

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0005 of 5 February 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Hilti Concrete screw HUS3, HUS4 and HUS
Product family to which the construction product belongs	Fasteners for use in concrete for redundant non-structural systems
Manufacturer	Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN
Manufacturing plant	Hilti Werke
This European Technical Assessment contains	20 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330747-00-0601, Edition 06/2018
This version replaces	ETA-10/0005 issued on 12 November 2018

European Technical Assessment ETA-10/0005 English translation prepared by DIBt

Page 2 of 20 | 5 February 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 20 | 5 February 2024

European Technical Assessment ETA-10/0005 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti Concrete screw HUS3, HUS4 and HUS is an anchor made of galvanised steel (HUS3 -H, -C, -A, -P, -PS, -PL, -I, -I Flex, -IQ) or stainless steel (HUS4/HUS-HR, HUS4/HUS-CR) of size 6. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristic regarding Mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

3.3 Safety in use (BWR 4)

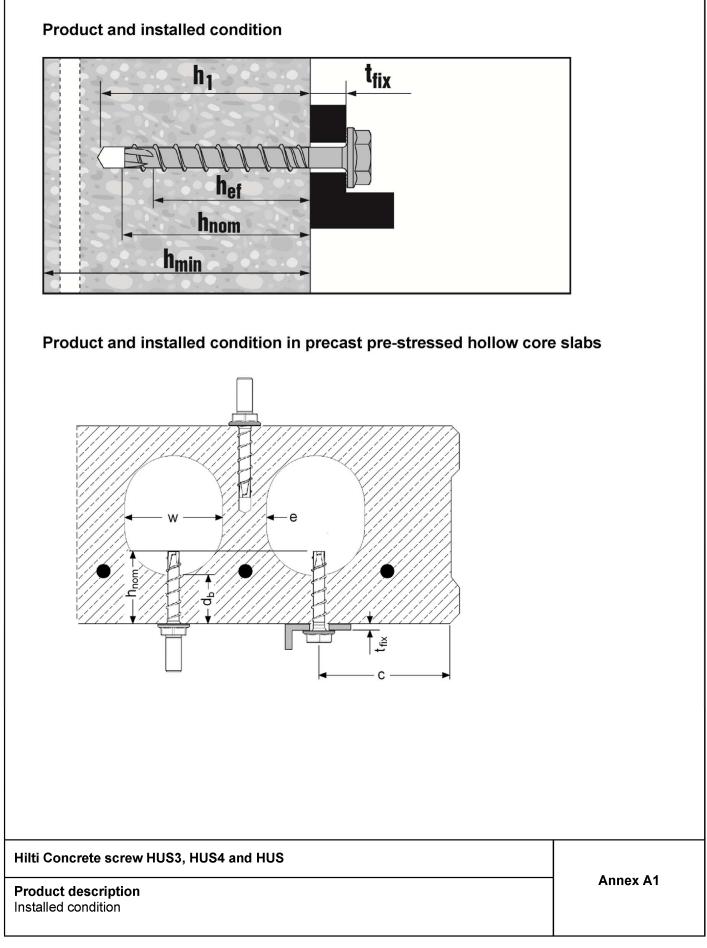
Essential characteristic	Performance
Characteristic resistance for static and quasi-static loads for simplified design method B	See Annex C1 and C2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330747-00-0601, the applicable European legal act is: [97/161/EC]. The system to be applied is: 2+

European Technical Assessment ETA-10/0005 English translation prepared by DIBt

Page 4 of 20 | 5 February 2024


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 5 February 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Tempel

Table A1: Screw types		
Ellin [Hilti HUS3-H, size 6, hexag galvanized; 	jonal head configuration,
	 Hilti HUS3-C, sizes 6, coun configuration, galvanized; 	tersunk head
	3) Hilti HUS3-A, size 6, extern M10/21, galvanized;	al thread M8/16 and
	4) Hilti HUS3-P, size 6, pan h galvanized;	ead configuration,
	5) Hilti HUS3-PS, size 6, pan configuration, galvanized;	head (small)
	6) Hilti HUS3-PL, size 6, pan configuration, galvanized;	head (large)
	7) Hilti HUS3-I, size 6, interna galvanized;	l thread M8 and M10,
	 8) Hilti HUS3-I Flex, size 6, ga thread: - M8/16 preassembled with - M10/21 preassembled wit 	coupler M6 or M8,
	9) Hilti HUS3-IQ, size 6, galva thread - galvanized coupler with ir	
	10) Hilti HUS4-HR, HUS-HR, s configuration, stainless stee	
	11) Hilti HUS4-CR, HUS-CR, s configuration, stainless stee	
Hilti Concrete screw HUS3, HUS4 and HUS		
Product description Screw types		Annex A2

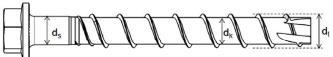
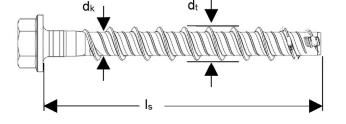


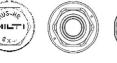
Table A2: Materials

Part	Designation	Material					
Concrete screw HUS3	Size 6 all lengths	f _{yk} ≥ 745 N/mm² , f _{uk} ≥ 930 N/mm²	Carbon steel, galvanized ($\ge 5 \ \mu m$) Rupture elongation A ₅ $\le 8\%$				
(all types in Table A1)	Spring (only for HUS3-IQ)	Wire material: f _{uk} ≥ 1750 N/mm²	Stainless steel				
Concrete screw HUS4-HR and HUS4-CR, HUS-HR and HUS-CR	Size 6 all lengths	f _{yk} ≥ 900 N/mm² , f _{uk} ≥ 1050 N/mm²	Stainless steel (A4 grade) 1.4401 or 1.4404 Rupture elongation $A_5 > 8\%$				

Table A3: Fastener dimensions and marking

Туре	HUS-HR, CR, HUS4-HR, CR HUS3-H, C, A, P, PS, PL, I, I-Flex,							
Fastener size				6				
				h _{nom}				
Nominal embedment depth		[mm]		35				
Threaded outer diameter	dt	[mm]	7,6	7,85				
Core diameter	dĸ	[mm]	5,4	5,85				
Shaft diameter	ds	[mm]	5,8	6,15				
Stressed section	As	[mm ²]	22,9	26,9				


Hilti : Manufacturer


HUS3 : Hilti Universal Screw anchor 3rd generation

e.g. "H" : Hexagonal head

R: Corrosion resistance (stainless steel, grade A4)

6: Nominal anchor diameter/ drill bit diameter

Head stamp:

e.g. Hilti HUS-HR 6 x ... or dots or nominal internal diameter of coupler (e.g. "8") – for HUS3-IQ

Hilti Concrete screw HUS3, HUS4 and HUS

Product description

Materials and fastener dimensions and marking

Page 8 of European Technical Assessment ETA-10/0005 of 5 February 2024

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings.
- Used only for redundant non-structural systems acc. to EN 1992-4:2018
- Fire exposure: only for concrete C20/25 to C50/60, not in pre-stressed hollow concrete slabs.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to
- EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked or cracked concrete.
- Precast, pre-stressed hollow concrete slabs with $w/e \le 4,2$ and strength classes C30/37 to C50/60.

Use conditions (Environmental conditions):

- Anchorages subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Screw types made of stainless steel acc. to Annex A3 (HUS4-HR/CR; HUS-HR/CR): CRC III

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with: EN 1992-4:2018 Design method B and EOTA Technical Report TR 055, Edition February 2018.

Installation:

- Hammer drilling only.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or obligue tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener must be supported on the fixture and is not damaged.

Hilti Concrete screw HUS3, HUS4 and HUS

Intended use Specifications

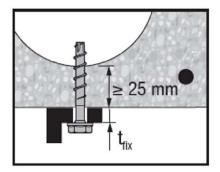
Туре	HUS4	I, HUS		HUS3						
			HR	CR	н	с	Α	P, PS, PL	I, I-Flex	IQ
Fastener size						6				
Nominal embedmenth depth	h _{nom}	[mm]				35	5			
Nominal drill hole diameter	do	[mm]				6				
Cutting diameter of drill bit	d _{cut} ≤	[mm]				6,4	10			
Clearance hole diameter	d _f ≤	[mm]				9				
Wrench size (H, A, I -type)	SW	[mm]	13	-	13	-	13	-	13	17
Countersunk head diameter	dh	[mm]	-	11,0	-	11,5	-	-	-	-
Torx size	ТΧ	[-]	-	T30	T30	T30	-	T30	-	-
Depth of drill hole in floor/ wall position	h₁ ≥	[mm]			-	45	5	•	I	
Depth of drill hole in ceiling position	h₁ ≥	[mm]				38	3			
Installation Torque	T _{inst}	[Nm]	_ 1)	_ 1)				18		
Setting tool ²⁾ Strength class	>	: C20/25	Imp	act screw	, driver e	a Hilti 9	SIW 14	A or Hilti	SIW 22 A	2)

¹⁾ Hand setting in concrete base material not allowed (machine setting only).
 ²⁾ Hilti recommended electrical impact screw drivers are listed in the related MPII.

Table B2: Minimum thickness of concrete member, minimum edge distance and spacing

Туре			HUS4	, HUS			Н	US3
			HR	CR	Н	с	Α	P, PS, I, IQ PL I-Flex
Fastener size						6		
Nominal embedmenth depth	h _{nom}	[mm]				35	5	
Minumum thickness of concrete member	h _{min}	[mm]				80	ט	
Minimum edge distance	Cmin	[mm]				35 (8	80) ¹⁾	
Minimum spacing	S _{min}	[mm]				35	5	
			Smin	C _{min}	Smin			▶ min
Concrete screw HUS3, HUS4	and HU	S						
ided use llation parameters. num concrete thickness and mi	nimum e	edge dist	ance an	id spacin	ıg			Annex B2

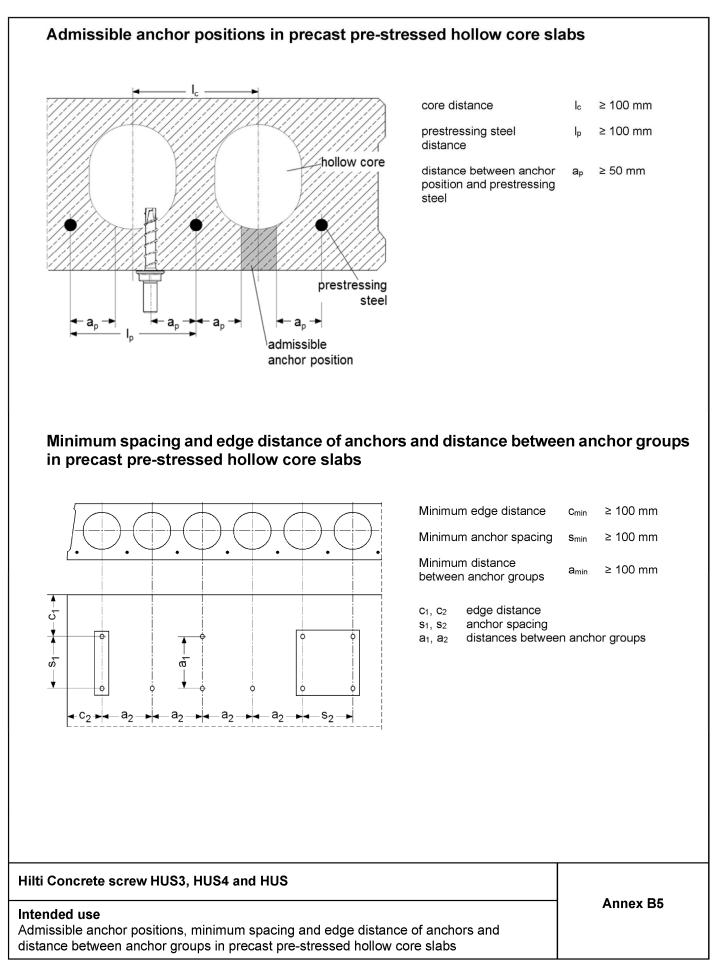
Deutsches Institut für Bautechnik


Туре	HUS4	HUS4, HUS HUS3									
	HR	CR	н	С	Α	P	PS	PL		I-Flex	IQ
Fastener size						6					
Nominal embedment						h _{nom} 35					
depth [mm] Length of screw [mm]		Maximum thickness of fixture [mm] $$t_{\mbox{fix}}$$									
35	0	-	-	-	0	-	-	-	0	0	0
40	-	5	5	5	-	5	5	-	-	-	-
45	10	-	-	-	-	-	-	-	-	-	-
55	-	-	-	-	20	-	-	-	20	20	-
60	25	25	25	25	-	25	25	25	-	-	-
70	35	35	-	35	-	-	-	-	-	-	-
80	-	-	45	-	-	45	-	-	-	-	-
100	-	-	65	-	-	-	-	-	-	-	-
120	_	-	85	-	-	-	-	-	-	-	-
135	-	-	-	-	-	-	-	-	-	100	-
155	-	-	-	-	-	-	-	-	-	120	-
175	-	-	-	-	-	-	-	-	-	140	-
195	-	_	_	_	_	_	_	_	_	160	_

Hilti Concrete screw HUS3, HUS4 and HUS

Intended use Screw length and thickness of the fixture

Туре	HUS4, HUS											
	HR	CR	н	С	Α	P	PS	PL	I	I-Flex	IQ	
Fastener size						6				• • •		
Thickness of fixture [mm] Length of screw [mm]					thickne	ss of fixti t _{fix}	ure [mm]				
35	0	-	-	-	0	-	-	-	0	0	0	
40	-	10	5	5	-	5	5	_	_	-	-	
45	15	-	-	-	-	-	-	-	-	-	-	
55	-	-	-	-	20	-	-	-	20	20	-	
60	5-25	5-25	5-25	5-25	-	5-25	5-25	5-25	-	-	-	
70	15-35	15-35	-	15-35	-	-	-	-	-	-	-	
80	-	-	25-45	-	-	25-45	-	-	-	-	-	
100	-	-	45-65	-	-	-	-	-	-	-	-	
120	-	-	65-85	-	-	-	-	-	-	-	-	
135	-	-	-	-	-	-	-	-	-	80-100	-	
155	-	-	-	-	-	-	-	-	-	100-120	-	
175	-	-	-	-	-	-	-		-	120-140	-	
195	-	-	-	-	-	-	-	-	-	140-160	-	



Hilti Concrete screw HUS3, HUS4 and HUS

Annex B4

Intended use Screw length and thickness of the fixture used in precast pre-stressed hollow core slabs

Installation instruction (HUS4-HR, CR; HUS-HR, CR)

Hole cleaning is not required when 3x ventilation¹⁾ after drilling is executed and one of the following conditions is fulfilled:

- drilling is in the vertical upwards orientation; or

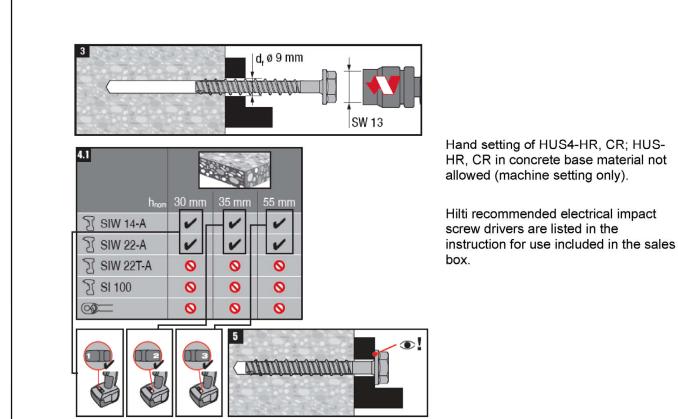
- drilling is in vertical downwards direction and the drilling depth is increased ²⁾ by additional 3*d0

1) Moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h1 is achieved. This procedure shall be done with both revolution and hammer functions activated in the drill machine. For more details read the relevant Instruction of use.

2) It shall be ensured that the thickness of the concrete member h fulfills the following equation:

 $h \ge h1 + \Delta h$, where $\Delta h = max$ (2*d0; 30 mm).

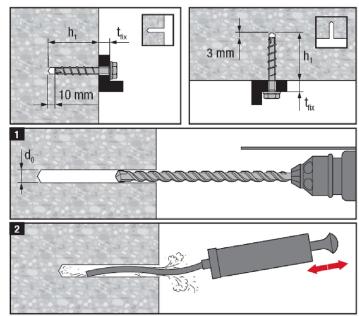
 Δh is the minimum distance between the drilling end and the opposite end of the concrete member.


Hilti Concrete screw HUS3, HUS4 and HUS

Intended use Installation instruction

Page 14 of European Technical Assessment ETA-10/0005 of 5 February 2024

English translation prepared by DIBt


Installation with other electrical impact screw drivers of equivalent force and performance is possible.

Hilti Concrete screw HUS3, HUS4 and HUS

Intended use Installation instruction

Installation instruction (HUS3-H, C, I, I-Flex, IQ A, P, PS, PL)

Hole cleaning is not required when 3x ventilation¹⁾ after drilling is executed and one of the following conditions is fulfilled:

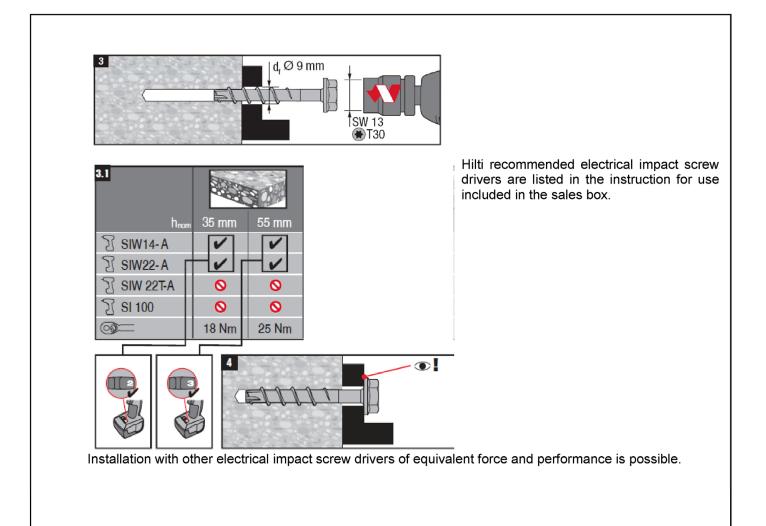
- drilling is in the vertical upwards orientation; or

- drilling is in vertical downwards direction and the drilling depth is increased ²⁾ by additional 3*d0

1) Moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h1 is achieved. This procedure shall be done with both revolution and hammer functions activated in the drill machine. For more details read the relevant Instruction of use.

2) It shall be ensured that the thickness of the concrete member h fulfills the following equation: $h \ge h1 + \Delta h$, where $\Delta h = max (2*d0; 30 \text{ mm})$.

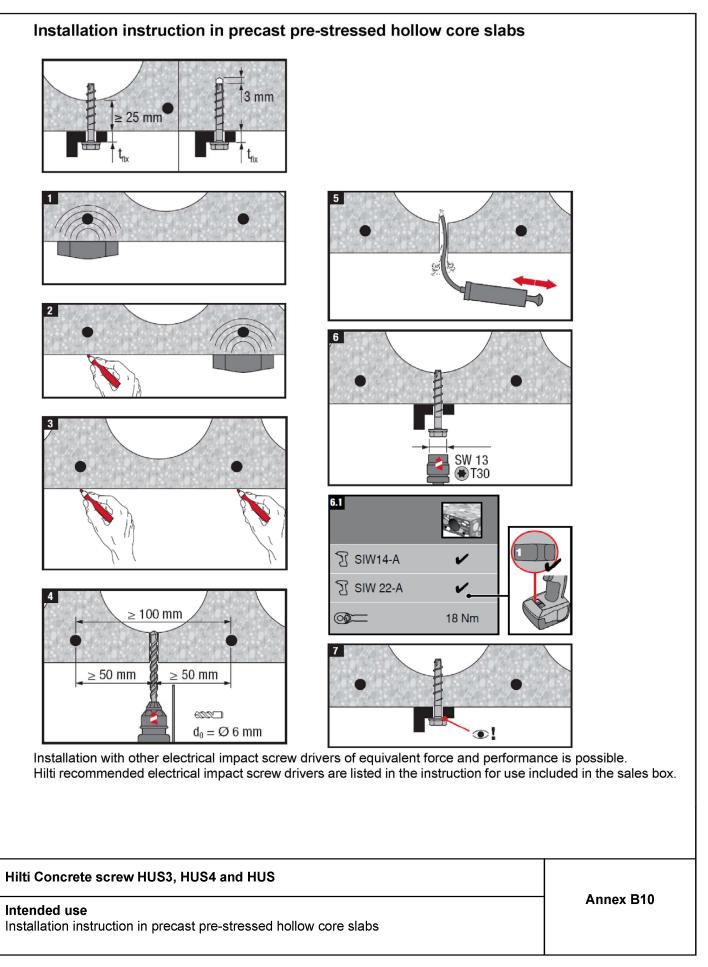
 Δh is the minimum distance between the drilling end and the opposite end of the concrete member.


Hilti Concrete screw HUS3, HUS4 and HUS

Intended use Installation instruction

Page 16 of European Technical Assessment ETA-10/0005 of 5 February 2024

English translation prepared by DIBt



Hilti Concrete screw HUS3, HUS4 and HUS

Intended use Installation instruction

Table C1: Characteristic values of resistance in case of static and quasi-static loading

Туре				HUS4	, HUS			HU	S3		
				HR,	CR	н	P, PS, PL	I, I-Flex	A	c	IQ
Fastener size				6x40, 6x45	6x60, 6x70			6 all le	ngths	•	I
Nominal embedment	depth	h _{nom} ≥	[mm]				35	5			
All load directions											
Characteristic resistance in C20/25 $c \ge 35 \text{mm}$ $c \ge 80 \text{ mm}$		F⁰ _{Rk}	[kN]	:	3			2	2		
		F ⁰ Rk	[kN]	3,5	5			3	3		
Partial factor		γм	[-]] 1,5							
Installation factor		γinst	[-]	1	,4	1,0					
La construction d'actions		(C30/37	1,22							
Increasing factors ψ_c of concrete for F^0_{Rk} =		(C40/50	1,41							
F^0 Rk (C20/25) · Ψ c		(C50/60				1,5	55			
Effective anchorage d	lepth	h _{ef}	[mm]	27 25							
Characteristic edge di	stance	Ccr	[mm]	1,5 h _{ef}							
Characteristic spacing s _{cr} [mm]		[mm]	3 h _{ef}								
Shear load with leve	r arm										
Characteristic bending	g resistance	M ⁰ Rk,s	[N m]	1	9			2	2		
Partial factor		γ̂Ms,∨	[-]				1,	5			

Performances

Characteristic values for resistance under static and quasi-static action

Annex C1

Table C2: Characteristic values of resistance in case of static and quasi-static loading in precast pre-stressed hollow core slabs C30/37 to C50/60

Туре			н	IUS4-HR	, CR; HU	HUS3-H, P, PS, PL, I, I-Flex, A, C, IQ					
Fastener size			6x40, 6x45		6x60, 6x70			6 all lengths			
All load directions					I						
Bottom flange thickness	d⊳	[mm]	≥ 25	≥ 30	≥ 25	≥ 30	≥ 35	≥ 25	≥ 30	≥ 35	
Characteristic resistance	F ⁰ Rk	[k N]	1	2	1	2	3	1	2	3	
Partial factor	γм	[-]	1,5								
Installation factor	γinst	[-]	1,0								

Note: the fixture thickness values according to Table B4 (Annex B4) shall be considered.

Hilti Concrete screw HUS3, HUS4 and HUS

Performances

Characteristic values of resistance in case of static and quasi-static loading in precast prestressed hollow core slabs C30/37 to C50/60

Annex C2

Туре			HUS4	, HUS	HUS3						
				HR	CR	н	P, PS, PL	l, I-Flex	Α	с	IQ
Fastener size				6							
Nominal embedment depth h _{nom} ≥ [mm]			35								
All load directions	5										
Characteristic resistance	R30R90	F _{Rk,fi}	[kN]	0,7	0,2	0,5					
	R120	F _{Rk,fi}	[kN]	0,5	0,1	0,4					
Edge distance	R30R120	Ccr,fi	[mm]	54		50					
Anchor spacing	R30R120	S _{cr,fi}	[mm]	108		100					

The fire resistance data is only valid for concrete C20/25 to C50/60 with a minimum slab thickness of 80 mm. The data is not valid for precast pre-stressed hollow core slabs.

The edge distance of the anchor must be $c \ge 300$ mm and $\ge 2h_{ef}$ if the fire attack is from more than one side. The anchorage depth shall be increased for wet concrete by at least 30 mm compared to the given value.

Hilti Concrete screw HUS3, HUS4 and HUS

Performances Characteristic values of resistance under fire exposure Annex C3