



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



## European Technical Assessment

### ETA-23/0697 of 31 October 2023

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the Deutsches Institut für Bautechnik **European Technical Assessment:** Trade name of the construction product Chemical Anchor Contact Pro 1 Product family Bonded anchor for use in concrete to which the construction product belongs TOX-Dübel-Technik GmbH Manufacturer Brunnenstraße 31 72505 Krauchenwies Manufacturing plant TOX Werk 10, Deutschland This European Technical Assessment 22 pages including 3 annexes which form an integral part contains of this assessment 330499-01-0601, Edition 04/2020 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de



#### European Technical Assessment ETA-23/0697 English translation prepared by DIBt

Page 2 of 22 | 31 October 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 22 | 31 October 2023

#### Specific Part

#### 1 Technical description of the product

The "Chemical Anchor Contact Pro 1" is a bonded fastener consisting of a resin anchor capsule Contact Pro 1 and an anchor rod Stix or an internally threaded anchor rod Impact.

The resin anchor capsule Contact Pro 1 is placed in the hole and the anchor rod Stix or the internally threaded anchor rod Impact is driven by machine as specified in Annex B6 and B7. The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                        | Performance                     |
|---------------------------------------------------------------------------------|---------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)     | See Annex B2, B3, C1, C2 and C5 |
| Characteristic resistance to shear load (static and quasi-static loading)       | See Annex C1, C3, C6            |
| Displacements under short-term and long-term loading                            | See Annex C7                    |
| Characteristic resistance for seismic performance category C1                   | See Annex C4                    |
| Characteristic resistance and displacements for seismic performance category C2 | No performance assessed         |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |



## European Technical Assessment ETA-23/0697

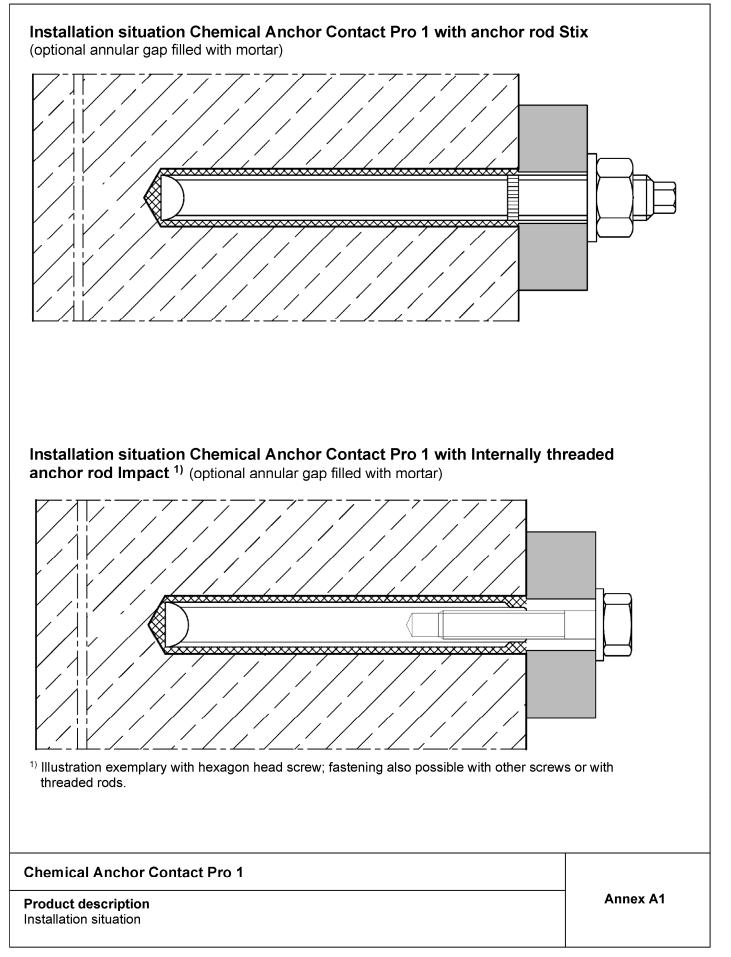
#### Page 4 of 22 | 31 October 2023

English translation prepared by DIBt

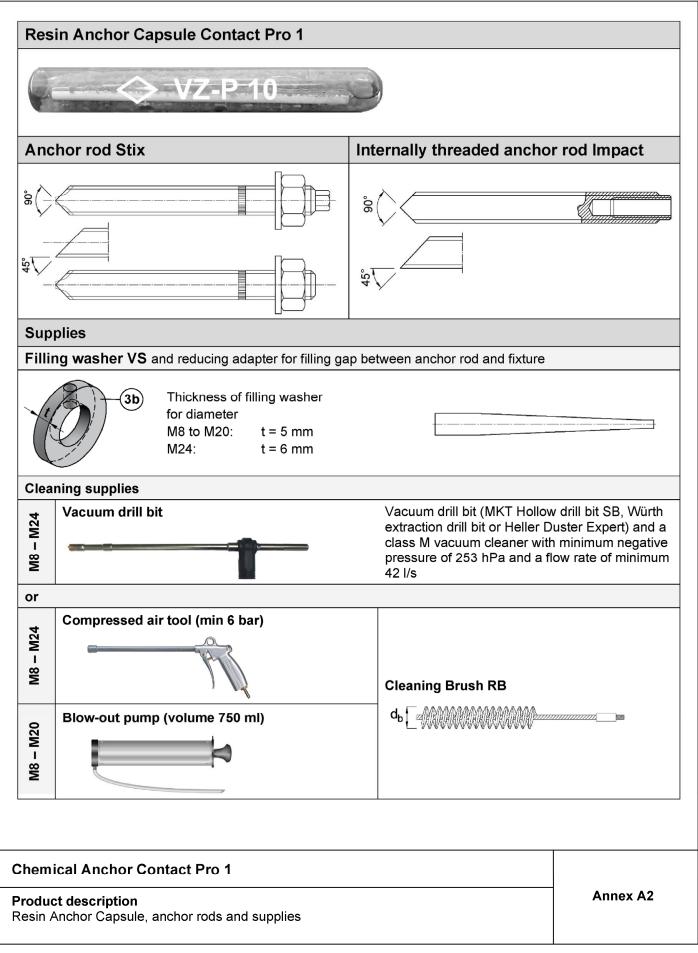
## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

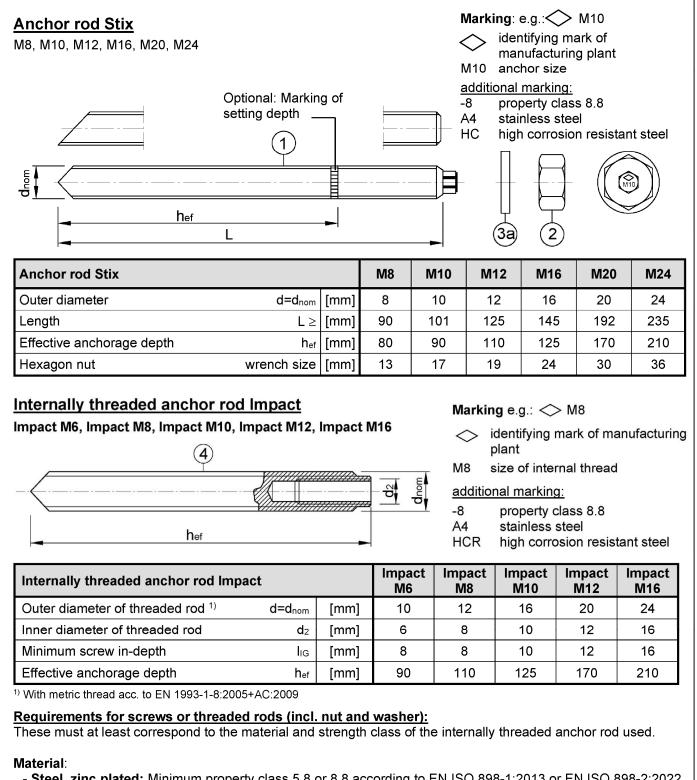
The system to be applied is: 1


## 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 31 October 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider














- Steel, zinc plated: Minimum property class 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2022 - Stainless steel A4 or high corrosion resistant steel (HCR): Minimum property class 70 according to
- EN ISO 3506-1:2020 or EN ISO 3506-2:2020

**Chemical Anchor Contact Pro 1** 

#### Product description Marking

Annex A3



| Part             | Designation                                                                          |                   | Materials                      |                          |                      |                        |                       |
|------------------|--------------------------------------------------------------------------------------|-------------------|--------------------------------|--------------------------|----------------------|------------------------|-----------------------|
| electr<br>hot-di | l, <b>zinc plated</b><br>roplated ≥ 5 µi<br>ip galvanized ≥ 50 µi<br>ardized ≥ 45 µi | m (averag         | e coating thic                 | kness)                   |                      |                        |                       |
|                  |                                                                                      | Property<br>class | characteris<br>strer           |                          |                      | eristic yield<br>ength | fracture elongation   |
| 1                | Anchor rod                                                                           | 5.8               | f []]/(                        | 500                      | f <sub>yk</sub>      | 400                    | A <sub>5</sub> > 8 %  |
|                  |                                                                                      | 8.8               | f <sub>uk</sub> [N/mm²]        | 800                      | [N/mm²]              | 640                    | A <sub>5</sub> > 12 % |
| •                |                                                                                      | 5                 | for class 5.8                  | anchor rods              | 5                    |                        |                       |
| 2                | Hexagon nut                                                                          | 8                 | for class 5.8                  | , 8.8 anchor             | rods                 |                        |                       |
| 3a               | Washer                                                                               |                   | steel, zinc pl                 | ated                     |                      |                        |                       |
| 3b               | Filling washer VS                                                                    |                   | steel, zinc pl                 | ated                     |                      |                        |                       |
|                  | Internally threaded                                                                  | 5.8               |                                |                          | A <sub>5</sub> > 8 % |                        |                       |
| 4                | anchor rod                                                                           | 8.8               | steel, electro                 | plated or sh             | A <sub>5</sub> > 8 % |                        |                       |
| 1                | Anchor rod                                                                           | Property<br>class |                                |                          | fracture elongation  |                        |                       |
|                  | cla                                                                                  |                   |                                |                          |                      |                        | fracture elongation   |
| •                | -                                                                                    | 70                | f <sub>uk</sub> [N/mm²]        | 700                      | f <sub>yk</sub>      | 560                    | A <sub>5</sub> > 12 % |
|                  |                                                                                      | 80                |                                | 800                      | [N/mm²]              | 600                    | A <sub>5</sub> > 12 % |
| 2                | Hexagon nut                                                                          |                   | for class 70                   |                          |                      |                        |                       |
|                  |                                                                                      | 80                | for class 70,                  | 80 anchor r              | ods                  |                        |                       |
| 3a               | Washer                                                                               |                   | stainless ste<br>high corrosio |                          | steel HCR            |                        |                       |
| 3b               | Filling washer VS                                                                    |                   | stainless ste<br>high corrosio |                          | steel HCR            |                        |                       |
| 4                | Internally threaded anchor rod                                                       | 70                | stainless ste<br>high corrosio | el A4;<br>on resistant : | steel HCR            |                        | A <sub>5</sub> > 8 %  |
| Glass            | s capsule                                                                            |                   |                                |                          |                      |                        |                       |
| 5                | Resin Anchor Caps                                                                    | ule               | glass, quartz                  | z, resin, hard           | lener                |                        |                       |
| Glass capsule    |                                                                                      |                   | glass, quartz                  | z, resin, harc           | lener                |                        |                       |

Material



| Specifications of intended use             |                                                                   |                                                         |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Chemical Anchor Contact Pro 1 with         | Anchor rod<br>Stix                                                | Internally threaded anchor rod<br>Impact                |  |  |  |  |
| Static or quasi-static action              | <b>M8</b> to <b>M24</b>                                           | Impact M6 to Impact M16                                 |  |  |  |  |
| Seismic action,<br>performance category C1 | <b>M8</b> to <b>M24</b>                                           | no performance assessed                                 |  |  |  |  |
|                                            | · · ·                                                             | einforced normal weight concrete<br>EN 206:2013+A1:2016 |  |  |  |  |
| Base materials                             | strength classes C20/25 to C50/60, acc. to EN 206:2013+A1         |                                                         |  |  |  |  |
|                                            | cracked or uncracked concrete                                     |                                                         |  |  |  |  |
| Temperature range I -40°C to +40°C         | max long-term temperature +24°<br>+40°C                           | C; max short-term temperature                           |  |  |  |  |
| Temperature range II -40°C to +80°C        | max long-term temperature +50°C; max short-term temperature +80°C |                                                         |  |  |  |  |

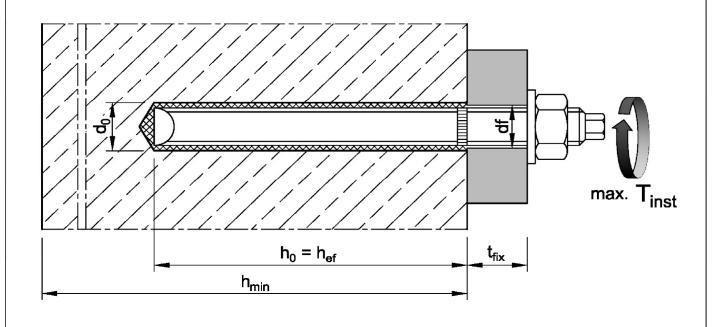
#### Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions: all versions
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2015, Annex A, Table A1:
  - Stix A4: CRC III - Stix HCR: CRC V

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

#### Installation:


- Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling
- Installation direction: D3 downwards, horizontally and upwards (e.g. overhead) installation
- Optionally, the annular gap between anchor rod and attachment can be backfilled. In this case, the washer is replaced by the filling washer VS (Part 3b, Annex A2). TOX Injektionssystem Liquix Multi 1 or other high-strength injection mortars with a compressive strength ≥ 40N/mm<sup>2</sup> can be used for backfilling.
- <u>Internally threaded anchor rods</u>: Bolts or threaded rod (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod that is used.

#### **Chemical Anchor Contact Pro 1**

Intended Use Specifications Annex B1

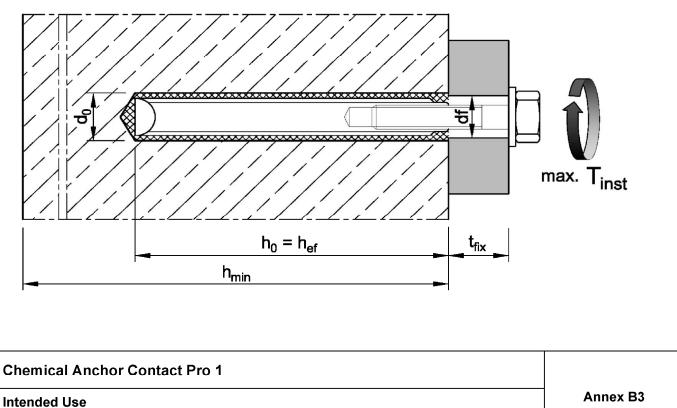


| Anchor rod Stix                           | M8                    | M10  | M12    | M16     | M20     | M24     |         |         |
|-------------------------------------------|-----------------------|------|--------|---------|---------|---------|---------|---------|
| Resin Anchor Capsule                      |                       |      | VZ-P 8 | VZ-P 10 | VZ-P 12 | VZ-P 16 | VZ-P 20 | VZ-P 24 |
| Diameter of threaded rod                  | d=d <sub>nom</sub>    | [mm] | 8      | 10      | 12      | 16      | 20      | 24      |
| Nominal diameter of drill hole            | $d_0$                 | [mm] | 10     | 12      | 14      | 18      | 22      | 28      |
| Depth of drill hole                       | h₀                    | [mm] | 80     | 90      | 110     | 125     | 170     | 210     |
| Effective anchorage depth                 | h <sub>ef</sub>       | [mm] | 80     | 90      | 110     | 125     | 170     | 210     |
| Diameter of clearance hole in the fixture | df                    | [mm] | 9      | 12      | 14      | 18      | 22      | 26      |
| Cleaning Brush                            |                       | [-]  | RB 10  | RB 12   | RB 14   | RB 18   | RB 22   | RB 28   |
| Diameter of Cleaning Brush                | d₅≥                   | [mm] | 10,5   | 12,5    | 14,5    | 18,5    | 22,5    | 28,5    |
| Maximum installation torque               | max T <sub>inst</sub> | [Nm] | 10     | 20      | 40      | 80      | 150     | 200     |
| Minimum member thickness                  | h <sub>min</sub>      | [mm] | 110    | 120     | 140     | 160     | 220     | 270     |
| Minimum edge distance                     | Cmin                  | [mm] | 40     | 45      | 45      | 50      | 55      | 60      |
| Minimum spacing                           | Smin                  | [mm] | 40     | 50      | 60      | 75      | 90      | 115     |



#### **Chemical Anchor Contact Pro 1**

#### Intended Use

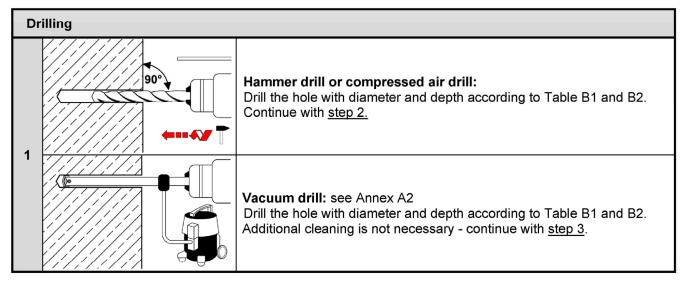

Installation parameters – Anchor rod Stix



#### Table B2: Installation parameters for internally threaded anchor rods Impact

| Internally threaded anchor rod Im            | Impact<br>M6          | Impact<br>M8 | Impact<br>M10 | Impact<br>M12 | Impact<br>M16 |       |       |
|----------------------------------------------|-----------------------|--------------|---------------|---------------|---------------|-------|-------|
| Resin Anchor Capsule                         | VZ-P 10               | VZ-P 12      | VZ-P 16       | VZ-P 20       | VZ-P 24       |       |       |
| Outer diameter of threaded rod <sup>1)</sup> | d=d <sub>nom</sub>    | [mm]         | 10            | 12            | 16            | 20    | 24    |
| Inner diameter of threaded rod               | <b>d</b> <sub>2</sub> | [mm]         | 6             | 8             | 10            | 12    | 16    |
| Nominal drill hole diameter                  | do                    | [mm]         | 12            | 14            | 18            | 22    | 28    |
| Depth of drill hole                          | ho                    | [mm]         | 90            | 110           | 125           | 170   | 210   |
| Effective anchorage depth                    | h <sub>ef</sub>       | [mm]         | 90            | 110           | 125           | 170   | 210   |
| Diameter of clearance hole in the fixture    | df                    | [mm]         | 7             | 9             | 12            | 14    | 18    |
| Cleaning Brush                               |                       | [-]          | RB 12         | RB 14         | RB 18         | RB 22 | RB 28 |
| Diameter of Cleaning Brush                   | d₀ ≥                  | [mm]         | 12,5          | 14,5          | 18,5          | 22,5  | 28,5  |
| Maximum installation torque                  | max T <sub>inst</sub> | [Nm]         | 10            | 10            | 20            | 40    | 60    |
| Minimum member thickness                     | h <sub>min</sub>      | [mm]         | 120           | 140           | 160           | 220   | 270   |
| Minimum edge distance                        | C <sub>min</sub>      | [mm]         | 45            | 45            | 50            | 55    | 60    |
| Minimum spacing                              | S <sub>min</sub>      | [mm]         | 50            | 60            | 75            | 90    | 115   |

<sup>1)</sup> With metric thread acc. to EN 1993-1-8:2005+AC:2009




Installation parameters - Internally threaded anchor rod Impact



| Concrete | e temp | erature | Minimum curing time |
|----------|--------|---------|---------------------|
| -20°C    | to     | -16°C   | 17 h                |
| -15°C    | to     | -11°C   | 7 h                 |
| -10°C    | to     | -6°C    | 4 h                 |
| -5°C     | to     | -1°C    | 3 h                 |
| 0°C      | to     | +4°C    | 50 min              |
| +5°C     | to     | +9°C    | 25 min              |
| +10°C    | to     | +19°C   | 15 min              |
| +20°C    | to     | +29°C   | 6 min               |
| +30°C    | to     | +40°C   | 6 min               |
| Capsule  | tempe  | rature  | -15°C to +40°C      |

#### Installation instructions



#### **Chemical Anchor Contact Pro 1**

#### Intended Use Curing time / Installation instruction - drilling

Annex B4



|          | recontamination in a suitable             | d directly before installation of the anchor, or it must be protected<br>manner until installation of the anchor.                                                                                                                                               |  |  |  |  |  |
|----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | eaning with compressed ai<br>es M8 to M24 | <u>r</u>                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 2a       | min. 6 ba                                 | Blow out the drill hole completely at least <b>2x</b> from the bottom of the drill hole with compressed air.                                                                                                                                                    |  |  |  |  |  |
| 2b       |                                           | Brush the drill hole <b>2x</b> with Cleaning Brush RB (Table B1 or B2).<br>Observe and check brush diameter d <sub>b,min</sub> . When inserting the<br>brush into the drill hole, a clear resistance must be noticeable.<br>Otherwise use a new Cleaning Brush. |  |  |  |  |  |
| 2c       | min. 6 ba                                 | Blow out the drill hole completely at least <b>2x</b> from the bottom of the drill hole with compressed air.                                                                                                                                                    |  |  |  |  |  |
|          | Manual cleaning<br>Sizes M8 to M20        |                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 2a       |                                           | Blow out the drill hole completely at least <b>2x</b> from the bottom of the drill hole with blow-out pump.                                                                                                                                                     |  |  |  |  |  |
|          |                                           | brush into the drill hole, a clear resistance must be noticeable.                                                                                                                                                                                               |  |  |  |  |  |
| 2b       |                                           | Otherwise use a new Cleaning Brush.                                                                                                                                                                                                                             |  |  |  |  |  |
| 2b<br>2c |                                           | Otherwise use a new Cleaning Brush.                                                                                                                                                                                                                             |  |  |  |  |  |



|   | erting the anchor rod Stix |                                                                                                                                                                                                                                                                    |                                       |
|---|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 3 |                            | Check the depth of drill hole. If necessary, mark and<br>the anchor rods.<br>Insert the capsule into the drill hole.                                                                                                                                               | choring depth on                      |
| 1 |                            | Drive in the anchor rod using a hammer drill set on immediately after reaching the setting depth.                                                                                                                                                                  | rotary impact. Stop                   |
| 5 | °C                         | Observe curing time according to Table B3. Do not anchor until it is fully cured.                                                                                                                                                                                  | move or load the                      |
| 5 |                            | Remove excess adhesive.                                                                                                                                                                                                                                            |                                       |
| , | Tinst                      | Install fixture and apply installation torque T <sub>inst</sub> acco                                                                                                                                                                                               | rding to Table B1.                    |
| 3 |                            | The annular gap between anchor rod and fixture ma<br>filled with mortar (see Annex B1). Therefore, replac<br>by filling washer VS (note thickness of the filling wa<br>on reducing adapter on static mixer.<br>Annular gap is completely filled, when excess morta | e regular washer<br>sher VS) and plug |
|   | nical Anchor Contact Pro   |                                                                                                                                                                                                                                                                    |                                       |



| ise | erting the internally threaded | l anchor rod Impact                                                                                                                                                                                                                                                                                                                                                                                      |      |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3   |                                | Check the depth of drill hole.<br>Insert the capsule into the drill hole.                                                                                                                                                                                                                                                                                                                                |      |
| L   |                                | Screw the setting tool into the internally threaded anchor rod Impac<br>until stop. Drive in the internally threaded anchor rod with a hamme<br>drill set to rotary impact.<br>Switch off the hammer drill immediately after reaching the setting<br>depth.                                                                                                                                              |      |
| 5   | C<br>C                         | Observe curing time according to Table B3. Do not move or load th anchor and don't remove the setting tool until it is fully cured.                                                                                                                                                                                                                                                                      | e    |
| 5   |                                | Remove excess adhesive and unscrew the setting tool.                                                                                                                                                                                                                                                                                                                                                     |      |
| ,   | Tinst                          | The fixture can be mounted with threaded rod, nut and washer or screw. Apply the installation torque T <sub>inst</sub> according to Table B2.                                                                                                                                                                                                                                                            |      |
| 3   |                                | The annular gap between threaded rod or screw and fixture may<br>optionally be filled with mortar (see Annex B1). Therefore, replace<br>regular washer by filling washer VS or assemble it on the screw<br>(observe thickness of filling washer VS and minimum screw-in dept<br>Plug on reducing adapter on static mixer and fill annular gap. It is<br>completely filled, when excess mortar seeps out. | :h). |
|     |                                |                                                                                                                                                                                                                                                                                                                                                                                                          |      |

Installation instructions - Inserting internally threaded anchor rod Impact



| Anchor rod Stix                | M8                   | M10               | M12  | M16 | M20 | M24 |     |     |     |
|--------------------------------|----------------------|-------------------|------|-----|-----|-----|-----|-----|-----|
| Steel failure                  |                      |                   |      |     |     |     |     |     |     |
| Characteristic resistanc       | e under tension load |                   |      |     |     |     |     |     |     |
| Steel,                         | Property class 5.8   | N <sub>Rk,s</sub> | [kN] | 18  | 29  | 42  | 79  | 123 | 176 |
| zinc plated                    | Property class 8.8   | N <sub>Rk,s</sub> | [kN] | 29  | 46  | 67  | 126 | 196 | 282 |
| Stainless steel /              | Property class 70    | N <sub>Rk,s</sub> | [kN] | 26  | 41  | 59  | 110 | 172 | 247 |
| High corrosion resistant steel | Property class 80    | N <sub>Rk,s</sub> | [kN] | 29  | 46  | 67  | 126 | 196 | 282 |
| Partial factor <sup>1)</sup>   |                      |                   |      |     |     |     |     |     |     |
| Steel,                         | Property class 5.8   | γMs,N             | [-]  | 1,5 |     |     |     |     |     |
| zinc plated                    | Property class 8.8   | γMs,N             | [-]  | 1,5 |     |     |     |     |     |
| Stainless steel /              | Property class 70    | γMs,N             | [-]  |     |     | 1,  | 5   |     |     |
| High corrosion resistant steel | Property class 80    | γMs,N             | [-]  |     |     | 1,  | 6   |     |     |

<sup>1)</sup> In absence of other national regulations

#### Table C2: Characteristic steel resistance under shear load for anchor rods Stix

| Anchor rod Stix                   |                     | M8                  | M10  | M12  | M16 | M20 | M24 |     |     |
|-----------------------------------|---------------------|---------------------|------|------|-----|-----|-----|-----|-----|
| Characteristic resistance         | es under shear load |                     |      |      | 1   |     | 1   |     |     |
| Steel failure <u>without</u> leve | er arm              |                     |      |      |     |     |     |     |     |
| Steel,                            | Property class 5.8  | V <sup>0</sup> Rk,s | [kN] | 11   | 17  | 25  | 47  | 73  | 106 |
| zinc plated                       | Property class 8.8  | V <sup>0</sup> Rk,s | [kN] | 15   | 23  | 34  | 63  | 98  | 141 |
| Stainless steel /                 | Property class 70   | V <sup>0</sup> Rk,s | [kN] | 13   | 20  | 30  | 55  | 86  | 123 |
| High corrosion resistant steel    | Property class 80   | V <sup>0</sup> Rk,s | [kN] | 15   | 23  | 34  | 63  | 98  | 141 |
| Steel failure <u>with</u> lever a | rm                  |                     |      |      |     |     |     |     |     |
| Steel,                            | Property class 5.8  | M <sup>0</sup> Rk,s | [Nm] | 19   | 37  | 65  | 166 | 325 | 561 |
| zinc plated                       | Property class 8.8  | M <sup>0</sup> Rk,s | [Nm] | 30   | 60  | 105 | 266 | 519 | 898 |
| Stainless steel /                 | Property class 70   | M <sup>0</sup> Rk,s | [Nm] | 26   | 52  | 92  | 233 | 454 | 785 |
| High corrosion resistant steel    | Property class 80   | M <sup>0</sup> Rk,s | [Nm] | 30   | 60  | 105 | 266 | 519 | 898 |
| Partial factor <sup>1)</sup>      |                     |                     |      |      |     |     |     |     |     |
| Steel,                            | Property class 5.8  | γMs,V               | [-]  |      |     | 1,2 | 25  |     |     |
| zinc plated                       | Property class 8.8  | γMs,∨               | [-]  | 1,25 |     |     |     |     |     |
| Stainless steel /                 | Property class 70   | γ̂Ms,∨              | [-]  |      |     | 1,2 | 25  |     |     |
| High corrosion resistant steel    | Property class 80   | γMs,∨               | [-]  |      |     | 1,3 | 33  |     |     |

<sup>1)</sup> In absence of other national regulations

#### **Chemical Anchor Contact Pro 1**

#### Performance

Characteristic steel resistance under tension and shear load for anchor rods V-A



| Anchor rod Stix                                                                              |                               |                    |            | M8                                               | M10  | M12                              | M16               | M20  | M24  |
|----------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------|--------------------------------------------------|------|----------------------------------|-------------------|------|------|
| Steel failure                                                                                |                               |                    |            |                                                  |      | <u> </u>                         |                   |      |      |
| Characteristic resista                                                                       | nce under tension loa         | ad                 |            |                                                  |      |                                  |                   |      |      |
| Characteristic tension re                                                                    | esistance                     | N <sub>Rk,s</sub>  | [kN]       |                                                  |      | see Ta                           | ble C1            |      |      |
| Partial factor                                                                               |                               | γMs,N              | [-]        |                                                  |      | see Ta                           | ble C1            |      |      |
| Combined pull-out an                                                                         | d concrete failure            |                    |            |                                                  |      |                                  |                   |      |      |
| Characteristic bond re                                                                       | esistance in <u>uncrack</u> e | <u>ed</u> conc     | rete C20/2 | 5                                                |      |                                  |                   |      |      |
| Temperature range I:                                                                         | +24°C / +40°C                 | $	au_{Rk,ucr}$     | [N/mm²]    | 10,0                                             | 13,0 | 13,0                             | 13,0              | 13,0 | 13,0 |
| Temperature range II:                                                                        | +50°C / +80°C                 | $	au_{Rk,ucr}$     | [N/mm²]    | 8,5                                              | 11,0 | 11,0                             | 11,0              | 11,0 | 11,0 |
| Increasing factors for $\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr}(C20)$               |                               | Ψc,ucr             | [-]        | $\left(\frac{f_{ck}}{20}\right)^{0,17}$          |      |                                  |                   |      |      |
| Characteristic bond re                                                                       | esistance in <u>cracked</u>   | concret            | e C20/25   |                                                  |      |                                  |                   |      |      |
| Temperature range I:                                                                         | +24°C / +40°C                 | $	au_{Rk,cr}$      | [N/mm²]    | 5,0                                              | 6,5  | 7,0                              | 7,5               | 7,5  | 7,5  |
| Temperature range II:                                                                        | +50°C / +80°C                 | τ <sub>Rk,cr</sub> | [N/mm²]    | 4,5                                              | 5,5  | 6,0                              | 6,0               | 6,0  | 6,5  |
| Increasing factors for $\tau_{R}$<br>$\tau_{Rk,cr} = \psi_{c,cr} \cdot \tau_{Rk,cr} (C20/2)$ | ·                             | Ψc,cr              | [-]        |                                                  |      | $\left(\frac{f_{ck}}{20}\right)$ | )0,14             |      |      |
| Reduction factor $\psi^0_{sus}$                                                              | in concrete C20/25            |                    |            |                                                  |      |                                  |                   |      |      |
| Temperature range I:                                                                         | +24°C / +40°C                 | $\psi^0$ sus       | [-]        |                                                  |      | 0,                               | 64                |      |      |
| Temperature range II:                                                                        | +50°C / +80°C                 | $\psi^0 sus$       | [-]        |                                                  |      | 0,                               | 63                |      |      |
| Concrete cone failure                                                                        |                               |                    |            |                                                  |      |                                  |                   |      |      |
| Factor for                                                                                   | uncracked concrete            | <b>k</b> ucr,N     | [-]        |                                                  |      | 11                               | ,0                |      |      |
|                                                                                              | cracked concrete              | <b>k</b> cr,N      | [-]        |                                                  |      | 7                                | ,7                |      |      |
| Edge distance                                                                                |                               | <b>C</b> cr,N      | [mm]       | 1,5 h <sub>ef</sub>                              |      |                                  |                   |      |      |
| Spacing                                                                                      |                               | <b>S</b> cr,N      | [mm]       |                                                  |      | 3                                | h <sub>ef</sub>   |      |      |
| Splitting failure                                                                            | T                             |                    |            |                                                  |      |                                  |                   |      |      |
| h/h <sub>ef</sub> ≥ 2,0                                                                      |                               |                    |            |                                                  |      | 1,0                              | $\mathbf{h}_{ef}$ |      |      |
| Edge distance                                                                                | 2,0> h/h <sub>ef</sub> > 1,3  | <b>C</b> cr,sp     | [mm]       | 2 • h <sub>ef</sub> (2,5 - h / h <sub>ef</sub> ) |      |                                  |                   |      |      |
|                                                                                              | h/h <sub>ef</sub> ≤ 1,3       |                    |            |                                                  |      | 2,4                              | h <sub>ef</sub>   |      |      |
| Spacing                                                                                      |                               | Scr,sp             | [mm]       |                                                  |      | 2 c                              | cr,sp             |      |      |
| Installation factor                                                                          |                               | γinst              | [-]        |                                                  |      | 1                                | ,2                |      |      |

#### **Chemical Anchor Contact Pro 1**

#### Performance

Characteristic values under tension load for anchor rods Stix



| Anchor rod Stix                        |                     | M8   | M10                   | M12 | M16    | M20    | M24 |    |
|----------------------------------------|---------------------|------|-----------------------|-----|--------|--------|-----|----|
| Steel failure <u>without</u> lever arm |                     |      |                       |     |        |        |     |    |
| Characteristic resistance              | V <sup>0</sup> Rk,s | [kN] |                       |     | see Ta | ble C2 |     |    |
| Ductility factor                       | <b>k</b> 7          | [-]  | 1,0                   |     |        |        |     |    |
| Partial factor                         | γMs,V               | [-]  | see Table C2          |     |        |        |     |    |
| Steel failure <u>with</u> lever arm    | <b>I</b>            |      |                       |     |        |        |     |    |
| Characteristic bending resistance      | M <sup>0</sup> Rk,s | [Nm] |                       |     | see Ta | ble C2 |     |    |
| Partial factor                         | γ̃Ms,∨              | [-]  |                       |     | see Ta | ble C2 |     |    |
| Concrete pry-out failure               |                     |      |                       |     |        |        |     |    |
| Pry-out factor                         | k <sub>8</sub>      | [-]  |                       |     | 2      | ,0     |     |    |
| Concrete edge failure                  |                     |      |                       |     |        |        |     |    |
| Effective length of anchor             | lf                  | [mm] | 80 90 110 125 170 210 |     |        |        |     |    |
| Outside diameter of anchor             | d <sub>nom</sub>    | [mm] | 8                     | 10  | 12     | 16     | 20  | 24 |
| Installation factor                    | γinst               | [-]  | 1,0                   |     |        |        |     |    |

#### **Chemical Anchor Contact Pro 1**

Performance Characteristic values under shear load for anchor rods Stix



# Table C5: Characteristic values of tension loads for anchor rods Stix under seismic action, performance category C1

| Anchor rod Stix             | M8                                               | M10      | M12       | M16                                                             | M20 | M24 |  |     |     |
|-----------------------------|--------------------------------------------------|----------|-----------|-----------------------------------------------------------------|-----|-----|--|-----|-----|
| Steel failure               |                                                  |          |           |                                                                 |     |     |  |     |     |
| Characteristic resistance   | e under tension lo                               | ad       |           |                                                                 |     |     |  |     |     |
| Characteristic tension resi | stance                                           | NRk,s,C1 | [kN]      | N] NRk,s<br>see Table C1                                        |     |     |  |     |     |
| Partial factor              | artial factor γ <sub>Ms,N</sub> [-] see Table C1 |          |           |                                                                 |     |     |  |     |     |
| Combined pull-out and o     | concrete failure                                 |          |           |                                                                 |     |     |  |     |     |
| Characteristic bond resi    | stance in concrete                               | C20/25   | to C50/60 |                                                                 |     |     |  |     |     |
| Temperature range I:        | +24°C / +40°C                                    | TRk,C1   | [N/mm²]   | <sup>2</sup> ] 4,5 5,5 6,0 6,0 7,5                              |     |     |  | 7,0 |     |
| Temperature range II:       | +50°C / +80°C                                    | 𝔅𝔤Rk,C1  | [N/mm²]   | 4,0         4,5         5,5         5,0         6,0         5,5 |     |     |  |     | 5,5 |
| Installation factor         | ation factor Yinst [-] 1,2                       |          |           |                                                                 |     |     |  |     |     |

# Table C6: Characteristic values of shear loads for anchor rods Stix under seismic action,performance category C1

| Anchor rod Stix                   | M8                      | M10                  | M12  | M16  | M20  | M24    |         |      |       |
|-----------------------------------|-------------------------|----------------------|------|------|------|--------|---------|------|-------|
| Steel failure without             | lever arm               |                      |      |      |      |        |         |      |       |
| Characteristic resist             | ance under shear load   | k                    |      |      |      |        |         |      |       |
| Steel,                            | Property class 5.8      | VRk,s,C1             | [kN] | 9,0  | 14,3 | 20,7   | 36,3    | 56,2 | 81,5  |
| zinc plated                       | Property class 8.8      | V <sub>Rk,s,C1</sub> | [kN] | 12,0 | 19,0 | 27,7   | 48,4    | 75,5 | 109,3 |
| Stainless steel /                 | Property class 70       | V <sub>Rk,s,C1</sub> | [kN] | 10,5 | 16,6 | 24,2   | 42,3    | 66,0 | 94,7  |
| High corrosion<br>resistant steel | Property class 80       | V <sub>Rk,s,C1</sub> | [kN] | 12,0 | 19,0 | 27,7   | 48,4    | 75,5 | 108,7 |
| Partial factor                    |                         | γMs,V                | [-]  |      |      | see Ta | able C2 |      |       |
| Factor for another age            | <b>with</b> annular gap | αgap                 | [-]  |      |      | 0      | ,5      |      |       |
| Factor for anchorages             | $lpha_{	ext{gap}}$      | [-]                  | 1,0  |      |      |        |         |      |       |
| Installation factor               |                         | γinst                | [-]  | 1,0  |      |        |         |      |       |

#### **Chemical Anchor Contact Pro 1**

#### Performance Characteristic values under seismic action, performance category C1 for anchor rods Stix



# Table C7: Characteristic steel resistance under tension load for internally threaded anchor rods Impact

| Internally threaded an                                                                         | chor rod                      |                     |           | Impact<br>M6                            | Impact<br>M8 | Impact<br>M10            | Impact<br>M12       | Impact<br>M16 |
|------------------------------------------------------------------------------------------------|-------------------------------|---------------------|-----------|-----------------------------------------|--------------|--------------------------|---------------------|---------------|
| Steel failure                                                                                  |                               |                     |           |                                         |              |                          |                     | -             |
| Characteristic                                                                                 | Property class 5.8            | N <sub>Rk,s</sub>   | [kN]      | 10                                      | 17           | 29                       | 42                  | 76            |
| resistance,<br>steel, zinc plated                                                              | Property class 8.8            | N <sub>Rk,s</sub>   | [kN]      | 16                                      | 27           | 46                       | 67                  | 121           |
| Partial factor 1)                                                                              |                               | γMs,N               | [-]       |                                         |              | 1,5                      | I                   | 1             |
| Characteristic<br>resistance, stainless<br>steel A4 / HCR                                      | Property class 70             | N <sub>Rk,s</sub>   | [kN]      | 14                                      | 26           | 41                       | 59                  | 110           |
| Partial factor 1)                                                                              |                               | γMs,N               | [-]       |                                         |              | 1,87                     |                     |               |
| Combined pull-out an                                                                           | d concrete failure            |                     |           |                                         |              |                          |                     |               |
| Characteristic bond re                                                                         | esistance in <u>uncrac</u>    | <u>ked</u> cor      | ncrete C2 | 0/25                                    |              |                          |                     |               |
| Temperature range I:                                                                           | +24°C / +40°C                 | τ <sub>Rk,ucr</sub> | [N/mm²]   | 13,0                                    | 13,0         | 13,0                     | 13,0                | 13,0          |
| Temperature range II:                                                                          | +50°C / +80°C                 | τ <sub>Rk,ucr</sub> | [N/mm²]   | 11,0                                    | 11,0         | 11,0                     | 11,0                | 11,0          |
| Increasing factors for $\tau_{F}$<br>$\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr}$ (C20/2 | ,                             | Ψc,ucr              | [-]       | $\left(\frac{f_{ck}}{20}\right)^{0,17}$ |              |                          |                     |               |
| Characteristic bond re                                                                         | esistance in <u>cracke</u>    | <u>d</u> concr      | ete C20/2 | 5                                       |              |                          |                     |               |
| Temperature range I:                                                                           | +24°C / +40°C                 | τRk,cr              | [N/mm²]   | 6,5                                     | 7,0          | 7,5                      | 7,5                 | 7,5           |
| Temperature range II:                                                                          | +50°C / +80°C                 | τ <sub>Rk,cr</sub>  | [N/mm²]   | 5,5                                     | 6,0          | 6,0                      | 6,0                 | 6,5           |
| Increasing factors for $\tau_{F}$<br>$\tau_{Rk,cr} = \psi_{c,cr} \cdot \tau_{Rk,cr} (C20/25)$  | Rk,cr                         | Ψc,cr               | [-]       | $\left(\frac{f_{ck}}{20}\right)^{0,14}$ |              |                          |                     |               |
| Reduction factor $\psi^{0}_{sus}$                                                              | in concrete C20/25            |                     |           | •                                       |              |                          |                     |               |
| Temperature range I:                                                                           | +24°C / +40°C                 | $\psi^0$ sus        | [-]       |                                         |              | 0,64                     |                     |               |
| Temperature range II:                                                                          | +50°C / +80°C                 | $\psi^0$ sus        | [-]       |                                         |              | 0,63                     |                     |               |
| Concrete cone failure                                                                          |                               |                     |           |                                         |              |                          |                     |               |
| Faatar far                                                                                     | uncracked concrete            | <b>k</b> ucr,N      | [-]       |                                         |              | 11,0                     |                     |               |
| Factor for —                                                                                   | cracked concrete              | <b>k</b> cr,N       | [-]       |                                         |              | 7,7                      |                     |               |
| Edge distance                                                                                  |                               | <b>C</b> cr,N       | [mm]      |                                         |              | 1,5 h <sub>ef</sub>      |                     |               |
| Spacing                                                                                        |                               | <b>S</b> cr,N       | [mm]      |                                         |              | 3 h <sub>ef</sub>        |                     |               |
| Splitting failure                                                                              |                               |                     |           |                                         |              |                          |                     |               |
|                                                                                                | h/h <sub>ef</sub> ≥ 2,0       |                     |           |                                         |              | 1,0 h <sub>ef</sub>      |                     |               |
| Edge distance                                                                                  | 2,0 > h/h <sub>ef</sub> > 1,3 | <b>C</b> cr,sp      | [mm]      |                                         | 2 • ł        | n <sub>ef</sub> (2,5 - h | / h <sub>ef</sub> ) |               |
|                                                                                                | h/h <sub>ef</sub> ≤ 1,3       |                     |           |                                         |              | 2,4 h <sub>ef</sub>      |                     |               |
| Spacing                                                                                        |                               | Scr,sp              | [mm]      |                                         |              | 2 c <sub>cr,sp</sub>     |                     |               |
| Installation factor                                                                            |                               | γinst               | [-]       |                                         |              | 1,2                      |                     |               |
| <sup>1)</sup> In absence of other nation                                                       | nal regulations               |                     |           |                                         |              |                          |                     |               |
| Chemical Anchor Co                                                                             | ontact Pro 1                  |                     |           |                                         |              |                          |                     |               |
| Dortormono o                                                                                   |                               |                     |           |                                         |              |                          | Anne                | x C5          |

Performance

Characteristic values under tension load for internally threaded anchor rods Impact



# Table C8: Characteristic steel resistance under shear load forinternally threaded anchor rods Impact

| Internally threaded anch          | or rod                              | Impact<br>M6                   | Impact<br>M8 | Impact<br>M10 | lmpact<br>M12 | Impact<br>M16 |     |     |  |
|-----------------------------------|-------------------------------------|--------------------------------|--------------|---------------|---------------|---------------|-----|-----|--|
| Steel failure <u>without</u> leve | er arm <sup>1)</sup>                |                                |              |               |               |               |     |     |  |
| Steel,                            | Property class 5.8                  | V <sup>0</sup> <sub>Rk,s</sub> | [kN]         | 6             | 10            | 17            | 25  | 45  |  |
| zinc plated                       | Property class 8.8                  | V <sup>0</sup> Rk,s            | [kN]         | 8             | 14            | 23            | 34  | 60  |  |
| Stainless steel A4 / HCR          | Property class 70                   | V <sup>0</sup> Rk,s            | [kN]         | 7             | 13            | 20            | 30  | 55  |  |
| Ductility factor                  | Ductility factor k <sub>7</sub> [-] |                                |              |               |               | 1,0           |     |     |  |
| Steel failure <u>with</u> lever a | rm <sup>1)</sup>                    |                                |              |               |               |               |     |     |  |
| Steel,                            | Property class 5.8                  | M <sup>0</sup> Rk,s            | [Nm]         | 8             | 19            | 37            | 66  | 167 |  |
| zinc plated                       | Property class 8.8                  | M <sup>0</sup> Rk,s            | [Nm]         | 12            | 30            | 60            | 105 | 267 |  |
| Stainless steel A4 / HCR          | Property class 70                   | M <sup>0</sup> Rk,s            | [Nm]         | 11            | 26            | 53            | 92  | 234 |  |
| Partial factor <sup>2)</sup>      |                                     |                                |              |               |               |               |     |     |  |
| Steel,                            | Property class 5.8                  | γMs,V                          | [-]          |               |               | 1,25          |     |     |  |
| zinc plated                       | Property class 8.8                  | γMs,V                          | [-]          | 1,25          |               |               |     |     |  |
| Stainless steel A4 / HCR          | Property class 70                   | γMs,∨                          | [-]          |               |               | 1,56          |     |     |  |
| Concrete pry-out failure          |                                     |                                |              |               |               |               |     |     |  |
| Pry-out factor                    |                                     | k <sub>8</sub>                 | [-]          | 2,0           |               |               |     |     |  |
| Concrete edge failure             |                                     |                                |              |               |               |               |     |     |  |
| Effective length of fastene       | r                                   | lf                             | [mm]         | 90            | 110           | 125           | 170 | 210 |  |
| Outside diameter of faster        | ner                                 | d <sub>nom</sub>               | [mm]         | 10            | 12            | 16            | 20  | 24  |  |
| Installation factor               |                                     | γinst                          | [-]          | 1,0           |               |               |     |     |  |

<sup>1)</sup> Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

<sup>2)</sup> In absence of other national regulations

#### **Chemical Anchor Contact Pro 1**

#### Performance

Characteristic values under shear load for internally threaded anchor rods Impact



| Anchor size                          |                         |              | M8    | M10<br>Impact<br>M6 | M12<br>Impact<br>M8 | M16<br>Impact<br>M10 | M20<br>Impact<br>M12 | M24<br>Impact<br>M16 |
|--------------------------------------|-------------------------|--------------|-------|---------------------|---------------------|----------------------|----------------------|----------------------|
| Displacement factor <sup>1)</sup> fo | or uncracked            | l concrete   |       |                     |                     |                      |                      |                      |
| Disalassant                          | $\delta_{N0}$ -factor   | [mm/(N/mm²)] | 0,015 | 0,031               | 0,035               | 0,015                | 0,046                | 0,060                |
| Displacement -                       | δ <sub>N∞</sub> -factor | [mm/(N/mm²)] | 0,085 | 0,067               | 0,067               | 0,067                | 0,067                | 0,067                |
| Displacement factor <sup>1)</sup> fo | or cracked c            | oncrete      |       |                     |                     |                      |                      |                      |
| Dianlocoment                         | δ <sub>N0</sub> -factor | [mm/(N/mm²)] | 0,046 | 0,038               | 0,024               | 0,008                | 0,024                | 0,133                |
| Displacement -                       | δ <sub>N∞</sub> -factor | [mm/(N/mm²)] | 0,192 | 0,142               | 0,090               | 0,104                | 0,082                | 0,069                |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor  $\cdot \tau$ ;  $\tau$ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor  $\cdot \tau$ ;

#### Table C10: Displacements under shear load

| Anchor size                       |            |           | M8   | M10<br>Impact<br>M6 | M12<br>Impact<br>M8 | M16<br>Impact<br>M10 | M20<br>Impact<br>M12 | M24<br>Impact<br>M16 |
|-----------------------------------|------------|-----------|------|---------------------|---------------------|----------------------|----------------------|----------------------|
| Displacement factor <sup>1)</sup> |            |           |      |                     |                     |                      |                      |                      |
| Dianlacoment                      | δv₀-factor | [mm/(kN)] | 0,06 | 0,06                | 0,05                | 0,04                 | 0,04                 | 0,03                 |
| Displacement                      | δv∞-factor | [mm/(kN)] | 0,09 | 0,08                | 0,08                | 0,06                 | 0,06                 | 0,05                 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0} \text{-factor} \cdot V; \qquad V: \text{ acting shear load}$ 

 $\delta_{V\infty} = \delta_{V\infty}$ -factor  $\cdot V$ ;

#### **Chemical Anchor Contact Pro 1**

Performance Displacements