

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-21/0267 vom 14. November 2024

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS V Zero zur Verankerung im Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

44 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604, Edition 10/2022

ETA-21/0267 vom 27. August 2021

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z192773.24 8.06.04-69/24

Seite 2 von 44 | 14. November 2024

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z192773.24 8.06.04-69/24

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS V Zero für Mauerwerk ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit fischer Injektionsmörtel FIS V Zero, einer Injektions-Ankerhülse und einer Ankerstange mit Sechskantmutter und Unterlegscheibe oder einer Innengewinde-Ankerstange besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen	Siehe Anhang B 4 bis B 7, B 14 C 1 bis C 21
Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z192773.24 8.06.04-69/24

Seite 4 von 44 | 14. November 2024

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

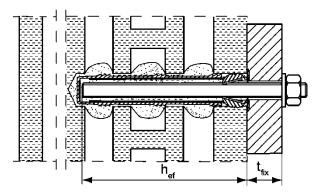
Folgendes System ist anzuwenden: 1

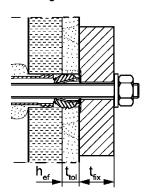
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 14. November 2024 vom Deutschen Institut für Bautechnik

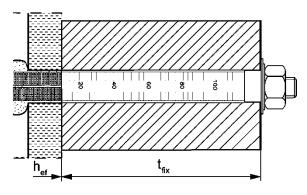
Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Z192773.24 8.06.04-69/24


Einbauzustände Teil 1

Ankerstangen mit Injektions-Ankerhülse FIS H K; Montage in Hohl-, Loch- und Vollsteinen

Vorsteckmontage:

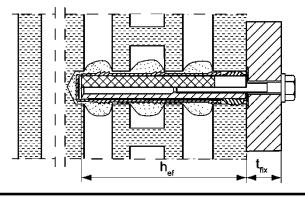


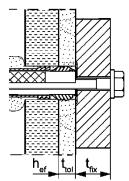
Montage mit Putzüberbrückung



Größe der Injektions-Ankerhülse: FIS H 12x50 K FIS H 16x85 K FIS H 20x85 K FIS H 12x85 K FIS H 16x130 K FIS H 20x130 K

Durchsteckmontage:


Montage mit Putzüberbrückung


Größe der Injektions-Ankerhülse: FIS H 18x130/200 K FIS H 22x130/200 K

Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K; Montage in Hohl-, Loch- und Vollsteinen

Vorsteckmontage:

Montage mit Putzüberbrückung

Abbildungen nicht maßstäblich

h_{ef} = Effektive Verankerungstiefe

t_{tol} = Dicke der nichttragenden Schicht (z.B. Putz)

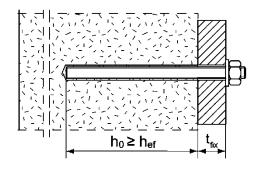
t_{fix} = Dicke des Anbauteils

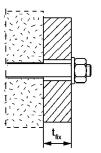
fischer Injektionssystem FIS V Zero für Mauerwerk

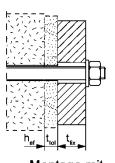
Produktbeschreibung

Einbauzustände Teil 1,

Ankerstange und Innengewindeanker mit Injektions-Ankerhülse FIS H K

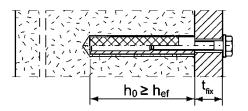

Anhang A1

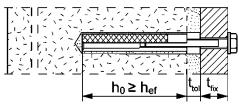

Einbauzustände Teil 2


Ankerstangen ohne Injektions-Ankerhülse; Montage in Vollsteinen und Porenbeton

Vorsteckmontage:

Durchsteckmontage: Ringspalt mit Mörtel verfüllt




Montage mit Putzüberbrückung

Innengewindeanker FIS E ohne Injektions-Ankerhülse; Montage in Vollsteinen

Vorsteckmontage:

Montage mit Putzüberbrückung

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

t_{tol} = Dicke der nichttragenden Schicht (z.B. Putz)

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS V Zero für Mauerwerk

Produktbeschreibung

Einbauzustände Teil 2,

Ankerstange und Innengewindeanker ohne Injektions-Ankerhülse

Anhang A2

Übersicht Systemkomponenten Teil 1 Mörtelkartusche (Shuttlekartusche) mit Verschlusskappe Größen: 360 ml, 825 ml Aufdruck: fischer FIS V Zero, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Mörtelkartusche (Koaxialkartusche) mit Verschlusskappe Größen: 100 ml, 150 ml, 300 ml, 380 ml, 400 ml, 410 ml Aufdruck: fischer FIS V Zero, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Größe, Volumen Statikmischer MR Plus oder FIS JMR (nur 825ml) und Verlängerungsschlauch Statikmischer FIS MR Plus Statikmischer FIS JMR Verlängerungsschlauch Reinigungsbürste BS Ausbläser ABG oder ABP Abbildungen nicht maßstäblich fischer Injektionssystem FIS V Zero für Mauerwerk Anhang A3 Produktbeschreibung Übersicht Systemkomponenten Teil 1: Kartuschen / Statikmischer / Reinigungszubehör

Übersicht Systemkomponenten Teil 2	
fischer Ankerstange	
Größen: M8, M10, M12, M16	
Innengewindeanker FIS E	
Größen: 11x85 M8 15x85 M10 / M12	
Injektions-Ankerhülse FIS H K Größen: FIS H 12x50 K	
FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K	
Größen: FIS H 16x130 K FIS H 20x130 K	
Injektions-Durchsteckankerhülse FIS H K	
	Größen: FIS H 18x130/200 K FIS H 22x130/200 K
Unterlegscheibe	
Sechskantmutter	
Δhhite	dungen nicht maßstäblich
fischer Injektionssystem FIS V Zero für Mauerwerk	Jungen ment maisstablien
Produktbeschreibung	Anhang A4
Übersicht Systemkomponenten Teil 2: Stahlteile / Injektions-Ankerhülsen FIS H K	

Геil	Bezeichnung	Material Mörtel, Härter, Füllstoffe					
1	Injektionskartusche						
		Stahl	Nichtrostender Stahl R	Hochkorrosionsbe- ständiger Stahl HCR			
	Stahlart	verzinkt	gemäß EN 10088-1:2023 der Korrosionsbeständig- keitsklasse CRC III nach EN 1993-1-4:2020	gemäß EN 10088-1:2023 der Korrosionsbeständig- keitsklasse CRC V nach EN 1993-1-4:2020			
2	Ankerstange	Festigkeitsklasse 4.6; 4.8; 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt ≥ 5µm, EN ISO 4042:2022 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004+AC:2009 f _{uk} ≤ 1000 N/mm² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2023 $f_{uk} \le 1000 \text{ N/mm}^2$ A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2020 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2023 $f_{uk} \le 1000$ N/mm ² A ₅ > 8% Bruchdehnung			
3	Unterlegscheibe ISO 7089:2000	verzinkt ≥ 5µm, ISO 4042:2022 Zn5/An(A2K) oder feuerverzinkt EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	1.4565;1.4529 EN 10088-1:2023			
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 verzinkt ≥ 5µm, ISO 4042:2022 Zn5/An(A2K) oder feuerverzinkt ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023			
5	Innengewindeanker FIS E	Festigkeitsklasse 5.8; EN 10277:2018 verzinkt ≥ 5µm, ISO 4042:2022 Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023			
6	Handelsübliche Schraube oder Gewindestange für Innengewindeanker FIS E	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 verzinkt ≥ 5µm, ISO 4042:2022 Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2023	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2023			
7	Injektions-Ankerhülse FIS H K		PP / PE				
	her Injektionssystem duktbeschreibung	FIS V Zero für Mauerwe	erk	Anhang A5			

Spezifizierung des Verwendungszwecks (Teil 1)

		fischer Injektionssys	stem FIS V Zero fü	r Mauerwerk	
Bohrlocherste Hammer	bohren	alle Steine			
Bohrlocherste Drehgang	gbohren	alle Steine			
Statische und q Belast		alle Steine			
Nutzungs- kategorie	trockenes Mauerwerk		alle Steine		
Montageart	Vorsteck- montage	Ankerstange oder Innengewindeanker (in Vollstein und Porenbeton	Ank Inne (in Hohl-, L Größen:	rns-Ankerhülse mit kerstange oder ngewindeanker Loch- und Vollsteinen) FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K FIS H 20x130 K	
	Durchsteck- montage	Ankerstange (in l (in Vollstein und Porenbeton)		Injektions-Ankerhülse mit Ankerstange Hohl-, Loch- und Vollsteinen) Größen: FIS H 18x130/200 K FIS H 22x130/200 K	
Montage- und Nutzungs- bedingungen	Bedingung d/d (trocken/trocken)		alle Steine		
Einbautemperatur		T _{i,min} = -10	°C bis T _{i,max} = +40	°C	
	Temperatur- bereich Ta	_//// `` DIS +//// `` \	male Kurzzeittempo male Langzeittemp	•	
Gebrauchs- temperaturbereiche	Temperatur- bereich Tb		male Kurzzeittempo male Langzeittemp		
Temperatur- bereich Tc			male Kurzzeittempo male Langzeittemp		
fischer Injektion	nssystem FIS V	Zero für Mauerwerk			
Verwendungszwe Spezifizierung (Te				Anhang B1	

Spezifizierung des Verwendungszweck (Teil 2)

Beanspruchung der Verankerung:

Statische oder quasi-statische Lasten

Verankerungsgrund:

- Mauerwerk aus Vollsteinen (Nutzungskategorie b) und Mauerwerk aus Porenbeton (Nutzungskategorie d), entsprechend Anhang B12
- Mauerwerk aus Hohlblöcken und Lochsteinen (Nutzungskategorie c), entsprechend Anhang B12
- Minimale Bauteildicke hef+30mm
- Mörtel mindestens Druckfestigkeitsklasse M2,5 gemäß EN 998-2:2016
- Für andere Steine in Vollsteinmauerwerk, Lochsteinmauerwerk oder Porenbeton darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach EOTA Technical Report TR 053:2016-04 unter Berücksichtigung des β-Faktors nach Anhang C20, Tabelle C20.1 ermittelt werden.

Hinweis (gilt nur für Vollsteine und Porenbeton):

Die charakteristischen Widerstände gelten auch für größere Steinformate, größere mittlere Druckfestigkeiten und größere mittlere Trockenrohdichten der Mauersteine.

Temperaturbereiche:

- Ta: von -40 °C bis +40 °C (max. Kurzzeit-Temperatur +40 °C und max. Langzeit-Temperatur +24 °C)
- Tb: von -40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)
- Tc: von 40 °C bis +120 °C (max. Kurzzeit-Temperatur +120 °C und max. Langzeit-Temperatur +72 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A2:2020 entsprechend der Korrosionsbeständigkeitsklasse nach Anhang A5, Tabelle A.5.1

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck
Spezifizierung (Teil 2)

Anhang B2

Spezifizierung des Verwendungszweck (Teil 2 fortgesetzt)

Bemessung:

 Die Bemessung der Verankerung erfolgt in Übereinstimmung mit EOTA Technical Report TR 054:2022-07, Bemessungsmethode A unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Planers.

Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$$

Für die Berechnung für das Herausziehen eines Steines unter Zuglast **N**_{Rk,pb} oder das Herausdrücken eines Steines unter Querlast **V**_{Rk,pb} siehe EOTA Technical Report TR 054:2022-07. **N**_{Rk,s}, **V**_{Rk,s} und **M**⁰_{Rk,s} siehe Anhang C1-C3

Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21

 Unter Berücksichtigung des im Bereich der Verankerung vorhandenen Mauerwerks, den zu verankernden Lasten sowie der Weiterleitung dieser Lasten im Mauerwerk sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage der Dübel anzugeben.

Einbau:

- · Bedingung d/d: Montage und Nutzung in Bauteilen unter den Bedingungen trockener Innenräume
- Bohrlocherstellung siehe Tabelle B1.1
- · Im Fall von Fehlbohrungen sind diese zu vermörteln
- Überbrückung von nichttragenden Schichten (z.B. Putz) bei Lochsteinmauerwerk siehe Anhang B6,
 Tabelle B6.1
- · Einbau des Dübels durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Befestigungsschrauben oder Ankerstangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen für den fischer Innengewindeanker FIS E entsprechen.
- Aushärtezeiten siehe Anhang B8, Tabelle B8.2
- Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

Materialabmessungen und mechanische Eigenschaften der Metallteile entsprechend den Angaben aus Anhang A5, Tabelle A5.1.

Bestätigung der Material- und mechanischen Eigenschaften der Metallteile durch ein Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden.

Markierung der Ankerstange mit der effektiven Verankerungstiefe. Dies darf durch den Hersteller oder durch eine Person auf der Baustelle erfolgen.

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck
Spezifizierung (Teil 2 fortgesetzt)

Anhang B3

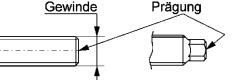


Tabelle B4.1:	Montagekennwerte für Ankerstangen in Vollsteinen und Porenbeton ohne
	Injektions-Ankerhülse FIS H K

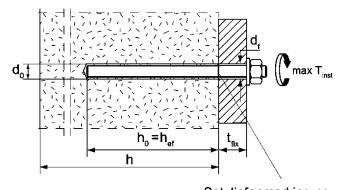
Ankerstange		Gewinde	М8	M10	M12	M16
Bohrernenndurchmess	er	d₀[mm]	10	12	14	18
Effektive Verankerungs h _{ef} ¹⁾ in Porenbeton (zyl. Bohrloch)	gstiefe h _{0,min} =h _{ef,min} [mm] 100		00			
Effektive Verankerungs	stiefe h _{ef} 1)	h _{ef,min} [mm]	n] 50			
in Vollziegel (Bohrlochtiefe $h_0 = h^{ef}$) $h_{ef,n}$		h _{ef,max} [mm]	h-30, ≤200			
Durchmesser des Vorsteck- montage		d _f ≤[mm]	9	12	14	18
Durchgangsloch im Anbauteil	Durchsteck- montage	d _f ≤[mm]	11 14 16 20			20
Durchmesser der Reini	gungsbürste d₅≥[mm] siehe Tabelle B8.1			•		
Maximales Montagedre	ehmoment n	nax T _{inst} [Nm]	siehe Steinkennwerte			

¹⁾ h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} ist möglich.

fischer Ankerstangen M8, M10, M12, M16

Prägung (an beliebiger Stelle) fischer Ankerstange:

Stahl galvanisch verzinkt FK¹¹ 8.8 ● od	der +	Stahl feuerverzinkt FK ¹⁾ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 70	-
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 80	(Nichtrostender Stahl R FK1) 50	~
Nichtrostender Stahl R FK1) 80	*		


Alternativ: Farbmarkierung nach DIN 976-1:2016;

Festigkeitsklasse 4.6 Markierung nach EN ISO 898-1: 2013

1) FK = Festigkeitsklasse

Einbauzustand:

Ankerstange

Setztiefenmarkierung

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

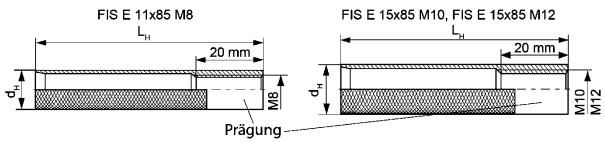
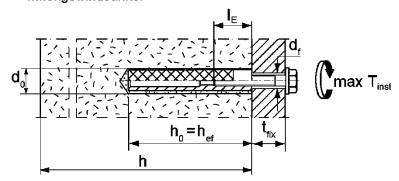

Montagekennwerte für Ankerstangen ohne Injektions-Ankerhülse

Tabelle B5.1: Montagekennwerte für Innengewindeanker FIS E in Vollsteinen ohne Injektions-Ankerhülse

Innengewindeanker FIS E		11x85 M8	15x85 M10	15x85 M12	
Ankerdurchmesser	d _H [mm]	11 15			
Bohrernenndurchmesser	d₀[mm]	14 18			
Ankerlänge	L _H [mm]	85			
Effektive Verankerungstiefe	$h_0 = h_{ef}[mm]$	85			
Durchmesser der Reinigungsbürste	d _b ≥[mm]	siehe Tabelle B8.1			
Maximales Montagedrehmoment	max T _{inst} [Nm]	siehe Steinkennwerte Anhang C4-C16			
Durchmesser des Durchgangsloch im Anbauteil	d _f [mm]	9 12 14			
Finankan uktiafa	l _{E,min} [mm]	8	10	12	
Einschraubtiefe	I _{E,max} [mm]	m] 60			

fischer Innengewindeanker FIS E



Prägung:

Größe, z.B. M8, nichtrostender Stahl: R, z.B. M8 R, hochkorrosionsbeständiger Stahl: HCR, z.B. M8 HCR

Einbauzustand:

Innengewindeanker

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

Montagekennwerte für Innengewindeanker FIS E ohne Injektions-Ankerhülse

Tabelle B6.1: Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülsen FIS H K (Vorsteckmontage)

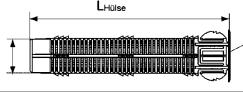
Injektions-Ankerhülse FIS H	<	12x50	12x85 ²⁾	16x85	16x130 ²⁾	20x85	20x130 ²⁾
Bohrernenndurchmesser d ₀ = D _{Hülse,nom}	d ₀ [mm]	1	12	1	6	2	20
Bohrlochtiefe	h₀[mm]	55	90	90	135	90	135
Effektive Verankerungstiefe	h _{ef,min} [mm]	50	65	85	110	85	110
	h _{ef,max} [mm]	50	85	85	130	85	130
Ankergröße	[-]	N	//8	M8 ur	nd M10	M12 u	nd M 16
Größe des Innengewindeankers	s FIS E	-	-	11x85	-	15x85	-
Durchm. der Reinigungsbürste ¹) d _b ≥[mm]				siehe Ta	belle B8.1		
Max. Montagedrehmoment	max T _{inst} [Nm]		siehe	e Steinkenr	werte Anha	ng C	

¹⁾ Nur für Vollsteine und massive Bereiche in Lochsteinen.

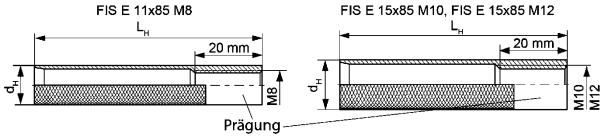
Injektions-Ankerhülsen

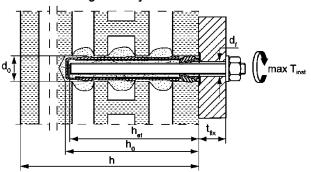
FIS H 12x50 K; FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K;

FIS H 20x85 K; FIS H 20x130 K

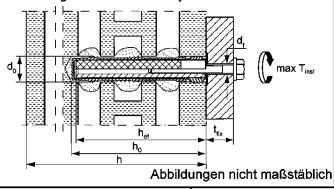

Markierung:

Größe Dhülse, nom X Lhülse




Markierung

fischer Innengewindeanker FIS E



Einbauzustand:

Ankerstange mit Injektions-Ankerhülse

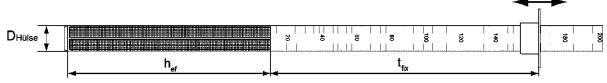
Innengewindeanker mit Injektions-Ankerhülse

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

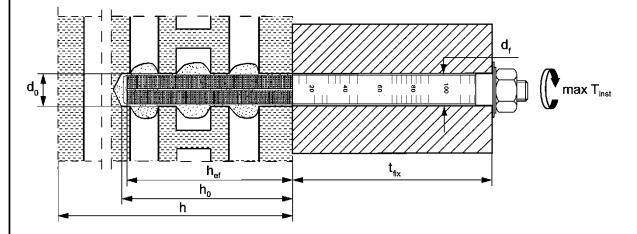
Montagekennwerte für Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K (Vorsteckmontage)

²⁾ Überbrückung von nichttragenden Schichten (z.B. Putz) ist möglich. Bei Reduzierung der effektiven Verankerungstiefe h_{ef,min} müssen die Werte der nächst kürzeren Injektions-Ankerhülse des selben Durchmessers verwendet werden. Der kleinere charakteristische Wert ist maßgebend


Tabelle B7.1: Montagekennwerte für Ankerstangen mit Injektions-Durchsteckankerhülsen (Durchsteckmontage)

Injektions- Durchsteckankerhülse FIS H K		18x130/200 22x130/20			
Nominaler Hülsendurchmesser	D _{Hülse,nom} [mm]	16 20			
Bohrernenndurchmesser	d₀[mm]	1	22		
Bohrlochtiefe	h₀ [mm]	135			
Effektive Verankerungstiefe	h _{ef} [mm]	≥130			
Durchmesser der Reinigungsbürste ¹⁾	d₀ ≥ [mm]] siehe Tabelle B8.1			
Ankergröße	[-]] M10 M12 M16			
Maximales Montagedrehmoment	max T _{inst} [Nm]	siehe Steinkennwerte			
Maximale Dicke des Anbauteils	t _{fix,max} [mm]	200			

¹⁾ Nur für Vollsteine und massive Bereiche in Lochsteinen.


Injektions-Durchsteckankerhülsen

FIS H 18x130/200 K; FIS H 22x130/200 K

Einbauzustand:

Ankerstange mit Injektions-Ankerhülse

Abbildungen nicht maßstäblich

verschiebbar

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

Montagekennwerte für Ankerstangen mit Injektions-Durchsteckankerhülsen (Durchsteckmontage)

Tabelle B8.1: K	ennwerte de	r Reiniauı	nasbürste	BS (Star	ılbürste m	nit Stahlbo	orsten)		
Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser									
Bohrernenn- durchmesser	d₀ [mm]	10	12	14	16	18	20	22	
Stahlbürsten- durchmesser	d₀ [mm]	11	14	16	20	20	25	25	

Nur für Vollsteine und Porenbeton oder massive Bereiche bei Lochziegel und Hohlblocksteinen

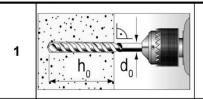
Tabelle B8.2: Maximale Verarbeitungszeiten und minimale Aushärtezeiten (Die Temperatur im Mauerwerk darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Temperatur im Verankerungsgrund	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}
[°C]	FIS V Zero	FIS V Zero
-10 bis -5 1)	6 h	72 h
> -5 bis 0 1)	2 h	24 h
> 0 bis 5 ¹⁾	45 min	12 h
> 5 bis 10	20 min	6 h
> 10 bis 15	8 min	3 h
> 15 bis 20	5 min	2 h
> 20 bis 25	3 min	1 h
> 25 bis 30	2 min	45 min
> 30 bis 40	1 min	30 min

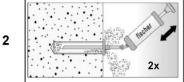
¹⁾ Minimale Kartuschentemperatur +5°C

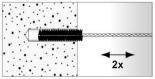
Abbildungen nicht maßstäblich

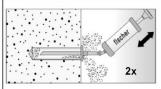
fischer Injektionssystem FIS V Zero für Mauerwerk

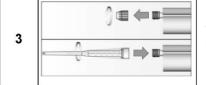

Verwendungszweck
Kennwerte der Reinigungsbürste (Stahlbürste)
Verarbeitungs- und Aushärtezeiten

Anhang B8

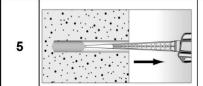


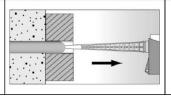

Montageanleitung Teil 1

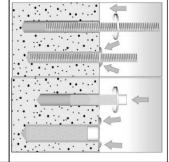

Montage in Vollsteinen und Porenbeton ohne Injektions-Ankerhülse


Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines) Bohrlochtiefe h_0 und Bohrlochdurchmesser d_0 siehe **Tabelle B4.1**; **B5.1**

Bohrloch zweimal ausblasen, zweimal ausbürsten, und nochmal zweimal ausblasen.


Verschlusskappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Ca. 2/3 des Bohrlochs vom Grund her mit Mörtel verfüllen.¹⁾ Lufteinschlüsse vermeiden.

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen.

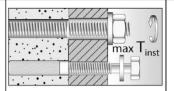
Nur saubere und ölfreie Stahlteile verwenden.

Setztiefe markieren.

Ankerstange oder Innengewindeanker FIS E von Hand einschieben.

Empfehlung:

Erleichterung des Setzvorgangs durch hin und her drehende Bewegungen der Ankerstange bzw. des Innengewindeankers FIS E.


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund austreten.

6

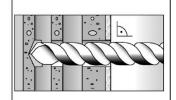
Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B8.2**

Montage des Anbauteils, max T_{inst} siehe Steinkennwerte

fischer Injektionssystem FIS V Zero für Mauerwerk

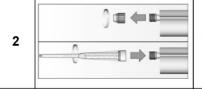
Verwendungszweck

Montageanleitung Teil 1


Montage in Vollsteinen ohne Injektions-Ankerhülse

¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers

Montageanweisung Teil 2

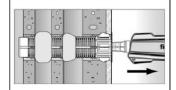

Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse FIS H K (Vorsteckmontage)

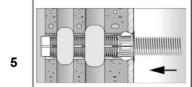
Bohrloch erstellen (Bohrverfahren siehe Anhang C des jeweiligen Steines). Bohrlochtiefe **h**₀ und

Steines).
Bohrlochtiefe ho und
Bohrdurchmesser do
siehe Tabelle B6.1

Bei der Montage von Injektions-Ankerhülsen in Vollsteinen oder massiven Bereichen von Lochsteinen ist das Bohrloch durch Ausblasen und Bürsten zu reinigen.

Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.

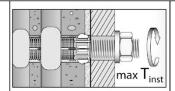

Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Die Injektions-Ankerhülse bündig mit der Oberfläche des Mauerwerks oder Putzes in das Bohrloch stecken.

Die Injektions-Ankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen. 1)

Nur saubere und ölfreie Stahlteile verwenden Setztiefe markieren.

Ankerstange oder Innengewindeanker FIS E von Hand einschieben.


Empfehlung:

Erleichterung des Setzvorgangs durch hin und her drehende Bewegungen der Ankerstange (bis zur Setztiefenmarkierung) bzw. des Innengewindeankers FIS E (oberflächenbündig).

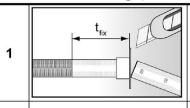
Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B8.2**

Montage des Anbauteils, max T_{inst} siehe Steinkennwerte

fischer Injektionssystem FIS V Zero für Mauerwerk

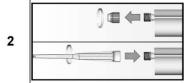
Verwendungszweck

Montageanleitung Teil 2


Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse FIS H K (Vorsteckmontage)

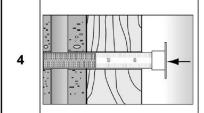
¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers

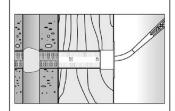
Montageanweisung Teil 3

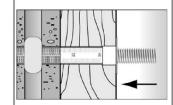

Montage in Voll- und Lochsteinen mit Injektions-Durchsteckankerhülse FIS H K (Durchsteckmontage)

Den verschiebbaren Kragen auf die Dicke des Anbauteils einstellen und den Überstand abschneiden.

Bohrung durch das Anbauteil hindurch erstellen. Bohrlochtiefe (h₀ + t_{fix}) und Bohrdurchmesser d₀ siehe **Tabelle B7.1**


Abdeckkappe entfernen und Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).


Kartusche in ein geeignetes Auspressgerät legen.

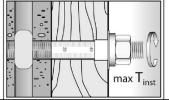

Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Die Injektions-Durchsteckankerhülse bündig mit der Oberfläche des Anbauteils in das Bohrloch stecken.

Die Injektions-Durchsteckankerhülse vollständig vom Grund des Bohrlochs her mit Mörtel verfüllen. ¹⁾ Bei tiefen Bohrlöchern Verlängerungsschlauch verwenden.

Nur saubere und ölfreie Stahlteile verwenden Setztiefe markieren.

Ankerstange von Hand einschieben.


Erleichterung des Setzvorgangs durch hin und her drehende Bewegungen der Ankerstange (bis zur Setztiefenmarkierung).

5

Nicht berühren. Minimale Aushärtezeit siehe Tabelle **B8.2**

Montage des Anbauteils, max T_{inst} siehe Steinkennwerte

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

Montageanleitung Teil 3

Montage in Voll- und Lochsteinen mit Injektions-Ankerhülse (Durchsteckmontage)

¹⁾ Genaue Füllmengen siehe Montageanleitung des Herstellers

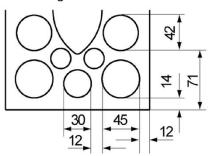
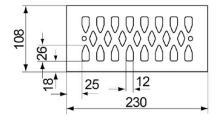
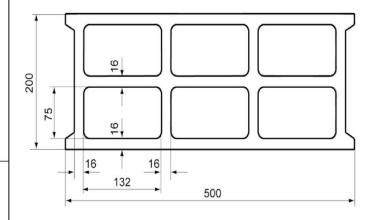


Tabelle B12.1: Übersic	Tabelle B12.1: Übersicht der bewerteten Steine									
Steinart / Bezeichnung	Stein	abmessungen [mm]	mittlere Druckfestigkeit [N/mm²]	Haupt- herkunfts- land	mittlere Trocken- rohdichte ρ [kg/dm³]	Anhang				
		Vo	ollziegel Mz							
Vollziegel Mz		≥ 230x108x55	36 - 48	Dänemark	≥2,0	C4/C5				
	Kall	sandvollstein l	KS / Kalksandloch	stein KSL						
Kalksand- vollstein KS	NF	≥240x115x71	8- 20	Deutschland	≥2,0	C6/C7				
Kalksand- lochstein KSL	3DF	240x175x113	8 - 16	Deutschland	≥1,6	C8 – C11				
		Hoch	lochziegel HLz							
Hochloch- ziegel HLz		230x108x55	6 - 16 Dänemark		≥1,6	C12/C13				
	di.	Hohlblock a	aus Leichtbeton H	bl						
Hohlblock aus Leichtbeton Hbl		500x200x200	2 - 4	Frankreich	≥1,0	C14/C15				
	- 80	Р	orenbeton							
PP2 / AAC			2		≥0,35					
Porenbeton PP4 / AAC			4	Deutschland	≥0,5	C16-C19				
PP6 / AAC			6		≥0,65					


Tabelle B12.2: Übersicht Steinabmessungen für Loch- und Hohlblocksteine

Kalksandlochstein KSL, 3DF,

EN 771-2:2011+A1:2015; z.B. KS Wemding entsprechend Anahng C 8

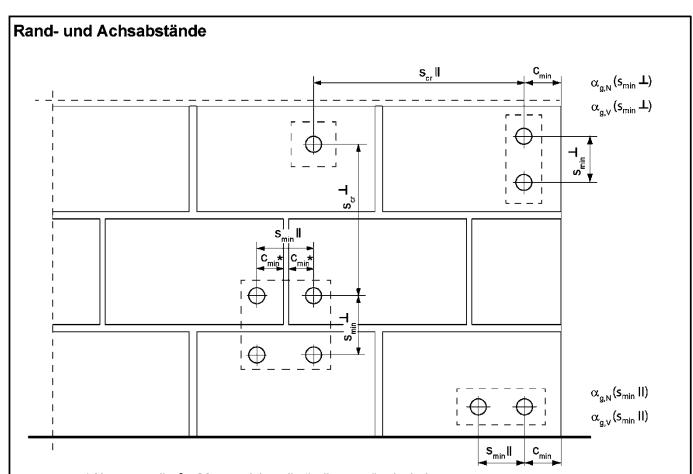


Hochlochziegel HLz, EN 771-1: 2011+A1:2015; z.B. Wienerberger entsprechend Anhang C 12

Hohlblockstein aus Leichtbeton Hbl.

EN 771-3: 2011+A1:2015; z.B. Sepa entsprechend Anhang C 14

Maße in [mm]


fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

Übersicht der bewerteten Steine

Übersicht Steinabmessungen für Loch- und Hohlblocksteine

* Nur wenn die Stoßfugen nicht vollständig vermörtelt sind

s_{min} II = Minimaler Achsabstand parallel zur horizontalen Lagerfuge

 s_{min} = Minimaler Achsabstand senkrecht zur horizontalen Lagerfuge

s_{cr} II = Charakteristischer Achsabstand parallel zur horizontalen Lagerfuge

 $\mathsf{s}_\mathsf{cr}^\perp$ = Charakteristischer Achsabstand senkrecht zur horizontalen Lagerfuge

 $c_{cr} = c_{min}$ = Randabstand

 $\alpha_{g,N}(s_{min} | I)$ = Gruppenfaktor bei Zuglast, Dübelanordnung parallel zur horizontalen Lagerfuge $\alpha_{g,N}(s_{min} | I)$ = Gruppenfaktor bei Querlast, Dübelanordnung parallel zur horizontalen Lagerfuge $\alpha_{g,N}(s_{min} | I)$ = Gruppenfaktor bei Zuglast, Dübelanordnung senkrecht zur horizontalen Lagerfuge Gruppenfaktor bei Querlast, Dübelanordnung senkrecht zur horizontalen Lagerfuge

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

Rand- und Achsabstände

Rand- und Achsabstände (Fortsetzung)

Für
$$s \ge s_{cr}$$
 $\alpha_g = 2$

Für $s_{min} \le s < s_{cr}$ α_g entsprechend Montagekennwerte der Steine Anhang C

Gruppe von 2 Ankern

$$N^{g}_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
; $V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$

Gruppe von 4 Ankern

$$N^{g}_{Rk} = \alpha_{g,N} (s_{min}II) \cdot \alpha_{g,N} (s_{min}^{\perp}) \cdot N_{Rk}$$
;

$$V^{g}_{Rk,b} = V^{g}_{Rk,c,II} = V^{g}_{Rk,c,\perp} = \alpha_{g,V} (s_{min}II) \cdot \alpha_{g,V} (s_{min}\perp) \cdot V_{Rk}$$

mit N_{Rk} und $\alpha_{g,N}$ in Abhängigkeit von $s_{min}II$ oder s_{min} gemäß Anhang C

mit V_{Rk} und α_{g,V} in Abhängigkeit von s_{min}II oder s_{min}⊥ gemäß Anhang C

fischer Injektionssystem FIS V Zero für Mauerwerk

Verwendungszweck

Rand- und Achsabstände (Fortsetzung)

Tabelle C1.1: Charakteristischer Widerstand gegen Stahlversagen eines Einzelankers unter Zugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

Anke	rstange / Standar	d-Gewindes	tange		M8 ³⁾	M10 ³⁾	M12	M16		
Char	akteristischer Wid	derstand geg	jen St	tahlve	ersagen unter Zugbeanspruchung					
			4.6		15(13)	23(21)	33	63		
of spiror single		4.8		15(13)	23(21)	33	63			
rsta	Stahl verzinkt		5.8		19(17)	29(27)	43	79		
Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions- beständiger	Festigkeits-	8.8	FL-NIT	29(27)	47(43)	68	126			
	klasse	50	[kN]	19	29	43	79			
hara	e Hochkorrosions-		70		26	41	59	110		
0	beständiger Stahl HCR		80		30	47	68	126		
Teilsi	cherheitsbeiwert	e 1)								
Φ			4.6			2,0	0			
/ert	Stahl verzinkt		4.8		1,50					
.ĕ	Starii verzirikt		5.8		1,50					
itsk s, z		Festigkeits-	8.8			1,5	0			
		klasse	50	[-]	2,86					
	Hochkorrosions-		70		1,50 ²⁾ / 1,87					
L	beständiger Stahl HCR		80		1,60					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung
Charakteristischer Wlderstand gegen Stahlversagen eines Einzelankers unter
Zugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

²⁾ Nur für fischer Ankerstange FIS A aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A₅ für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009

Tabelle C2.1: Charakteristischer Widerstand gegen Stahlversagen eines Einzelankers unter Querbeanspruchung mit und ohne Hebelarm von fischer Ankerstangen und Standard-Gewindestangen

Anke	rstange / Standar	d-Gewindes	tange	•	M8 ³⁾	M10 ³⁾	M12	M16	
Chara	akteristischer Wid	derstand geg	jen S	tahlve	ersagen unter Q	uerbeanspruch	ıng		
ohne	Hebelarm					-			
			4.6		9(8)	14(13)	20	38	
and	Stahl verzinkt		4.8		9(8)	14(13)	20	38	
erst	Starii verzirikt		5.8		11(10)	17(16)	25	47	
. Wide V _{Rk,s}		Festigkeits-	8.8	[kN]	15(13)	23(21)	34	63	
Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions- beständiger		klasse	50	[KIN]	9	15	21	39	
	,	70		13	20	30	55		
0	Stahl HCR		80		15	23	34	63	
mit H	ebelarm								
Charakt. Widerstand M ⁰ Rk,s	Stahl verzinkt	Festigkeits- klasse	4.6	[Nm]	15(13)	30(27)	52	133	
			4.8		15(13)	30(27)	52	133	
erst			5.8		19(16)	37(33)	65	166	
t. Wide M ^o rk,s			8.8		30(26)	60(53)	105	266	
.kt .∨	Nichtrostender Stahl R und		50		19	37	65	166	
hara	Hochkorrosions-	3	70		26	52	92	232	
<u> </u>	beständiger Stahl HCR		80		30	60	105	266	
Teilsi	cherheitsbeiwert	e 1)							
<u>e</u>			4.6			1,6	57		
wer	Stahl verzinkt		4.8			1,2			
bei	Oldan Volume	1	5.8			1,2			
heits Yms,v		Festigkeits-	8.8	[-]		1,2	25		
Teilsicherheitsbeiwerte Yms.v	Nichtrostender Stahl R und	klasse	50	[-]	2,38				
eilsic	Hochkorrosions- beständiger		70		1,25 ²⁾ / 1,56				
Ĭ	Stahl HCR		80			1,3	33		

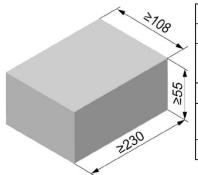
¹⁾ Falls keine abweichenden nationalen Regelungen existieren

	W
fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung	Anhang C2
Charakteristischer Widerstand gegen Stahlversagen eines Einzelankers unter	
Querbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen	

²⁾ Nur für fischer Ankerstange FIS A aus hochkorrosionsbeständigem Stahl HCR

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen (M8 bzw. M10) gemäß EN ISO 10684:2004+AC:2009.

Tabelle C3.1:	Charakteristischer Widerstand gegen Stahlversagen eines Einzelankers
	unter Zug- / Querbeanspruchung von Innengewindeankern FIS E


554 8 840 0					341 10 10 10 10 10 10 10 10 10 10 10 10 10		
fischer Innengewind	eanker FIS E		M8	M10	M12		
Charakteristischer V	/iderstand gegen	Stahlve	ersagen unter Zugbe	anspruchung			
Charakteristischer	Festigkeits- klasse		18	29	42		
Widerstand N _R mit Schraube	Festigkeits- F		26	41	59		
	110	JR	26	41	59		
Teilsicherheitsbeiwe	rte 1)						
Teilsicherheits-	Festigkeits- klasse	3045		1,50			
beiwerte $^{\gamma_{Ms}}$	Festigkeits- F	? [-]		1,87			
	klasse 70 HC	CR		1,87			
Charakteristischer V	/iderstand gegen	Stahlve	ersagen unter Querbe	eanspruchung			
ohne Hebelarm							
Charakteristischer	Festigkeits- klasse 5.	2222	9	15	21		
Widerstand V _R mit Schraube	Festigkeits- F	[kN]	13	20	30		
Thit Comadoc	klasse 70 HC	CR	13	20	30		
mit Hebelarm							
Charakt.	Festigkeits- klasse 5.		19	37	65		
Widerstand M ⁰ RI	Festigkeits- F	[Nm]	26	52	92		
	klasse 70 HC	CR	26	52	92		
Teilsicherheitsbeiwe	rte 1)						
Teilsicherheits-	Festigkeits- klasse 5.			1,25			
beiwerte $^{\gamma_{Ms,V}}$	Festigkeits	{ [-]	1,56				
	klasse 70 HC	CR		1,56			

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Charakteristischer Widerstand gegen Stahlversagen eines Einzelankers unter Zug- / Querbeanspruchung von Innengewindeankern FIS E	Anhang C3

Vollziegel Mz, EN 771-1:2011+A1:2015

Vollziegel Mz, EN 771-1:2011+A1:2015											
Hersteller	z.E	3. Wienerbe	rger								
Nennmaße [mr	m1	Länge L Breite B		Höhe H							
Nennmaße [mr	11]	≥ 230	≥ 108	≥ 55							
Mittlere Trockenrohdichte	≥ 2,0										
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	36 / 48									
Norm EN 771-1:2011+A1:2015											

Tabelle C4.1: Montageparameter

Ankerstange		M8 M		M	10	M12		M16		-	_		
Innengewind FIS E					-		-		M8 11x85	M10	M12 <85		
Ankerstange	Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse												
Effektive Verankerungs	tiefe h _{ef}	[mm]	50 80 50 80 50 80 50 80				15						
Max. Montage drehmoment	max T _{inst}	[Nm]		10				10					
Allgemeine M	/lontagepara	meter)										
Randabstand	C _{min} = C _{cr}							10	00				
	s _{min} II							10	00				
Achs-	s _{cr} II	[mm]	3 x h _{ef}										
abstand	Smin⊥		100										
	scr⊥							3 x	h _{ef}				

Bohrverfahren

Drehgangbohren oder Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C4.2: Gruppenfaktoren

Ankerstange		M8 M10 M12 M16			M16					
Innengewin	Innengewindeanker			-	-	-	M8	M10	M12	
FIS E			-				11x85	15x85		
	α _{g,N} (s _{min} II)				1,	81				
Gruppen-	α _{g,V} (s _{min} II)	r 1			1,	49			*	
faktoren	αg,N (Smin ⊥)	[-]		1,74						
	α _{g,V} (S _{min} ⊥)				1,	49				

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung
Vollziegel Mz, Abmessungen, Montageparameter

Anhang C4

Vollziegel Mz, EN 771-1: 2011+A1:2015

Tabelle C5.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

Ankerstange	M8	M10	M12	M16	-		-
Innengewindeanker FIS E					М8	M10	M12
	_	-	-	-	11x85	15	k 85

Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 24/40°C)

Normierte mittlere		Effektive Verankerungstiefe hef [mm]								
Druckfestigkeit f ♭	50	80	50	80	50	80	50	80	85	
36 N/mm ²	2,5	3,0	3,0	3,0	3,0	3,0	3,0	4,5	2,5	
48 N/mm ²	3,0	3,5	3,5	3,5	3,5	3,5	3,5	5,0	3,0	

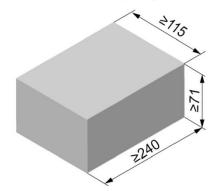
Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b, (Temperaturbereich 50/80°C und 72/120°C)

der normierten mittiere	II Di uc	Ricotigi	Mere ib,	rempe	iataibe	or Cicii o	0,00	una 12	1120 0)	
Normierte mittlere		Effektive Verankerungstiefe hef [mm]								
Druckfestigkeit f ь	50	80	50	80	50	80	50	80	85	
36 N/mm ²	1,5	2,0	2,0	2,0	2,0	2,0	2,0	3,5	1,5	
48 N/mm ²	1,5	2,5	2,5	2,5	2,5	2,5	2,5	4,0	1,5	

Tabelle C5.2: Charakteristischer Widerstand gegen örtliches Versagen oder Kantenbruch des Mauersteins eines Einzelankers unter Querbeanspruchung

Ankerstange	M8	M10	M12	M16	-		-
Innengewindeanker				-	M8	M10	M12
FIS E	_	-	_		11x85	15	k 85

Charakt. Widerstand unter Querbeanspruchung $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 24/40°C, 50/80°C und 72/120°C)


Normierte mittlere		Effektive Verankerungstiefe hef [mm]									
Druckfestigkeit f ₀	50	80	50	80	50	80	50	80	85		
36 N/mm ²	2,5	4,5	2,5	4,5	2,5	4,5	2,5	4,5	2,5	2,5	
48 N/mm ²	3,0	5,0	3,0	5,0	3,0	5,0	3,0	5,0	3,0	3,0	

Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Vollziegel Mz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C5

Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015

Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015										
Hersteller										
Nennmaße	[mm]	Länge L	Breite B	Höhe H						
Inenninaise	[mm]	≥ 240	≥ 115	≥ 71						
Mittlere Trocken- rohdichte ρ	[kg/dm ³]	≥ 2,0								
Normierte mittlere Druckfestigkeit f ь	[N/mm ²]	12 / 16 / 20								
Norm		EN 771-2:2011+A1:2015								

Tabelle C6.1: Montageparameter

Ankerstange			IV	18	М	10	М	12	М	16		-	e .
Innengewinde FIS E	eanker		,	•	,	-	3	-	9		M8 11x85	M10 M12 15x85	
Ankerstanger	n und Innen	gewir	ndeank	er FIS	E ohn	e Injek	tions-	Ankerh	ülse				
Effektive Verankerungs	tiefe h _{ef}	[mm]	50	80	50	80	50	80	50	80	85	8	5
Max. Montage drehmoment	max T _{inst}	[Nm]	m] 8 10		8	1	0						
Allgemeine M	lontagepara	mete	r										
Randabstand	$c_{\text{min}} = c_{\text{cr}}$			100									
	s _{min} II							10	00				
Achs-	s _{cr} II	[mm]		3 x h _{ef}									
abstand	s _{min} ⊥			100									
	Scr⊥							3 x	h _{ef}				

Bohrverfahren

Drehgangbohren oder Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C6.2: Gruppenfaktoren

Ankerstang	Ankerstange		M10	M12	M16			-		
	Innengewindeanker					M8	M10	M12		
FIS E		-	-		•	11x85	15	k 85		
	α _{g,N} (s _{min} II)		1,67							
Gruppen-	α _{g,V} (s _{min} II)			1,:	26					
faktoren	$\alpha_{g,N}$ (Smin \perp)			1,	67			4		
	α _{g,V} (S _{min} ⊥)			2	,0					

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Kalksandvollstein KS, NF, Abmessungen, Montageparameter	Anhang C6

Kalksandvollstein KS, NF, EN 771-2:2011+A1:2015

Tabelle C7.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

Ankerstange	M8	M10	M12	M16	-		-
Innengewindeanker FIS E	100				М8	M10	M12
	_	-	-	-	11x85	15:	(85

Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 24/40°C)

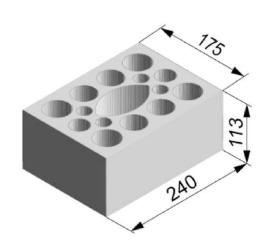
Normierte mittlere	Effektive Verankerungstiefe hef [mm]									
Druckfestigkeit f _b	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	2,0	2,0	2,5	4,5	2,0	4,5	2,0	2,0	2,0	
16 N/mm ²	2,5	2,5	2,5	5,0	2,5	5,0	2,5	2,5	2	,5
20 N/mm ²	2,5	3,0	3,0	6,0	2,5	6,0	2,5	3,0	2,5	

Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 50/80°C und 72/120°C)

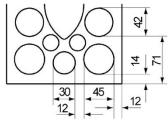
Normierte mittlere				Effe	ektive V	erankeı	rungstie	fe h _{ef} [n	nm]	
Druckfestigkeit f _b	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	1,5	1,5	1,5	3,0	1,5	3,0	1,5	1,5	1	,5
16 N/mm ²	1,5	1,5	2,0	3,5	1,5	3,5	1,5	1,5	1	,5
20 N/mm ²	2,0	2,0	2,0	4,0	2,0	4,0	2,0	2,0	2	,0

Tabelle C7.2: Charakteristischer Widerstand gegen örtliches Versagen oder Kantenbruch des Mauersteins eines Einzelankers unter Querbeanspruchung

Ankerstange	M8	M10	M12	M16	-	1.	
Innengewindeanker			,		M8	M10	M12
FIS E	-	-	-	-	11x85	15	x85


Charakt. Widerstand unter Querbeanspruchung $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b; (Temperaturbereich 24/40°C, 50/80°C und 72/120°C)

				19.0						
Normierten mittlere			0	Effe	ektive V	′eranke	rungstie	fe h _{ef} [n	nm]	
Druckfestigkeit f ь	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	3,5	3,5	4,5	4,5	3,5	4,0	3,5	4,0	3,5	3,5
16 N/mm ²	4,0	4,0	5,0	5,0	4,0	4,5	4,0	4,5	4,0	4,0
20 N/mm ²	4,5	4,5	6,0	6,0	4,5	5,0	4,5	5,0	4,5	4,5


Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Kalksandvollstein KS, NF, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C7

Kalksandlochstein KSL, 3DF, EN 771-2:2011+A1:2015									
Hersteller		z.B	. KS Wemd	ing					
Nonnacco	[mm]	Länge L	Breite B	Höhe H					
Nennmaße	[mm]	240	175	113					
Mittlere Trocken- rohdichte ρ	[kg/dm ³]	≥ 1,6							
Normierte mittlere Druckfestigkeit fь	[N/mm ²]	6 / 8 / 10 / 12 / 16							
Norm	orm EN 771-2:2011+A1:2015								

Steinabmessungen siehe auch Anhang B12

Tabelle C8.1: Montageparameter

(Vorsteck-Montage mit Injektions-Ankerhülse FIS H K)

Ankerstange			M8	M8	-	M8	M10	M8	M10	-	M12 N	/ 116	M12	M16
Innengewindeanker FIS E				•	M8 11x85		-		-	M10 M12 15x85	-		-	
Injektions-Ankerhülse FIS H			12x50	12x85	16:	x85		16x	130	202	x85		20x	130
Ankerstangen	und Innen	gewin	deanker F	IS E mit I	njektions	-Ank	erhül	se F	IS H I	<				
Max. Montage- drehmoment	max T _{inst}	[Nm]	8	8	8	8	10	8	10		10			
Allgemeine Mo	ntagepara	meter	K.											
Randabstand	C _{min} = C _{cr}						10	00						
	s _{min} II						10	00						
Achsabstand	s _{cr} II	[mm]					24	10						
Acrisabstariu	$s_{min} \perp$						10	00						
s cr ⊥			115											
Pohrvorfahran														

Bohrverfahren

Drehgangbohren oder Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C8.2: Gruppenfaktoren

Ankerstan	ge	M8	M8	-	M8	M10	M8	M10		-	M12	M16	M12	M16
Innengewindeanker FIS E		-	•	M8 11x85		-		-		M12 x85		=		-
Injektions-	Ankerhülse FIS H K	12x50	12x85	16)	(85		16x	130		202	x85		20x	130
	α _{g,N} (s _{min} II)					1,	14							
Gruppen-	<u>α_{g,V} (s_{min} II)</u> [-]					1,	51							
faktoren	α _{g,N} (S _{min} ⊥) [-]	2				1,	14							3
	αg,∨ (Smin ⊥)		1,54											

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung

Kalksandlochstein KSL, 3DF, Abmessungen, Montageparameter

Anhang C8

Tabelle C9.1: Montageparameter

(Durchsteck-Montage mit Injektions-Ankerhülse FIS H K)

Ankerstange			M10	M16					
njektions-Ankerhülse FIS H K			18x130	0/200	22x130/200				
Ankerstangen	mit Injektio	ons-Ank	erhülse FIS H K		•				
Max. Montage- drehmoment	max T _{inst}	[Nm]	10						
Allgemeine Mo	ntagepara	meter							
Randabstand	c _{min} = c _{cr}				100				
	s _{min} II				100				
۸ - ام - مام - مام - مام	s _{cr} II	[mm]	240						
Achsabstand	S _{min} ⊥		100						
s _{cr} ⊥ 115									

Bonrverianren

Drehgangbohren oder Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C9.2: Gruppenfaktoren

Ankerstang	e		M10	M12	M16			
Injektions-Ankerhülse FIS H K			18x13	22x130/200				
	α _{g,N} (s _{min} II)			1,	14			
Gruppen- faktoren	$\alpha_{\text{g,V}}$ (s _{min} II)	r 1		1,	51			
faktoren	$lpha_{ extsf{g,N}}$ (S _{min} \perp)	[-]		1,	14			
	$lpha_{ extsf{g,V}}$ ($ extsf{s}_{ ext{min}}$ $oxdot$)		1,54					

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung
Kalksandlochstein KSL, 3DF, Abmessungen, Montageparameter

Anhang C9

Tabelle C10.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Vorsteck-Montage)

							• •			
Ankerstange	M8	M8	-	M8	M10	M8 I	V 110	=	M12 M16	M12 M16
Innengewindeanker FIS E	-	-	M8 11x85	,	-	-		M10 M12 15x85	-	-
Injektions-Ankerhülse FIS H K	12x50	12x85	16:	(85		16x1	30	202	x85	20x130
Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeder normierten mittleren Druckfestigkeit f_b (Temperaturbereich 24/40°C)										keit von
Norm. mittlere Druckfestigkeit f _b										
6 N/mm²	1,	,2	0	9		2,0)	0	,9	2,0
8 N/mm²	1,	,5	1	1,2			2,5 1,2		,2	2,5
10 N/mm ²	1,	,5	1,5			3,0)	1	1,5	
12 N/mm²	2,	,0	1,5			3,5	5	1	,5	3,5
16 N/mm²	2,	,5	2,0			4,5	5	2	,0	4,5
Charakt. Widerstand unter Zugl der normierten mittleren Druck									Abhängig	keit von
Norm. mittlere Druckfestigkeit f _b										
6 N/mm ²	0.	.6	0.	75		1,5	5	0.	75	1,5
8 N/mm ²	0,75		0	9		2,0	2,0		,9	2,0
10 N/mm ²	0,9		0	0,9		2,5	2,5 0		,9	2,5
12 N/mm ²	0,	0,9		1,2		2,5	5	1,2		2,5
16 N/mm ²	1,	,2	1	5		3,5	5	1	,5	3,5

Tabelle C10.2: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung (Durchsteck-Montage)

Ankerstange	M10	M10 M12 M16							
Injektions-Ankerhülse FIS H K	18x130/200 22x130/200								
Charakt. Widerstand unter Zugl der normierten mittleren Druckt			_{k,p,c} = N _{Rk,b,c} [kN] in Abhängigkeit von °C)						
Norm. mittlere Druckfestigkeit fb									
6 N/mm ²		2.0							
8 N/mm ²	2,5								
10 N/mm ²		3	0						
12 N/mm ²		3	5						
16 N/mm²	4,5								
Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c}$ [kN] in Abhängigkeit voder mttl. Druckfestigkeit f_b ; (TempBereich 50/80°C und 72/120°C)									
Norm. mittlere Druckfestigkeit fb									
6 N/mm ²		1	5						

Norm. mittlere Druckfestigkeit f _b	
6 N/mm ²	1,5
8 N/mm ²	2,0
10 N/mm ²	2,5
12 N/mm ²	2,5
16 N/mm ²	3,5

Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung

Kalksandlochstein KSL, 3DF, Charakteristischer Widerstand unter Zugbeanspruchung

Anhang C10

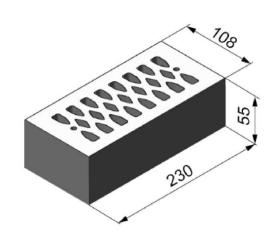
Tabelle C11.1: Charakteristischer Widerstand gegen örtliches Versagen oder Kantenbruch des Mauersteins eines Einzelankers unter Querbeanspruchung (Vorsteck-Montage)

Ankerstange	M8	M8	-	M8	M10	M8	M10	-	M12 M16	M12 M16
Innengewindeanker FIS E	-	-	M8 11x85		-		-	M10 M12 15x85	_	
Injektions-Ankerhülse FIS H K	12x50	12x85	162	16x85		16x	130	20:	x85	20x130

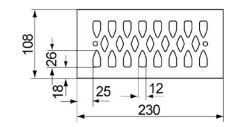
Charakt. Widerstand unter Querbeanspruchung $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 24/40°C, 50/80°C und 72/120°C)

Normierte mittlere Druckfestigkeit f ь			
6 N/mm ²	1,5	2,0	3,0
8 N/mm ²	2,0	2,5	3,5
10 N/mm ²	2,5	3,0	4,5
12 N/mm ²	2,5	3,5	5,0
16 N/mm ²	3,5	4,0	6,5

Tabelle C11.2: Charakteristischer Widerstand gegen örtliches Versagen oder Kantenbruch des Mauersteins eines Einzelankers unter Querbeanspruchung (Durchsteck-Montage)


Ankerstange	M10	M12	M16					
Injektions-Ankerhülse FIS H K	18x13	0/200	22x130/200					
Charakt. Widerstand unter Que normierten mittleren Druckfest			V _{Rk,c,⊥} [kN] in Abhängigkeit von der 50/80°C und 72/120°C)					
Normierte mittlere Druckfestigkeit f ь								
6 N/mm²	2,	,0	3,0					
8 N/mm²	2,	,5	3,5					
10 N/mm ²	3,	,0	4,5					
12 N/mm ²	3,	,5	5,0					
16 N/mm²	4,	,0	6,5					

Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21


fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Kalksandlochstein KSL, 3DF, Charakteristischer Widerstand unter Querbeanspruchung	Anhang C11

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Hochlochz	iegel HLz,	EN 771-1:2	2011+A1:20	15					
Hersteller		z.B. Wienerberger.							
Nennmaße	[mm]	Länge L	Breite B	Höhe H					
nemmase	[mm]	230	108	55					
Mittlere Trocken-rohdichte ρ	[kg/dm ³]	≥ 1,6							
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	8	/ 10 / 12 / 1	6					
Norm		EN 771-1:2011+A1:2015							

Steinabmessungen siehe auch Anhang B12

Tabelle C12.1: Montageparameter

Ankerstange	M8	M8	-	M8	M10	M8	M10	1		M12	M16	M12	M16
Innengewindeanker			M8					M10	M12				
FIS E	-	-	11x85		-		-	15x85			-		-
Injektions-Ankerhülse FIS H K	12x50	12x85	16:	x85		16x	130	20:		x85		20x	130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm]

Allgemeine Mo	ontageparamete	r
Randabstand	c _{min} = c _{cr}	100
	s _{min} II	100
\ \ a \ \ a \ \ \ \ \ \ \ \ \ \ \ \ \ \	s _{cr} II [mm	230
Achsabstand	S _{min} ⊥	60
	S _{cr} ⊥	60

Bohrverfahren

Drehgangbohren oder Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C12.2: Gruppenfaktoren

Ankerstang	е	M8	M8								M12	M16		
Innengewindeanker		200		M8					M10	M12				
FIS E			- [11x85			-		15x85		-		-	
Injektions-A	Ankerhülse FIS H K	12x50	2x50 12x85 16x85 16x130 20x85 20x1										130	
	α _{g,N} (s _{min} II)					1,	65							
Gruppen-	α _{g,V} (s _{min} II)					1,	64							
faktoren	$\alpha_{g,N}$ (Smin \perp) [-]		1,65											
	α _{g,} ∨ (s _{min} ⊥)		2,00											

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung

Hochlochziegel HLz, Abmessungen, Montageparameter

Anhang C12

Hochlochziegel HLz, EN 771-1:2011+A1:2015

Tabelle C13.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

Ankerstange	М8	М8	-	M8 M10		M8	M10	- F		M12	M16	M12	M16																																																		
Innengewindeanker	parts.	_	M8																						jus																														5745		con the same of th		M12				
FIS E	-	-	11x85	_		-		15	15x85		-																																																				
Injektions-Ankerhülse FIS H K	12x50	12x85	16:	x85		16x130			202	k85		20x	130																																																		

Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierte mittleren Druckfestigkeit f_b ; (Temperaturbereich 24/40°C)

Normierte mittlere Druckfestigkeit f ♭						
8 N/mm ²	1,2	1,5	1,5	2,5	1,5	2,5
10 N/mm ²	1,2	2,0	2,0	2,5	2,0	2,5
12 N/mm ²	1,5	2,0	2,0	3,0	2,0	3,0
16 N/mm ²	1,5	2,5	2,5	3,5	2,5	3,5

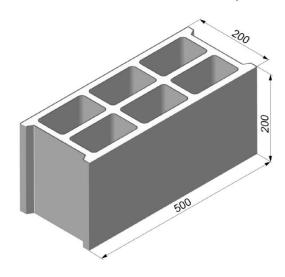
Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierte mittlere Druckfestigkeit f_b ; (Temp.-Bereich 50/80°C und 72/120°C)

Normierte mittlere Druckfestigkeit f ₅						
8 N/mm ²	0,6	1,2	1,2	1,5	1,2	1,5
10 N/mm ²	0,75	1,2	1,2	2,0	1,2	2,0
12 N/mm ²	0,75	1,5	1,5	2,0	1,5	2,0
16 N/mm ²	0,9	1,5	1,5	2,5	1,5	2,5

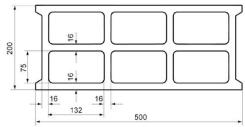
Tabelle C13.2: Charakteristischer Widerstand gegen örtliches Versagen oder Kantenbruch des Mauersteins eines Einzelankers unter Querbeanspruchung

Ankerstange	М8	М8	-	M8	M8 M10		M8 M10		M8 M10		-		M16	M12	M16
Innengewindeanker			M8					M10	M12						
FIS E	-	-	11x85	_		-		15	x85		_		•		
Injektions-Ankerhülse FIS H K	12x50	12x85	16:	x85		16>	(130		20	k 85		20x	130		

Charakt. Widerstand unter Querbeanspruchung $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 24/40°C, 50/80°C und 72/120°C)


Normierte mittlere Druckfestigkeit f ь						
8 N/mm ²	2,0	3,5	2,5	3,5	2,5	3,5
10 N/mm ²	2,0	4,0	3,0	4,0	3,0	4,0
12 N/mm ²	2,0	4,0	3,0	4,5	3,0	4,5
16 N/mm ²	2,5	5,0	3,5	5,0	3,5	5,0

Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21


fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Hochlochziegel HLz, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C13

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015									
Hersteller		z.B. Sepa							
Nonnmaßa	[mm]	Länge L	Breite B	Höhe H					
Nennmaße	[mm]	500	200	200					
Mittlere Trocken- rohdichte ρ	[kg/dm³]	≥ 1,0							
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	2/4							
Norm		EN 771-3:2011+A1:2015							

Steinabmessungen siehe auch Anhang B12

Tabelle C14.1: Montageparameter

Ankerstange	=	M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Innengewindeanker	М8			-		-		M10	M12				
FIS E	11x85							15x85		-		-	
Injektions-Ankerhülse FIS H K	16:	x85		16x	130	18x13	30/200		202	k 85		20x	130

Ankerstangen und Innengewindeanker FIS E mit Injektions-Ankerhülse FIS H K

Max. Montagedrehmoment max T_{inst} [Nm]

Allgemeine Montageparameter

/ mgomomo me	magoparamo	· ·
Randabstand	C _{min} = C _{cr}	100
	S _{min} II	100
Achsabstand	s _{cr} II [mr	500
	S _{min} ⊥	100
	s _{cr} ⊥	200
The second of th		

Bohrverfahren

Drehgangbohren oder Hammerbohren mit Hartmetall-Hammerbohrer

Tabelle C14.2: Gruppenfaktoren

Ankerstang	rstange		-	M8	M10	M8	M10	M10	M12		•0	M12	M16	M12	M16
Innengewindeanker FIS E		ker			_		_		-	23277 70479	M12		_		_
		11x85							15x85				Naviore:		
Injektions-Ankerhülse FIS H K			16x85			16x	130	18x13	0/200		202	k85		20x130	
	α _{g,N} (s _{min} II)							2,	00						
Gruppen-	$\alpha_{\text{g,V}}$ (s _{min} II)	1-1 [1,28											
faktoren	$\alpha_{\text{g,N}}$ (S _{min} \perp)			1,40											
	$\alpha_{\text{g,V}}$ ($\mathbf{s}_{\text{min}} \perp$)				2,00										

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung

Hohlblock aus Leichtbeton Hbl, Abmessungen, Montageparameter

Anhang C14

Hohlblock aus Leichtbeton Hbl, EN 771-3:2011+A1:2015

Tabelle C15.1: Charakteristischer Widerstand gegen Herausziehen eines Einzelankers oder Ausbruch des Mauersteins unter Zugbeanspruchung

Ankerstange	-	M8 M10		M8	M10	M10	M12	-		M12	M16	M12	M16
Innengewindeanker	M8								M12			273	
FIS E	11x85	•		-		-		15x85		-		-	
Injektions-Ankerhülse FIS H K	16x85			16x	130	18x130/200		20x85				20x130	

Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b; (Temperaturbereich 24/40°C)

Normierte mittlere Druckfestigkeit f _b		
2 N/mm ²	0,4	0,6
4 N/mm ²	0,5	0,75

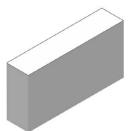
Charakt. Widerstand unter Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b ; (Temperaturbereich 50/80°C und 72/120°C)

Normierte mittlere Druckfestigkeit f ь		
2 N/mm ²	0,3	0,5
4 N/mm ²	0,4	0,6

Tabelle C15.2: Charakteristischer Widerstand gegen örtliches Versagen oder Kantenbruch des Mauersteins eines Einzelankers unter Querbeanspruchung

Ankerstange	-	M8	M10	M8	M10	M10	M12		- M12 N		M16	M12	M16
Innengewindeanker	M8								M12				
FIS E	11x85	<u> </u>		-		-		15x85		-		-	
Injektions-Ankerhülse FIS H K	16x85		16x	130	18x130/200		20x85				20x130		

Charakt. Widerstand unter Querbeanspruchung V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,⊥} [kN] in Abhängigkeit von der normierten mittleren Druckfestigkeit f_b;(Temperaturbereich 24/40°C, 50/80°C und 72/120°C)


Normierte mittlere Druckfestigkeit f ♭	
2 N/mm ²	1,5
4 N/mm ²	2,0

Faktoren für Baustellenversuche siehe Anhang C20 und Verschiebungen siehe Anhang C21

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Hohlblock aus Leichtbeton Hbl, Charakteristischer Widerstand unter Zug- und Querbeanspruchung	Anhang C15

Porenbeton (zylindrisches Bohrloch), EN 771-4:2011+A1:2015

Hersteller	z.B. Ytong			
Rohdichte ρ	[kg/dm ³]	0,35	0,5	0,65
Mittlere Steindruckfestigkeit /Mindestdruckfestigkeit Einzelstein 1)	[N/mm²]	2,5 / 2	5/4	8/6
Norm oder Anhang EN 771-4:2011+A1:2				

Tabelle C16.1: Installationsparameter

Ankerstange		M8	M10	M12	M16	
Ankerstangen und Innengewindeanker FIS E ohne Injektions-Ankerhülse						
Effektive Verankerungstiefe h _{ef}	[mm]	100	100	100	100	
Max. Montage- drehmoment max T _{inst}	[Nm]	2	2	2	2	

Allgemeine Installationsparameter

A magazina m					
Randabstand	Cmin		100		
Ccr		250			
	s _{cr} II	[mama]	250		
Achsabstand	s _{min} II	[mm]	100		
	scr⊥		250		
	S _{min} ⊥		100		

Bohrverfahren

Hammerbohren mit Hartmetall-Hammerbohrer

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung
Porenbeton (zylindrisches Bohrloch), Abmessungen, Installationsparameter

Anhang C16

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Tabelle C17.1:	Gruppenfaktoren für Porenbeton
	(Mindestdruckfestigkeit des Einzelsteins 2 N/mm²)

Anker	stange	М8	M10	M12	M16
 ue	α _{g,N} II, (s _{min} II)		1,1	3	
faktor	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,20			
ueddn			1,3	9	
<u>ច</u>	$lpha_{ extsf{g,V}}$, $ extsf{(s_{min} \perp)}$		1,1	7	

Tabelle C17.2: Gruppenfaktoren für Porenbeton (Mindestdruckfestigkeit des Einzelsteins 4 N/mm²)

Ankerstange			M8	M10	M12	M16
l ce	α _{g,N} II, (s _{min} II)	-) - [-] -)		1,	13	
ppenfaktoren	α _{g,N} ⊥, (s _{min} ⊥)		1,20			
nbben	α _{g,} ν, (s _{min} II)			1,	39	
Grul	$lpha_{ extsf{g,V}}$, ($ extsf{s}_{ extsf{min}}$ $oxdot$)			1,	17	

Tabelle C17.3: Gruppenfaktoren für Porenbeton (Mindestdruckfestigkeit des Einzelsteins 6 N/mm²)

Ankerstange			M8	M10	M12	M16
eu	α _{g,N} II, (s _{min} II)	[-]		1,	13	
Gruppenfaktoren	αg,N 丄, (Smin 丄)			1,:	20	
neddn	α _{g,V} , (s _{min} II)			1,;	39	
$\alpha_{g, \lor}$, $(s_{min} \bot)$			1,	17		

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Porenbeton (zylindrisches Bohrloch), Gruppenfaktoren	Anhang C17

Porenbeton (zylindrisches Bohrloch), EN 771-4:2011+A1:2015

Tabelle C18.1: Charakteristischer Widerstand gegen Auszugsversagen oder Steinausbruchversagen eines einzelnen Ankers unter Zugbeanspruchung

Ankerstange		M8	M10	M12	M16			
Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] abhängig von der mittleren Steindruckfestigkeit/Mindestdruckfestigkeit Einzelstein; (Temperaturbereich 24/40°C)								
Mittle on Otalia deval faction	Nutz-	Effektive Verankerungstiefe hef [mm]						
Mittlere Steindruckfestig- keit /Mindestdruckfestig- keit Einzelstein 1)	ungs- kate- gorie	100	100	100	100			
2,5 / 2 N/mm ²	d/d	1,2	1,2	1,2	1,5			
5 / 4 N/mm ²	d/d	1,2	1,2	1,2	1,5			
8 / 6 N/mm ²	d/d	1.2	1.2	1.2	1.5			

Ankerstange		M8	M10	M12	M16		
Zugbeanspruchung $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] abhängig von der mittleren Steindruckfestigkeit/Mindestdruckfestigkeit Einzelstein; (Temperaturbereich 50/80°C)							
Mittle ne Ote in develope et in	Nutz-	Effektive Verankerungstiefe hef [mm]					
Mittlere Steindruckfestig- keit /Mindestdruckfestig- keit Einzelstein 1)	ungs- kate- gorie	100	100	100	100		
2,5 / 2 N/mm ²	d/d	0,9	0,9	1,2	1,5		
5 / 4 N/mm ²	d/d	0,9	0,9	1,2	1,5		
8 / 6 N/mm ²	d/d	0,9	0,9	1,2	1,5		

Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Porenbeton (zylindrisches Bohrloch), Charakteristischer Widerstand unter Zugbeanspruchung	Anhang C18

Tabelle C19.1: Charakteristischer Widerstand gegen Auszugsversagen oder Steinausbruchversagen eines einzelnen Ankers unter Querbeanspruchung

bruchversagen eines einzemen Ankers unter Querbeansprüchung						
Ankerstange		М8	M10	M12	M16	
Querbeanspruchung V _{Rk} : Mindestdruckfestigkeit Ei c _{min} =100mm					ckfestigkeit/	
Mittlere Steindruckfestig-	Nutz-		Effektive Veranker	rungstiefe hef [mm]	_	
keit Einzelstein 1)	ungs- kate- gorie	100	100	100	100	
2,5 / 2 N/mm²	d/d	1,2	1,2	1,2	1,2	
5 / 4 N/mm²	d/d	1,2	1,2	1,2	1,2	
8 / 6 N/mm²	d/d	1,2	1,2	1,2	1,2	
Ankerstange		M8	M10	M12	M16	
Querbeanspruchung V _{Rk} : Mindestdruckfestigkeit Ei c _{cr} =250mm					ckfestigkeit/	
Mittlere Steindruckfestig-	Nutz-		Effektive Veranker	rungstiefe h _{ef} [mm]	4	
keit /Mindestdruckfestig- keit Einzelstein 1)	ungs- kate- gorie	100	100	100	100	
2,5 / 2 N/mm²	d/d	2,5	2,5	2,5	2,5	
5 / 4 N/mm²	d/d	2,5	2,5	2,5	2,5	
8 / 6 N/mm²	d/d	2,5	2,5	2,5	2,5	

¹⁾ Die Mindestdruckfestigkeit des Einzelsteins darf nicht weniger als 80% der mittleren Druckfestigkeit betragen.

Faktoren für Baustellenversuche siehe Anhang C20, Tabelle C20.2 und Verschiebungen siehe Anhang C21

fischer Injektionssystem FIS V Zero für Mauerwerk	
Leistung Porenbeton (zylindrisches Bohrloch), Charakteristischer Widerstand unter Querbeanspruchung	Anhang C19

β-Faktoren für Baustellenversuche

Tabelle C20.1: β-Faktoren für Baustellenversuche

Montage- und Nutzungsbedingungen	d/d			
Temperaturbereich [°C]	24/40	50/80	72/120	
M8	0,81	0,47	0,45	
M10	0,62	0,49	0,45	
M12 / FIS E 11x85	0,62	0,49	0,52	
M16 / FIS E 15x85	0,56	0,45	0,57	

Tabelle C20.2: β-Faktoren für Baustellenversuche für Porenbeton

Montage- und Nutzungsbedingungen	d/d		
Temperaturbereich [°C]	24/40	50/80	
Alle Größen	0,58	0,49	

fischer Injektionssystem FIS V Zero für Mauerwerk

Leistung
β-Faktoren für Baustellenversuche

Anhang C20

Material	Größe	Effektive Verankerungs- tiefe [mm]	N [kN]	δΝ₀ [mm]	δN∞ [mm]	V [kN]	δV₀ [mm]	δV∞ [mm]
Vollziegel gemäß C4-C5	MO	50	0,57	0,00	0,00	0,71	0,08	0,12
	M8	80	1,00	0,00	0,00	1,71	0,32	0,48
	M10	50	0,57	0,00	0,00	0,71	0,18	0,27
		80	1,00	0,01	0,02	1,71	0,50	0,75
	M12	50	1,29	0,03	0,06	0,71	0,05	0,08
	10112	80	1,00	0,01	0,02	1,71	0,75	1,13
	M16	50	1,29	0,03	0,06	0,71	0,35	0,53
	WITO	80	1,71	0,04	0,08	1,71	0,20	0,30
	M8 -	50	0,86	0,03	0,06	1,43	0.22	0.49
	IVIO	80	0,86	0,00	0,00	1,43	0,32	0,48
Valleaged	M10	50	0,86	0,00	0,00	1,43	0,34	0,51
Kalksand- vollstein	IVITO	80	1,71	0,02	0,04	1,43	0,34	0,51
gemäß	M12	50	0,86	0,03	0,06	1,43	0,12	0,18
C6-C7	10112	80	1,71	0,04	0,08	1,43	0,32	0,48
	Mac	50	0,86	0,03	0,06	1,43	0,57	0,86
	M16	80	1,14	0,02	0,04	1,43	0,20	0,03
	MO	12x50	0.74	0.04	0.00	4.00	0,16	0,24
Kalkaand	M8 -	12x85	0,71	0,01	0,02	1,00		
Kalksand- lochstein	М8	16x85	0,57	0,02	0,04	1,14	0,57	0,86
gemäß C8-C11	M10	16x130	1,29	0,06	0,12	1,14	1,03	1,55
Co-C11	M12 M16	20x85	0,57	0,03	0,06	1,86	1,15	1,73
		20x130	1,29	0,04	0,08	1,86	1,24	1,86
	M8	12x50	0,43	0,00	0,00	0,71	0,25	0,38
Hochloch-		12x85	0,71	0,00	0,00	1,43	0,61	0,92
ziegel Hlz	М8	16x85	0,71	0,03	0,06	1,00	0,36	0,54
gemäß C12-C13	M10	16x130	1,00	0,02	0,04	1,43	0,30	0,45
012-013	M12	20x85	0,71	0,00	0,00	1,00	0,22	0,33
	M16	20x130	1,00	0,04	0,08	1,43	0,17	0,26
Hohlblock	М8	16x85	0,14	0,03	0,06	0,57	1,54	2,31
aus _eichtbeton	M10	16x130	0,14	0,02	0,04	0,57	1,01	1,52
gemäß	M12	20x85	0,14	0,06	0,12	0,57	1,31	1,97
C14-C15	M16	20x130	0,21	0,04	0,08	0,57	0,82	1,23
Porenbeton		M8x100 M10x100	0,48	0,08	0,16	0,89	1,49	2,24
Gemäß C16-C19		M12x100	0,49	0,09	0,18	0,89	1,49	2,24
010 010		M16x100	0,65	0,12	0,24	0,89	1,49	2,24
scher Inje	ektionss	ystem FIS V Z	ero für Ma	auerwerk			Anha	ng C21