

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0699 of 1 November 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Würth injection system WIT-UH 300/ WIT-VH 300/ WIT-VM 300 for rebar connection

Post-installed reinforcing bar (rebar) connection with improved bond-splitting behaviour under static loading

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau

Werk 3

16 pages including 3 annexes which form an integral part of this assessment

332402-00-0601, Edition 09/2023

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-23/0699 English translation prepared by DIBt

Page 2 of 16 | 1 November 2023

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-23/0699 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the Würth Injection system WIT-UH 300/ WIT-VH 300/ WIT-VM 300 in accordance with the regulations for reinforced concrete construction. Reinforcing bars with a diameter ϕ from 8 to 32 mm according to Annex A and the injection

mortar WIT-UH 300/ WIT-VH 300/ WIT-VM 300 are used for the post-installed rebar connection. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded reinforcing bar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connections of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance						
Characteristic resistance to tension load (stati	c and quasi-static loading)						
Resistance to combined pull-out and concrete failure in uncracked concrete	See Annex C 1						
Resistance to concrete cone failure	See Annex C 1						
Robustness	See Annex C 1						
Resistance to bond-splitting failure	See Annex C 1						
Influence of cracked concrete on resistance to combined pull-out and concrete failure	See Annex C 1						
Characteristic resistance to tension load (seismic loading)	No performance assessed						

European Technical Assessment ETA-23/0699

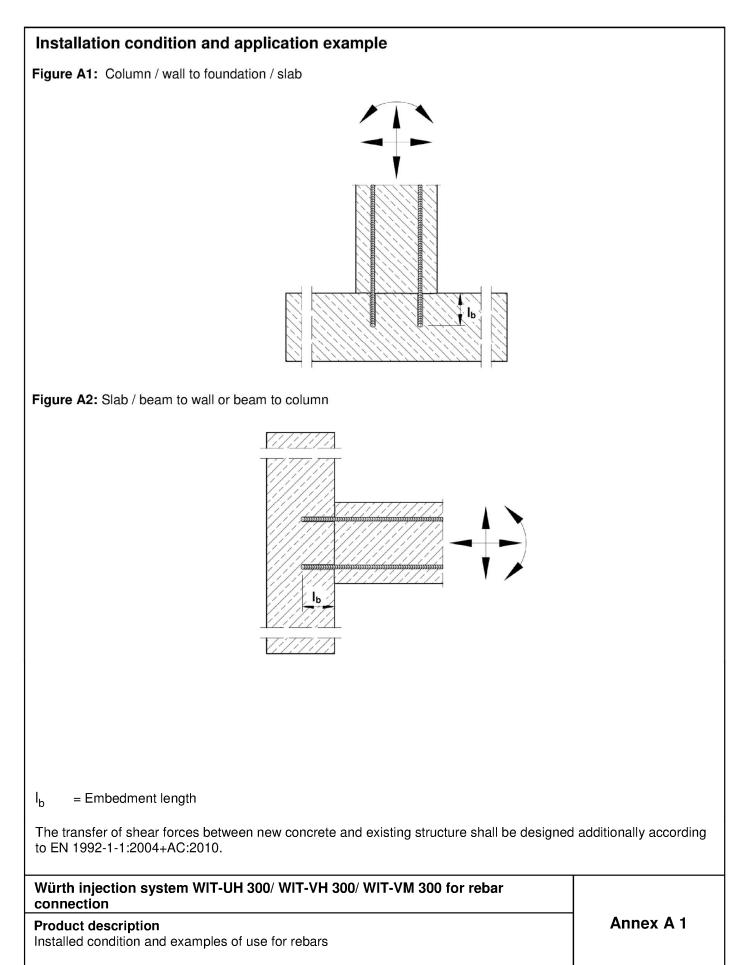
Page 4 of 16 | 1 November 2023

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

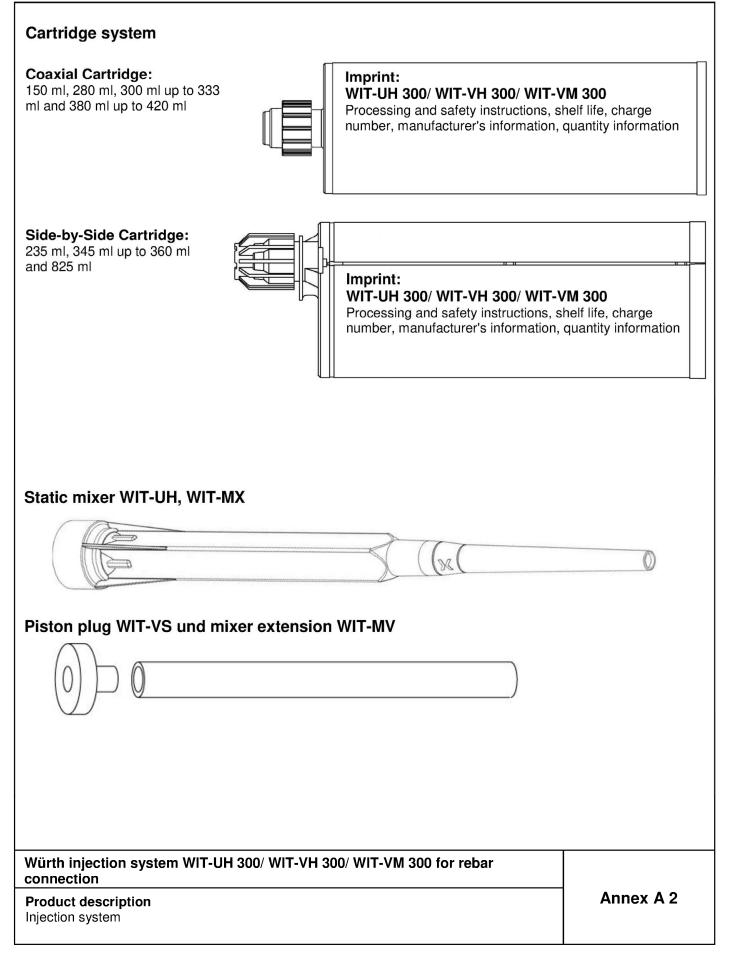
In accordance with European Assessment Document EAD No. 332402-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 1 November 2023 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 6 of European Technical Assessment ETA-23/0699 of 1 November 2023

Reinforcing bar (rebar): ø8 up to ø32	
	ananananananananananananananananananan
 Minimum value of related rip area f_{R,min} accor Rib height of the bar shall be in the range 0,09 (\$\overline{\chi}\$: Nominal diameter of the bar; h_{rib}: Rib height height	5φ ≤ h _{rib} ≤ 0,07φ
Table A1: Materials Rebar	
Designation	Material
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Würth injection system WIT-UH 300/ WIT-VH 300/ WIT-VM 300 for rebar connection

Product description Specifications Rebar Annex A 3

Specification of the intended use							
Anchorages subject to:		working life 50 years	working life 100 years				
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	Static and quasi-static loads	Ø8 to Ø32	Ø8 to Ø32				
Temperature Range:		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I: $-40 ^{\circ}\text{C}$ to $+40 ^{\circ}\text{C}^{1)}$ II: $-40 ^{\circ}\text{C}$ to $+80 ^{\circ}\text{C}^{2)}$				

1) (max. long-term temperature +24°C and max. short-term temperature +40°C)

2) (max. long-term temperature +50°C and max. short-term temperature +80°C)

³⁾ (max. long-term temperature +72°C and max. short-term temperature +120°C)

⁴⁾ (max. long-term temperature +100°C and max. short-term temperature +160°C)

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EOTA Technical Report TR 069, Edition June 2021.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- Dry or wet concrete, as well as in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB) or compressed air drill mode (CD).
- Rebar installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component).

Würth injection system WIT-UH 300/ WIT-VH 300/ WIT-VM 300 for rebar connection

Intended use Specifications Annex B 1

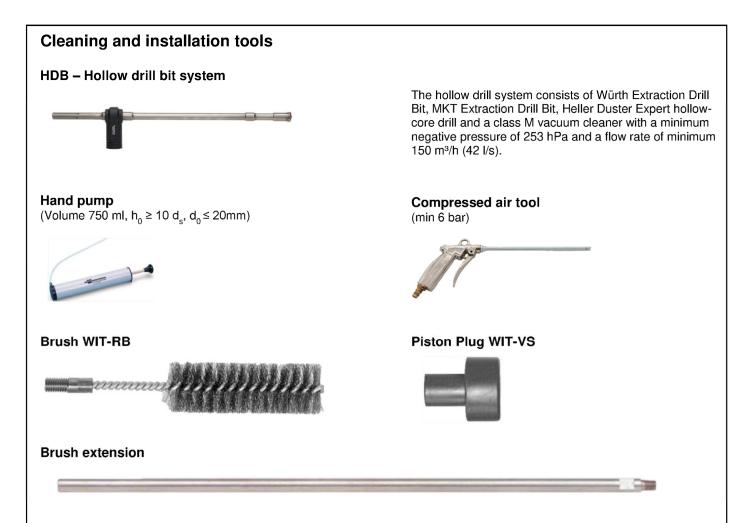
7102204 23

D	rilling method	Rebar diameter	Without drilling	aid Wi	th drilling aid
HD:	Hammer drilling	< 25 mm	30 mm + 0,06 · I _b	$\ge 2 \phi$ 30 mm + 0,02 · $l_b \ge$	2 ¢ Drilling aid
HDB:	Hammer drilling with hollow drill bit	≥ 25 mm	40 mm + 0,06 · I _b	$\geq 2 \phi$ 40 mm + 0,02 · $I_b \geq$	
CD:	Compressed air	< 25 mm	50 mm + 0,08 · I _b	50 mm + 0,02 · I _b	
	drilling	≥ 25 mm	60 mm + 0,08 · I _b	$\geq 2 \phi$ 60 mm + 0,02 · $I_b \geq$	2 ¢
	ninimum clear spacing	is a = max (4 nsing too			
С	artridge type/size		Har	nd tool	Pneumatic tool
	Coaxial cartridges 150, 280, 300 up to 333 ml		1		
			e.g. Type I	e.g. Type TS 492 X	
	Coaxial cartridges 380 up to 420 ml	e.a. Ty	ype CCM 380/10	e.g. Type TS 485 LX	
Sid	e-by-side cartridges 235, 345 ml	e la companya de la c		e.g. Type H 260	
Sic	de-by-side cartridge 825 ml	e.g. 1	⊽pe CBM 330A -	-	e.g. Type TS 477 LX
All cai	rtridges could also be e	extruded by a	battery tool.		
				MIT-VM 300 for rebar	
	th injection system nection	1 WII-UH 3	,00/ WII-VII 300/ (

Table B3:Brushes, piston plugs, max embedment length and mixer extension,
hammer (HD) and compressed air (CD) drilling

	Di	rill			d _{b,min}			Cartridge	: All size	es	Cartrid	lge: 825 ml	
Bar size	Bar bit - Ø		d₀ Brush - Ø		min. Brush -	Piston plug			Pneu	matic tool	Pneumatic tool		
φ	HD	CD			Ø		I _{b,max}	Mixer extension	I _{b,max} Mixer extension		I _{b,max}	Mixer extension	
[mm]	[m	m]	WIT-	[mm]	[mm]	WIT-	[mm]	WIT-	[mm]	WIT-	[mm]	WIT-	
8	10	-	RB10	11,5	10,5	-	250		250		250		
0	12		0010	10 5	10.5		700		800		800	MV10/0,75	
10	12	-	RB12	13,5	12,5		250		250		250	or MV16/1,8	
10	14		0014	15.5	145	V014	700		1000		1000		
10	14	-	RB14	15,5	14,5	VS14	250		250		250		
12	1	6	RB16	17,5	16,5	VS16					1200		
14	1	8	RB18	20,0	18,5	VS18	700	MV10/0,75	1000	MV10/0,75	1400		
16	2	0	RB20	22,0	20,5	VS20		or		or	1600		
	25	-	RB25	27,0	25,5	VS25		MV16/1,8		MV16/1,8			
20	-	26	RB26	28,0	26,5	VS25			700				
22	2	8	RB28	30,0	28,5	VS28						MV16/1,8	
04/05	3	0	RB30	32,0	30,5	VS30	500				2000		
24/25	3	2	RB32	34,0	32,5	VS32			500				
28	3	5	RB35	37,0	35,5	VS35			500				
32	4	0	RB40	43,5	40,5	VS40							

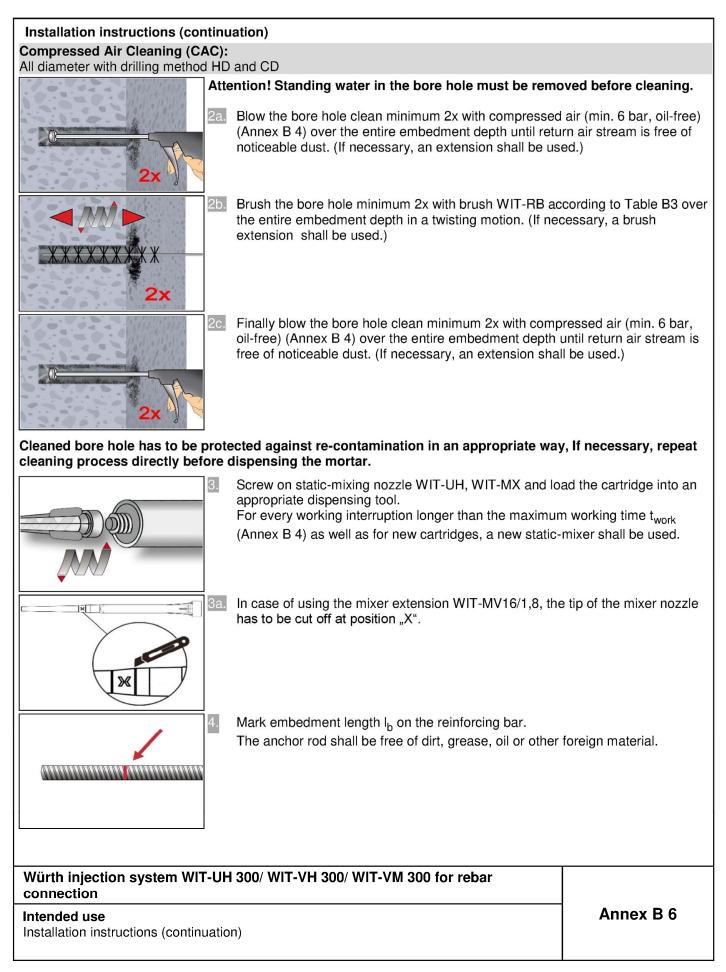
Table B4:Brushes, piston plugs, max embedment length and mixer extension,
hammer drilling with hollow drill bit system (HDB)


Bar	Drill		d _{b,min}			Cartr All s		Cartridge: 825 ml			
size	bit - Ø	d₀ mi Brush - Ø Brus		Piston plug				matic tool	Pneumatic tool		
φ	HDB		Ø		I _{b,max}	I _{b,max} Mixer extension		Mixer extension	I _{b,max}	Mixer extension	
[mm]	[mm]			WIT-	[mm]	WIT-	[mm]	WIT-	[mm]	WIT-	
8	10				250		250		250		
0	12			-	700		800		800	MV10/0,75	
10	12				250		250		250	or MV16/1,8	
10	14				700		1000		1000		
12	14				250] [250		250		
12	16	No oloonii		VS16		MU10/0 75	1000				
14	18	No cleanii required		VS18	700	MV10/0,75 or MV 16/1,8		MV10/0,75 or			
16	20	required		VS20				MV16/1,8			
20	25			VS25		10,1,0	700				
22	28			VS28			700		1000	MV16/1,8	
24/25	30			VS30	500						
24/25	32			VS32	500		500				
28	35						500				
32	40										
Würth		n system WIT-U	H 300/ W	VS40 /IT-VH 30	00/ WIT·	-VM 300 for	rebar				

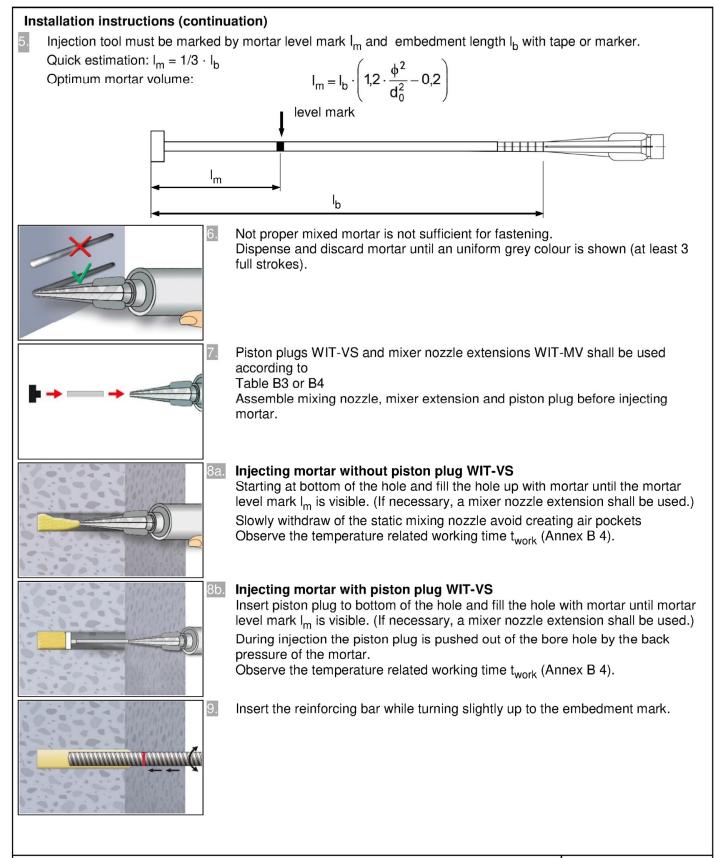
Parameter brushes, piston plugs, max embedment length and mixer extension

Page 11 of European Technical Assessment ETA-23/0699 of 1 November 2023

English translation prepared by DIBt


Table B5: Working time and curing time

Tempera	ature in bas	e material	Maximum working time	Minir	num curing time ¹⁾	
	Т		t _{work}		t _{cure}	
- 5 °C	up to	- 1 °C	50 min		5 h	
0°C	up to	+ 4 °C	25 min		3,5 h	
+ 5 °C	up to	+ 9 °C	15 min		2 h	
+ 10°C	up to	+ 14 °C	10 min		1 h	
+ 15 °C	up to	+ 19°C	6 min		40 min	
+ 20 °C	up to	+ 29 °C	3 min		30 min	
+ 30 °C	up to	+ 40 °C	2 min	30 min		
Car	tridge tempe	rature	+5°C up	to +40°C		
		s only valid for dry uring time must be				
Würth inject connection						
Intended use Cleaning and Working time	Annex B 4					



Installation instructions Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B 1) Aborted drill holes shall be filled with mortar. Drilling of the bore hole 1a. Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole to the required embedment length. Drill bit diameter according to Table B3. Proceed with Step 2 (MAC or CAC). 1b. Hollow drill bit system (HDB) (see Annex B 4) Drill a hole to the required embedment length . Drill bit diameter according to Table B4. Proceed with Step 3. Manual Air Cleaning (MAC) for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10\phi$, with drilling method HD and CD Attention! Standing water in the bore hole must be removed before cleaning. Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4). 4xBrush the bore hole minimum 4x with brush WIT-RB according to Table B3 over 2b. the entire embedment depth in a twisting motion (if necessary, use a brush extension). 4x2c. Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4). Würth injection system WIT-UH 300/ WIT-VH 300/ WIT-VM 300 for rebar connection Annex B 5 Intended use Installation instruction

Würth injection system WIT-UH 300/ WIT-VH 300/ WIT-VM 300 for rebar connection

Intended use

Installation instructions (continuation)

Annex B 7

Installation instructions (continuat	tion)	
	Annular gap between reinforcing bar and base material filled with mortar. Otherwise, the installation must be rep step 8 before the maximum working time twork has expire	peated starting from
	For application in vertical upwards direction the reinforc (e.g. wedges).	ing bar shall be fixed
	Temperature related curing time t_{cure} (Annex B 4) must Do not move or load the reinforcing bar during curing tir	
Würth injection system WIT-UH connection	300/ WIT-VH 300/ WIT-VM 300 for rebar	
Intended use Installation instructions (continuation	1)	Annex B 8

Table C1: Characteristic resistance to tension load under static and quasi-static loading in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB); working life 50 and 100 years

	annean							-				-	
Reinforcing bar		1)		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Combined pull-out and co			- 000/05										
Characteristic bond resistan			te C20/25	44	4.4	44	44	10	10	10	10	10	10
	Dry, wet concrete	τ Rk,ucr,50 =		14	14	14	14	13	13	13	13	13	13
a 2°08/2°06 :II: 50°C/80°C a	Ind	^τ Rk,ucr,100	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
ן <u>ה</u> <u>ווו: 72°C/120°C</u> f	looded	^τ Rk,ucr,50		13	12	12	12	12	11	11	11	11	11
⊢ ^μ IV: 100°C/160°C t	ore hole	11,00		9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Reduction factor $\psi^0_{sus,50}$ (or $\psi^0_{sus,10}$		and uncra	cked c	oncret	te C20	/25						
୍ରୁ l: 24°C/40°C [Dry, wet	Ψ^0 sus, 50 =						0,	90				
O°C/80°C (آي آي آ	concrete	Ψ^0 sus,100						0,	87				
	ınd looded		[-]					0,	75				
	ore hole	Ψ^0 sus,50						0,	66				
Increasing factors for concre	ete	Ψς	[-]						20) ^{0,1}				
Characteristic bond resistan			k,ucr,50 =				Ψ. •	τ _{Rk,uc}					
depending on the concrete	strength							,	, , ,	/			
class Influence of cracked conc	roto on oo		,ucr,100 =	oporo	to con	o failu		^τ Rk,ucr	,100,(C	20/25)			
Factor for influence of crac													
concrete		Ω_{cr}	[-]	0,77	0,78	0,79	0,81	0,81	0,82	0,83	0,83	0,83	0,83
Bond-splitting failure													
Product basic factor		A _k	[-]					6	,7				
Exponent for influence of		1	r										
- concrete compressive stre	ngth	sp1	[-]	0,27									
- rebar diameter φ		sp2	[-]	0,36									
- concrete cover c _d	(2)	sp3	[-]	0,37									
- side concrete cover (c _{max}	/ c _d)	sp4	[-]						16				
- embedment length l _b		lb1	[-]					0,	49				
Concrete cone failure		k											
Uncracked concrete		k _{ucr,N}	[-]						1,0				
Cracked concrete		k _{cr,N}	[-]						,7 . 2)				
Edge distance		C _{cr,N}	[mm]						ا _b 3)				
Axial distance		s _{cr,N}	[mm]					3,0	اله ³⁾				
Installation factor													
	MAC	4				1,2		<u> </u>			2)		
for dry and wet concrete	CAC	γ _{inst}	[-]	1,0									
for flooded bore hole	HDB CAC	-		1,2									
¹⁾ Performance in Temperat		II and IV asse	l essed for w	ı orkina	life 50	vears	onlv	1	, -				
2) no performance assessed				5		,	,						
³⁾ see Annex A 1													
Würth injection system connection	າ WIT-UH	300/ WIT-V	'H 300/ W	/IT-VN	/ 300	for re	ebar						
Performances Characteristic resistance working life 50 and 100 y				quasi	-static	loadir	ng;			Δ	nne>	(C 1	