) ui	nd in d	ruckluf	tgeboh	rten	
ere ere	trockener und feuchter Beton, sowie wassergefülltes	τ _{Rk,ucr,100}	[N/mm²]	16	16	16	16	16	16	15	15	15	15	
គ្គ ੀ II: 72°C/50°C	Bohrloch			12	12	12	12	12	12	12	12	11	11	
Charakteristische Ver	bundtragfähigkeit im ur	ngerissenen	Beton C20	/25 in ł	namme					hlbohr	er (HDI	В)		
를 <u>I: 40°C/24°C</u>	trockener und			14	14	13	13	13	13	13	13	13	13	
: 40°C/24°C : 72°C/50°C : 40°C/24°C : 40°C/24°C : 72°C/50°C : 72°C/50°C	feuchter Beton	τ _{Rk,ucr,100}	[N/mm²]	12	12	12	11	11	11	11	11	11	11	
II: 72°C/50°C	wassergefülltes Bohrloch	,,23,,203		13	13 11	13 11	13 11	13 11	13 11	13 11	13 11	13 11	13 11	
Charakteristische Verbundtragfähigkeit im g		ricconon Rot	ton C20/25										11	
	ammergebohrten Löche				iiiieige	יוווטמי	en Loci	iem (m	וו u, iii u	TUCKIU	rgeboi	iiteii		
اء ڭـ : 40°C/24°C	trockener und feuchter Beton, sowie			6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	
en de la company	wassergefülltes Bohrloch	^τ Rk,cr,100	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	
	_{us,100} im gerissenen und ammergebohrten Löchd				in ham	merge	bohrte	n Löche	ern (HC)), in dı	ruckluft	tgeboh	rten	
I: 40°C/24°C	trockener und feuchter Beton, sowie	Ψ ⁰ sus,100	[-]					0,8	30					
हूँ ।।: 72°C/50°C	wassergefülltes Bohrloch	, sus,100						0,6		,				
Erhöhungsfaktor für E	Beton	Ψ_{c}	[-]	(f _{ck} / 20) ^{0,1}										
Charakteristische Ver	bundtragfähigkeit in	τ _{Rk}	ucr,100 =	Ψ _c • τ _{Rk,ucr,100,(C20/25)}										
Abhängigkeit von der	Betonfestigkeitsklasse	τ_{R}	k,cr,100 =				Ψ _c •	τ _{Rk,cr,1}	L00,(C20)/25)				
Betonausbruch														
Relevante Parameter							si	ehe Ta	belle C	2				
Spalten														
Relevante Parameter							si	ehe Ta	belle C	2				
Montagebeiwert	Johan Rotan													
für trockenen und feu (HD; HDB, CD)		γ _{inst}	[-]					1,	0					
ür wassergefülltes Bohrloch		Y _{inst} [-] 1,2						1,	2					
(HD; HDB, CD)														
(HD; HDB, CD) 1)f _{uk} ist den Spezifikat 2)Sofern andere natio	ionen des Betonstahls zu nalen Regelungen fehler m XWE für Beton													

Tabelle C15:		arakteristische lastung für ein						statis	scher	und o	ıuasi-	statis	cher	
Betonstahl					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen									***					
Charakteristische	Zugtra	gfähigkeit	N _{Rk,s}	[kN]					A _s •	$f_{uk}^{1)}$				
Stahlspannungsq	uerschr	itt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbei	iwert		γ _{Ms,N}	[-]					1,	4 ²⁾				
Kombiniertes Ver	rsagen	durch Herausziehe	n und Beton	ausbruch										
Charakteristische	Verbur	ndtragfähigkeit im	ungerissenen	Beton C20	/25 in	diamar	tgebol	rten L	öchern	(DD)				
ratur- eich I: 40°C/	′24°C	trockener und feuchter Beton,		ra./ 21	14	13	13	13	12	12	11	11	11	11
Temperatur- bereich :I: 40°C/	′50°C	sowie wassergefülltes Bohrloch	^T Rk,ucr	[N/mm²]	11	11	10	10	10	9,5	9,5	9,5	9,0	9,0
Reduktionsfaktor	ψ ⁰ sus i	m ungerissenen Be	eton C20/25 i	n diamantg	ebohrt	en Löcl	hern (C	D)						
		trockener und feuchter Beton,			0,77									
Temperatur- bereich II: 40°C/2	50°C	sowie wassergefülltes Bohrloch	Ψ ⁰ sus	[-]	0,72									
Erhöhungsfaktor	für Beto	on	Ψ _c	[-]					(f _{ck} /	20) ^{0,2}				
Charakteristische Abhängigkeit von Betonfestigkeitsk	der	ndtragfähigkeit in		τ _{Rk,ucr} =				Ψ	c • ^τ Rk,ι	ıcr,(C20/	(25)			
Betonausbruch			•											
Relevante Paramo	eter							S	iehe Ta	abelle C	2			
Spalten														
Relevante Parame	eter							S	iehe Ta	abelle C	2			
Montagebeiwert														
	für trockenen und feuchten Beton(DD)		γ _{inst}	[-]					1	,0				
für wassergefüllte	für wassergefülltes Bohrloch (DD)		rinst			1	,2				1	,4		

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem XWE für Beton	
Leistungen	Anhang C 15
Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer	
Belastung für eine Nutzungsdauer von 50 Jahren (Betonstahl)	

²⁾ Sofern andere nationalen Regelungen fehlen

	arakteristische elastung für ein		_	-	-		statis	scher	und o	quasi-	statis	scher	
Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen						•		•		•	•		
Charakteristische Zugtra	gfähigkeit	N _{Rk,s}	[kN]					A_s •	$f_{uk}^{1)}$				
Stahlspannungsquerschr	nitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert		Y _{Ms,N}	[-]	4				1,	4 ²⁾				
Kombiniertes Versagen	durch Herausziehe		ausbruch	-									
Charakteristische Verbur	ndtragfähigkeit im	ungerissenen	Beton C20	/25 in	diamar	itgebol	nrten L	öchern	(DD)				
II: 72°C/50°C	trockener und feuchter Beton, sowie	7	[N]/mm21	14	13	13	13	12	12	11	11	11	11
II: 72°C/50°C	wassergefülltes Bohrloch	τ _{Rk,ucr,100} [N/mm²]	11	10	10	10	9,5	9,0	9,0	9,0	8,5	8,5	
Reduktions faktor $\psi^0_{sus,1}$	₁₀₀ im ungerissene	n Beton C20/	25 in diama	ntgeb	ohrten	Löcher	n (DD)						
II: 72°C/50°C	trockener und feuchter Beton, sowie	Ψ ⁰ sus,100	[-]					0,73					
ਜ਼ੁੰਦ ਗ: 72°C/50°C	wassergefülltes Bohrloch	→ sus,100	L	0,70									
Erhöhungsfaktor für Bet	on	Ψ_{c}	[-]	(f _{ck} / 20) ^{0,2}									
Charakteristische Verbur Abhängigkeit von der Betonfestigkeitsklasse	ndtragfähigkeit in	τ _R	k,ucr,100 =	Ψc • [†] Rk,ucr,100,(C20/25)									
Betonausbruch		,											
Relevante Parameter		· · · · · · · · · · · · · · · · · · ·					S	iehe Ta	belle (2			
Spalten													
Relevante Parameter							S	iehe Ta	belle (22			
Montagebeiwert													
für trockenen und feuch	ten Beton (DD)	V	[-]					1	,0				
für wassergefülltes Bohr	γ _{inst}	[-]		1	,2				1	,4			
1)f _{uk} ist den Spezifikation	nen des Betonstahls	zu entnehmei	n										

Injektionssystem XWE für Beton	
Leistungen	Anhang C 16
Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 100 Jahren (Betonstahl)	

²⁾Sofern andere nationalen Regelungen fehlen

Tabelle C17: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 100 Jahren												
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm										•		
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s}	[kN]					0,5	5 • A _s •	f _{uk} 1)			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	Y _{Ms,V}	[-]						1,5 ²⁾				
Duktilitätsfaktor	k ₇	[-]						1,0				
Stahlversagen mit Hebelarm												
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]					1,2	· W _{el} ·	· f _{uk} 1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Teilsicherheitsbeiwert	Y _{Ms,V}	[-]						1,5 ²)				
Betonausbruch auf der lastabgewandte	n Seite											
Faktor	k ₈	[-]						2,0				
Montagebeiwert	γ _{inst}	[-]						1,0				
Betonkantenbruch	'											
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)					mm)				
Außendurchmesser des Dübels	d _{nom}	[mm]	8 10 12 14 16 20 24 25 28 3					32				
Montagebeiwert	γ _{inst}	[-]	1,0									

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen 2) Sofern andere nationalen Regelungen fehlen

Injektionssystem XWE für Beton	
Leistungen	Anhang C 17
Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer	
Belastung für eine Nutzungsdauer von 50 und 100 Jahren (Betonstahl)	

Tabelle C18:	Verschiebung unter	[·] Zugbeanspruchung ¹⁾
--------------	--------------------	---

in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton unter	statischer und	quasi-statischer Bel	astung fü	ir eine Nu	ıtzungsda	uer von	50 und 10	00 Jahren	l	
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041
Temperaturbereich II: 72°C/50°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070
Gerissener Beton unter sta	atischer und qua	asi-statischer Belas	tung für e	ine Nutz	ungsdaue	r von 50	und 100	Jahren		
Temperaturbereich I:	$\delta_{N0} ext{-}Faktor$	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,100	0,115	0,122	0,128	0,135	0,142	0,155	0,171
	$\delta_{N0} ext{-}Faktor$	[mm/(N/mm²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,134	0,154	0,163	0,172	0,181	0,189	0,207	0,229

¹⁾Berechnung der Verschiebung

 $\delta_{\text{NO}} = \delta_{\text{NO}}\text{-Faktor} \cdot \tau;$

 $\tau :$ einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C19: Verschiebung unter Zugbeanspruchung¹⁾ in diamantgebohrten Löchern (DD)

Gewindestange	ewindestange			M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton unter	Ungerissener Beton unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren									
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,018	0,019	0,019	0,020	0,022	0,023	0,024	0,025
Temperaturbereich II: 72°C/50°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,052	0,053	0,055	0,058	0,062	0,065	0,068	0,070
Ungerissener Beton unter s	tatischer und q	uasi-statischer Bela	stung fü	r eine Nu	tzungsda	uer von 1	.00 Jahrei	n		
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,011	0,012	0,012	0,013	0,014	0,014	0,015	0,015
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,020	0,021	0,021	0,023	0,024	0,025	0,026	0,027
	δ_{N0} -Faktor	[mm/(N/mm²)]	0,013	0,014	0,014	0,015	0,016	0,016	0,018	0,018
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,038	0,039	0,040	0,043	0,045	0,047	0,049	0,051

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C20: Verschiebung unter Querbeanspruchung¹⁾ für alle Bohrmethoden

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30
Gerissener und ungeri	ssener Beton unter st	atischer und quas	i-statisch	er Belast	ung für e	ine Nutzı	ıngsdaue	r von 50	und 100	Jahren
Alle	δ_{V0} -Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}$ -Faktor · V;

Injektionssystem XWE für Beton

Leistungen

Displacements under static and quasi-static action for a working life of 50 and 100 years (threaded rod)

Anhang C 18

Verschiebung unter Zugbeanspruchung¹⁾ Tabelle C21: in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Innengewindeankerstange				ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20
Ungerissener Beton unter s	tatischer und qua	si-statischer Belas	tung für ein	e Nutzungs	dauer von 5	0 und 100 J	ahren	
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,029	0,030	0,033	0,035	0,038	0,041
Temperaturbereich II:	δ_{NO} -Faktor	[mm/(N/mm²)]	0,039	0,040	0,044	0,047	0,051	0,055
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,049	0,051	0,055	0,059	0,064	0,070
Gerissener Beton unter stat	ischer und quasi-	statischer Belastu	ng für eine	Nutzungsda	uer von 50 ເ	ınd 100 Jahı	ren	
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,071	0,072	0,074	0,076	0,079	0,082
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,171
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,095	0,096	0,099	0,102	0,106	0,110
Control of the contro	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,229

¹⁾Berechnung der Verschiebung

 $\delta_{NO} = \delta_{NO}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Verschiebung unter Querbeanspruchung¹⁾ Tabelle C22: für alle Bohrmethoden

Innengewindeankerstange			ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20	
Ungerissener Beton unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren									
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,012	0,012	0,013	0,014	0,014	0,015	
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,019	0,019	0,020	0,022	0,023	0,025	
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,014	0,014	0,015	0,016	0,016	0,018	
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm ²)]	0,053	0,055	0,058	0,062	0,065	0,070	
Ungerissener Beton unter s	tatischer und qua	si-statischer Belas	stung für eir	ne Nutzungs	dauer von 1	00 Jahren			
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm ²)]	0,012	0,012	0,013	0,014	0,014	0,015	
40°C/24°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,021	0,021	0,023	0,024	0,025	0,027	
Temperaturbereich II:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,014	0,014	0,015	0,016	0,016	0,018	
72°C/50°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,039	0,040	0,043	0,045	0,047	0,051	

¹⁾Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$; τ: einwirkende Verbundspannung unter Zugbelastung

Tabelle C23:

Verschiebung unter Querbeanspruchung¹⁾ für alle Bohrmethoden

Innengewindeanker	stange		ABZ-M6	ABZ-M8	ABZ-M10	ABZ-M12	ABZ-M16	ABZ-M20
Gerissener und unge	erissener Beton unte	er statischer und	d quasi-statis	cher Belastur	ng für eine Nu	utzungsdauer	von 50 und	100 Jahren
Alle	δ _{V0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}$ -Faktor · V;

Injektionssystem XWE für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 und 100 Jahren (Innengewindeankerstange)

Anhang C 19

Tabelle C24:	Verschiebung unter Zugbeanspruchung ¹⁾
	in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in
	hammergebohrten Löchern mit Hohlbohrer (HDB)

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener Beton unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 und 100 Jahren									Jahren			
Temperaturbereich	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
Temperaturbereich	δ_{NO} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Gerissener Beton un	ter statischer	und quasi-statisch	er Belas	tung für	eine Nu	ıtzungsc	lauer vo	n 50 und	l 100 Jah	iren		
Temperaturbereich	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperaturbereich	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260

¹⁾Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C25: Verschiebung unter Querbeanspruchung¹⁾ für alle Bohrmethoden

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Ungerissener Beton unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 Jahren												
Temperaturbereich	δ_{N0} -factor	[mm/(N/mm²)]	0,008	0,009	0,009	0,01	0,011	0,012	0,013	0,013	0,014	0,015
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,018	0,018	0,019	0,020	0,021	0,024	0,027	0,027	0,028	0,031
Temperaturbereich	δ_{N0} -factor	[mm/(N/mm²)]	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,048	0,051	0,054	0,058	0,061	0,068	0,076	0,076	0,081	0,088
Ungerissener Beton	unter statisch	er und quasi-stati	scher Be	lastung	für eine	Nutzung	sdauer	von 100	Jahren			
Temperaturbereich	δ_{NO} -factor	[mm/(N/mm²)]	0,008	0,009	0,009	0,010	0,011	0,012	0,013	0,013	0,014	0,015
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,018	0,020	0,021	0,022	0,024	0,026	0,029	0,029	0,031	0,034
Temperaturbereich	δ_{N0} -factor	[mm/(N/mm²)]	0,009	0,011	0,011	0,012	0,013	0,014	0,015	0,015	0,016	0,018
II: 72°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,035	0,037	0,040	0,042	0,045	0,049	0,055	0,055	0,059	0,064

¹⁾Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}}\text{-}\mathsf{Faktor} \ \cdot \ \tau;$

Tabelle C26: Verschiebung unter Querbeanspruchung¹⁾ für alle Bohrmethoden

Betonstahl	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Gerissener und ungeri	ssener Beton u	nter statisc	her und	quasi-sta	atischer	Belastun	g für ein	e Nutzun	gsdauer	von 50 ເ	ınd 100 J	lahren
Alle	δ_{V0} - Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
Temperaturbereiche	$\delta_{V\infty}$ - Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}$ -Faktor · V;

Injektionssystem XWE für Beton

Leistungen

Verschiebungen unter statischer und quasi-statischer Belastung für eine Nutzungsdauer von 50 und 100 Jahren (Betonstahl)

Anhang C 20

Tabel		harakteristische W Leistungskategorie							inwirk	ung		
Gewind	estange				M8	M10	M12	M16	M20	M24	M27	M30
Stahlver	rsagen											
Charakte	eristische Zugtr	agfähigkeit	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Teilsiche	erheitsbeiwert		γ _{Ms,N}	[-]				siehe Ta	belle C	1		
Kombini	iertes Versageı	n durch Herausziehen ur	nd Betonausbru	ch								
Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)												
mperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton,	τ _{Rk,eq,C1}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5
Temperatur- bereich	II: 72°C/50°C	sowie wassergefülltes Bohrloch	τ _{Rk,eq,C1}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0
Erhöhun	ngsfaktor für Be	eton	Ψ _c	[-]				1	,0			
		undtragfähigkeit in Jetonfestigkeitsklasse		$\tau_{Rk,eq,C1} =$			Ψ _c	• τ _{Rk,eq}	,C1,(C20,	/25)		
Montagebeiwert												
für trock CD)	kenen und feuc	hten Beton (HD; HDB,	Y _{inst}	[-]				1	,0			
für wass	ergefülltes Boh	nrloch (HD; HDB, CD)			1,2							

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung	Anhang C 21
(Leistungskategorie C1) für eine Nutzungsdauer von 50 Jahren (Gewindestange)	

Tabelle C28:	Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung
	(Leistungskategorie C1) für eine Nutzungsdauer von 100 Jahren

	3.3		150									
Gewind	lestange				M8	M10	M12	M16	M20	M24	M27	M30
Stahlve	rsagen		,									
Charakt	eristische Zugtragfähig	keit	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Teilsich	erheitsbeiwert		γ _{Ms,N}	[-]			:	siehe Ta	belle C	1		
Kombin	iertes Versagen durch	Herausziehen ur	d Betonausbru	h								
Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)												
mperatur- bereich	I: 40°C/24°C	trockener und feuchter Beton,	τ _{Rk,eq,C1}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5
Temperatur- bereich	II: 72°C/50°C	sowie wassergefülltes Bohrloch	τ _{Rk,eq,C1}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5
Erhöhui	ngsfaktor für Beton		Ψ _c	[-]				1	,0			
	eristische Verbundtrag			$\tau_{Rk,eq,C1} =$			Ψ _c	• τ _{Rk,eq}	,C1,(C20,	/25)		
Montag	gebeiwert											
für trockenen und feuchten Beton (HD; HDB, CD)			γ _{inst} [-]		1,0							
für was	sergefülltes Bohrloch (HD; HDB, CD)			1,2							

Injektionssystem XWE für Beton	
Leistungen	

Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 100 Jahren (Gewindestange)

Anhang C 22

Tabelle C29: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren M12 M20 M24 M27 Gewindestange M30 Stahlversagen Charakteristische Quertragfähigkeit 0,70 • V⁰_{Rk,s} $V_{Rk,s,eq,C1}$ [kN] (Leistungskategorie C1) **Teilsicherheitsbeiwert** $\gamma_{Ms,V}$ [-] siehe Tabelle C1 $0,5(1,0)^{1}$ Faktor für Ringspalt [-] α_{gap}

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung	Anhang C 23
(Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren	

¹⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

1,2

Tabelle C30: Tabelle C30: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 Jahren

1														
Betonst	tahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlve	rsagen													
Charakt	teristische Zugtragf	ähigkeit	N _{Rk,s,eq,C1}	[kN]					1,0 • A	s•f _{uk} 1)			
$Stahlspannungsquerschnitt \qquad \qquad A_{s} \qquad \qquad [mm^{2}]$					50	79	113	154	201	314	452	491	616	804
Teilsich	Teilsicherheitsbeiwert Y _{Ms,N} [-]								1,	4 ²⁾				
Kombir	Kombiniertes Versagen durch Herausziehen und Betonausbruc													
	teristische Verbund Iftgebohrten Löche	_					nergeb	ohrten	Löche	rn (HD)), in			
mperatur- bereich	I: 40°C/24°C	trockener und feuchter	τ _{Rk,eq,C1}	[N/mm²]	7,0	7,0	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Temperatur- bereich	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	τ _{Rk,eq,C1}	[N/mm²]	6,0	6,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0	7,0
Erhöhu	ngsfaktor für Betor	1	Ψc	[-]		•			1	,0				
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse				R _{k,eq,C1} =				Ψ _c '	' ^τ Rk,eq	,C1,(C20	0/25)			
Montag	gebeiwert													
für troc	kenen und feuchte	n Beton (HD;							1	,0				

[-]

 γ_{inst}

für wassergefülltes Bohrloch (HD; HDB,

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung	Anhang C 24
(Leistungskategorie C1) für eine Nutzungsdauer von 50 Jahren (Betonstahl)	

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C31:	Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 100 Jahren												
Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Stahlversagen													
Charakteristische Zugtragfähigkeit $N_{Rk,s,eq,C1}$ [kN] $1,0 \cdot A_s \cdot f_{uk}^{1)}$													
Stahlspannungsquers	Stahlspannungsquerschnitt A _s [mm²]						154	201	314	452	491	616	804
Teilsicherheitsbeiwei	t	γ _{Ms,N}	[-]					1,	4 ²⁾				
Kombiniertes Versag	en durch Herausziehe	n und Beton	ausbruch										
II.	harakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 in hammergebohrten Löchern (HD), in ruckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)												
i: 40°C/24°C	trockener und feuchter	τ _{Rk,eq,C1}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5

		_ ` '												
eratur- eich	II: 72°C/50°C	trockener und feuchter	τ _{Rk,eq,C1}	[N/mm²]	6,5	6,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
Tempe	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	τ _{Rk,eq,C1}	[N/mm²]	5,5	5,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Erhöhu	ngsfaktor für Beton		Ψ _c	[-]					1	,0				
Abhäng	Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse		1	Rk,eq,C1 =	Ψ c • ^τ Rk,eq,C1,(C20/25)									

Montagebeiwert			
für trockenen und feuchten Beton (HD; HDB, CD)	V.	r 1	1,0
für wassergefülltes Bohrloch (HD; HDB, CD)	^γ inst	[-]	1,2

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem XWE für Beton	
Leistungen	Anhang C 25
Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 100 Jahren (Betonsta	

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C32: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren

Betonstahl	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Stahlversagen												
Charakteristische Quertragfähigkeit Leistungskategorie C1	V _{Rk,s,eq,C1}	[kN]					0,35	• A _s •	f _{uk} 1)			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Teilsicherheitsbeiwert	Y _{Ms,V}	[-]						1,5 ²⁾				
Faktor für Ringspalt α_{gap} [-] $0,5 (1,0)^3$												

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Injektionssystem XWE für Beton

Leistungen
Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung
(Leistungskategorie C1) für eine Nutzungsdauer von 50 und 100 Jahren (Betonstahl)

²⁾Sofern andere nationalen Regelungen fehlen

³⁾Wert in der Klammer ist für gefüllte Ringspalte zwischen dem Betonstahl und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wir empfohlen.

Tabelle C33: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren

Gewind	lestange				M12	M16	M20	M24		
Stahlve	rsagen									
Stahl, Fo	eristische Zugtragfähi estigkeitsklasse 8.8 stender Stahl A4 und I eitsklasse ≥70		N _{Rk,s,eq,C2}	$N_{Rk,s,eq,C2}$ [kN] 1,0 • $N_{Rk,s}$						
Teilsich	erheitsbeiwert		belle C1							
Kombin	iertes Versagen durcl	h Herausziehen ι	and Betonausbr	uch						
	eristische Verbundtra ftgebohrten Löchern (T T T		=1			rten Löchern (H	D), in		
mperatur- bereich	I: 40°C/24°C	trockener und feuchter	τ _{Rk,eq,C2}	[N/mm²]	5,8	4,8	5,0	5,1		
Temperatur- bereich	II: 72°C/50°C	Beton, sowie wassergefüllte s Bohrloch	τ _{Rk,eq,C2}	[N/mm²]	5,0	4,1	4,3	4,4		
Erhöhui	ngsfaktor für Beton		Ψ _c	[-]		1	,0			
	eristische Verbundtra igkeit von der Betonfe			τ _{Rk,eq,C2} =	Ψc • τ _{Rk,eq,C2,(C20/25)}					
Montag	gebeiwert									
für trockenen und feuchten Beton (HD; HDB, CD)		γ _{inst}	[-]	1,0						
für was	sergefülltes Bohrloch	(HD; HDB, CD)				1	,2			

Tabelle C34: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren

Gewindestange			M12	M16	M20	M24		
Stahlversagen								
Charakteristische Zugtragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A4 und HCR, Festigkeitsklasse ≥70	V _{Rk,s,eq,C2}	[kN]	0,70 • V ⁰ _{Rk,s}					
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]		siehe Ta	belle C1			
Faktor für Ringspalt	α_{gap}	[-]		0,5 (1,0) ¹⁾			

¹⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen

Injektionssystem XWE für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 und 100 Jahren	Anhang C 27

Tabelle C35: Verschiebu	destange M12 M16 M20 Iner und ungerissener Beton unter seismischer Einwirkung (Leistungskategorie C2) für eine Nutzungsdauer von 50 u $\delta_{\text{N.eq.C2(DLS)}} [\text{mm}] 0,21 0,24 0,27$					
Gewindestange			M12	M16	M20	M24
Gerissener und ungerissener Beton Jahren	unter seismischer Einwir	kung (Leistu	ıngskategorie C	2) für eine Nutz	zungsdauer vor	1 50 und 100
Alla Tamamanatuuhanaiaha	$\delta_{\text{N,eq,C2(DLS)}}$	[mm]	0,21	0,24	0,27	0,36
Alle Temperaturbereiche	$\delta_{N,eq,C2(ULS)}$	[mm]	0,54	0,51	0,54	0,63

Tabelle C36: Verschiebung unter Querbeanspruchung (Gewindestange)

Gewindestange		M12	M16	M20	M24	
Gerissener und ungerissener Beton unte	r seismischer Einwir	kung (Leistu	ingskategorie C	2) für eine Nutz	ungsdauer von	50 und 100
Jahren						
Alla Tauras austruskansiaka	$\delta_{ m V,eq,C2(DLS)}$	[mm]	3,1	3,4	3,5	4,2
Alle Temperaturbereiche	$\delta_{ m V,eq,C2(ULS)}$	[mm]	6,0	7,6	7,3	10,9

Injektionssystem XWE für Beton

Leistungen
Verschiebungen unter seismischer Einwirkung (Leistungskategorie C2) für eine
Nutzungsdauer von 50 und 100 Jahren (Gewindestange)

Anhang C 28