

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-15/0740 of 31 October 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

ejotherm H2

Plastic anchor for fixing of external thermal insulation composite systems with rendering

EJOT SE & Co. KG Astenbergstraße 21 57319 Bad Berleburg **GERMANY**

EJOT manufacturing plant 1, 2, 3, 4

13 pages including 3 annexes which form an integral part of this assessment

EAD 330196-01-0604 edition 10/2017

ETA-15/0740 issued on 1 December 2016

European Technical Assessment ETA-15/0740

English translation prepared by DIBt

Page 2 of 13 | 31 October 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 13 | 31 October 2024

Specific Part

1 Technical description of the product

The nailed-in anchor ejotherm H2 consists of an anchor sleeve with an enlarged shaft, spreading zone subsequently, an insulation plate made of virgin polyethylene and an accompanying specific nail of galvanised steel with an overmoulding of polyamide (virgin material). The serrated expanding part of the anchor sleeve is slotted.

The anchor may in addition be combined with the anchor plates SBL 140 plus and VT 90. An illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic load bearing capacity	
- Characteristic resistance under tension load	See Annex C 1
- Minimum edge distance and spacing	See Annex B 2
Displacements	See Annex C 2
Plate stiffness	See Annex C 2

3.2 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance
Point thermal transmittance	See Annex C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330196-01-0604, the applicable European legal act is: [97/463/EC]. The system to be applied is: 2+

European Technical Assessment ETA-15/0740

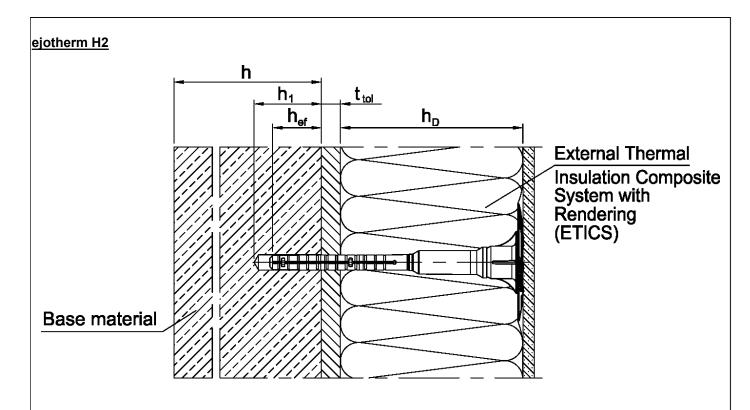
English translation prepared by DIBt

Page 4 of 13 | 31 October 2024

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 31 October 2024 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Head of Section

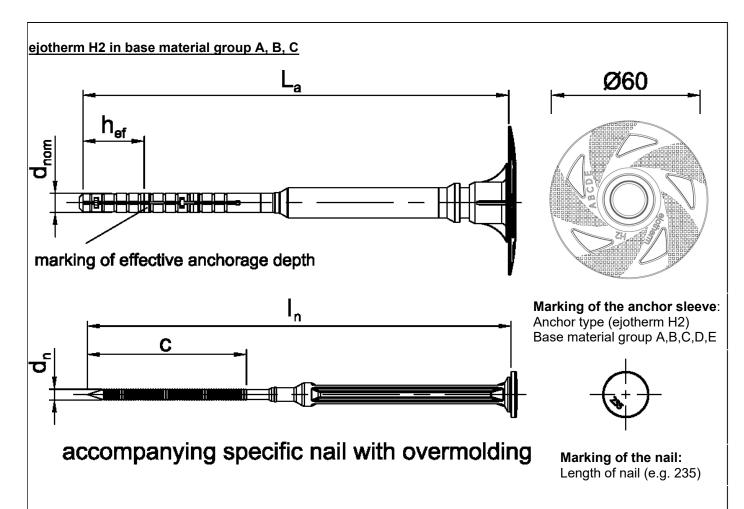
beglaubigt:

Ziegler

Legend: h_D = thickness of insulation material

h_{ef} = effective anchorage depthh = thickness of member (wall)

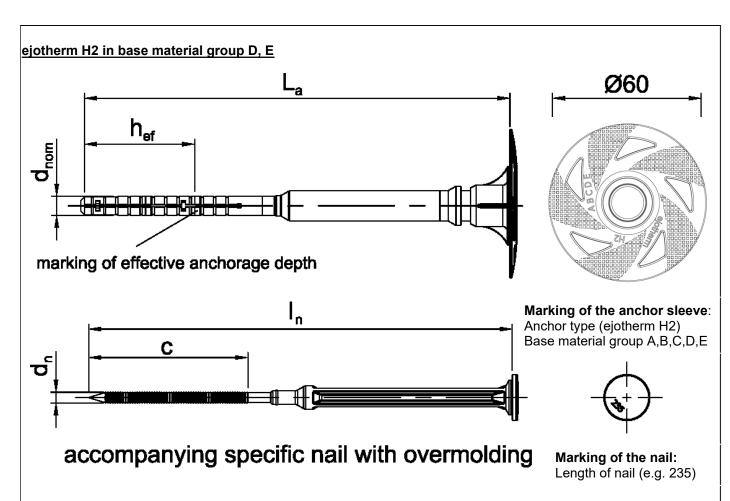
h₁ = depth of drill hole to deepest point


t_{tol} = thickness of equalizing layer or non-load-bearing coating

ejotherm H2

Product description
Installed condition

Annex A 1

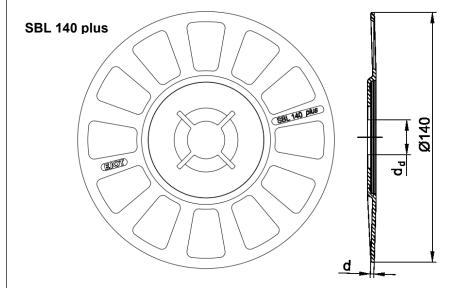

Table A1: Dimens	sions						
		Д	nchor sleev	/e		Specific nai	I
Anchor Type	Colour	d _{nom}	h _{ef}	min L _a max L _a	d _n	С	min I _n max I _n
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ejotherm H2	yellow / orange / red / blue / grey / nature / green	8	25	95 295	4,13	60	95 295

Determination of maximum thickness of insulation h_D [mm] for ejotherm H2:

$$\begin{array}{lll} & h_D & = L_a - t_{tol} - h_{ef} & (L_a = e.g. \ 155; \ t_{tol} = 10) \\ e.g. & h_D & = 155 - 10 - 25 \\ & h_{Dmax} & = 120 \end{array}$$

ejotherm H2	
Product description Marking and dimension of the anchor sleeve, base material group A, B, C expansion element	Annex A 2

Table A2: Dimens	ions						
		А	nchor sleev	/e	S	Specific na	il
Anchor Type	Colour	d _{nom}	h _{ef}	min L _a max L _a	d _n	С	min I _n max I _n
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ejotherm H2	yellow / orange / red / blue / grey / nature / green	8	45	95 295	4,13	60	95 295


Determination of maximum thickness of insulation h_D [mm] for ejotherm H2:

$$\begin{array}{lll} & h_D & = L_a - t_{tol} - h_{ef} & (L_a = e.g. \ 155; \ t_{tol} = 10) \\ e.g. & h_D & = 155 - 10 - 45 \\ & h_{Dmax} & = 100 \end{array}$$

	T .
ejotherm H2	
	Annex A 3
Product description	7 tillox 7 t
Marking and dimension of the anchor sleeve, base material group D, E expansion element	

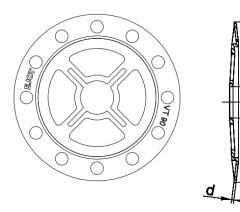


Table A3: Materials	
Name	Materials
Anchor sleeve + Anchor plate	Virgin polyethylene PE-HD, colour: yellow / orange / red / blue / grey / nature / green
Specific nail - overmoulding	Virgin polyamide PA GF 50
Specific nail	Steel, electro galvanized \geq 5 µm according to EN ISO 4042:2022, blue passivated $f_{vk} \geq$ 670 N/mm ²
Slip on plate (SBL 140 <i>plus</i> , VT 90)	Virgin polyamide PA 6 or PA GF 50, colour: nature

SBL 140 plus		
d _d [mm] 20,0		
d	[mm]	2,0

VT 90

VT	90		
d_d	[mm]	17,5	
d	[mm]	1,2	

ejotherm H2	
Product description	Annex A 4
Materials,	
Slip on plates combined with ejotherm H2	

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Compacted normal weight concrete without fibres (base material group A) according to Annex C 1
- Solid masonry (base material group B), according to Annex C 1
- Hollow or perforated masonry (base material group C), according to Annex C 1
- Lightweight aggregate concrete (base material group D), according to Annex C 1
- Autoclaved aerated concrete (base material group E), according to Annex C 1
- For other base materials of the base material groups A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051 edition April 2018.

Temperature Range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2.0$ and $\gamma_F = 1.5$, if there are no other national regulations.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- · Hole drilling by the drill modes according to Annex C1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

ejotherm H2	A D.4
Intended use Specifications	Annex B 1

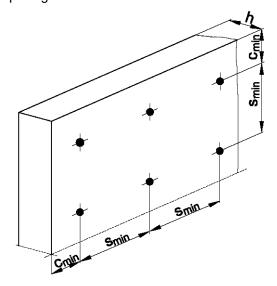
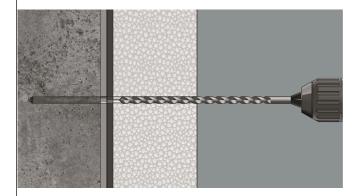
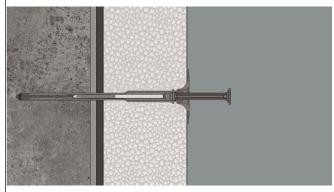


Table B1: Installation parameters						
Anchor type		ejotho	erm H2			
		Base mat	erial group			
		A, B, C	D, E			
Drill hole diameter	d ₀ [mm] =	8	8			
Cutting diameter of drill bit	d _{cut} [mm] ≤	8,45	8,45			
Depth of drill hole to deepest point	h₁ [mm] ≥	35	55			
Effective anchorage depth 1)	h _{ef} [mm] ≥	25	45			

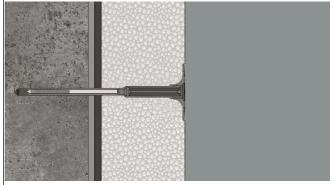
¹⁾ Larger anchoring depths are fundamentally possible.

Table B2: Anchor distances and dimensions of members				
Anchor type	ejotherm H2			
Minimum spacing	s _{min} [mm] =	100		
Minimum edge distance	c _{min} [mm] =	100		
Thickness of member	h [mm] ≥	100		
Thickness of thin concrete members	h [mm] ≥	40		


Scheme of distance and spacing


ejotherm H2	
Intended use	Annex B 2
Installation parameters,	
Minimum thickness of member, edge distances and spacing	

Installation instructions


Drill the hole perpendicular to the substrate surface.
Clean the drill hole 3x.

Place the anchor into the drill hole. The bottom side of the plate must be flush with the ETICS.

Drive in the specific nail with the hammer.

Installed condition ejotherm H2.

ejotherm H2	
Intended use Installation instructions	Annex B 3

Table C1: Characteristic resistance to tension loads N _{Rk} in concrete and masonry for a single anchor in kN					
Anchor type				ejotherm H2	
Base materials	Bulk density p [kg/dm³]	minimum compressive strength f _b [N/mm²]	General remarks	Drill method ¹⁾	N _{Rk}
Concrete C16/20 – C50/60 as per EN 206:2013+A1:2016		[]	Compacted normal weight concrete without fibres	Н	0,9
Thin concrete members (e.g. weather resistant skin) Concrete C12/15 – C50/60 as per EN 206:2013+A1:2016			Thickness of the thin skin: 100 mm > h ≥ 40 mm	Н	0,9
Clay bricks, Mz as per EN 771-1:2011+A1:2015	≥ 1,8	12	Vertically perforation up to 15 %.5)	Н	0,9
Sand-lime solid bricks, KS as per EN 771-2:2011+A1:2015	≥ 1,8	12	Vertically perforation up to 15 %. ⁵⁾	Н	0,9
Vertically perforated clay bricks, HLz as per EN 771-1:2011+A1:2015	≥ 0,8	12	Vertically perforation ≥15 % and ≤ 50 %. ⁵⁾	R	0,6 2)
Sand-lime perforated bricks, KSL as per EN 771-2:2011+A1:2015	≥ 1,6	12	Vertically perforation ≥15 % and ≤ 50 %. ⁵⁾	R	0,9 3)
Lightweight concrete solid blocks, V as per EN 771-3:2011+A1:2015	≥ 0,7	4	Proportion of hole ≤10%; maximum extension of hole: length = 110 mm; width = 45 mm	Н	0,75
Lightweight concrete hollow blocks, Hbl as per EN 771-3:2011+A1:2015	≥ 1,2	6	Vertically perforation ≥15 % and ≤ 50 %. ⁵⁾	R	0,6 4)
Lightweight aggregate concrete, LAC as per EN 1520:2011 / EN 771-3:2011+A1:2015	≥ 0,7	4	-	R	0,9
Autoclaved aerated concrete, AAC as per EN 771-4:2011+A1:2015	≥ 0,55	4	-	R	0,5

¹⁾ H = hammer drilling / D = rotary drilling

⁵⁾ Cross section reduced by perforation vertically to the resting area

ejotherm H2	
Performances Characteristic tension resistance	Annex C 1

²⁾ The value applies only for outer web thickness ≥ 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

³⁾ The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

⁴⁾ The value applies only for outer web thickness ≥ 40 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests.

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2016-05			
anchor type	insulation thickness h _D [mm]	point thermal transmittance \mathcal{X} [W/K]	
ejotherm H2	60 – 260	0,001	

Table C3: Plate stiffness according EOTA Technical Report TR 026:2016-05			
anchor type	diameter of the anchor plate [mm]	load resistance of the anchor plate [kN]	plate stiffness [kN/mm]
ejotherm H2	60	1,5	0,97

Table C4: Displacements				
Base materials	Bulk density	Min. compressive strength	Tension load	Displacements
	[kg/dm³]	f _b [N/mm²]	N [kN]	$\Delta~\delta_{N}$ [mm]
Concrete C16/20 – C50/60 (EN 206:2013+A1:2016)			0,3	0,4
Thin concrete members (e.g. weather resistant skin) Concrete C12/15 – C50/60 (EN 206:2013+A1:2016)			0,3	0,5
Clay bricks, Mz (EN 771-1:2011+A1:2015)	≥ 1,8	12	0,3	0,5
Sand-lime solid bricks, KS (EN 771-2:2011+A1:2015)	≥ 1,8	12	0,3	0,3
Vertically perforated clay bricks, HLz (EN 771-1:2011+A1:2015)	≥ 0,9	12	0,2	0,5
Sand-lime perforated bricks, KSL (EN 771-2:2011+A1:2015)	≥ 1,4	12	0,3	0,4
Lightweight concrete solid blocks, V (EN 771-3:2011+A1:2015)	≥ 0,7	4	0,25	0,4
Lightweight concrete hollow blocks, Hbl (EN 771-3:2011+A1:2015)	≥ 1,2	6	0,2	0,4
Lightweight aggregate concrete, LAC (EN 1520:2011)	≥ 0,7	4	0,3	0,5
Autoclaved aerated concrete, AAC (EN 771-4:2011+A1:2015)	≥ 0,55	4	0,15	0,4

ejotherm H2	
Performances Point thermal transmittance, plate stiffness displacements	Annex C 2