

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Zulassungs- und Genehmigungsstelle für Bauprodukte und Bauarten

Datum: Geschäftszeichen: 19.10.2023 III 54-1.42.3-35/22

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung

Nummer:

Z-42.3-478

Antragsteller:

Aarsleff Hasselager Allé 5 8260 VIBY J DÄNEMARK

Geltungsdauer

vom: 19. Oktober 2023 bis: 24. April 2027

Gegenstand dieses Bescheides:

Bauprodukte und deren Verwendung zur Ausführung von Schlauchliner zur Sanierung schadhafter erdverlegter Abwasserkanäle und -leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen "PAA-G-Liner", "PAA-G+-Liner", "PAA-GL-Liner" und "PAA-GF-Liner" im Nennweitenbereich von DN 150 bis DN 1200 sowie "PAA-EG-Liner" im Nennweitenbereich von DN 150 bis DN 600 und "PAA-G3-Liner" sowie "PAA-GF3-Liner im Nennweitenbereich DN 100 bis DN 300

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen/genehmigt.

Dieser Bescheid umfasst 26 Seiten und 41 Anlagen.

Diese allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung ersetzt die allgemeine bauaufsichtliche Zulassung/allgemeine Bauartgenehmigung Nr. Z-42.3-478 vom 28. März 2022.

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Nr. Z-42.3-478

Seite 2 von 26 | 19. Oktober 2023

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit diesem Bescheid ist die Verwendbarkeit bzw. Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Verwender bzw. Anwender des Regelungsgegenstandes sind, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Verwender bzw. Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Verwendungs- bzw. Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- 7 Dieser Bescheid bezieht sich auf die von dem Antragsteller gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Grundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.

Seite 3 von 26 | 19. Oktober 2023

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Verwendungs- bzw. Anwendungsbereich

Dieser Bescheid gilt für die Herstellung und Verwendung von polyesterharzgestränkten (UP) Schlauchlinern mit den Bezeichnungen nach Tabelle 1 unter Verwendung von glasfaserverstärkten Kunststoff (GFK)-Schläuchen zur Renovierung erdverlegter, schadhafter Abwasserleitungen.

Folgende Profilquerschnitte und Nennweiten dürfen saniert werden:

Tabelle 1: "PAA-Schlauchliner"

Schlauchliner- bezeichnungen	Nennweitenbereich Kreisprofile DN	Nennweitenbereich Eiprofile mm/mm
"PAA-G-Liner"	150 bis 1200	250/375 bis 800/1200
"PAA-G+-Liner"	150 bis 1200	250/375 bis 800/1200
"PAA-EG-Liner"	150 bis 600	250/375 bis 400/600
"PAA-GL-Liner"	150 bis 1200	250/375 bis 800/1200
"PAA-GF-Liner"	150 bis 1200	250/375 bis 800/1200
"PAA-G3-Liner"	100 bis 300	-
"PAA-GF3-Liner"	100 bis 300	-

A) Eiprofilguerschnitten mit Breiten- und Höhenmaße im Verhältnis von B:H = 2:3

Dieser Bescheid gilt für die Renovierung bzw. Sanierung von Abwasserleitungen, die dazu bestimmt sind häusliches Abwasser gemäß DIN 1986-3¹ abzuleiten.

Die Schlauchliner dürfen zur Renovierung bzw. zur Sanierung von Abwasserleitungen mit Kreisquerschnitten aus Beton, Stahlbeton, Steinzeug, asbestfreiem Faserzement, GFK, PVC-U, PE-HD und Gusseisen sowie für Abwasserleitungen mit Eiprofilquerschnitten aus Steinzeug, Beton oder gemauertem Klinker eingesetzt werden, sofern der Querschnitt der zu sanierenden Abwasserleitung den verfahrensbedingten Anforderungen und den statischen Erfordernissen genügt.

Es ist <u>immer</u> ein Schlauchliner mit einer eine PE/PA/PE-Außenfolie oder mit einem Preliner einzusetzen.

Schadhafte Abwasserleitungen werden durch Einbringen und nachfolgender UV- oder Dampfhärtung eines polyesterharzgetränkten (imprägnierten) Glasfaserschlauches saniert.

Die Härtung des imprägnierten Glasfaserschlauches erfolgt entweder mittels UV-Bestrahlung oder mittels Dampfbeaufschlagung.

Die wasserdichte Wiederherstellung der Seitenzuläufe ist aus der jeweiligen sanierten Abwasserleitung heraus nur mittels Verfahren zulässig, die über einen bauaufsichtlichen Verwendbarkeitsnachweis verfügen.

1.42.3-35/22

DIN 1986-3

Seite 4 von 26 | 19. Oktober 2023

2 Bestimmungen für die Bauprodukte

2.1 Eigenschaften und Zusammensetzung

2.1.1 Allgemeines

Soweit zutreffend, entsprechen die in Abschnitt 1 bezeichneten Schlauchliner den Anforderungen von DIN EN ISO 11296-4², sie weisen die im Folgenden aufgeführten spezifischen Eigenschaften und Zusammensetzungen auf.

2.1.2 Werkstoffe der Komponenten der Schlauchliner im "M"-Zustand

2.1.2.1 Werkstoffe der Glasfaserschläuche und Harzsysteme

Der Werkstoff für die innere PA-Funktionsfolie und die äußere UV-geschützte PE/PA/PE-Schutzfolie sowie für die PE-Gleitfolie müssen den beim Deutschen Institut für Bautechnik hinterlegten Angaben entsprechen.

Für das Sanierungsverfahren werden Glasfaserschläuche mit einem mehrlagigen Wandaufbau in den Ausführungsarten mit den Bezeichnungen "PAA-G-Liner" (Anlage 1) und "PAA-G+-Liner" (Anlage 3), "PAA-EG-Liner" (Anlage 5), "PAA-G3-Liner" (Anlage 7), "PAA-GL-Liner" (Anlage 9), "PAA-GF3-Liner" (Anlage 11) und "PAA-GF-Liner" (Anlage 13) eingesetzt.

Für die Imprägnierung beider Ausführungen dürfen nur Harze verwendetet werden, die ebenfalls den beim Deutschen Institut für Bautechnik hinterlegten Rezepturangaben entsprechen müssen.

Es dürfen nur ungesättigte Polyesterharze (UP-Harze nach DIN 18820-1³, Tabelle 1, Gruppe 3 Iso-Npg und Ortho-Npg) des Typs 1130 oder des Typs 1140 nach Tabelle 3 von DIN 16946-2⁴ bzw. nach Gruppe 4 der Tabelle 2 der DIN EN 13121-1⁵ eingesetzt werden.

Die Polyesterharze müssen den beim Deutschen Institut für Bautechnik hinterlegten Rezepturen und IR-Spektren entsprechen. Die IR-Spektren sind auch vom Antragsteller dieses Bescheides bei der fremdüberwachenden Stelle zu hinterlegen.

Es dürfen nur E-CR-Glasfasern nach DIN EN ISO 2078⁶ verwendet werden, die den Anforderungen von DIN EN 14020-1⁷, DIN EN 14020-2⁸ und DIN EN 14020-3⁹ entsprechen. Glasfasern mit der Herstellerbezeichnung "Advantex" müssen den Anforderungen dieser Norm entsprechen.

Für die Verstärkung der dem Abwasser zugewandten harzreichen Innenschicht dürfen nur Synthesefaservliese eingesetzt werden, die den beim Deutschen Institut für Bautechnik hinterlegten Rezepturangaben entsprechen müssen.

2	DIN EN ISO 11296-4	Kunststoff-Rohrleitungssysteme für die Renovierung von erdverlegten drucklosen Entwässerungsnetzen (Freispiegelleitungen) – Teil 4: Vor Ort härtendes Schlauchlining (ISO 11296-4:2009, korrigierte Fassung 2010-06-01); Deutsche Fassung EN ISO 11296-4:2011; Ausgabe:2011-07	
3	DIN 18820-1	Laminate aus textilglasverstärkten ungesättigten Polyester- und Phenacrylatharzen für tragende Bauteile (GF-UP, GF-PHA); Aufbau, Herstellung und Eigenschaften; Ausgabe:1991-03	
4	DIN 16946-2	Reaktionsharzformstoffe; Gießharzformstoffe; Typen; Ausgabe:1989-03	
5	DIN EN 13121-1	Oberirdische GFK-Tanks und -Behälter – Teil 1: Ausgangsmaterialien; Spezifikations- und Annahmebedingungen; Deutsche Fassung EN 13121-1:2003; Ausgabe: 2003-10	
6	DIN EN ISO 2078	Textilglas – Garne - Bezeichnung (ISO 2078:1993); Deutsche Fassung EN ISO 2078:1994; Ausgabe:1994-12	
7	DIN EN 14020-1	Verstärkungsfasern - Spezifikation für Textilglasrovings – Teil 1: Bezeichnung; Deutsche Fassung EN 14020-1:2002; Ausgabe:2003-03	
8	DIN EN 14020-2	Verstärkungsfasern - Spezifikation für Textilglasrovings – Teil 2: Prüfverfahren und allgemeine Anforderungen; Deutsche Fassung EN 14020-2:2002; Ausgabe:2003-03	
9	DIN EN 14020-3	Verstärkungsfasern - Spezifikation für Textilglasrovings – Teil 3: Besondere Anforderungen: Deutsche Fassung EN 14020-3:2002: Ausgabe:2003-03	

Seite 5 von 26 | 19. Oktober 2023

Es dürfen nur Folien verwendet werden, deren Fehlstellen keine Anhaltspunkte für ein Versagen der Funktionsfähigkeit geben. Die Folien müssen einer Dehnung von ca. 30 % genügen, ohne dass Risse entstehen.

2.1.2.2 Werkstoffe für die Schachtanbindungen

tiges Nachmessen zu überprüfen.

Für das quellende Band (Hilfsstoff) im Bereich der Schachtanbindung des Schlauchliners dürfen nur extrudierte Profile, bestehend aus einem Chloroprene- (CR/SBR) Gummi und Wasser aufnehmendem Harz, verwendet werden. Die quellenden Bänder (Anlage 36) müssen bei Einlagerung in Wasser nach 72 h eine Volumenvergrößerung von mindestens 100 % aufweisen. Die Einhaltung der geometrischen Anforderungen (Profilform und -maße) nach Anlage 35 an die quellenden Bänder ist im Rahmen der Eingangskontrolle visuell und durch stichprobenar-

2.1.3 Umweltverträglichkeit

Unter Einhaltung der Besonderen Bestimmungen dieses Bescheids erfüllen die Bauprodukte die "Grundsätze zur Bewertung der Auswirkungen von Bauprodukten auf Boden und Grundwasser" (Fassung: 2011; Schriften des Deutschen Instituts für Bautechnik) und damit das von den "Anforderungen an bauliche Anlagen bezüglich der Auswirkungen auf Boden und Gewässer" (ABuG; Anhang 10 der Muster-Verwaltungsvorschrift Technische Baubestimmungen 2023/1) konkretisierte bauaufsichtliche Schutzniveau.

Der Erlaubnisvorbehalt, insbesondere in Wasserschutzgebiete, der zuständigen Wasserbehörde bleibt unberührt.

2.2 Herstellung, Verpackung, Transport, Lagerung und Kennzeichnung

2.2.1 Herstellung

2.2.1.1 Werksseitige Herstellung der GFK-Schlauchliner

Die Glasfaserschläuche inklusive der Synthesefaservliese und der inneren wie äußeren Folie müssen den Eigenschaften nach Abschnitt 2.1.2.1 entsprechen und sind im Werk des Vorlieferanten mit den entsprechenden erforderlichen Wanddicken zu fertigen. Der Antragsteller hat sich zur Überprüfung der in Abschnitt 2.1.2.1 genannten Eigenschaften des Glasfaserschlauches vom Vorlieferanten mindestens Werksbescheinigungen in Anlehnung an DIN EN 10204¹⁰ vorlegen zu lassen. Der Antragsteller hat sich zur Überprüfung der Eigenschaften des Harzes bei jeder Lieferung vom Vorlieferanten mindestens Werkszeugnisse 2.2 in Anlehnung an DIN EN 10204¹⁰ vorlegen zu lassen.

Die Harzimprägnierung findet im Werk des Antragstellers statt.

Für die Harzimprägnierung sind folgende Varianten möglich:

Variante 1:

Für die Harzimprägnierung der Glasfaserschläuche sind die Harzmischungen entsprechend den beim Deutschen Institut für Bautechnik hinterlegten Rezepturangaben mittels Mischanlage herzustellen.

Die Imprägnierung der Glasfaserschläuche mit den Harzmischungen erfolgt in einer Injektionsanlage. Direkt nach der Injektionsanlage befindet sich eine Anlage zur Umhüllung der Glasfaserschläuche mit den UV-Schutzfolien und zu deren Kalibrierung.

Variante 2:

Für die nachfolgende Harzimprägnierung der bereits mit der Außenfolie versehenen Glasfaserschläuche sind die Anteile der Komponenten des Reaktionsharzes entsprechend den beim Deutschen Institut für Bautechnik hinterlegten Rezepturangaben mittels Mischanlage und Zwangsmischer kontinuierlich zuzuführen. Die Einhaltung der Rezeptur ist durch Überprüfung der einzustellenden Zylinderhubvolumen vor Beginn der Mischung sicherzustellen. Die Einhaltung der Rezeptur ist permanent zu überwachen und zu kontrollieren. Die kontinuierliche Gewichtsabnahme der an die Misch- und Dosiereinrichtung angeschlossenen Gebinde ist zu

DIN EN 10204

Metallische Erzeugnisse - Arten von Prüfbescheinigungen; Deutsche Fassung EN 10204:2004; Ausgabe:2005-01

Seite 6 von 26 | 19. Oktober 2023

überwachen und zu protokollieren.

Für die Harzimprägnierung wird der Schlauchliner über einen Fördertisch geführt. Die Harzbefüllung des Schlauchliners ist kontinuierlich durchzuführen. Die Harzimprägnierung wird mittels Unterdruck von 0,2 bar bis 0,5 bar im Schlauchliner unterstützt. Das Harz ist mit Hilfe von Vorverteilwalzen über die Länge des Fördertisches zu verteilen. Anschließend ist der Schlauchliner durch ein Walzenwerk zu führen, um eine gleichmäßige Harzimprägnierung zu erreichen.

Der Schlauchliner ist anschließend lagenweise in geeignete lichtdichte Transportbehälter zu verpacken.

Die für die Schlauchlinerherstellung, Harzmischung und Harzimprägnierung zu beachtenden Fertigungsparameter sind beim Deutschen Institut für Bautechnik hinterlegt und sind der fremdüberwachenden Stelle bei der Durchführung der Fremdüberwachung nach Abschnitt 2.3.3 bekannt zu geben.

Bei der werksseitigen Herstellung der Glasfaserschläuche und der Harzimprägnierung der Glasfaserbahnen sind die einschlägigen Unfallverhütungsvorschriften und Arbeitsschutzvorschriften einzuhalten. Insbesondere sind die in der technischen Regel für Gefahrstoffe TRGS 900¹¹ "Grenzwerte in der Luft" enthaltenen Angaben hinsichtlich Styrol zu beachten. Es ist dafür zu sorgen, dass durch geeignete Maßnahmen (z. B. Absaugeinrichtungen) insbesondere die Styrolgrenzwerte nicht überschritten werden.

Bei der Handhabung der imprägnierten Schläuche sind die einschlägigen Unfallverhütungsvorschriften sowie die Vorschriften nach dem Gesetz über gefährliche Stoffe (Gefahrstoff-VO) zu beachten.

2.2.2 Verpackung, Transport, Lagerung

Das zum Herstellwerk des Antragstellers gelieferte Harz für die werksseitige Schlauchherstellung muss in geeigneten Lagerbehältern, in temperierten Lagerräumen mit einem überwachten Temperaturbereich von -20 °C bis +30 °C gelagert werden.

In den lichtdichten Transportbehältern sind die imprägnierten Schlauchliner für die UV-Härtung maximal sechs Monate nach dem Imprägnierdatum bei einer Temperatur zwischen -20 °C bis +30 °C lagerfähig.

Die Lagerfähigkeit der imprägnierten Schlauchliner mit Unterstützung von warmhärtenden Initatoren ist temperaturabhängig:

Lagertemperatur:Haltbarkeit:+30 °C3 Wochen+20 °C12 Wochen

Die imprägnierten Schlauchliner für die Dampfhärtung, sind in Transportbehältern unter lagenweiser Zugabe von Eis abzulegen. Die Behälter sind mit Isoliermatten auszustatten, so dass unter Eiszugabe und bei verschlossenem Behälter, bei einem Temperaturbereich von -20 °C bis +8 °C, eine Lagerung bis zu 10 Tage möglich ist. Alternativ zum Eis können die Schlauchliner auch in einer Kühlhalle gelagert werden und mittels Kühltransporte zur Baustelle gebracht werden.

Die Transportbehälter sind vor direkter Sonnenbestrahlung bzw. Wärmequellen zu schützen. Die für die UV-Härtung vorgesehenen Schlauchliner sind in lichtdichte Transportbehälter zu verpacken.

Bei Lagerung und Transport sind die einschlägigen Unfallverhütungsvorschriften zu beachten.

Seite 7 von 26 | 19. Oktober 2023

2.2.3 Kennzeichnung

Die Transportbehälter der GFK-Schläuche sind mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder, einschließlich der Angabe der Bescheidnummer Nr. Z-42.3-478, zu kennzeichnen. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Der Hersteller hat auf den Gebinden, auf der Verpackung, dem Beipackzettel oder im Lieferschein die Gefahrensymbole und H- und P-Sätze gemäß der Gefahrstoffverordnung und der EU-Verordnung Nr. 1907/2006 (REACH) sowie der jeweiligen aktuellen Fassung der CLP-Verordnung (EG) 1272/2008¹² anzugeben. Die Verpackungen müssen nach den Regeln der ADR¹³ in den jeweils geltenden Fassungen gekennzeichnet sein.

Zusätzlich sind anzugeben:

- Bezeichnungen der Schlauchliner "PAA-G-Liner", "PAA-G+-Liner", "PAA-EG-Liner", "PAA-G3-Liner" sowie "PAA-G5-Liner" und "PAA-GF-Liner"
- Nennweite
- Im Werk des Antragstellers gefertigte Wanddicke
- Schlauchlänge
- Datum der Harzimprägnierung
- Härtungsart: UV-Härtung oder Dampfhärtung
- Fertigungsstätte (Ort der Harzimprägnierung)
- Identifizierungsnummer
- Lagertemperaturbereich
- Hinweis auf die Lichtempfindlichkeit bei Schlauchliner für die UV-Härtung

2.3 Übereinstimmungsbestätigung

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Bauprodukte mit den Bestimmungen der von diesem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einer Übereinstimmungserklärung auf der Grundlage einer werkseigenen Produktionskontrolle und eines Übereinstimmungszertifikates einer hierfür anerkannten Zertifizierungsstelle sowie einer regelmäßigen Fremdüberwachung durch eine anerkannte Überwachungsstelle einschließlich einer Erstprüfung der Bauprodukte nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Bauprodukte eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Übereinstimmungserklärung hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

1272/2008

Verordnung (EG) Nr. 1272/2008 über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen

13 ADR

Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf Straßen (Accord européen relatif au transport international des marchandises Dangereuses par Route)

Allgemeine bauaufsichtliche Zulassung/ Allgemeine Bauartgenehmigung Nr. Z-42.3-478

Seite 8 von 26 | 19. Oktober 2023

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen der von diesem Bescheid erfassten allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen:

- Beschreibung und Überprüfung des Ausgangsmaterials
 - a) Werkstoffe der Schläuche

Der Betreiber des Herstellwerkes hat sich bei jeder Lieferung der Komponenten Glasfaserschlauch, Folien und Harz davon zu überzeugen, dass die geforderten Eigenschaften nach Abschnitt 2.1.2 eingehalten werden.

Dazu hat sich der Betreiber des Herstellwerkes vom jeweiligen Vorlieferanten entsprechende Werkszeugnisse 2.2 in Anlehnung an DIN EN 10204¹⁰ vorlegen zu lassen. Im Rahmen der Wareneingangskontrolle sind folgende Eigenschaften zu überprüfen:

Eigenschaften des Harzes:

- Viskosität (visuell)
- Reaktivität

Die Reaktivität ist bei jeder Harzcharge zu protokollieren.

Eigenschaften des Schlauchliners:

- Nachmessen der Wanddicke bezogen auf das Sanierungsprojekt
- b) Werkstoffe für die Schachtanbindung

Bei jeder Lieferung der quellenden Bänder hat sich der Antragsteller vom Vorlieferanten durch Vorlage von Werkszeugnissen 2.2 nach DIN EN 10204¹⁰ die in Abschnitt 2.1.2.2 genannten Eigenschaften bestätigen zu lassen.

Die Einhaltung der geometrischen Anforderungen (Profilform und –maße) nach Anlage 35 an die quellenden Bänder ist im Rahmen der Eingangskontrolle visuell und durch stichprobenartiges Nachmessen zu überprüfen.

- Kontrollen und Prüfungen, die während der Herstellung durchzuführen sind:
 - Es sind die Anforderungen nach Abschnitt 2.2.1 und Abschnitt 2.2.3 zu überprüfen.
- Kontrolle der Gebinde:

Es sind die Anforderungen an die Kennzeichnung nach Abschnitt 2.2.3 zu überprüfen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung der Bauprodukte bzw. der Ausgangsmaterialien und der Bestandteile,
- Art der Kontrolle oder Prüfung,
- Datum der Herstellung und der Prüfung der Bauprodukte bzw. der Ausgangsmaterialien oder der Bestandteile,
- Ergebnis der Kontrollen und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen,
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlos-

Seite 9 von 26 | 19. Oktober 2023

sen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk sind das Werk und die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch einmal pro Halbjahr.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Bauprodukte durchzuführen. Die werkseigene Produktionskontrolle ist im Rahmen der Fremdüberwachung durch stichprobenartige Prüfungen durchzuführen. Dabei sind die Anforderungen der Abschnitte 2.1.2 und 2.2.3 zu überprüfen.

Die Anforderungen zur Herstellung nach Abschnitt 2.2.1 sind stichprobenartig zu überprüfen. Dazu gehören auch die Überprüfung des Härtungsverhaltens, der Lagerstabilität und des Flächengewichts nach Aushärtung, sowie die IR-Spektroskopien.

Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle. Bei der Fremdüberwachung sind auch die Werkszeugnisse 2.2 nach DIN EN 10204¹⁰ zu überprüfen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für die Anwendung des Regelungsgegenstandes

3.1 Planung und Bemessung

3.1.1 Planung

Die Angaben der notwendigen Kanal- bzw. Leitungsdaten sind vom Ausführenden zu überprüfen, dazu gehören insbesondere Linienführung, Tiefenlage, Lage der Seitenzuläufe, Schachttiefen, Grundwasser, Rohrverbindungen, hydraulische Verhältnisse, Revisionsöffnungen, Reinigungsintervalle. Vorhandene Videoaufnahmen müssen anwendungsbezogen ausgewertet werden. Die Richtigkeit der Angaben ist vor Ort zu prüfen. Die Bewertung des Zustandes der bestehenden Abwasserleitung der Grundstücksentwässerung ist hinsichtlich der Anwendbarkeit des Sanierungsverfahrens vorzunehmen.

Die hydraulische Wirksamkeit der Abwasserleitungen darf durch das Einbringen eines Schlauchliners nicht beeinträchtigt werden. Ein entsprechender Nachweis ist ggf. zu führen.

3.1.2 Bemessung der Schlauchliner im "I"-Zustand

3.1.2.1 Wanddicken und Wandaufbau

Es sind imprägnierte Schlauchliner für eine Sanierungsmaßnahme einzusetzen, welche nach dem Einzug und Härtung eine Mindestwanddicke bzw. Verbundwanddicke nach DIN EN ISO 11296-4² von 3 mm aufweisen müssen.

Nach dem Einziehen und der Aushärtung müssen die GFK-Schlauchliner einen mehrschichtigen Wandaufbau aufweisen; bestehend aus der äußeren UV-geschützen PE/PA/PE-Schutzfolie, der Glasfaserschicht, bestehend aus "Advantex-" oder E-CR-Matten, der Vlies-Verschleißschicht von 0,4 mm, sowie der inneren PA-Funktions/Innenfolie (in den Anlagen 1, 3, 5, 7, 9, 11 und 13). Die innere PA-Funktionsfolie wird nach der Aushärtung aus dem Schlauchliner entfernt.

Die für die jeweilige Sanierungsmaßnahme notwendige Wanddicke (Verbundwanddicke) des ausgehärteten GFK Schlauchliners ist durch eine statische Betrachtung entsprechend dem Arbeitsblatt DWA-A 143-2¹⁴ zu überprüfen (siehe hierzu auch Abschnitt 3.1.2.4).

¹⁴ DWA-A 143-2

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) - Arbeitsblatt 143: Sanierung von Entwässerungssystemen außerhalb von Gebäuden – Teil 2: Statische Berechnungen zur Sanierung von Abwasserleitungen und -kanälen mit Lining- und Montageverfahren; Ausgabe:2015-07

Seite 10 von 26 | 19. Oktober 2023

GFK-Schlauchliner mit den in den Tabellen der Anlagen 2, 4, 6, 8, 10, 12 und 14 angegebenen Wanddicken dürfen für die Sanierung von Abwasserleitungen eingesetzt werden, wenn das Altrohr-Bodensystem allein tragfähig ist (ohne Unterstützung des umgebenden Bodens), d. h. keine Risse (ausgenommen Haarrisse mit Rissbreiten unter 0,15 mm bzw. bei Stahlbetonrohren unter 0,3 mm) und die Nennsteifigkeit SN \geq 500 N/m² eingehalten wird. Befinden sich ein oder mehrere durchgehende Längsrisse im Altrohr sind Bodenuntersuchungen, z. B. durch Rammsondierungen, erforderlich und es ist ein entsprechender rechnerischer Nachweis zu führen. Bei Infiltrationen ist der GFK-Schlauchliner zusätzlich hinsichtlich des Verformungsund Beulverhaltens zu bemessen.

Wenn das Altrohr-Bodensystem allein nicht mehr tragfähig ist, dürfen solche Abwasserleitungen mit Schlauchlinern mit den in den Anlagen 2, 4, 6, 8, 10, 12 und 14 aufgeführten Wanddicken (Verbundwanddicke) nur saniert werden, wenn durch einen Standsicherheitsnachweis entsprechend dem Arbeitsblatt DWA-A 143-2¹⁴ die durch den Schlauchliner aufzunehmenden statischen Belastungen nachgewiesen werden.

Für die Rechenwerte der Kurzzeitringsteifigkeiten des ausgehärteten GFK-Schlauchliners sind die Wanddicken in den Tabellen der Anlagen 2, 4, 6, 8, 10, 12 und 14 zu beachten.

Für die Nennsteifigkeiten SN und Kurzzeit-Ringsteifigkeiten SR in den Anlagen 15 bis 22 gelten folgende Beziehungen:

Für SN gilt: Für SR gilt:

$$SN = \frac{E \cdot s^3}{12 \cdot d_m^3}$$

$$SR = \frac{E \cdot s^3}{12 \cdot r_m^3}$$

(SN = Nennsteifigkeit in Anlehnung an DIN 16869-215)

Für den Lastfall Grundwasser ist der Schlauchliner zusätzlich hinsichtlich Beulen entsprechend dem Arbeitsblatt DWA-A 143-2¹⁴ zu bemessen (siehe hierzu auch Abschnitt 3.1.2. 4).

Unabhängig vom Ergebnis des Standsicherheitsnachweises darf der SDR-Maximalwert der Wanddicke (Verbundwanddicke) von 135 <u>nicht überschritten werden.</u>

3.1.2.2 Abmessungen von Schlauchlinern für Eiprofile

Mit dem Schlauchliningverfahren dürfen auch schadhafte Abwasserleitungen mit Eiprofilquerschnitten saniert werden, die den in der Anlage 15 genannten Breiten- und Höhenmaßen mit den dazugehörenden Wanddicken entsprechen. Andere Breiten- und Höhenverhältnisse dürfen aufgrund von vor Ort durchzuführender innerer Umfangsbestimmung der zu sanierenden Abwasserleitung ebenfalls saniert werden.

3.1.2.3 Physikalische Kennwerte des ausgehärteten Glasfaser-Harzverbundes

Nach Aushärtung der GFK-Schlauchliner (Laminat ohne PE/PA/PE-Beschichtung und ohne PE/PA-Innenfolie) müssen ausgehärtete Schlauchliner folgende Kennwerte mindestens aufweisen:

1) "PAA-EG-Liner" (DN 150 bis DN 600):

- Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: 1,5 g/cm $^3 \pm 10\%$

Härte in Anlehnung an DIN EN 59¹⁷: ≥ 40 IRHD

Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: ≥ 35 % (massenbezogen)

15 Rohre aus glasfaserverstärktem Polyesterharz (UP-GF), geschleudert, gefüllt DIN 16869-2 - Teil 2: Allgemeine Güteanforderungen, Prüfung; Ausgabe:1995-12 16 **DIN EN ISO 1183-2** Kunststoffe – Verfahren zur Bestimmung der Dichte von nicht verschäumten Kunststoffen - Teil 2: Verfahren mit Dichtegradientensäule (ISO 1183-2:2004); Deutsche Fassung EN ISO 1183-2:2004; Ausgabe:2004-10 17 DIN EN 59 Glasfaserverstärkte Kunststoffe; Bestimmung der Härte mit dem Barcol-Härteprüfgerät; Ausgabe:1977-11 Textilglasverstärkte Kunststoffe - Prepregs, Formmassen und Laminate - Bestim-18 **DIN FN ISO 1172** Textilglas- und Mineralfüllstoffgehalts; Kalzinierungsverfahren (ISO 1172:1996); Deutsche Fassung EN ISO 1172:1998; Ausgabe:1998-12

Seite 11 von 26 | 19. Oktober 2023

 Glasflächengewicht pro 	mm Wanddicke:	930 g/m ² ± 10 %
•	ehnung an DIN EN 1228 ¹⁹ :	≥ 11.800 MPa
	inung an DIN EN ISO 11296-42	= 11.000 Wil a
bzw. DIN EN ISO 17820	:	≥ 9.000 MPa
 Biegespannung σ_B in A bzw. DIN EN ISO 178²⁰ 	nlehnung an DIN EN ISO 11296-4² :	≥ 250 MPa
2) "PAA-G-Liner" (DN 150 bis	<u>s DN 1200):</u>	
 Dichte in Anlehnung an 	DIN EN ISO 1183-216:	$1,6 \text{ g/cm}^3 \pm 10\%$
 Härte in Anlehnung an I 	DIN EN 59 ¹⁷ :	≥ 40 IRHD
 Glasgehalt in Anlehnung 	g an DIN EN ISO 1172¹8:	≥ 46 % (massenbezogen)
 Glasflächengewicht pro 	mm Wanddicke:	$1.050 \text{ g/m}^2 \pm 10 \%$
 Kurzzeit-E-Modul in Anl 	ehnung an DIN EN 1228¹٩	
DN 150 bis DN 299:		≥ 15.600 MPa
 Kurzzeit-E-Modul in Anl 	ehnung an DIN EN 1228¹٩	
DN 300 bis DN 599:		≥ 16.000 MPa
 Kurzzeit-E-Modul in Anl 	ehnung an DIN EN 1228¹٩	
DN 600 bis DN 1200:		≥ 15.400 MPa
 Biege-E-Modul in Anleh bzw. DIN EN ISO 17820 	nung an DIN EN ISO 11296-4² DN 150 bis DN 299:	≥ 10.700 MPa
 Biege-E-Modul in Anleh bzw. DIN EN ISO 17820 	nung an DIN EN ISO 11296-4² DN 300 bis DN 599:	≥ 11.900 MPa
 Biege-E-Modul in Anleh bzw. DIN EN ISO 178²⁰ 	nung an DIN EN ISO 11296-4² DN 600 bis DN 1200:	≥ 13.300 MPa
 Biegespannung σ_{fB} in A bzw. DIN EN ISO 178²⁰ 	nlehnung an DIN EN ISO 11296-4² DN 150 bis DN 299:	≥ 187 MPa
 Biegespannung σ_{fB} in A bzw. DIN EN ISO 178²⁰ 	nlehnung an DIN EN ISO 11296-4² DN 300 bis DN 599:	≥ 241 MPa
 Biegespannung σ_{fB} in A bzw. DIN EN ISO 178²⁰ 	nlehnung an DIN EN ISO 11296-4 ² DN 600 bis DN 1200:	≥ 188 MPa
3) "PAA-G+-Liner" (DN 150 b	is DN 1200):	
Dichte in Anlehnung an		1,6 g/cm ³ ± 10%
 Härte in Anlehnung an I 	DIN EN 59 ¹⁷ :	≥ 40 IRHD
 Glasgehalt in Anlehnung 	g an DIN EN ISO 1172¹8:	≥ 53 % (massenbezogen)
 Glasflächengewicht pro 	mm Wanddicke:	1.050 g/m ² ± 10 %
 Kurzzeit-E-Modul in Anl 	ehnung an DIN EN 1228¹9	≥ 19.100 MPa
	nung an DIN EN ISO 11296-4²	≥ 16.015 MPa
 Biegespannung σ_{fB} in A bzw. DIN EN ISO 178²⁰ 	nlehnung an DIN EN ISO 11296-4² :	≥ 188 MPa

19	DIN EN 1228	Kunststoff-Rohrleitungssysteme - Rohre aus glasfaserverstärkten duroplastischen
		Kunststoffen (GFK) - Ermittlung der spezifischen Anfangs-Ringsteifigkeit; Deutsche
		Fassung EN 1228:1996; Ausgabe:1996-08
20	DIN EN ISO 178	Kunststoffe - Bestimmung der Biegeeigenschaften (ISO 178:2019); Deutsche
		Fassung EN ISO 178:2019: Ausgabe:2019-08

Seite 12 von 26 | 19. Oktober 2023

≥ 325 MPa

4) "PAA-GL-Liner" (DN 150 bis DN 1200):	
 Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: 	$1,6 \text{ g/cm}^3 \pm 10\%$
 Härte in Anlehnung an DIN EN 59¹⁷: 	≥ 40 IRHD
 Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: 	≥ 51 % (massenbezogen)
 Glasflächengewicht pro mm Wanddicke: 	$890 \text{ g/m}^2 \pm 10 \%$
 Kurzzeit-E-Modul in Anlehnung an DIN EN 1228¹⁹: 	≥ 13.000 MPa
 Biege-E-Modul in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²⁰: 	≥ 11.700 MPa
– Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²0:	≥ 185 MPa
5) "PAA-GF-Liner" (DN 150 bis DN 400):	
 Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: 	$1,6 \text{ g/cm}^3 \pm 10\%$
 Härte in Anlehnung an DIN EN 59¹⁷: 	≥ 40 IRHD
 Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: 	≥ 53 % (massenbezogen)
 Glasflächengewicht pro mm Wanddicke: 	940 g/m $^2 \pm 15 \%$
 Kurzzeit-E-Modul in Anlehnung an DIN EN 1228¹⁹: 	≥ 18.940 MPa
 Biege-E-Modul in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²⁰: 	≥ 15.150 MPa
– Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²0:	≥ 225 MPa
6) "PAA-GF-Liner" (DN 401 bis DN 700):	
 Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: 	$1,6 \text{ g/cm}^3 \pm 10\%$
 Härte in Anlehnung an DIN EN 59¹⁷: 	≥ 40 IRHD
 Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: 	≥ 53 % (massenbezogen)
 Glasflächengewicht pro mm Wanddicke: 	980 g/m $^2 \pm 15 \%$
 Kurzzeit-E-Modul in Anlehnung an DIN EN 1228¹⁹: 	≥ 20.500 MPa
 Biege-E-Modul in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²⁰: 	≥ 16.400 MPa
 Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 11296-4² 	2 10.400 MFa
bzw. DIN EN ISO 17820:	≥ 245 MPa
7) "PAA-GF-Liner" (DN 701 bis DN 1200):	
 Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: 	$1,6 \text{ g/cm}^3 \pm 10\%$
 Härte in Anlehnung an DIN EN 59¹⁷: 	≥ 40 IRHD
 Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: 	≥ 53 % (massenbezogen)
 Glasflächengewicht pro mm Wanddicke: 	$1.044 \text{ g/m}^2 \pm 15 \%$
 Kurzzeit-E-Modul in Anlehnung an DIN EN 1228¹⁹: 	≥ 22.800 MPa
 Biege-E-Modul in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²⁰: 	≥ 18.250 MPa

Z26330.23 1.42.3-35/22

Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²0:

Seite 13 von 26 | 19. Oktober 2023

8) "PAA-G3-LINER" (DN 100 bis DN 300):

 Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: $1.5 \text{ g/cm}^3 \pm 10\%$

 Härte in Anlehnung an DIN EN 59¹⁷: ≥ 40 IRHD

 Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: ≥ 54 % (massenbezogen)

 $1.050 \text{ g/m}^2 \pm 10 \%$ Glasflächengewicht pro mm Wanddicke:

Kurzzeit-E-Modul in Anlehnung an DIN EN 122819: ≥ 13.100 MPa

Biege-E-Modul in Anlehnung an DIN EN ISO 11296-42

bzw. DIN EN ISO 17820: ≥ 12.800 MPa

Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 11296-42 bzw. DIN EN ISO 17820:

≥ 255 MPa

9) "PAA-GF3-LINER" (DN 100 bis DN 300):

 Dichte in Anlehnung an DIN EN ISO 1183-2¹⁶: $1,5 \text{ g/cm}^3 \pm 10\%$

 Härte in Anlehnung an DIN EN 59¹⁷: ≥ 40 IRHD

 Glasgehalt in Anlehnung an DIN EN ISO 1172¹⁸: ≥ 54 % (massenbezogen)

- Glasflächengewicht pro mm Wanddicke: $907 \text{ g/m}^2 \pm 10 \%$

 Kurzzeit-E-Modul in Anlehnung an DIN EN 1228¹⁹: ≥ 14.250 MPa

Biege-E-Modul in Anlehnung an DIN EN ISO 11296-42

bzw. DIN EN ISO 17820: ≥ 11.400 MPa

Biegespannung σ_{fB} in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 17820:

≥ 180 MPa

≥ 140 MPa

Statische Berechnung des ausgehärteten Schlauchliners 3.1.2.4

Durch eine statische Berechnung ist die Standsicherheit der vorgesehenen Schlauchliner für jede Sanierungsmaßnahme entsprechend dem Arbeitsblatt DWA-A 143-2¹⁴ der "Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V." (DWA) vor der Ausführung nachzuweisen.

Für den Standsicherheitsnachweis der Schlauchliner sind folgende Werte, einschließlich des Teilsicherheitsbeiwertes m für den Schlauchlinerwerkstoff und dem Abminderungsfaktor A zur Ermittlung der Langzeitwerte in Anlehnung an DIN EN 76121 zu berücksichtigen:

Für die statische Berechnung sind folgende Kurz- und Langzeitwerte zu berücksichtigen:

1) "PAA-EG-Liner" DN 150 bis DN 600:

 Kurzzeit-E-Modul in Anlehnung an DIN EN 1228¹⁹: ≥ 11.800 MPa

Langzeit-E-Modul: ≥ 6.660 MPa

Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4²

bzw. DIN EN ISO 17820: ≥ 250 MPa

 Langzeit-Biegespannungen σ_{fB}: Teilsicherheitsbeiwert γ_M 1,35

 Abminderungsfaktor A 10.000 h-Wert: 1,77

2) "PAA-G-Liner" DN 150 bis DN 1200:

Kurzzeit-E Modul in Anlehnung an DIN EN 1228¹⁹

DN 150 bis DN 299: ≥ 15.600 MPa Langzeit-E Modul DN 150 bis DN 299: ≥ 10.540 MPa

Kurzzeit-E Modul in Anlehnung an DIN EN 1228¹⁹

DN 300 bis DN 599: ≥ 16.000 MPa

21 **DIN EN 761** Kunststoff-Rohrleitungssysteme - Rohre aus glasfaserverstärkten duroplastischen Kunststoffen (GFK) - Bestimmung des Kriechfaktors im trockenen Zustand; Deutsche Fassung EN 761:1994; Ausgabe:1994-08

Seite 14 von 26 | 19. Oktober 2023

	Langzeit-E Modul DN 300 bis DN 599:	≥ 12.400 MPa
-	Kurzzeit-E Modul in Anlehnung an DIN EN 1228 ¹⁹ DN 600 bis DN 1200:	≥ 15.400 MPa
_	Langzeit-E Modul DN 600 bis DN 1200:	≥ 11.400 MPa
_	Kurzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4 ² bzw. DIN EN ISO 178 ²⁰ DN 150 bis DN 299:	≥ 187 MPa
_	Langzeit-Biegespannungen σ _{fB} DN 150 bis DN 299:	≥ 126 MPa
_	Kurzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4² bzw. DIN EN ISO 178²0 DN 300 bis DN 599:	≥ 241 MPa
_	Langzeit-Biegespannungen σ _{fB} DN 300 bis DN 599:	≥ 186 MPa
_	Kurzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4 ² bzw. DIN EN ISO 178 ²⁰ DN 600 bis DN 1200:	≥ 188 MPa
_	Langzeit-Biegespannungen σ _{fB} DN 600 bis DN 1200:	≥ 139 MPa
_	Teilsicherheitsbeiwert γ _M	1,35
_	Abminderungsfaktor A 10.000 h-Wert DN 150 bis DN 299:	1,48
_	Abminderungsfaktor A 10.000 h-Wert DN 300 bis DN 599:	1,29
_	Abminderungsfaktor A 10.000 h-Wert DN 600 bis DN 1200:	1,35
3) <u>"F</u>	PAA-G+-Liner" DN 100 bis DN 1200:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 19.100 MPa
_	Langzeit-E-Modul:	≥ 15.040 MPa
_	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4 bzw. DIN EN ISO 17820:	² ≥ 188 MPa
_	Langzeit-Biegespannungen σ_{fB} :	≥ 148 MPa
_	Teilsicherheitsbeiwert $\gamma_{ ext{M}}$	1,35
_	Abminderungsfaktor A 10.000 h Wert:	1,27
4) <u>"F</u>	PAA-GL-Liner" DN 150 bis DN 1200:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 13.000 MPa
_	Langzeit-E-Modul:	≥ 9.090 MPa
_	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4 bzw. DIN EN ISO 17820:	² ≥ 185 MPa
_	Langzeit-Biegespannungen σ_{fB} :	≥ 129 MPa
_	Teilsicherheitsbeiwert γ _M	1,35
_	Abminderungsfaktor A 10.000 h-Wert:	1,40
5) <u>"F</u>	PAA-GF-Liner" DN 150 bis DN 400:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 18.940 MPa
_	Langzeit-E-Modul:	≥ 15.915 MPa
-	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4 bzw. DIN EN ISO 17820:	₂ ≥ 225 MPa
_	Langzeit-Biegespannungen σ _{fB} :	≥ 189 MPa
_	Teilsicherheitsbeiwert γ_{M}	1,35
_	Abminderungsfaktor A 2.000 h-Wert:	1,19

Seite 15 von 26 | 19. Oktober 2023

6) <u>"F</u>	PAA-GF-Liner" DN 401 bis DN 700:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 20.500 MPa
-	Langzeit-E-Modul:	≥ 17.672 MPa
_	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4	2
	bzw. DIN EN ISO 178 ²⁰ :	≥ 245 MPa
-	Langzeit-Biegespannungen $\sigma_{ extsf{fB}}$:	≥ 211 MPa
_	Teilsicherheitsbeiwert γ _M	1,35
-	Abminderungsfaktor A 2.000 h-Wert:	1,16
7) <u>"F</u>	PAA-GF-Liner" DN 701 bis DN 1200:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 22.800 MPa
_	Langzeit-E-Modul:	≥ 18.842 MPa
_	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4	2
	bzw. DIN EN ISO 178 ²⁰ :	≥ 325 MPa
-	Langzeit-Biegespannungen $\sigma_{ extsf{fB}}$:	≥ 268 MPa
_	Teilsicherheitsbeiwert γ _M	1,35
-	Abminderungsfaktor A 2.000 h-Wert:	1,21
8) <u>"F</u>	PAA-G3-Liner" DN 100 bis DN 300:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 13.100 MPa
_	Langzeit-E-Modul:	≥ 8.506 MPa
_	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4	2
	bzw. DIN EN ISO 178 ²⁰ :	≥ 255 MPa
-	Langzeit-Biegespannungen $\sigma_{ extsf{fB}}$:	≥ 166 MPa
_	Teilsicherheitsbeiwert γ _M	1,35
_	Abminderungsfaktor A 10.000 h Wert:	1,54
9) <u>"F</u>	PAA-GF3-Liner" DN 100 bis DN 300:	
_	Kurzzeit-E-Modul in Anlehnung an DIN EN 1228 ¹⁹ :	≥ 14.250 MPa
_	Langzeit-E-Modul:	≥ 10.477 MPa
_	Kurzzeit-Biegespannungen σ_{fB} in Anlehnung an DIN EN ISO 11296-4	2
	bzw. DIN EN ISO 178 ²⁰ :	≥ 180 MPa
_	Langzeit-Biegespannungen $\sigma_{ extsf{fB}}$:	≥ 132 MPa
_	Teilsicherheitsbeiwert γ _M	1,35
_	Abminderungsfaktor A 2.000 h Wert:	1,36

3.2 Ausführung

3.2.1 Allgemeines

Schadhafte Abwasserleitungen werden durch Einbringen und nachfolgender UV-Aushärtung eines UP-harzgetränkten (imprägnierten) Glasfaserschlauches saniert.

Dazu wird in die schadhafte Leitung eine Gleitfolie aus PE eingebracht. Auf dieser Gleitfolie wird der imprägnierte Glasfaserschlauch, der auf der Außenseite mit einer UV-geschützten PE/PA/PE-Schutzfolie und einer auf der Innenseite aufgebrachten PA-Funktionsfolie luftdicht umschlossen ist, in die schadhafte Leitung eingezogen und mittels Druckluftbeaufschlagung aufgestellt.

Die Härtung des imprägnierten Glasfaserschlauches erfolgt entweder mittels UV-Bestrahlung oder mittels Dampfbeaufschlagung.

Seite 16 von 26 | 19. Oktober 2023

Für die Ausführung des Schlauchliningverfahrens sind jeweils ein Start- und ein Zielschacht erforderlich. Zwischen diesen können auch mehrere Schächte durchquert werden, einschließlich der Durchquerung von Schächten mit Gerinneumlenkungen von bis zu 30 Grad.

Sofern Faltenbildung auftritt, darf diese nicht größer sein als in DIN EN ISO 11296-4² festgelegt ist.

Die wasserdichte Wiederherstellung der Seitenzuläufe ist nur mit Reparatur- bzw. Sanierungsverfahren zulässig, die über einen bauaufsichtlichen Verwendbarkeitsnachweis verfügen.

Der Antragsteller hat dem Ausführenden ein Handbuch mit Beschreibung der einzelnen, auf die Ausführungsart bezogenen, Handlungsschritte zur Verfügung zu stellen (siehe auch Abschnitt 3.2.3).

Der Antragsteller hat außerdem dafür zu sorgen, dass die Ausführenden hinreichend mit dem Verfahren vertraut gemacht werden. Die hinreichende Fachkenntnis des ausführenden Betriebes kann, z. B. durch ein entsprechendes Gütezeichen des Güteschutz Kanalbau e. V.²², dokumentiert werden.

3.2.2 Geräte und Einrichtungen

Mindestens für die Ausführung des Sanierungsverfahrens erforderliche Geräte, Komponenten und Einrichtungen sind:

- Geräte zur Kanalreinigung
- Geräte zur Kanalinspektion (DWA-M 149-2²³)
- Sanierungseinrichtung/Fahrzeugausstattung für die UV-Aushärtung:
 - GFK-Schlauchliner in den passenden Nennweiten (Anlagen 1 bis 14)
 - nennweitenbezogene PE-Gleitfolie
 - UV-Lichtketten (UV-Strahlerketten / UV-Lichtkerne (nennweitenbezogen))
 - elektrische Leitungen für die Übertragung der Temperaturmessdaten
 - Temperaturmesssonden
 - UV-Ersatzstrahler
 - Vergleichsmesseinrichtung für die UV-Strahlungsmessungen
 - Drallfänger (zur Vermeidung des Verdrehens während des Schlauchlinereinzuges)
 - Verschlussstopfen (als Packer bezeichnet) mit Druckluftanschlüssen (nennweitenbezogen) DN 150 bis DN 1200 und für eiförmige Querschnitte in den Abmessungen 250 mm/375 mm bis 950 mm/14250 mm
 - Kompressor (einschließlich Ersatzkompressor) oder alternativ einen Verdichter
 - Druckluftschläuche
 - Stromgenerator/Stromversorgung
 - Radialverdichter
 - Seilwinde mit Kontroll- und Steuerungseinrichtung für die Einzugskräfte
 - · Werkstatt- und Geräteraum
 - Hebevorrichtung
 - Steuerungseinheit mit Bildschirm und Videokamera inklusive computergesteuerter Erfassung der Aushärteparameter
 - · Kantenschutz am Mannloch und zwischen Schacht und Abwasserleitung
 - ggf. Sozial- und Sanitärräume

²² Güteschutz Kanalbau e. V.; Linzer Str. 21, Bad Honnef, Telefon: (02224) 9384-0, Telefax: (02224) 9384-84

DWA-M 149-2

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) - Merkblatt 149: Zustandserfassung und -beurteilung von Entwässerungssystemen außerhalb von Gebäuden - Teil 2: Kodiersystem für die optische Inspektion; Ausgabe:2013-12

Seite 17 von 26 | 19. Oktober 2023

- Sanierungseinrichtung/Fahrzeugausstattung für die Dampfaushärtung:
 - GFK-Schlauchliner in den passenden Nennweiten (Anlagen 1 bis 14)
 - nennweitenbezogene PE-Gleitfolie
 - Dampferzeuger
 - Kontrolleinrichtungen für Dampftemperaturen
 - Manometer
 - Kompressor mit Druckluftschläuchen
 - Druckschlauch
 - Verschlussstopfen (als Packer bezeichnet) mit Druckluftanschlüssen (nennweitenbezogen) DN 150 bis DN 1200 und für eiförmige Querschnitte in den Abmessungen 250 mm/ 375 mm bis 950 mm /1425 mm
 - Stromgenerator
 - Dampfauslassvorrichtung
 - · Werkstatt und Geräteraum
 - ggf. Sozial- und Sanitärräume

Werden elektrische Geräte, z. B. Videokameras (oder sogenannte Kanalfernaugen), in die zu sanierende Leitung eingebracht, dann müssen diese entsprechend den VDE-Vorschriften beschaffen sein.

3.2.3 Durchführung der Sanierungsmaßnahme

3.2.3.1 Vorbereitende Maßnahmen

Vor dem Einziehen des Schlauchliners ist sicherzustellen, dass die betreffende Leitung sich nicht in Betrieb befindet; ggf. sind entsprechende Absperrblasen zu setzen und Umleitungen des Abwassers vorzunehmen (Anlage 23).

Die Richtigkeit der in Abschnitt 3.1.1 genannten Angaben ist vor Ort zu prüfen. Dazu ist der zu sanierende Leitungsabschnitt mit üblichen Hochdruckspülgeräten (Anlage 24) soweit zu reinigen, dass die Schäden auf dem Monitor bei der optischen Inspektion (Anlage 25) nach dem Merkblatt DWA-M 149-2²⁴ einwandfrei erkannt werden können.

Ggf. sind Hindernisse für den Einzug des Schlauches zu entfernen (z. B. Wurzeleinwüchse, hineinragende Seitenzulaufleitungen, Teerlinsen usw.). Beim Entfernen solcher Hindernisse ist darauf zu achten, dass dies nur mit geeigneten Werkzeugen erfolgt, so dass die vorhandene Abwasserleitung nicht zusätzlich beschädigt wird.

Die für die Anwendung des Sanierungsverfahrens zutreffenden Unfallverhütungsvorschriften sind einzuhalten.

Geräte des Sanierungsverfahrens, die in den zu sanierenden Leitungsabschnitt eingebracht werden sollen, dürfen nur verwendet werden, wenn zuvor durch Prüfung sichergestellt ist, dass keine entzündlichen Gase im Leitungsabschnitt vorhanden sind.

Hierzu sind die entsprechenden Abschnitte der folgenden Regelwerke zu beachten:

- GUV-R 126²⁴ (bisher GUV 17.6)
- DWA-Merkblatt 149-2²⁴
- DWA 199-1 und DWA-A 199-2²⁵

Der Antragsteller hat ein Handbuch mit Beschreibung der einzelnen, auf die Ausführungsart bezogenen, Handlungsschritte dem Ausführenden zur Verfügung zu stellen.

24 GUV-R 126

Sicherheitsregeln: Arbeiten in umschlossenen Räumen von abwassertechnischen Anlagen (bisher GUV 17.6); Ausgabe: 2007-06

²⁵ DWA-A 199-1

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) - Arbeitsblatt 199: Dienst- und Betriebsanweisung für das Personal von Abwasseranlagen, - Teil 1: Dienstanweisung für das Personal von Abwasseranlagen; Ausgabe:2011-11

Seite 18 von 26 | 19. Oktober 2023

Bei der Verwendung von Dampferzeugern und Geräten zur Dampfhärtung sind insbesondere das Gesetz über technische Arbeitsmittel (Gerätesicherheitsgesetz) und die Verordnung über Dampfkesselanlagen (Dampfkesselverordnung) einzuhalten.

Die für die Durchführung des Verfahrens erforderlichen Schritte sind unter Verwendung von Protokollformularen (z. B. Anlagen 38 und 39) für jede Sanierung festzuhalten.

3.2.3.2 Eingangskontrolle der Verfahrenskomponenten auf der Baustelle

Die angelieferten GFK-Schlauchliner sind auf der Baustelle dahingehend zu überprüfen, ob die in Abschnitt 2.2.3 genannten Kennzeichnungen vorhanden sind.

3.2.3.3 Anordnung von Stützrohren und Stützschläuchen

Vor dem Einzug des Schutzschlauches sind ggf. Stützrohre oder Stützschläuche zur Verlängerung der zu sanierenden Abwasserleitung bzw. im Bereich von Zwischenschächten zu positionieren, damit an diesen Stellen zum Abschluss der Sanierungsmaßnahme Proben (Probenschläuchen) entnommen werden können.

3.2.3.4 Überprüfung der UV-Strahler

Fabrikneue UV-Strahler sind nach einer Betriebsdauer von ca. 400 Stunden erstmalig unter Verwendung eines geeichten Messgerätes mittels Vergleichsmessung zu prüfen (Anlage 30), Danach ist jeder UV-Strahler in einem Rhythmus von 150 Betriebsstunden zu überprüfen.

- 3.2.3.5 Einzug der Gleitfolie bzw. Preliner oder zusätzliche aufgeglebte PVC-Außenfolie
- 3.2.3.5.1 Einzug der Gleitfolie bzw. Preliner

Bevor der in lichtdichten Transportbehältern auf die Baustelle angelieferte GFK-Schlauchliner in die schadhafte Abwasserleitung eingezogen werden kann, ist eine Gleitfolie aus z. B. PE einzuziehen (Anlage 26). Diese Folie dient als Gleit- und Schutzfolie für die Einziehung des GFK-Schlauchliners.

3.2.3.5.2 Zusätzliche aufgeklebte PVC-Außenfolie auf dem Schlauchliner

Bei einer zusätzlich aufgeklebten PVC-Außenfolie auf dem Schlauchliner, kann auf eine Gleitfolie verzichtet werden.

3.2.3.6 Setzen von Manschetten (Stützkappen)

Der GFK-Schlauchliner ist im Start- und Zielschacht sowie in den Zwischenschächten mit einer Manschette (Stützkappe) aus Gewebe oder Stahlblech zu versehen. Dabei muss es sich um eine Manschette handeln, die in ihrem Außendurchmesser dem Durchmesser des Schlauchliners angepasst ist. Diese soll somit die stützende Wirkung der vorhandenen Leitung simulieren. Es dürfen nur Stützkappen des Antragstellers oder solche, die in ihren mechanischen Eigenschaften gleichwertig sind, verwendet werden. Bei Eiprofilen mit Breiten- und Höhenmaßen von 200 mm / 300 mm bis 500 mm / 700 mm im nicht begehbaren Bereich kann ein solcher Probenschlauch in durchfahrenen Zwischenschächten gesetzt werden, wenn eine Probenentnahme aus der sanierten Leitung nicht möglich ist.

Nach erfolgtem Einzug des GFK-Schlauchliners und erfolgter Aushärtung sind in diesen Bereichen Proben (siehe hierzu Abschnitt 3.2.4) zu entnehmen.

3.2.3.7 Einzug des GFK-Schlauchliners

Es ist darauf zu achten, dass der Transportbehälter des GFK-Schlauchliners möglichst nicht direkter Sonneneinstrahlung ausgesetzt wird. Der GFK-Schlauchliner ist dem Transportbehälter so zu entnehmen, dass dabei die UV-Ummantelte PE/PA/PE-Schutzfolie des Schlauchliners nicht beschädigt wird. Am Schlauchlinerende ist ein so genannter "Einzugskopf" herzustellen, d. h. der Schlauchliner ist in Längsrichtung so zu falten, dass ein Einzugsseil befestigt werden kann (z. B. mittels Spannbändern).

Über die elektrisch oder hydraulisch betriebene Seilwinde ist der GFK-Schlauchliner ggf. über Umlenkrollen am Rand des Startschachtes und einem der Nennweite der zu sanierenden

DWA-A 199-2

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA) - Arbeitsblatt 199: Dienst- und Betriebsanweisung für das Personal von Abwasseranlagen, - Teil 2: Betriebsanweisung für das Personal von Kanalnetzen und Regenwasserbehandlungsanlagen; Ausgabe:2020-04

Seite 19 von 26 | 19. Oktober 2023

Leitung entsprechenden Umlenkbogens oder einer Umlenkrolle in die zu sanierende Leitung einzuziehen (Anlage 26). Dabei ist darauf zu achten, dass der Schlauchliner nicht beschädigt wird. Hierzu sollte der Rand des Einzugsschachtes und der Bereich zwischen Schacht und Abwasserleitung mit einem Kantenschutz versehen werden.

Zur Verringerung der Einzugskräfte kann ein biologisch abbaubares Öl auf die Gleitfolie aufgetragen werden. Beim Einziehen ist außerdem darauf zu achten, dass die in der Anlage 29 genannten maximalen Einzugskräfte nicht überschritten werden.

Das Einziehen soll möglichst ohne Halt der elektrischen Seilwinde erfolgen. Beim Einziehen ist durch die Verwendung von so genannten Drallfängern darauf zu achten, dass sich der Schlauchliner nicht in der Längsachse verdreht. Die tatsächlich aufgetretenen Einzugskräfte sind zu protokollieren. Die Einzugsgeschwindigkeit darf 5 m/min nicht überschreiten.

3.2.3.8 Positionieren von guellenden Bändern (Hilfsstoffen)

Nach dem Einzug des Schlauchliners und vor dem Aufstellen des Schlauchliners können in ca. 10 cm bis 35 cm Abstand vom Anfang der zu sanierenden Leitung ein oder zwei quellende Bänder (Anlage 36) eingesetzt werden. Diese sind von Hand zu positionieren. Das Setzen der quellenden Bänder kann außerdem bei jedem durchfahrenen Schacht und am Endschacht in gleicher Weise erfolgen.

3.2.3.9 Dampfhärtung des GFK-Schlauchliners

3.2.3.9.1 Aufstellen (Kalibrierung) des GFK-Schlauchliners

Nachdem der GFK-Schlauchliner eingezogen ist, sind die Schlauchlinerenden mit so genannten Packern zu verschließen. Mittels Druckluftbeaufschlagung ist der GFK-Schlauchliner aufzustellen (Anlage 28). Der Druck ist mit maximal 0,05 bar/min aufzubauen. Danach ist der Mindest-Arbeitsdruck langsam bis auf die in Tabelle 1 angegeben Werte zu erhöhen.

Tabelle 1: "Mindest-Arbeitsdrücke für die Dampfhärtung"

Mindest-Arbeitsdrücke		
DN	bar	
150 bis 250	0,70	
251 bis 450	0,60	
451 bis 550	0,50	
551 bis 650	0,35	
651 bis 800	0,30	
801 bis 900	0,25	
901 bis 1100	0,25	
1101 bis 1200	0,20	

Der Mindest-Arbeitsdruck ist mindestens zehn Minuten aufrecht zu halten. Erst nach Ablauf der Haltephase ist mit der Härtung zu beginnen (Anlagen 32 und 33). Der Mindest-Arbeitsdruck ist während der gesamten Aushärtungsphase aufrecht zu halten, damit ein formschlüssiges Anliegen des Schlauchliners an das Altrohr erreicht wird.

3.2.3.9.2 Härtung

Die Dampfhärtung ist unter Beachtung der Einbauanleitung des Antragstellers und den nachfolgenden Festlegungen auszuführen.

Für die Dampfhärtung sind Packer mit entsprechenden Anschlüssen, z. B. für Dampfdruckleitungen, Druckmessleitungen und Kondensatleitungsanschlüssen, zu verwenden. Zur Dampfhärtung ist im Bereich des Zielschachtes eine Druckleitung mit Ablassventil zu montieren. Außerdem sind sowohl im Bereich des Start- als auch des Zielschachtes sowie etwaigen Zwischenschächten Temperaturmessfühler im Bereich der tiefsten Stelle des Schlauchliners (im Sohlenbereich) anzuordnen.

Seite 20 von 26 | 19. Oktober 2023

Nachdem der Schlauchliner mittels Druckluft, wie in Abschnitt 3.2.3.8 beschrieben, aufgestellt wurde, sind die in Tabelle 1 genannten Mindest-Arbeitsdrücke aufrecht zu halten. Durch die an den Einlasspacker anzuschließende Dampfdruckleitung ist der aufgestellte Schlauchliner entsprechend der Vorgaben für die Dampfhärtung nach den Anlagen 32 und 33 auszuhärten. Dazu ist der Dampfdruck mittels Manometer zu überwachen und über das jeweilige Ablassventil im Zielschacht entsprechend der Aushärtekurve zu regulieren. Bei der Temperaturüberwachung ist die Minderung des Temperaturniveaus im Sohlenbereich aufgrund entstehenden Kondenswassers zu berücksichtigen.

Der Druck- und Temperaturverlauf sind phasenbezogen während der Dampfhärtung mittels eines analogen oder digitalen Aufzeichnungsgerätes zu erfassen. Das Protokoll muss der Echtzeit entsprechen. Bei etwaigem Ausfall des Aufzeichnungsgerätes ist der Protokollbogen nach Anlage 38 zu verwenden.

Bei der Ausführung der Dampfhärtung ist darauf zu achten, dass etwaige Geruchsbelästigungen weitgehend vermieden werden.

3.2.3.9.3 Kondensatabführung und Aushärtung

Bevor nach dem Ablassen des Dampfdruckes die Packer entfernt werden, ist im Bereich des Zielschachtes eine Kontrollöffnung herzustellen, über die festzustellen ist, ob entstandenes Kondensat hinreichend abgeführt wurde. Sollte dies nicht der Fall sein und Kondensat im Sohlenbereich vorhanden sein, dann ist zu prüfen, ob der Schlauchliner im Sohlenbereich noch weich ist. Sofern dies der Fall sein sollte, ist die Kontrollöffnung mittels Handlaminat zu verschließen und der Mindest-Arbeitsdruck nach Tabelle 1 wiederherzustellen und der Schlauchliner mit Dampf zu beaufschlagen. Anschließend sind die Kondensatabführung und der Zustand des Schlauchliners erneut zu prüfen.

3.2.3.9.4 Entfernen der Innenfolie nach Dampfhärtung

Nach der Abkühlung und Kontrolle der Kondensatabführung ist die Innenfolie zu entfernen.

3.2.3.10 Härtung des GFK-Schlauchliners mittels UV-Lichtquelle

3.2.3.10.1 Einsetzen der UV-Lichtquellen

Nachdem der GFK-Schlauchliner mit maximal 0,05 bar/min aufgestellt wurde ist die nennweitenbezogene UV-Lichtquelle (Anlage 27) ist in den GFK-Schlauchliner einzuführen. Es sind die Arbeitsdrücke nach Tabelle 2 zu beachten.

Tabelle 2: "Arbeitsdrücke für die Druckluftschleuse"

Arbeitsdrücke		
DN	Bar Toleranz: ± 0,05 bar	
150 bis 450	0,25	
> 500 bis 800	0,15	
> 800 bis 1200	0,10	

Bei Einsatz einer Druckluftschleuse ist die UV-Lichtquelle über die Schleuse in den GFK-Schlauchliner einzuführen. Das Zugseil der UV-Lichtquelle und die Stromversorgungsleitung sind durch die entsprechenden Öffnungen im Packer zu ziehen. Beim Einsetzen der UV-Lichtquelle in den GFK-Schlauchliner ist darauf zu achten, dass die Innenfolie nicht beschädigt wird. Für die Einführung der UV-Lichtquellen in den Schlauchliner sollte außerdem daruf geachtet werden, dass ggf. der Raum des nicht sanierten Leitungsabschnittes für die Ausrichtung des jeweiligen UV-Strahlerzuges genutzt wird.

3.2.3.10.2 Aufstellen (Kalibrierung) des GFK-Schlauchliners

Nach dem einbringen der UV-Lichtquelle ist der Druck wieder abzulassen. Der Packer ist zu verschließen. Anschließend ist der Schlauchliner mit maximal 0,05 bar/min auf die erforderlichen Mindest-Arbeitsdrücke nach Tabelle 3 aufzustellen.

Seite 21 von 26 | 19. Oktober 2023

Tabelle 3: "Arbeitsdrücke für die UV-Härtung"

Mindest-Arbeitsdrücke		
DN	bar	
150 bis 250	0,70	
251 bis 450	0,60	
451 bis 550	0,50	
551 bis 650	0,35	
651 bis 800	0,30	
801 bis 900	0,25	
901 bis 1100	0,25	
1101 bis 1200	0,20	

Zur Kontrolle, ob die Innenfolie unbeschädigt ist, ist der Mindest-Arbeitsdruck ca. 10 Minuten aufrecht zu halten. Erst nach Ablauf der Haltephase ist mit der Aushärtung zu beginnen. Der Mindest-Arbeitsdruck ist während der gesamten Aushärtephase aufrecht zu halten, damit eine hinreichende Verdichtung des Laminats und ein formschlüssiges Anlegen des Schlauchliners an das Altrohr erreicht wird.

3.2.3.10.3 Lichthärtung des GFK-Schlauchliners

Das Einschalten der UV-Lichtquelle (UV-Strahler) darf nur erfolgen, wenn sich keine Personen mehr im Startschacht aufhalten und die UV-Lichtquelle vollständig in den GFK-Schlauchliner eingeführt wurde.

Sobald die UV-Lichtquelle eingeschaltet ist, ist diese mit einer nennweitenabhängigen Geschwindigkeit entsprechend den Angaben in der Anlage 25 31 zum Zielschacht zu ziehen. Für die Ermittlung der UV-Strahlerkette und der Durchzugsgeschwindigkeit für Eiprofile ist mit dem Ersatzkreis zu rechnen.

Während der Lichthärtung wird durch die Reaktion des Harzes Wärme erzeugt. Die entstehenden Temperaturen im Oberflächenbereich des GFK-Schlauchliners dürfen +40 °C nicht unterschreiten und sollten +120 °C nicht überschreiten. Die Einhaltung des Temperaturbereichs ist mittels Temperaturmesssonden kontinuierlich während des Durchziehens der UV-Lichtquelle zu überprüfen und zu protokollieren. Übersteigt die Oberflächentemperatur +120 °C, ist der Luftdurchsatz mittels Ventilöffnung am Packer am Ziehschacht zu erhöhen. Der Innendruck muss dabei aufrecht gehalten werden. Die Temperatur kann auch durch das Durchzugs-Geschwindigkeitsspektrum mittels schneller oder langsamer bewegter UV-Lichtquelle verändert werden (Anlage 28).

Bei der Messung der Oberflächentemperatur ist darauf zu achten, dass die Sensoren richtig in den dafür vorgegebenen Positionen an der UV-Strahlerkette angebracht sind. Die UV-Strahlerkette ist mittels Radsätze im Schlauchliner zu zentrieren. Die Oberflächentemperatur ist unabhängig vom Feuchtigkeitsgrad des Altrohres, der Grundwasserkühlung, wenn das Altrohr unterhalb des Grundwasserspiegels liegt und den Jahreszeiten.

Der zeitliche Abstand des Einschaltens (Zündung) und der Abschaltung der UV-Strahlerketten ist mittels nachfolgender Formel zu bestimmen.

Der Druckverlauf während der Lichthärtung, die Position der UV-Lichtquelle, die Geschwindigkeit der UV-Lichtquelle, der Funktionszustand der UV-Strahlern, die Lufttemperatur im Oberflächenbereich des Schlauchliners (am Anfang, in der Mitte und am Ende der jeweiligen UV-Lichtquelle) und die Außentemperatur am Schlauchliner im Start- und Zielschacht sind jeweils zu protokollieren (z. B. Anlage 39).

Seite 22 von 26 | 19. Oktober 2023

3.2.3.10.4 Entfernen der Innenfolie nach Lichthärtung

Nach einer wenige Minuten dauernden Abkühlphase ist die UV-Lichtquelle aus dem ausgehärteten Schlauchliner nach dem Druckablassen zu entfernen. Im Anschluss daran sind die Packer herauszunehmen und die Innenfolie ist zu entfernen.

3.2.3.11 Dichtheitsprüfung des GFK-Schlauchliners

Als Zwischenprüfung muss die Dichtheit des ausgehärteten GFK-Schlauchliners vor dem Auffräsen der Zuläufe und der Herstellung der Schachtanbindungen nach den Kriterien von DIN EN 1610²⁶ (siehe auch Abschnitt 3.2.3.16) überprüft werden.

3.2.3.12 Abschließende Arbeiten

Nach Aushärtung und Abkühlung ist mittels druckluftbetriebener Schneidwerkzeuge im Startund Zielschacht das entstandene Innenrohr mit einem ca. 2 cm bis 3 cm breiten Überstand an der jeweiligen Schachtwand abzutrennen und zu entfernen. In den Zwischenschächten ist jeweils die obere Halbschale des entstandenen Rohres bis zum Auftritt im Schachtboden zu entfernen.

Aus den dabei ebenfalls entfernten Rohrabschnitten sind die für die nachfolgenden Prüfungen notwendigen Proben zu entnehmen (siehe hierzu Abschnitt 3.2.4).

Bei der Durchführung der Schneidarbeiten sind die betreffenden Unfallverhütungsvorschriften zu beachten.

3.2.3.13 Schachtanbindung

Schachtanbindungen sind unter Verwendung von quellenden Hilfsbändern im Bereich der Schachtanschlüsse zu positionieren sind wasserdicht auszuführen (Anlage 36).

Sowohl im jeweiligen Start- und ggf. auch im Zielschacht, als auch in den Zwischenschächten sind die entstandenen Überstände (siehe auch Abschnitt 3.2.3.12 Abschließende Arbeiten) des ausgehärteten Innenrohres zur Stirnwand des Schachtes (so genannter Spiegel) und die Übergänge zum Fließgerinne im Start- und Zielschacht wasserdicht auszubilden.

In den Bereichen, in denen quellende Bänder konstruktiv nicht einsetzbar sind, kann die wasserdichte Ausbildung der Anschlussbereiche zwischen Schlauchliner und Schacht nach der Aushärtung des Schlauchliners auch in den unten genannten Ausführungen a) bis e) erfolgen (Anlage 37):

- a) Angleichen der Übergänge mittels Reaktionsharzspachtel, für die eine allgemeine bauaufsichtliche Zulassung gültig ist,
- b) Angleichen der Übergänge mittels Mörtelsystemen, für die eine allgemeine bauaufsichtliche Zulassung gültig ist,
- c) GFK-Laminate, für die eine allgemeine bauaufsichtliche Zulassung gültig ist,
- d) Verpressen mit Polyurethan- (PU) oder Epoxid- (EP) Harzen, für die eine allgemeine bauaufsichtliche Zulassung gültig ist,
- e) Einbau von Schlauchlinerendmanschetten, für die eine allgemeine bauaufsichtliche Zulassung gültig ist.

Die sachgerechte Ausführung der wasserdichten Gestaltung der Übergänge ist sicherzustellen.

3.2.3.14 Wiederherstellung von Seitenzulaufleitungen

Nach Abschluss der Aushärtung mittels UV-Lichtquelle oder Dampfhärtung sind die Seitenzuläufe unter Verwendung von kameraüberwachten druckluft- bzw. hydraulisch betriebenen Fräsrobotern (Anlage 34) zu öffnen.

Die Steuerung und Kontrolle des Fräsvorganges ist vom Steuer- und Überwachungsraum des Fahrzeuges auszuführen bzw. mittels Video-/Monitoreinrichtungen zu überwachen. Der Ausführende hat dafür zu sorgen, dass beim Fräsen anfallende größere Rückstände des ausge-

DIN EN 1610

Einbau und Prüfung von Abwasserleitungen und -kanälen; Deutsche Fassung EN 1610:2015; Ausgabe:2015-12

Seite 23 von 26 | 19. Oktober 2023

härteten Schlauchliners aus der Abwasserleitung entfernt werden; geringfügige Reste, die in das Abwasser gelangen, sind jedoch unbedenklich.

Die wasserdichte Wiederherstellung der Seitenzuläufe ist nur mittels Verfahren zulässig, die über einen bauaufsichtlichen Verwendbarkeitsnachweis verfügen.

3.2.3.15 Beschriftung im Schacht

Im Start- oder Endschacht der Sanierungsmaßnahme sollte folgende Beschriftung dauerhaft und leicht lesbar angebracht werden:

- Art der Sanierung
- Bezeichnung des Leitungsabschnitts
- Nennweite
- Wanddicke des Schlauchliners
- Jahr der Sanierung

3.2.3.16 Abschließende Inspektion und Dichtheitsprüfung

Nach Abschluss der Arbeiten ist der sanierte Leitungsabschnitt optisch zu inspizieren. Es ist festzustellen, ob etwaige Werkstoffreste entfernt und keine hydraulisch nachteiligen Falten vorhanden sind. Es dürfen keine Glasfasern freiliegen.

Nach Aushärtung des Schlauchliners, einschließlich der Herstellung der Schachtanbindungen und der Wiederherstellung der Seitenzuläufe, ist die Dichtheit zu prüfen (Anlage 40). Dies kann auch abschnittsweise erfolgen.

Die Dichtheit der sanierten Leitungen ist mittels Wasser (Verfahren "W") oder Luft (Verfahren "L") nach DIN EN 1610²⁶ zu prüfen. Bei der Prüfung mittels Luft sind die Festlegungen in Tabelle 3 von DIN EN 1610²⁶, Prüfverfahren LD für feuchte Betonrohre und alle anderen Werkstoffe zu beachten. Mittels Hutprofiltechnik oder mit dem Injektionsverfahren sanierte Seitenzuläufe können auch separat unter Verwendung geeigneter Absperrblasen auf Wasserdichtheit geprüft werden.

3.2.4 Prüfungen an entnommenen Proben

3.2.4.1 Allgemeines

Aus dem ausgehärteten kreisrunden Schlauchliner bzw. Eiprofil-Schlauchliner im nicht begehbaren Bereich (siehe Festlegungen zu "Manschetten" in Abschnitt 3.2.3.6) sind auf der jeweiligen Baustelle Kreisringe bzw. Segmente zu entnehmen (Probenbegleitschein Anlage 41). Bei Abwasserleitungen mit Eiprofilquerschnitten, die Breiten-Höhenmaße von ≥ 600/900 mm aufweisen, sind Proben aus dem ausgehärteten Schlauchliner im Bereich der größten Beulbelastung, also im Querschnittsbereich von 3.00 Uhr bis 5.00 Uhr, zu entnehmen. Die Entnahmestelle ist anschließend mittels Handlaminat gleicher Wanddicke wieder zu verschließen.

Stellt sich heraus, dass die Probestücke für die genannten Prüfungen untauglich sind, dann können die einzuhaltenden Eigenschaften an Proben überprüft werden, die direkt aus dem ausgehärteten Schlauchliner entnommen werden. Für Schlauchliner mit Eiprofilquerschnitten ist die Probenahme in diesem Fall auch im nicht begehbaren Bereich im Querschnittsbereich von 3.00 Uhr bis 5.00 Uhr vorzunehmen.

Seite 24 von 26 | 19. Oktober 2023

3.2.4.2 Festigkeitseigenschaften

An entnommenen Kreisringen sind der Biege-E-Modul und die Biegespannung σ_{fB} zu bestimmen.

Bei diesen Prüfungen sind der 2-Minuten-Wert, der 1-Stunden-Wert und der 24-Stunden-Wert des Biege-E-Moduls sowie der 2-Minuten-Wert der Biegespannung σ_{fB} festzuhalten. Bei der Prüfung ist auch festzustellen, ob die Kriechneigung in Anlehnung an DIN EN ISO 899-2²⁷ von $K_n \le 9$ % entsprechend nachfolgender Beziehung eingehalten wird:

$$K_n = \frac{E_{1h} - E_{24h}}{E_{1h}} \times 100$$

Außerdem ist am ausgehärteten GFK-Schlauchliner der Biege-E-Modul und die Biegespannung $\sigma_{\rm fB}$ nach DIN EN ISO 11296-4² bzw. DIN EN ISO 178²0 (Drei-Punkt-Biegeprüfung) zu bestimmen, wobei gewölbte Probestäbe aus dem entsprechenden Kreisprofil bzw. aus dem Bereich der Eiprofilquerschnitte von 3.00 Uhr bis 5.00 Uhr zu verwenden sind, die in axialer Richtung eine Mindestbreite von 50 mm aufweisen sollen. Bei der Prüfung und Berechnung des E-Moduls ist die zwischen den Auflagepunkten des Probestabes gemessene Stützweite zu berücksichtigen.

Die festgestellten Kurzzeitwerte der E-Moduln und der Biegespannungen σ_{fB} müssen gleich oder größer zu den in Abschnitt 3.1.2.3 und Abschnitt 3.1.2.4 genannten Werten sein.

Beim Wechsel des Harzlieferanten ist zusätzlich an entnommenen Kreisringen der 2-Minuten-Wert, der 1-Stunden-Wert und der 24-Stunden-Wert der Ringsteifigkeit zu ermitteln. Die Ringsteifigkeitsprüfung ist entsprechend dem in DIN 53769-3²⁸ bzw. DIN EN 1228¹⁹ dargestellten Verfahren zu prüfen. Die Kriechneigung ist ebenfalls zu bestimmen.

3.2.4.3 Wasserdichtheit

Die Wasserdichtheit des ausgehärteten GFK-Schlauchliners ist an Prüfstücken, die aus dem ausgehärteten Schlauchliner entnommenen wurden und ohne Folienbeschichtung in Anlehnung an die Kriterien von DIN EN 1610²⁶ durchzuführen.

Die Prüfung an Prüfstücken kann entweder mit Überdruck oder Unterdruck von jeweils 0,5 bar erfolgen.

Bei der Unterdruckprüfung ist die Probe einseitig mit Wasser zu beaufschlagen. Bei einem Unterdruck von 0,5 bar darf während einer Prüfdauer von 30 Minuten kein Wasseraustritt auf der unbeaufschlagten Seite der Probe sichtbar sein.

Bei der Prüfung mittels Überdruck ist ein Wasserdruck von 0,5 bar während 30 Minuten aufzubringen. Auch bei dieser Methode darf auf der unbeaufschlagten Seite der Probe kein Wasseraustritt sichtbar sein.

3.2.4.4 Wanddicken und Wandaufbau

Die mittlere- und Gesamtwanddicke sowie der Wandaufbau nach den Bedingungen in Abschnitt 3.1.2.1 ist an Schnittflächen, z. B. unter Verwendung eines Lichtmikroskops mit ca. 10-facher Vergrößerung, zu überprüfen. Dabei ist zu beachten, dass zur Ermittlung der Verbundwanddicke (tragendes Laminat) die 0,4 mm Verschleißschicht sowie der eventuelle Harzüberschuss rechnerisch von der Gesamtwanddicke nach DIN EN ISO 11296-4² abgezogen wird. Es ist auch die Dicke der Reinharzschicht zu überprüfen. Außerdem ist der durchschnittliche Flächenanteil etwaiger Lunkerstellen nach DIN EN ISO 7822²9 zu prüfen.

27	DIN EN ISO 899-2	Kunststoffe - Bestimmung des Kriechverhaltens – Teil 2: Zeitstand-Biegeversuch bei Dreipunkt-Belastung (ISO 899-2:2003); Deutsche Fassung EN ISO 899-2:2003;	
		Ausgabe:2003-10	
28	DIN 53769-3	Prüfung von Rohrleitungen aus glasfaserverstärkten Kunststoffen; Kurzzeit- und Langzeit-Scheiteldruckversuch an Rohren; Ausgabe:1988-11	
29	DIN EN ISO 7822	Textilglasverstärkte Kunststoffe - Bestimmung der Menge vorhandener Lunker- Glühverlust, mechanische Zersetzung und statistische Auswertungsverfahren (ISO 7822:1990): Deutsche Fassung EN ISO 7822:1999: Ausgabe:2000-01	

Seite 25 von 26 | 19. Oktober 2023

3.2.4.5 Physikalische Kennwerte des ausgehärteten Schlauchliners

An den entnommenen Proben sind die in Abschnitt 3.1.2.3 genannten Prüfungen zur Dichte, zur Härte, zum Glasgehalt und zum Glasflächengewicht zu überprüfen.

3.2.5 Übereinstimmungserklärung über die ausgeführte Sanierungsmaßnahme

Die Bestätigung der Übereinstimmung der ausgeführten Sanierungsmaßnahme mit den Bestimmungen der von diesem Bescheid erfassten allgemeinen Bauartgenehmigung muss vom ausführenden Betrieb mit einer Übereinstimmungserklärung auf Grundlage der Festlegungen in den nachfolgenden Tabellen 4 und 5 erfolgen. Der Übereinstimmungserklärung sind Unterlagen über die Eigenschaften der Verfahrenskomponenten nach Abschnitt 2.1.2 und die Ergebnisse der Prüfungen nach den Tabellen 4 und 5 beizufügen.

Der Leiter der Sanierungsmaßnahme oder ein bei der Sanierung fachkundiger Vertreter des Leiters muss während der Ausführung der Sanierung auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten nach den Bestimmungen des Abschnitts 3.2 zu sorgen und dabei insbesondere die Prüfungen nach Tabelle 4 vorzunehmen oder sie zu veranlassen und die Prüfungen nach Tabelle 5 zu veranlassen. Für die in Tabelle 2 genannten Prüfungen sind Proben nach Abschnitt 3.2.3.3 aus den beschriebenen Probenschläuchen zu entnehmen. Anzahl und Umfang der in den Tabellen 4 und 5 ausgeführten Festlegungen sind Mindestanforderungen.

Die Prüfungen an Probestücken nach Tabelle 5 sind durch eine bauaufsichtlich anerkannte Überwachungsstelle (siehe Verzeichnis der Prüf-, Überwachungs- und Zertifizierungsstellen nach den Landesbauordnungen, Teil V, Nr. 9) durchzuführen.

Einmal im Halbjahr ist die Probeentnahme aus einem Schlauchliner einer ausgeführten Sanierungsmaßnahme von der zuvor genannten Überwachungsstelle durchzuführen. Diese hat zudem die Dokumentation der Ausführungen nach Tabelle 4 der Sanierungsmaßnahme zu überprüfen.

Tabelle 4: "Verfahrensbegleitende Prüfungen"

Gegenstand der Prüfung	Art der Anforderung	Häufigkeit
optische Inspektion der Leitung	nach Abschnitt 3.2.3.1 und DWA-M 149-2²³	vor jeder Sanierung
optische Inspektion der Leitung	nach Abschnitt 3.2.3.16 und DWA-M 149-2 ²³	nach jeder Sanierung
Geräteausstattung	nach Abschnitt 3.2.2	
Kennzeichnung der Behälter der Sanierungskomponenten	nach Abschnitt 3.2.3.2	
Einzugskräfte	nach Abschnitt 3.2.3.5	
Arbeitsdrücke	eitsdrücke nach den Abschnitten 3.2.3.9.1, 3.2.3.10.1 und 3.2.3.10.2 jede Bau	
Temperaturniveau und Geschwindigkeit der UV-Lichtquelle	nach Abschnitt 3.2.3.10.3	
Zustand der UV-Strahler	nach Abschnitt 3.2.3.4	
Dampftemperatur und Einwirkzeit	nach Abschnitt 3.2.3.9.2	
Luft- bzw. Wasserdichtheit	nach Abschnitt 3.2.3.16	

Seite 26 von 26 | 19. Oktober 2023


Tabelle 5: "Prüfungen an Probestücken"

Gegenstand der Prüfung	Art der Anforde- rung	Häufigkeit
Kurzzeitbiege-E-Modul, Kurzzeitbiegespannung σ _B und Kriechneigung an Rohrausschnitten oder an Kreisringen	nach den Abschnitten 3.2.4.1 und 3.2.4.2	
Dichte, Härte und Glasgehalt der Probe ohne innere und äußere Beschichtungsfolien	nach den Abschnitten 3.1.2.3 und 3.2.4.5	jede Baustelle, mindestens jeder zweite Schlauchliner
Wasserdichtheit der Probe ohne innere und äußere Beschichtungsfolien	nach Abschnitt 3.2.4.3	Schlauchliner
Wanddicken und Wandaufbau	nach Abschnitt 3.2.4.4	
Kurzzeit-E-Modul (Kurzzeit-Ringsteifigkeit) und Kriech- neigung an Rohrabschnitten oder -ausschnitten	nach den Abschnitten 3.1.2.3 und 3.2.4.2	bei jedem Wechsel des Harzlieferanten mit Deklaration der Harze
Harzidentität mittels IR-Spektroskopie	nach Abschnitt 2.1.2.	bei jedem Wechsel des Harzlieferanten mit Deklaration der Harze
Kriechneigung an Rohrabschnitten oder -ausschnitten	nach Abschnitt 3.2.4.2	bei Unterschreitung des in Abschnitt 3.1.2.4 genannten Kurzzeit- E-Moduls sowie mindes- tens 1 x Schlauchliner je Halbjahr

Die Prüfergebnisse sind aufzuzeichnen und auszuwerten; sie sind auf Verlangen dem Deutschen Institut für Bautechnik vorzulegen.

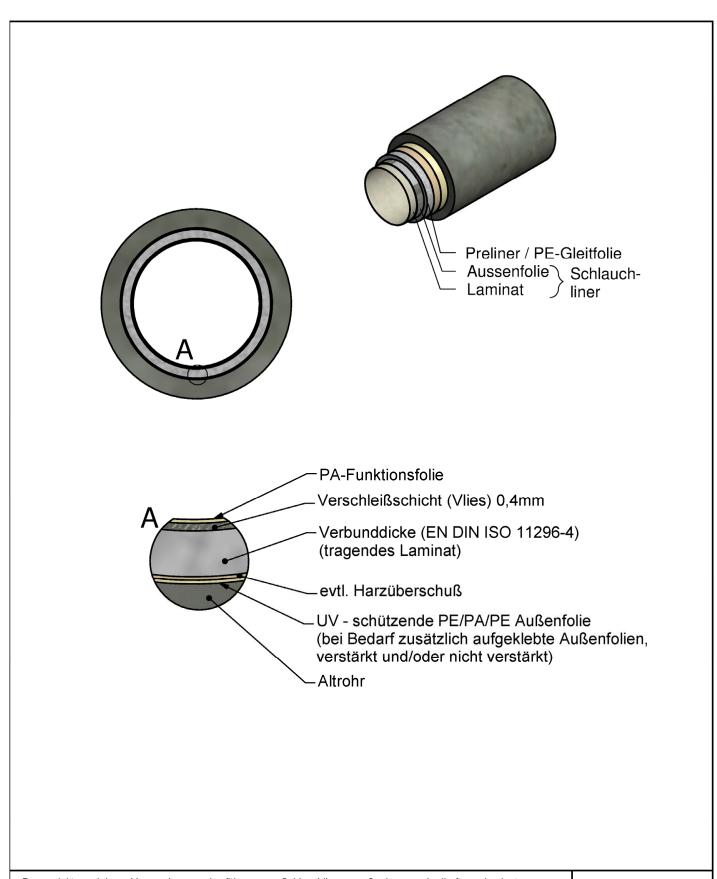
Ronny Schmidt Beglaubigt Referatsleiter Graeber

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 1

Aufbau des PAA-G-Liner

PAA-G-LINER


Aussen-	Mindest-
durchmesser	wanddicke
des Liners	ausgehärtet
mm	mm
150	3,0
200	3,0
250	3,0
300	3,0
350	3,0
400	3,0
450	3,2
500	3,6
600	4,4
700	5,1
800	5,8
900	6,6
1000	7,3
1100	8,0
1200	8,8

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

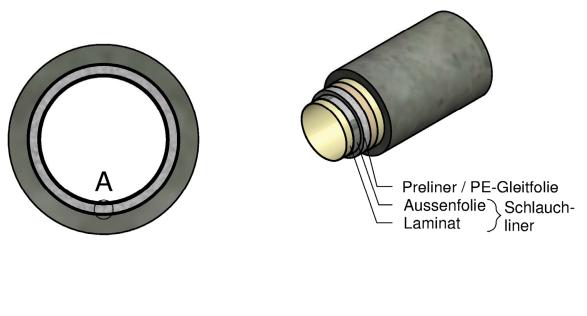
Anlage 2

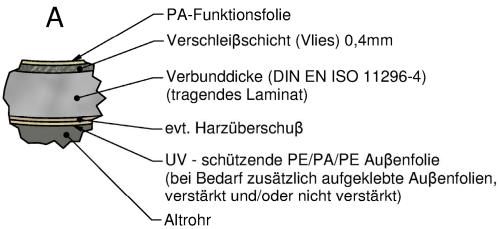
Wanddicken PAA-G-LINER

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 3

Aufbau des PAA-G+-Liner


Aussen-	Mindest-
durchmesser	wanddicke
des Liners	ausgehärtet
mm	mm
150	3,0
200	3,0
250	3,0
300	3,0
350	3,0
400	3,0
450	3,1
500	3,4
600	4,1
700	4,8
800	5,4
900	6,1
1000	6,8
1100	7,5
1200	8,2


Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 4

Wanddicken PAA-G+-LINER

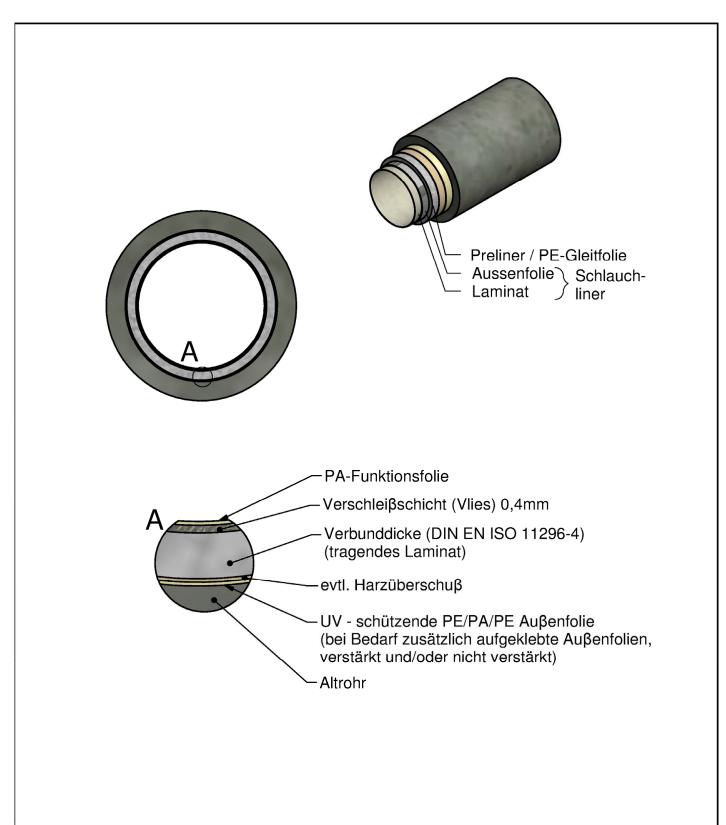
Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G+-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 5

Aufbau des PAA-EG-LINER

PAA-EG-LINER

Aussen- durchmesser	Mindest- wanddicke
des Liners	ausgehärtet
mm	mm
150	3,0
200	3,0
250	3,0
300	3,0
350	3,0
400	3,2
450	3,6
500	4,0
600	4,8


Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 6

Wanddicken PAA-EG-LINER

Z119429.23 1.42.3-35/22

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

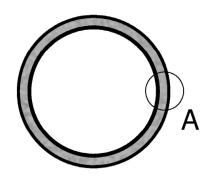
Anlage 7

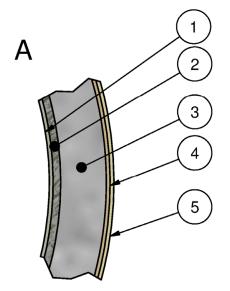
Aufbau des PAA-G3-Liner

PAA-G3-LINER

Aussen-	Mindest-
durchmesser	wanddicke
des Liners	ausgehärtet
mm	mm
100	3,0
150	3,0
200	3,0
250	3,0
300	3,0

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300


Anlage 8


Wanddicken PAA-G3-LINER

Z119429.23 1.42.3-35/22

Liner aufbau: PAA-GL-Liner

Variante 1

- 1) PA/PE-Innenfolie
- Harzreiche glasfasergebundene Verschleißschicht
- 3) Laminat (Advantex oder ECR-Glas Gewebe-Matte-Komplex)
- 4) Vlies (PP-Vlies)
- UV-Schutzfolie (PE/PA/PE-Folie)
 (bei Bedarf zusätzlich aufgeklebte Außenfolie, verstärkt und/ oder nicht verstärkt)

Variante 2

- 1) PA/PE-Innenfolie
- 2) Harzreiche vliesgebundene Verschleiβschicht
- 3) Laminat (Advantex oder ECR-Glas Gewebe-Matte-Komplex)
- 4) Vlies (PP-Vlies)
- 5) UV-Schutzfolie (PE/PA/PE-Folie)
 (bei Bedarf zusätzlich aufgeklebte Außenfolie, verstärkt und/
 oder nicht verstärkt)

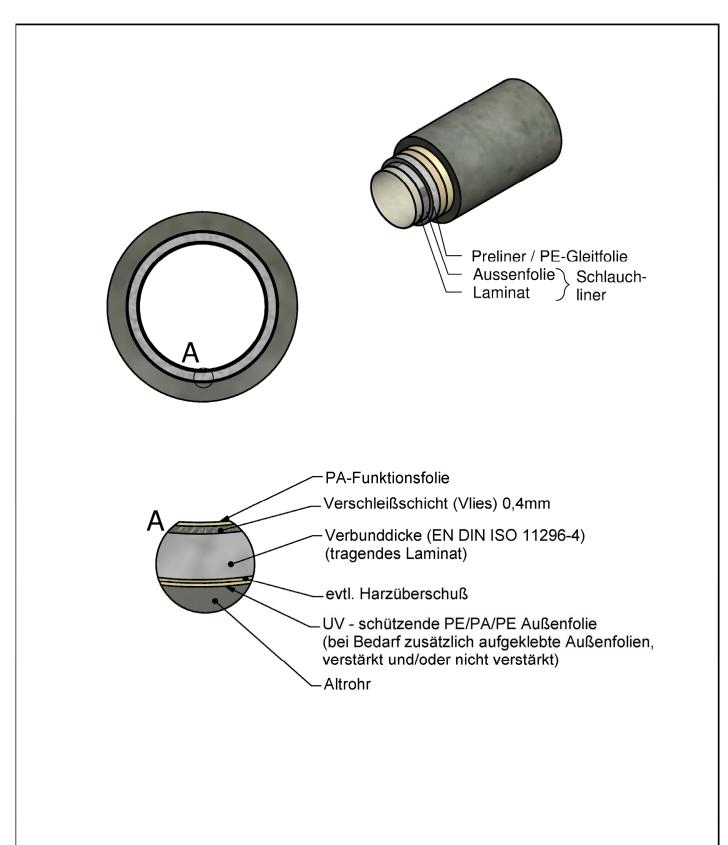
Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 9

Aufbau des PAA-GL-Liner

Z119429.23 1.42.3-35/22

PAA-GL-LINER


Mindest-
wanddicke
ausgehärtet
mm
3,0
3,0
3,0
3,0
3,0
3,1
3,5
3,9
4,6
5,4
6,2
7,0
7,7
8,5
9,3

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 10

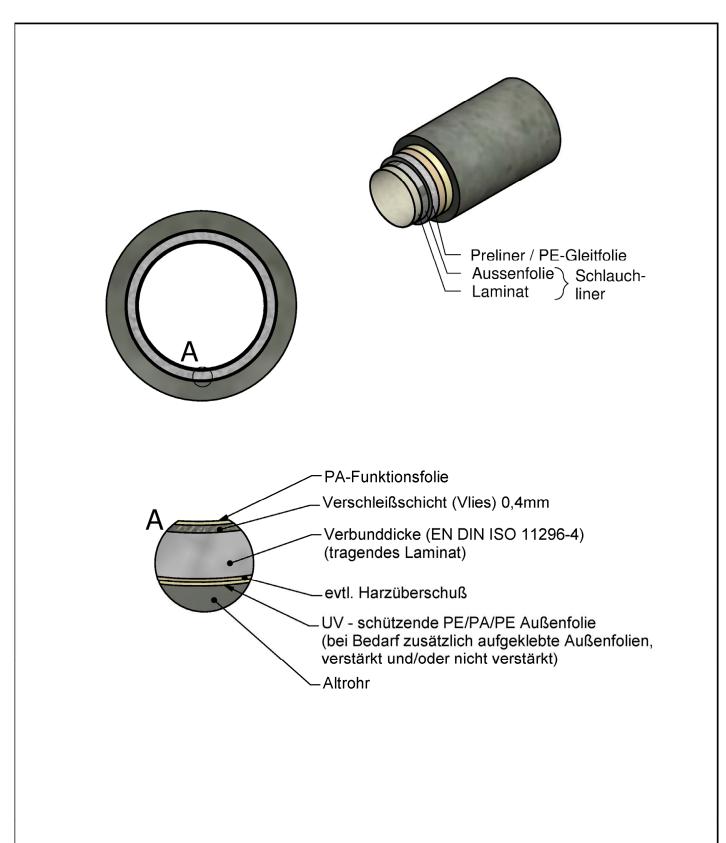
Wanddicken PAA-GL-Liner

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 11

Aufbau des PAA-GF3-Liner

PAA-GF3-LINER


Aussen-	Mindest-
durchmesser	wanddicke
des Liners	ausgehärtet
mm	mm
100	3,0
150	3,0
200	3,0
250	3,0
300	3,0

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G+-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 12

Wanddicken PAA-GF3-LINER

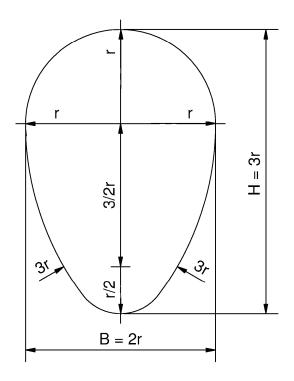
Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 13

Aufbau des PAA-GF-Liner

PAA-GF-LINER

Aussen-	Mindest-
durchmesser	wanddicke
des Liners	ausgehärtet
mm	mm
150	3,0
200	3,0
250	3,0
300	3,0
350	3,0
400	3,0
450	3,0
500	3,3
600	4,0
700	4,6
800	5,1
900	5,8
1000	6,4
1100	7,0
1200	7,7


Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 14

Wanddicken PAA-GF-LINER

Gänige Eiprofile

Ersatzkreis	Breite (B)	Höhe (H)
mm	mm	mm
252	200	300
316	250	375
379	300	450
441	350	525
505	400	600
631	500	750
719	570	855
757	600	900
883	700	1050
1010	800	1200
1136	900	1350

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 15

Gängige Eiprofile

PAA-G-LINER

Aussen- durchmesser des Liners	Mindest- wanddicke ausgehärtet	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}	Maximal- wand- dicke	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
150	3,0	10400	0,0832	12,0	665600	5,3248
200	3,0	4388	0,0351	12,0	280800	2,2464
250	3,0	2246	0,0180	12,0	143770	1,1502
300	3,0	1333	0,0104	12,0	85333	0,6827
350	3,0	840	0,0065	12,0	53738	0,4299
400	3,0	563	0,0044	12,0	36000	0,2880
450	3,2	500	0,0039	12,0	25284	0,2023
500	3,6	500	0,0039	12,0	18432	0,1475
600	4,4	500	0,0040	12,0	10267	0,0821
700	5,1	500	0,0040	12,0	6465	0,0517
800	5,8	500	0,0040	12,0	4331	0,0347
900	6,6	500	0,0040	12,0	3042	0,0243
1000	7,3	500	0,0040	12,0	2218	0,0177
1100	8,0	500	0,0040	12,0	1666	0,0133
1200	8,8	500	0,0040	12,0	1283	0,0103

a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2

b) Umfangs-E-Modul in Anlehnung an DIN EN 1228

 Ø 150 - Ø 299
 15.600
 N/mm²

 Ø 300 - Ø 599
 16.000
 N/mm²

 Ø 600 - Ø 1.200
 15.400
 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 16

Tabelle SN SR für PAA-G-Liner

PAA-G+-LINER

Aussen- durchmesser des Liners	Mindest- wanddicke ausgehärtet	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}	Maximal- wand- dicke	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
150	3,0	12733	0,1019	12,0	814933	6,5195
200	3,0	5372	0,0430	12,0	343800	2,7504
250	3,0	2750	0,0220	12,0	176026	1,4082
300	3,0	1592	0,0127	12,0	101867	0,8149
350	3,0	1002	0,0080	12,0	64149	0,5132
400	3,0	671	0,0054	12,0	42975	0,3438
450	3,1	500	0,0040	12,0	30183	0,2415
500	3,4	500	0,0040	12,0	22003	0,1760
600	4,1	500	0,0040	12,0	12733	0,1019
700	4,8	500	0,0040	12,0	8019	0,0641
800	5,4	500	0,0040	12,0	5372	0,0430
900	6,1	500	0,0040	12,0	3773	0,0302
1000	6,8	500	0,0040	12,0	2750	0,0220
1100	7,5	500	0,0040	12,0	2066	0,0165
1200	8,2	500	0,0040	12,0	1592	0,0127

a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2

b) Umfangs-E-Modul in Anlehnung an DIN EN 1228

19.100 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 17

Tabelle SN SR für PAA-G+-Liner

PAA-EG-LINER

Aussen- durchmesser des Liners	Mindest- wanddicke ausgehärtet	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}	Maximal- wand- dicke	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
150	3,0	7867	0,0629	4,0	18647	0,1492
200	3,0	3319	0,0266	4,0	7867	0,0629
250	3,0	1699	0,0136	4,0	4028	0,0322
300	3,0	983	0,0079	4,0	2331	0,0186
350	3,0	619	0,0050	4,0	1468	0,0117
400	3,2	500	0,0040	4,0	983	0,0079
450	3,6	500	0,0040	4,0	691	0,0055
500	4,0	500	0,0040	4,0	503	0,0040
600	4,8	500	0,0040	4,8	500	0,0040

a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2

b) Umfangs-E-Modul in Anlehnung an DIN EN 1228

11.800 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 18

Tabelle SN SR für PAA-EG-Liner

PAA-G3-LINER

Aussen- durchmesser des Liners	Mindest- wanddicke ausgehärtet	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}	Maximal- wand- dicke	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
100	3,0	29475	0,2358	4,0	69867	0,5589
150	3,0	8733	0,0699	4,0	20701	0,1656
200	3,0	3684	0,0295	4,0	8733	0,0699
250	3,0	1886	0,0151	4,0	4471	0,0358
300	3,0	1092	0,0087	4,0	2588	0,0207

- a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2
- b) Umfangs-E-Modul in Anlehnung an DIN EN 1228

13.100 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G+-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 19

Tabelle SN SR für PAA-G3-Liner

PAA-GL-LINER

Aussen- durchmesser	Mindest- wanddicke	Nenn- steifigkeit	Ring- steifigkeit	Maximal- wand-	Nenn- steifigkeit	Ring- steifigkeit
des Liners	ausgehärtet	SN ^{a)}	SR ^{b)}	dicke	SN ^{a)}	SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
150	3,0	8667	0,0693	12,0	554667	4,4373
200	3,0	3656	0,0293	12,0	234000	1,8720
250	3,0	1872	0,0150	12,0	119808	0,9585
300	3,0	1083	0,0087	12,0	69333	0,5547
350	3,0	682	0,0055	12,0	43662	0,3493
400	3,1	500	0,0040	12,0	29250	0,2340
450	3,5	500	0,0040	12,0	20543	0,1643
500	3,9	500	0,0040	12,0	14976	0,1198
600	4,6	500	0,0040	12,0	8667	0,0693
700	5,4	500	0,0040	12,0	5458	0,0437
800	6,2	500	0,0040	12,0	3656	0,0293
900	7,0	500	0,0040	12,0	2568	0,0205
1000	7,7	500	0,0040	12,0	1872	0,0150
1100	8,5	500	0,0040	12,0	1406	0,0113
1200	9,3	500	0,0040	12,0	1083	0,0087

a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2

b) Umfangs-E-Modul in Anlehnung an DIN EN 1228

13.000 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 20

Tabelle SN SR für PAA-GL-Liner

PAA-GF3-LINER

Aussen- durchmesser	Mindest- wanddicke	Nenn- steifigkeit	Ring- steifigkeit	Maximal- wand-	Nenn- steifigkeit	Ring- steifigkeit
des Liners	ausgehärtet	SN ^{a)}	SR ^{b)}	dicke	SN ^{a)}	SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
100	3,0	32063	0,2565	4,0	76000	0,6080
150	3,0	9500	0,0760	4,0	22519	0,1801
200	3,0	4008	0,0321	4,0	9500	0,0760
250	3,0	2052	0,0164	4,0	4864	0,0389
300	3,0	1188	0,0095	4,0	2815	0,0225

a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2

b) Umfangs-E-Modul in Anlehnung an DIN EN 1228

14.250 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 21

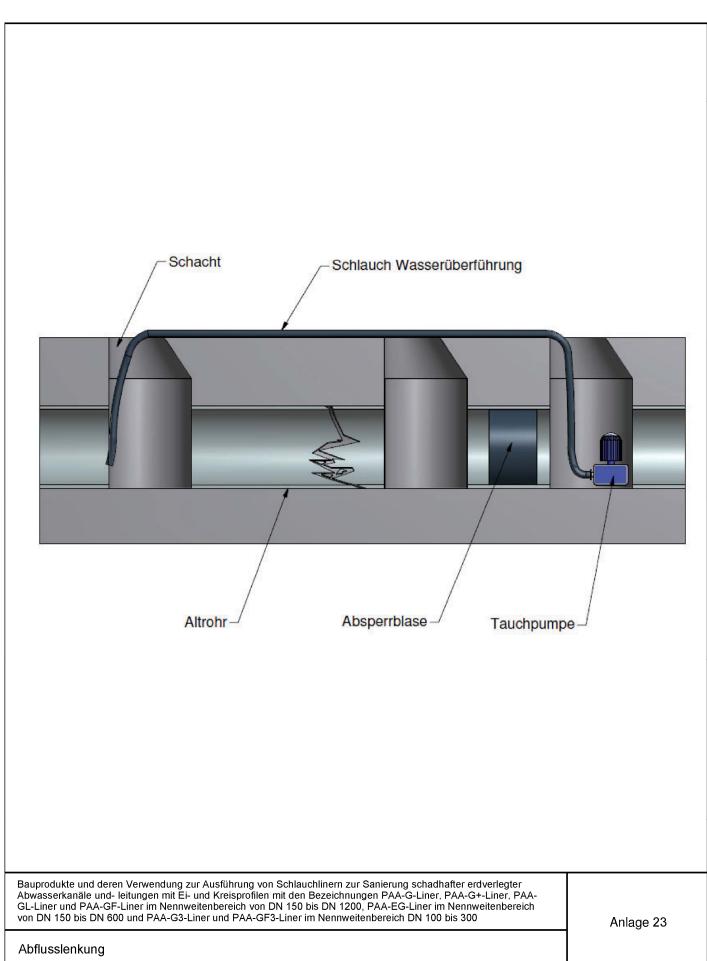
Tabelle SN SR für PAA-GF3-Liner

PAA-GF-LINER

Aussen- durchmesser des Liners	Mindest- wanddicke ausgehärtet	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}	Maximal- wand- dicke	Nenn- steifigkeit SN ^{a)}	Ring- steifigkeit SR ^{b)}
mm	mm	N/m²	N/mm²	mm	N/m²	N/mm²
150	3,0	12627	0,1010	12	808107	6,4649
200	3,0	5327	0,0426	12	340920	2,7274
250	3,0	2727	0,0218	12	174551	1,3964
300	3,0	1578	0,0126	12	101013	0,8081
350	3,0	994	0,0080	12	63612	0,5089
400	3,0	666	0,0053	12	42615	0,3409
450	3,0	506	0,0040	12	32395	0,2592
500	3,3	500	0,0040	12	23616	0,1889
600	4,0	500	0,0040	12	13667	0,1093
700	4,6	500	0,0040	12	8606	0,0689
800	5,1	500	0,0040	12	6413	0,0513
900	5,8	500	0,0040	12	4504	0,0360
1000	6,4	500	0,0040	12	3283	0,0263
1100	7,0	500	0,0040	12	2467	0,0197
1200	7,7	500	0,0040	12	1900	0,0152

a) SN = Nennsteifigkeit in Anlehnung an DIN 16869-2

b) Umfangs-E-Modul in Anlehnung an DIN EN 1228


Ø 150 - Ø 400 18.940 N/mm² Ø 401 - Ø 700 20.500 N/mm² Ø 701 - Ø 1.200 22.800 N/mm²

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

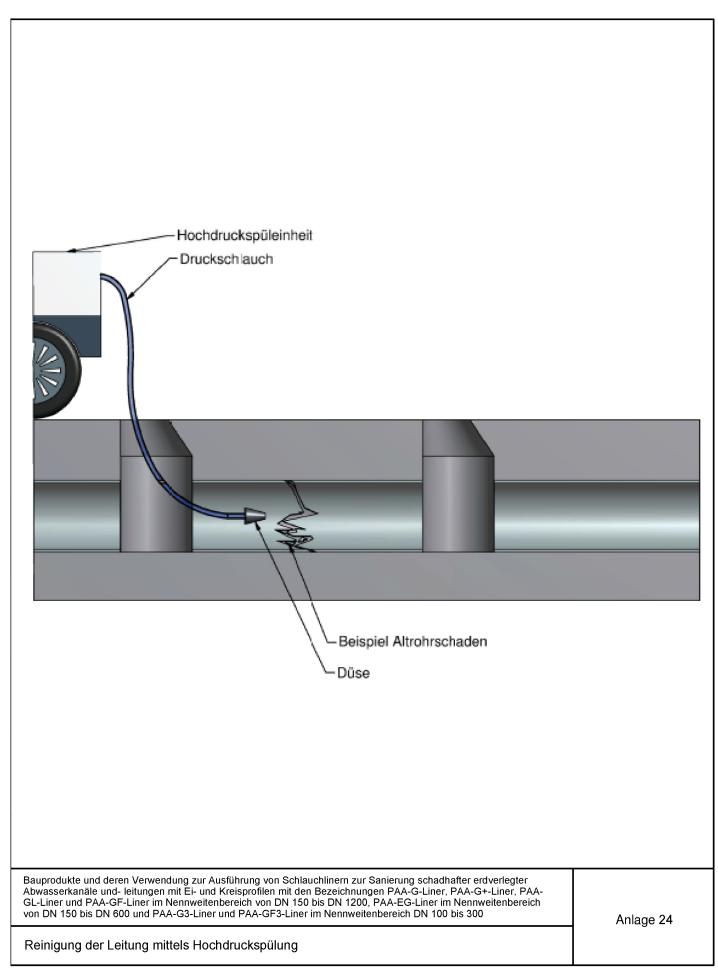
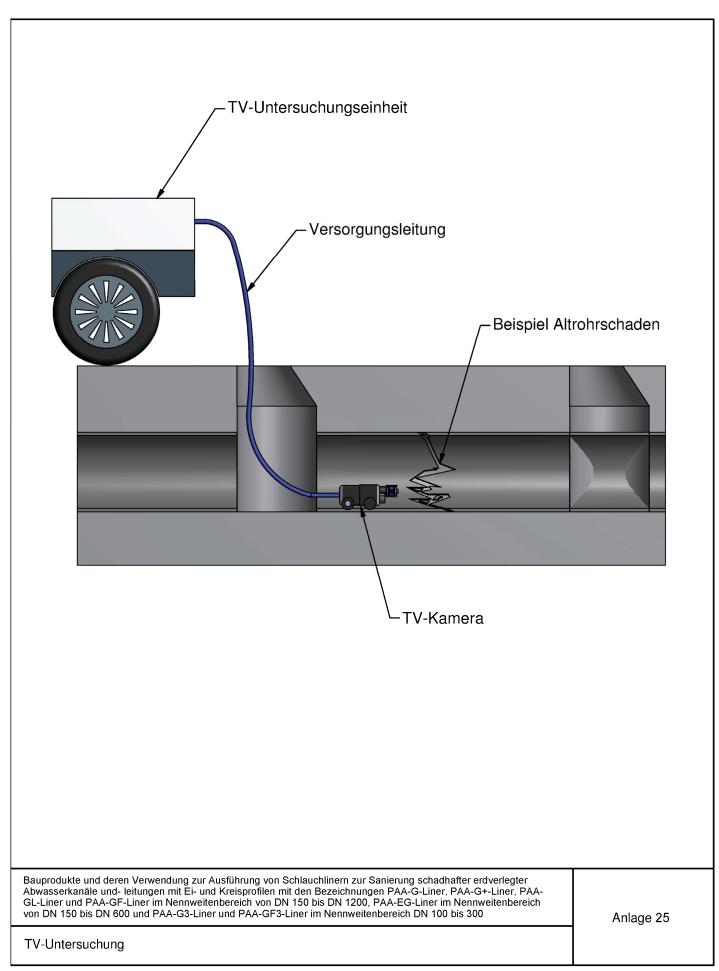
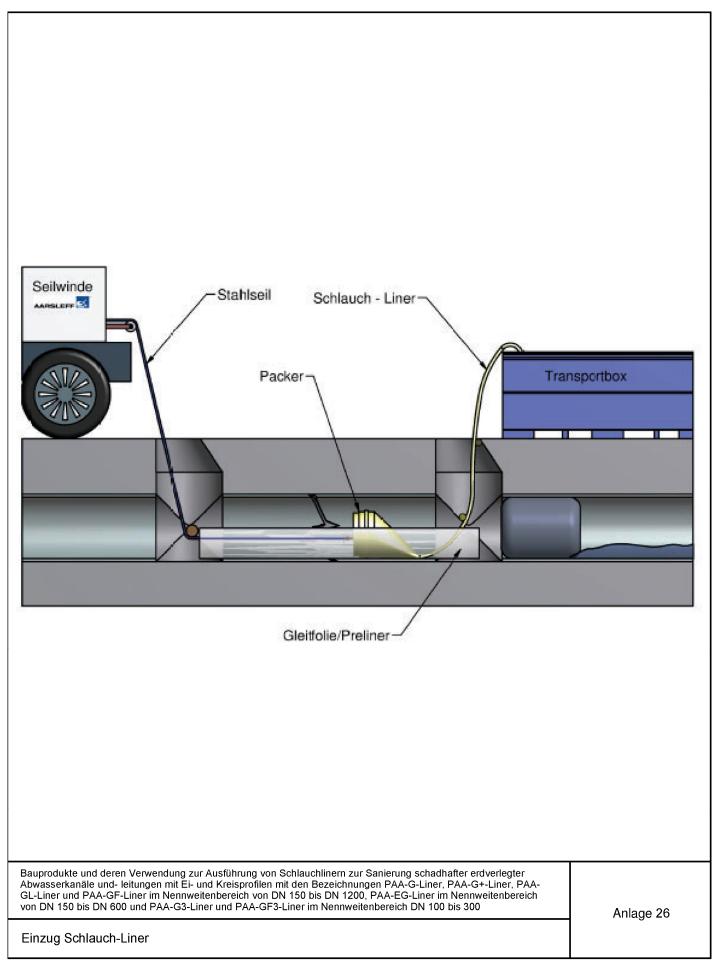
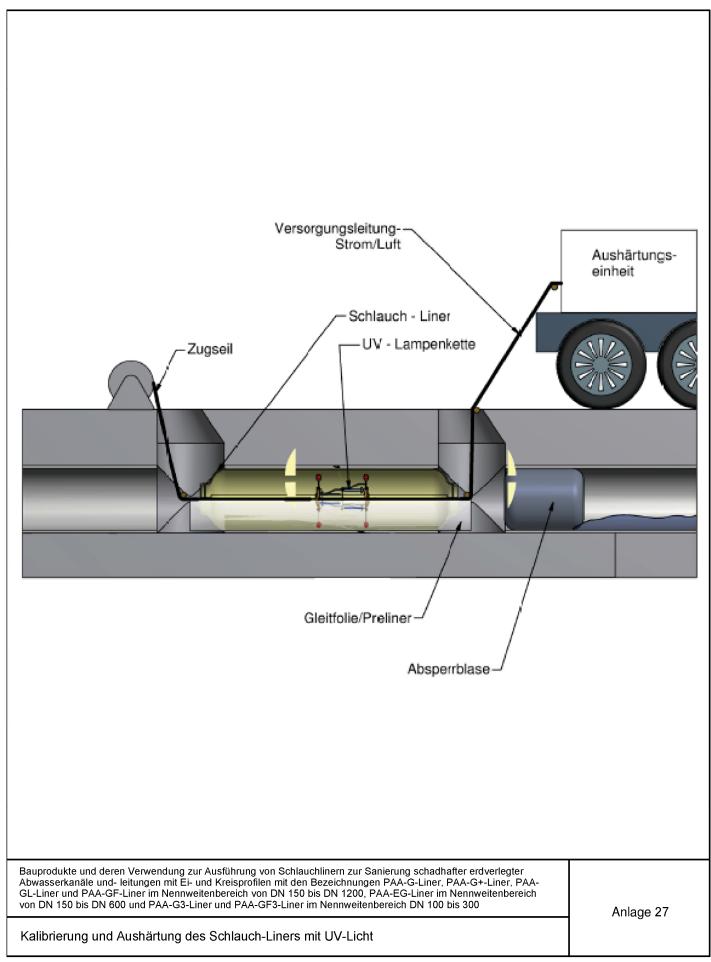
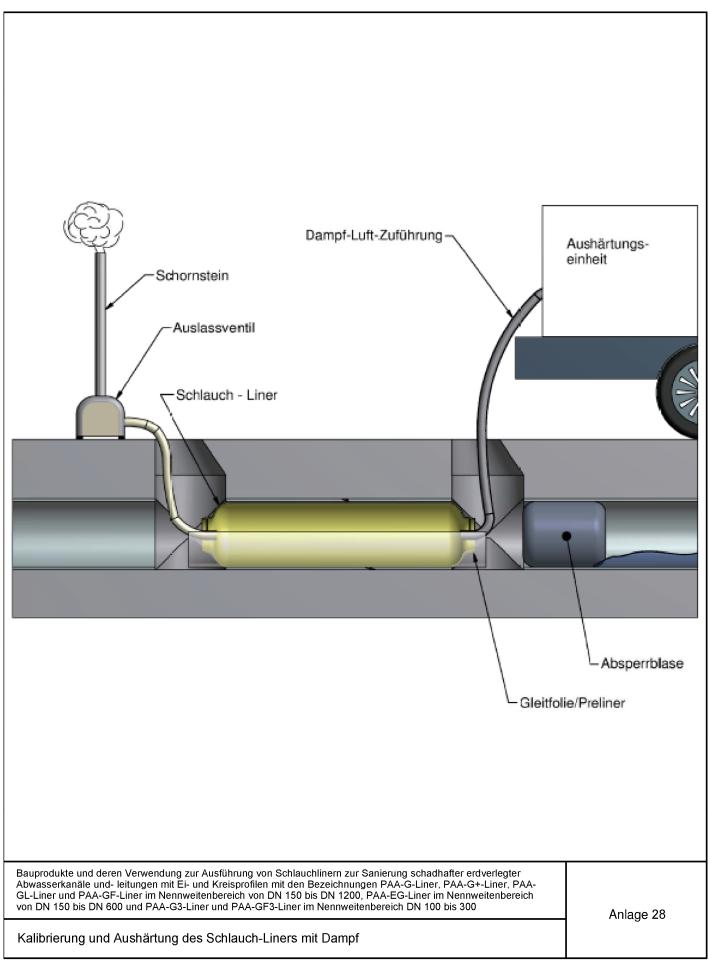

Anlage 22

Tabelle SN SR für PAA-GF-Liner



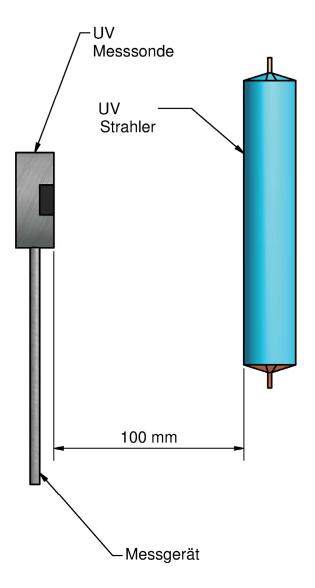






Maximale Einzugskräfte für PAA - Glasliner

Dimension			
DN	N	kg	t
150	35.100	3.510	3,5
200	46.800	4.680	4,6
250	59.150	5.915	5,9
300	70.850	7.085	7,0
350	82.550	8.255	8,2
400	94.250	9.425	9,4
450	105.950	10.595	10,5
500	118.300	11.830	11,8
550	130.000	13.000	13,0
600	141.700	14.170	14,1
650	153.400	15.340	15,3
700	165.100	16.510	16,5
750	177.450	17.745	17,7
800	189.150	18.915	18,9
850	200.850	20.085	20,0
900	212.550	21.255	21,2
950	224.250	22.425	22,4
1.000	236.600	23.660	23,6
1.050	248.300	24.830	24,8
1.100	260.000	26.000	26,0
1.150	271.700	27.170	27,1
1.200	283.400	28.340	28,3


Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

PAA Glasliner - Maximle Einzugskräfte

Anlage 29

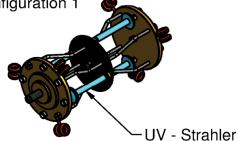
Überprüfung der UV Strahler

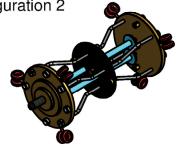
Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-G+-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 30

Überprüfung der UV Strahler

UV - Strahlerketten


1


2

3 - Konfiguration 1

3 - Konfiguration 2

Aushärtegeschwindigkeiten

DN zu sanierende Leitung	Konfiguration Lichtquelle	Durchzugsgeschwindigkeit
mm		
150		45 - 190
200 - 300		40 - 170
350 - 450		30 - 135
500		25 - 125
550 - 600	Kette entsprechend unterer Tabelle	25 - 110
650 - 700		20 - 95
750 - 800		15 - 85
850 - 1000		5 - 75
1050 - 1200		5 - 65

Kette	Einsatzbereich	Mir	nimale Konfiguration Lichtquelle	der	Bemerkung
	DN	Elemente	Konfiguration	Leistung je Element	
1	150 - 500	6	Zentriert	400 W	Bei Verwendung mehrerer
2	500 -1200	4	Zentriert	800 W	Elemente oder höhrer Leistung kann mit einer höhreren
3	500 - 800	1	2 Zentriert	800 W	Geschwindingkeit gearbeitet
3	800 - 1200	2	1 Zentriert	1600 W	werden
4	500 - 1200	2	Zentriert	1600 W	7

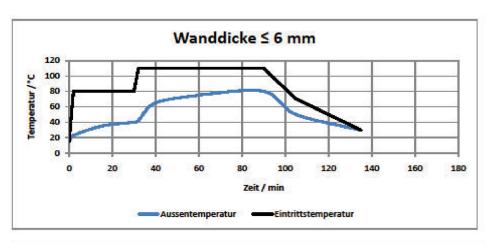
Bei Eiprofilen ist der Ersatzkreis zu verwenden

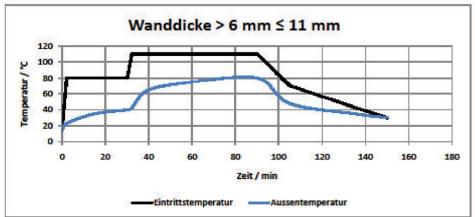
Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

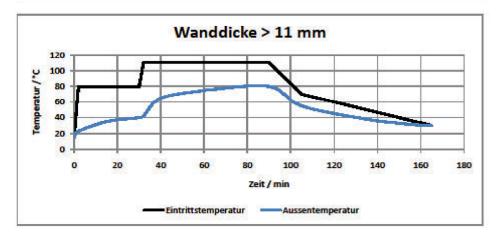
Anlage 31

UV-Strahlerketten

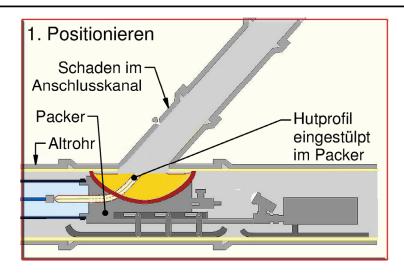
Inversi	on	Inversionsdruck = 0,25 - 0,82 bar.						Inversionsdruck registrieren.						
		Lanz wass	zen n ser a	nontier n der i weise	ren, un niedrig	t montie n Konde sten Ste hacht,	ens-	Anzahl von Lanzen = So viele wie möglich, um ei optimales Flow zu erreichen						
Aufheiz	zphase	Ausg	gang		eratur	70-90°C 65-70°(Die Ausgangs- temperatur mindestens eine halbe Stunde halten.	Die Ausbeulung in Schachten überprüfen. Überprüfen Sie, dass der Schlauch trocken ist.					
Aushärtephase		steigern.							Überprüfen Sie, dass der Schlauch hart ist.					
		(Den Druck während der Aushärtephase halten)							Alle Temperaturen 1/2 stündlich aufzeichnen					
		Temperaturen in allen Schachten = mind. 50°C.						Die Temperatur mindestens 1 Stunde halten.	aununun autzeiciniett.					
		100 100 100 100	ichl. 1 achte		bei 58	3°C in al	llen	Darf schon innerhalb der Aushärtezeit von 1 Stunde liegen.	file and the second					
				dwass Jen in (ill und b ltung.	ei	Die Temperatur mindestens 2 Stunden halten.						
		Bei A	Abwe	eichun	gen Ba	auleiter	oder de	n verantwortlichen Mita	urbeiter informieren.					
Kühlph	ase	Ausgangstemperatur bis zu 70°C						15 Minuten oder mehr.						
***************************************		Von 70° und nach unten: (Den Druck während der Abkühlung halten)						Gt. ≤ 6 mm = 30 Minuten Gt. > 6 ≤ 10,5 mm = 45 Minuten Gt. > 10,5 mm = 60 Minuten oder mehr.						
Dia.\lgd. ø100	50 m 1	00 1	150	200	250	300	No	ormaler Kompressor ca	ı. 8 kbm/min					
Ø150	9 1		- 10					tra Kompressor ca. 8 k						
ø200	200 de							em obengenannten Kompressor parallel schalten.						
Ø250 Ø300							20	20-24 kbm/min Kompressor						
ø350	2.0				- 67		Roi III	nterbögen > 25-30% o	der mehrere kleiner					
Ø400								ehr Luft erforderlich ⇒ 1 Stufe nach oben.						
Ø450														
Ø500														
ø550 ø600			- 33		- 33									
Ø650	* 1				1									
ø700		9	- 3											
Ø800														

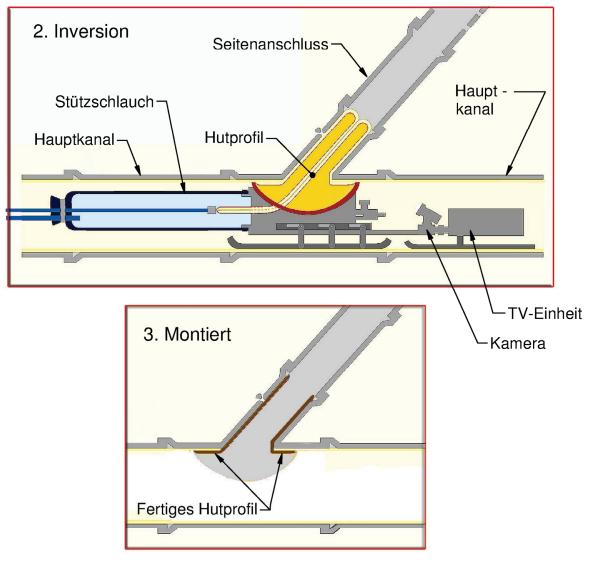

von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300


Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich


Anlage 32

Härtung mit Dampf

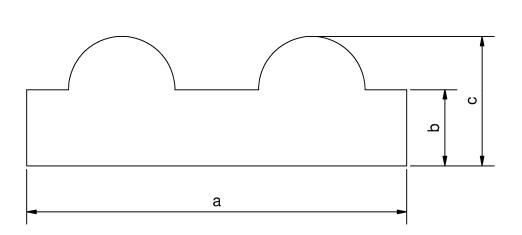




Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 33

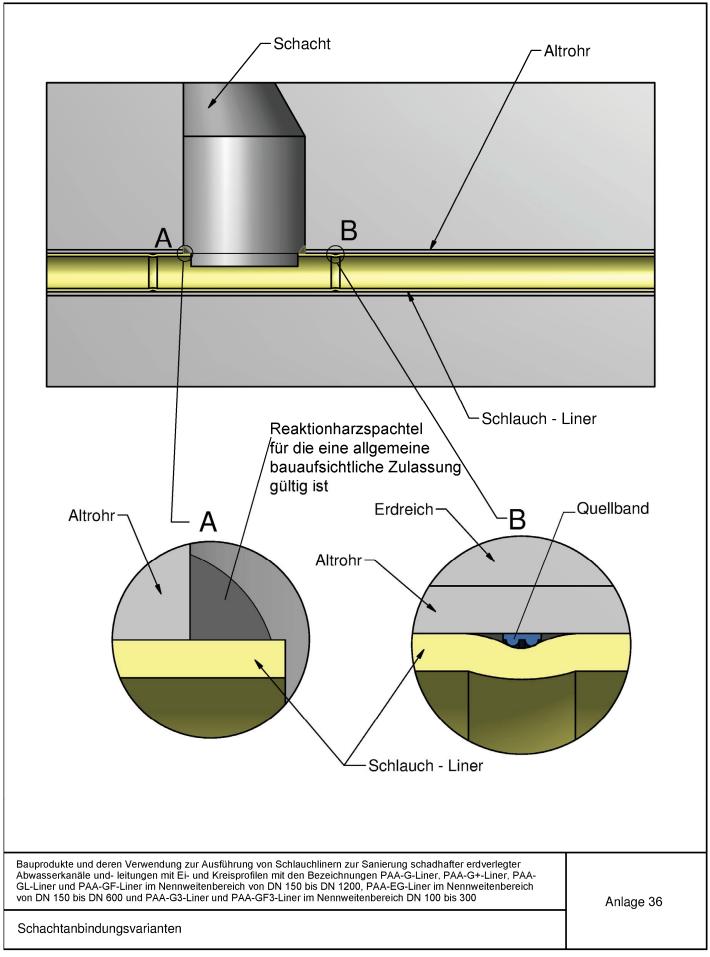
Dampfaushärtung



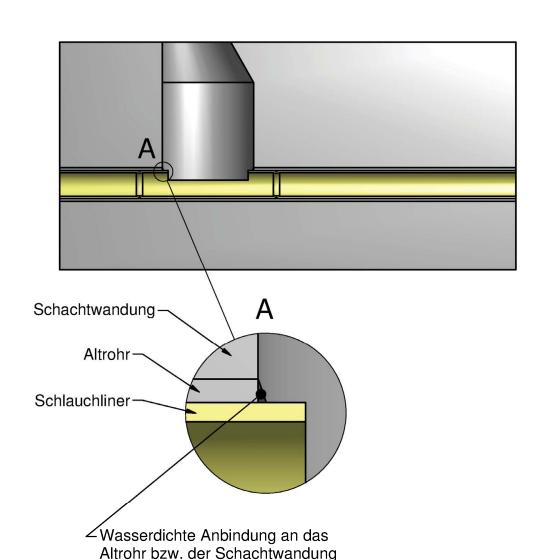
Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Einbauschritte der Anschlusseinbindung mit Hutprofilen

Anlage 34


Tabelle									
a (mm)	b (mm)	c (mm)							
20	2,5	4							
20	3,5	5							
20	3,5	7							

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300


Anlage 35

Profildarstellung des Quellenbandes (Hilfsstoffe)

- 1. Anbindung der Schlauchliner mittels Epoxyharzsparchtel mit einer allgemeinen bauaufsichtlichen Zulassung
- 2. Anbindung der Schlauchliner mittels Kunstharzmörtel mit einer allgemeinen bauaufsichtlichen Zulassung
- 3. GFK Laminate, für die eine allgemeine bauaufsichtliche Zulassung gültig ist
- 4. Verpressen mit Polyurethan- (PU) oder Epoxyd- (EP) Harzen mit einer allgemeinen bauaufsichtlichen Zulassung
- 5. Einbau vun Schlauchlinerendmanchetten mit einer allgemeinen bauaufsichtlichen Zulassung

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 37

Schachtanbindungsvarianten

Kunde:	ECHN	ii X			Bau	st Nr-aktivit	6	IÄRTEBI	-KIOIII	DAIII	
Anlage:						stelle/Strass					
Startschach	2		Ende	chacht:	Dim	encion/Wond	ldicko/Löngo				
Einführung	William P.										
Proces	Zeit Druk Schacht 1 Schacht 1 Schacht 1 Schacht 1										
(anführen)	Zen	Diuk	Schaht nr.:		Schaht nr.:		Schaht nr.:		Schaht nr.:		
Heizung Aushärtung Abkühlung	Uhrzeit	in bar	Innentemp. T°C	Sohletemp T°C	Innentemp.	Sohletemp. T^C	Innentemp. T°C	Sohletemp. T°C	Innentemp. T°C	Sohletemp T°C	
		3					3				
										2	
8		8									
							1				
Verantwor	tlicher Ko terschrift: n.: 305.22	lonnen	führer:	•			•	Zeite	von	Cav.: 04-05-20	

Rohrtechn	ik					HÄRTEBE	RICHT UV				
Kunde:				Baust.Nraktivitätsnr.:							
Anlage:				Baust	elle/Strasse:						
Startschacht:		Endschacht:		Dime	nsion/Wanddicke/	Länge:					
Einzugskraft, m	ax:										
Zeit	Meter	Geschwindigkeit	Tempera	atur 1	Temperatur 2	Temperatur 3	Druck				
Uhrzeit	m	m/min	℃		°C	C	bar				
Verantwortliche	r Kolonnenfüh	rer:									
Datum/Untersol	nrift:					Zeit vor	1				

Anlage 39

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich

von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Härtebericht UV

	OLL ZUR DICHTHEITS in Anlehn				ERLEITUNGEN
1. Angaben zum Ba Bauvorhaben:	auvorhaben:				
		DI 7/04			
Anschrift:		PLZ/Ort:			
Auftraggeber:		51.710.			
Anschrift:		PLZ/Ort:			
Sanierungsfirma:					
Anschrift:					
Herstellertyp:	O Schlauchliner O Kurzliner	Produktbeze	ichnung:		
Dichtheitsprüfung:					
Anschrift:		PLZ/Ort:			
2. Angaben zum Ab	owasserkanal / -leitung:				
Abwasserart:	O Schmutzwasser	O Regenwas	ser		O Mischwasser
Rohrgeometrie:	O Kreisprofil	O Eiprofil			
Linermaterial:		Nennweite:			Sanierungsdatum:
Haltungsnummer:					
Haltungslänge:					
von Schacht:		bis Schacht:			
3. Dichtheitsprüfun	g mit Luft:				
Prüfmethode:	OLA	OLB		OLC	OLD
Prüfdruck p ₀ :	mbar	Beruhigungs	zeit:		mbar
zul. Druckabfall Δp:	mbar	Prüfdauer:			mbar
Druck zu Beginn:	mbar				
Druck am Ende:	mbar	Druckabfall:			mbar
4. Dichtheitsprüfun	o mit Wasser:				
Onur Rohrleitungen	_	und Inspektio	nsöffnungen		O Rohrleitung mit Schacht
Prüfdauer:					30 min
Höhe der Wassersä	ule über Rohrscheitel zu Beginn	der Prüfung:			kPa (= mWS · 10
Wasserzugabe:					
Wasserzugabe / Hal	tungslänge:				l/m ²
Zulässige Wasserzu	gabe pro m² benetzter Umfang g	em. nach DIN	EN 1610:		0,15 l/m ²
	esamt-Wasserzugabe bezogen a				
tatsächliche Wasser					1
E Fencheles					
5. Ergebniss Prüfung bestanden:	Oja	Onein			
Bemerkungen:	O ja	Otteill			
benierkungen:					
0.45		and the second			
Ort / Datum:		Unterschrift:			

Bauprodukte und deren Verwendung zur Ausführung von Schlauchlinern zur Sanierung schadhafter erdverlegter Abwasserkanäle und- leitungen mit Ei- und Kreisprofilen mit den Bezeichnungen PAA-G-Liner, PAA-GL-Liner, PAA-GL-Liner und PAA-GF-Liner im Nennweitenbereich von DN 150 bis DN 1200, PAA-EG-Liner im Nennweitenbereich von DN 150 bis DN 600 und PAA-G3-Liner und PAA-GF3-Liner im Nennweitenbereich DN 100 bis 300

Anlage 40

Protokoll Dichtheitsprüfung

		PROBEBEG	LEITSCHE	IN ZUR MA	ATERIALPI	RÜFUNG VO	ON SCHLA	UCHLINER	RN	
	E E	RSTPRÜFUNG	WIE	DERHOLUNG	SPRÜFUNG	zu Prüi	fbericht Nr.:			
		n zur Probeen	tnahme:							
	entnomme Datum: / U				Prüfinstitut: Adresse:					
	2 Probes	identifikation:								
	Bauvorhab				Material-ID:					
	Bauherr: Kostenstel	le·			Probenbeze Haltungsbez					
	Ausführen	de Firma:			Nennweite:					
	Hersteller Träger-Ma	Schlauchliner: terial:			Einbaudatur Altrohrzusta		01	ОП	OIII	
	Harz-Mate	rial:			Entnahmest	elle:	Q Haltung	O Endschasch	O ZW-Schacht	
	Rohrgeom	etne:	OKreisprofi	DEiprofil	Entnahmepo	osition:	O Scheltel	O Kämpfer	O Soble	
		erte Kurzzeit-Ei Biege-E-Modul _D		gemäss sta		iweis: fangs-E-Modul	I E., fN/mm²l·			
		nung _{beim enten Bruch}	σ _{fB} [N/mm²]	:		gs-Ringsteifigk				
			dicke d [mm] nosfaktor A.		m	ax. Kriechneigu Dial	ung K _{N24} [%]: hte δ [g/cm³]:			
			ilgsiakiul A ₁	•		Dic	nte o jg/cm j.			
	4. Prüferg Biege-E-l	ebnisse: Wodul, Biegespa	nnung nach D	IN EN ISO 178	1	24 h Kriechr	neigung in An	lehnung an Di	N EN ISO 899-2	
		Prüfdatum	E _f [N/mm ²]	σ _{rs} [N/mm²]	h [mm]		Prüfdatum	K, [%]	1	
			Prüfrichtung	O axial	O radial	· •		<u> </u>	ı	
	Herfrense	E Madul Anton	ar Dinastaifa	drait mask DIN	EN 4220	24 b Krissbr	onimuma in Am	Johanna an Di	N EN 764	
	Umrangs	-E-Modul, Anfan Prüfdatum	gs-rangsteing E _u [Wmm²]		h [mm]	24 h Knechr	Prüfdatum	lehnung an Di K _N [%]	N EN /61	
	_]]	
	Wasserd	ich <u>theit nach DIN</u>								
		Prüfdatum	Prüfzeit 30 Minuten		lruck [bar]	a dicht	Prüfer	gebnis undicht		
				•						
	Kalzinien	ungsverfahren n Prüfdatum	ach DIN EN IS Harzanteil [%		gesamt [%]	Glasa	nteil [%]	Zuschla	gstoff [%]	
	_									
	<u>Spe</u> ktrala	ına <u>lyse in Anleh</u> ı					Dichte nach	DIN EN ISO 1		
		Prüfdatum	EP-Harz	UP-Harz	VE-Harz	sonst. Harz		Prüfdatum	δ [g/cm³]	
	Thamia	h- 0h	DIN CHIEO	143E7 4 / Dec	Anakan DIN 6	2705 V5-b				
	Thermiso	he Analyse nach Prüfdatum		ibergangstemp		3765 Vertahren		pie [J/g]		
	_		T _{G1}		ΔT _G	O exotherm		O endothe	rm	
			I G2		_	Q exoulerii		Q endoute		
	Reststyro	olgehalt nach DII Prüfdatum	53394-2 (GC Einwaage		Reststyrolge	1	Finwaane h	ezogen auf		
	_	Traidatain	[mg]	halt [mg/kg]	halt [%]		_	_		
			<u> </u>	I		O Gesamtei	inwaage	D Reinhara	Z	
		ung der Ergebr		_1_1 =	1					
		Anforderungen ege-E-Modul E _r		nicht erfüllt O	1		forderungen s-E-Modul E _{ii}	erfüllt O	nicht erfüllt O	
		gespannung 🚓	0	0	1	Anfangs-Ring		0	0	
		Wanddicke d Wasserdichtheit	0	0	1	24 h Kried	hneigung K _N Dichte δ	0	-	
				_	<u>, </u>		Didite 0			
	6. Bemerk	ungen:								
	7. Unterso	:hrift Prüfer / L	abor:	1)					-	
20.02.7	5 9	727 10			2 7	(C 500		s 81 K		
uprodukte und de wasserkanäle un	eren Verwei	ndung zur Aus	sführung vo	n Schlauchli	inern zur Sa zeichnunge	nierung scha	adhafter erd	lverlegter	_	
-Liner und PAA-0	GF-Liner im	Nennweitenb	ereich von	DN 150 bis	DN 1200, P	AA-EG-Liner	im Nennw			
n DN 150 bis DN	600 und P	AA-G3-Liner u	nd PAA-GF	3-Liner im N	Nennweitent	pereich DN 1	00 bis 300			Anlage 41
1 1 1 1 1										
robebegleitscl	nein									