

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-22/0404 of 11 October 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Laqnican Joint
Product family to which the construction product belongs	Connectors for tubular sections
Manufacturer	Kubota Corporation Steel pipe planning division 1-3, Kyobashi 2 -Chrome, Chuo-ku TOKYO, 104-8307 JAPAN
Manufacturing plant	Kubota Ichikawa manufacturing plant
This European Technical Assessment contains	27 pages including 23 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 200345-00-0103

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

The product are connectors for tubular sections to connect steel pipes to transfer static loads (in the following referred to as connectors). The connectors are uncoated or treated with an inorganic coating, but not with an organic coating.

The connectors consist of 2 steel parts (referred to as the "box joint" and "pin joint"), which are welded onto pipe sections and inserted into each other. The mechanical connection of the welded on steel parts is mechanically connected with bolts and ring-shaped steel pins (known as "load transfer key") and steel blocks (referred to as 'rotation suppression key').

The components and the system setup of the product are given in Annex A1.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The intended use of the connectors is to connect two tubular sections to each other to transfer static and quasi-static loads. The loads can comprise, e.g., compression forces (in longitudinal direction), tension forces (in longitudinal direction), shear forces, bending moments and torsional moments.

The intended use comprises connected tubular sections that are designed following EN 1993-1-1 and EN 1993-1-6.

The performances given in Section 3 are only valid if the connectors for tubular sections are used in compliance with the specifications and conditions given in Annex A1 to A5.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the connectors for tubular sections of at least 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Carbon equivalent (weldability) of steel component 1 and steel component 2, CEV [-]	See Annex A3			
Charpy impact strength with v-notch of steel component 1 and steel component 2, $\overline{\mathrm{KV}}$ [J; °C]	See Annex A4			
Yield strength, tensile strength, elongation at fracture of steel component 1 and steel component 2, $R_{p0.2}$ [N/mm ²], R_m [N/mm ²], A_{gt} [%]	See Annex A3			
Tension resistance of the joint, $F_{T,Rk}$ [kN]	NPA			
Compression resistance of the joint, $F_{C,Rk}$ [kN]	NPA			
Shear resistance of the joint, V _{Rk} [kN]	See Annex B1 to B18			
Bending resistance of the joint, M _{Rk} [kNm]	See Annex B1 to B18			
Torsional resistance of the joint, M _{T,Rk} [kNm]	See Annex B1 to B18			
Resistance for combined acting shear forces and bending moments (interaction), $M_{R,i,k}$ [kNm], $V_{R,i,k}$ [kN]	See Annex A4 and B1 to B18			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to
	EN 13501-1:2007+A1:2009

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 200345-00-0103, the applicable European legal act is: Commission Decision 98/214/EC, as amended by 2001/596/EC.

The system to be applied is: 2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 11 Ocotber 2024 by Deutsches Institut für Bautechnik

Dr.-Ing. Ronald Schwuchow Head of Section *beglaubigt:* Bertram

Page 5 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

The joints can be used for joints with tubular steel sections (CHS) with outside diameter from \emptyset 406 mm up to \emptyset 1219 mm. The thickness of the CHS varies from 9,0 mm to 29,0 mm. For the range of possible tubular sections see Annex 5. In total 18 different joint-types are available. Annex 7 summarizes the decisive dimensions of the joints. The geometry of each type is shown in the Annexes. Details and tolerances are deposited with DIBt.

Laqnican Joint		

Annex A1

General description

Page 6 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Assembly instructions and description of the functionality of the joint

The installation is only carried out according to the manufacturer's instructions.

To assembly the joint, first both tubular sections of the connection are plugged together. To enable load transmission between both components a radial load transfer key is pushed into prepared grooves. The key is pushed and hold in place by a bolt. All tension forces are transmitted by this key.

Figure 2: Transmission of tension forces

The compression forces are transmitted by contact between both joint sections.

Figure 3: Transmission of compression forces

Shear forces are transmitted by the direct contact of both joint sections. The load transfer key has no influence on the shear load bearing capacity of the connection.

As both tubular sections are plugged together, the principle of the shear load transmission is different compared to a continuous tubular section.

To transmit torsional moments additional rotation-suppression keys are inserted. In dependence of the acting torsional forces up to 24 pieces of the rotation-suppression keys are used. The keys are evenly distributed around the circumference of the joint.

Figure 4: Rotation suppression key

Laqnican Joint Annex A2 Assembly instructions and description of the functionality Annex A2

English translation prepared by DIBt

Material properties of the joints

The tubular sections to be connected to each other are made of steel according to EN 10025-1:2005.

The joints are made of SFCM 880R or POSTEN 780.

The following Table 1 shows the nominal chemical composition of the joints

Matorial		С	Si	Mn	Р	S	Cr	Ni	В	Cu	Мо	Nb	Ti	V
Wateria		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ppm)	(%)	(%)	(%)	(%)	(%)
DOCTENIZOO	MAX	0,16	0,35	1,20	0,03	0,03	0,80	-	-	-	-	-	-	-
PUSTEN/80	MIN	-	0,15	-	-	-	0,40	-	-	-	-	-	-	-
CECMAROD	MAX	0,28	0,35	0,85	0,03	0,03	1,50	-	-	-	0,30	-	-	-
SPCIVI880K	MIN	-	0,15	0,30	-	-	0,90	-	-	-	0,15	-	-	-

Table 1: Chemical composition of the base material of the joints (ladle analysis, mass-percentage)

The following Table 2 shows the mechanical properties of the joints.

Material	Yield strength R _{p0,2} [N/mm ²]	Tensile strength R _m [N/mm ²]	Elongation at fracture A [%]	CEV (acc. EN 10025-1) [-]
POSTEN780	≥ 705	800 - 1030	≥ 16	≤ 0,52
SFCM880R	≥ 705	880 - 1030	≥ 13	≤ 0,78

Table 2: Material properties of the base material of the joints

The charpy impact resistance (v-notch) is $\overline{KV} \ge 27 \text{ J} - 20 \text{ °C}$.

For welding (connection between the joint and the tubular section), the regulations of EN 1090-2 apply. This includes documentation (material certificates), executors' qualification, qualified WPS, selection of preheat temperatures and selection of filler metal.

The manufacturer of the weld must be qualified according to EXC 3.

Laqnican Joint	
Essential characteristics Material properties of the joint	Annex A3

Z157513.24

English translation prepared by DIBt

Material properties of the rotation suppression key and load transfer key

The rotation suppression key and load transfer key are made of SFCM980S.

The following Table 3 shows the nominal chemical composition of the rotation suppression key and load transfer key

Motorial		С	Si	Mn	Р	S	Cr	Ni	В	Cu	Мо	Nb	Ti	V
Wateria		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(ppm)	(%)	(%)	(%)	(%)	(%)
0F0M0900	MAX	0,48	0,35	0,85	0,03	0,03	1,50				0,30			
3101019003	MIN		0,15	0,30			0,90				0,15			

Table 3: Chemical composition of rotation suppression key and load transfer key

Component	Material	Yield strength R _{p0,2} [N/mm ²]	Tensile strength R _m [N/mm ²]	Elongation at fracture A [%]
Rotation suppression key	SECMOROS	min 755	080 1120	> 11
Load transfer key	3501419003	11111. 735	900 - 1130	≤ I I

Table 4: Material properties of rotation suppression key and load transfer key

The charpy impact resistance (v-notch) is $\overline{KV} \ge 27 \text{ J} - 20 \text{ °C}$.

Combined acting shear forces and bending moments

For combined acting shear forces and bending moments, linear interaction values can be determined based on the values $M_{R,i,k}$ and $V_{R,i,k}$ stated the annexes and the following figure 5.

Characteristic bending resistance

Figure 5: Linear interaction for combined acting shear forces and bending moments

Laqnican Joint	
Essential characteristics Material properties of the rotation suppression key and load transfer key	Annex A4

English translation prepared by DIBt

Summary of joints

The following table summarizes the joints assessed within this ETA.

Туре	Outer Diameter [mm]	Thickness T1 [mm]	Thickness T2 [mm]	Thickness T3 [mm]	L1 [mm]	L2 [mm]	L3 [mm]
1	406,4	33,55	7,5	9,5	156	106	116
2	406,4	38,65	9,5	12,6	156	106	116
3	508	33,15	7,5	9,1	156	106	116
4	508	38,05	9,5	12	156	106	116
5	609,6	32,75	7,5	8,7	156	106	116
6	609,6	37,65	9,5	11,6	156	106	116
7	711,2	32,65	7,5	8,6	162	112	122
8	711,2	40,65	11,1	13	162	112	122
9	812,8	32,45	7,5	8,4	162	112	122
10	812.8	40,45	11,1	12,8	162	112	122
11	914,4	32,35	7,5	8,3	166	116	126
12	914,4	40,25	11,1	12,6	187	137	147
13	1016	32,35	7,5	8,3	166	116	126
14	1016	40,05	11,1	12,4	187	137	147
15	1117,6	32,35	7,5	8,3	177	127	137
16	1117,6	40,05	11,1	12,4	222	172	182
17	1219,2	32,25	7,5	8,2	177	127	137
18	1219,2	39,95	11,1	12,3	222	172	182

Table 5: Variation of joints

Laqnican Joint

Variations of joints

Annex A5

Page 10 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Page 11 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Page 12 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Essential characteri	stics – Join	it Type 3						
Figure 9: Dimensions	ì							
Table 8: Characterist	40	106		6		= Pipe Thickness \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$		
		Characte	eristic values f	or joint Type :	3			
		Number of rotation keys						
Charao	cteristic	2	4	6	8	10		
V _{Rk}	[kN]			2797,0				
M _{Rk} [kNm]			1080,0				
M _{T,Rk}	[kNm]	83,0	166,0	248,0	331,0	414,0		
			For interact	ion				
V _{R,i,k}	‹[kN]			1450,0				

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 3

Page 13 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

sential	characteristics – Joi	nt Type 4				
igure 10:	Dimensions					
Φ526 Φ508	Pipe Thickness		156	116	50	Φ49.9 =Pipe Thickness Φ508
able 9: C	۲ Characteristic values of	load bearing c	apacity			
Table 9: C	۲ Characteristic values of	load bearing c	apacity eristic values f	or joint Type	4	
āble 9: C	Characteristic values of	load bearing ca Characte	apacity eristic values f Numł	or joint Type	4 keys	
able 9: C	Characteristic values of Characteristic	load bearing contracted bearing	apacity eristic values f Numb 4	or joint Type oper of rotation	4 keys 8	10
Table 9: C	≺ Characteristic values of Characteristic V _{Rk} [k N]	load bearing ca Characte	apacity eristic values f Numł 4	or joint Type oper of rotation 6 3554	4 keys 8	10
Γable 9: C	Characteristic values of Characteristic V _{Rk} [kN] M _{Rk} [kNm]	load bearing ca Characte 2	apacity eristic values f Numł 4	or joint Type ber of rotation 6 3554 1198	4 keys 8	10
Table 9: C	<pre></pre>	load bearing ca Characte 2 83	apacity eristic values f Numb 4 166	for joint Type of per of rotation 6 3554 1198 248	4 keys 8 331	10
Table 9: C	<pre> Characteristic values of Characteristic V_{Rk}[kN] M_{Rk}[kNm] M_{T,Rk}[kNm]</pre>	load bearing ca Characte 2 83	apacity eristic values f Numb 4 166 For interact	for joint Type of rotation 6 3554 1198 248 tion	4 keys 8 331	10
Table 9: C	<pre> Characteristic values of Characteristic V_{Rk}[kN] M_{Rk}[kNm] M_{T,Rk}[kNm] V_{R,i,k}[kN] </pre>	load bearing ca Characte 2 83	apacity eristic values f Numb 4 166 For interact	for joint Type of per of rotation 6 3554 1198 248 tion 1903	4 keys 8 331	10

Laqnican Joint

Essential characteristics - Joint Type 4

Page 14 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

For combined acting shear forces and bending moments, linear interaction values can be determined using M_{R,i,k}

and $V_{R,i,k}$ based on figure 5 in annex A4.

575

Laqnican Joint

Essential characteristics - Joint Type 5

M_{R,i,k} [kNm]

Page 15 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 11: Characteristic values of load bearing capacity

Characteristic values for joint Type 6										
Characteristic		Number of rotation keys								
	2	4	6	8	10	12				
V _{Rk} [kN]		3786								
M _{Rk} [kNm]		1745								
M _{T,Rk} [kNm]	99	199	298	397	497	596				
		For inte	eraction							
V _{R,i,k} [kN]	2173									
M _{R,i,k} [kNm]			75	51						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 6

Page 16 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 7

Page 17 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 13: Characteristic values of load bearing capacity

Characteristic values for joint Type 8										
Characteristic		Number of rotation keys								
	2	4	6	8	10	12				
V _{Rk} [kN]		4576								
M _{Rk} [kNm]		2420								
M _{T,Rk} [kNm]	116	232	348	464	580	696				
		For inte	eraction							
V _{R,i,k} [kN]		2646								
M _{R,i,k} [kNm]			10	32						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 8

Page 18 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 14: Characteristic values of load bearing capacity

Characteristic values for joint Type 9										
Characteristic		Number of rotation keys								
	2	4	6	8	10	12	16			
V _{Rk} [kN]		3324								
M _{Rk} [kNm]		2724								
M _{T,Rk} [kNm]	132	265	397	530	662	795	1060			
		Fo	r interactic	n						
$V_{R,i,k}$ [kN]		2382								
M _{R,i,k} [kNm]				785						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 9

Page 19 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 15: Characteristic values of load bearing capacity

Characteristic values for joint Type 10										
Characteristic		Number of rotation keys								
	2	4	6	8	10	12	16			
V _{Rk} [kN]		4688								
M _{Rk} [kNm]		3158								
M _{T,Rk} [kNm]	132	265	397	530	662	795	1060			
		Fo	r interactic	n						
$V_{R,i,k}[kN]$		2851								
M _{R,i,k} [kNm]				1252						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 10

Page 20 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Page 21 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Essential characteristics – Joint Type 12 Figure 18: Dimensions

Table 17: Characteristic values of load bearing capacity

Characteristic values for joint Type 12											
Characteristic		Number of rotation keys									
	2	4	6	8	10	12	16	18			
V _{Rk} [kN]		5387									
M _{Rk} [kNm]		3730									
M _{T,Rk} [kNm]	149	298	447	596	745	894	1192	1341			
			For inter	action							
V _{R,i,k} [kN]		3323									
M _{R,i,k} [kNm]				14	47						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Page 22 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$

Laqnican Joint

Essential characteristics - Joint Type 13

and V_{R,i,k} based on figure 5 in annex A4.

Page 23 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Essential charact	teristics – Joint Type 14	
Figure 20: Dimens	ions	
	187	
	137 50	
01034		φ1016 Φ1034
/ =Pipe Thick	40 147	- model - mode

Table 19: Characteristic values of load bearing capacity

Characteristic values for joint Type 14											
Characteristic		Number of rotation keys									
	2	4	6	8	10	12	16	18	20		
V _{Rk} [kN]		5640									
M _{Rk} [kNm]		4687									
M _{T,Rk} [kNm]	166	331	497	662	828	994	1325	1490	1656		
		For interaction									
$V_{R,i,k}[kN]$		3604									
M _{R,i,k} [kNm]					1714						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Page 24 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 20: Characteristic values of load bearing capacity

Characteristic values for joint Type 15									
Characteristic -				Number	of rotati	on keys			
	2	4	6	8	10	12	16	18	20
V _{Rk} [kN]		4071							
M _{Rk} [kNm]		4834							
M _{T,Rk} [kNm]	182	364	547	729	911	1093	1457	1640	1822
			For ir	nteraction	ו				
V _{R,i,k} [kN]		2891							
M _{R,i,k} [kNm]					1425				

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Page 25 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 21: Characteristic values of load bearing capacity

Characteristic values for joint Type 16											
		Number of rotation keys									
Characteristic	2	4	6	8	10	12	16	18	20		
V _{Rk} [kN]		6583									
M _{Rk} [kNm]		5520									
M _{T,Rk} [kNm]	182	364	547	729	911	1093	1457	1640	1822		
			For ir	iteractior	ו						
$V_{R,i,k}[k\mathbf{N}]$		4009									
M _{R,i,k} [kNm]					2184						

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Page 26 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Table 22: Characteristic values of load bearing capacity

Characteristic values for joint Type 17											
		Number of rotation keys									
Characteristic	2	4	6	8	10	12	16	18	20	24	
V _{Rk} [kN]		4199									
M _{Rk} [kNm]		5726									
M _{T,Rk} [kNm]	199	397	596	795	994	1192	1590	1789	1987	2385	
			Fc	or intera	ction						
$V_{R,i,k}$ [kN]		3153									
M _{R,i,k} [kNm]					14	54					

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Page 27 of European Technical Assessment ETA-22/0404 of 11 October 2024

English translation prepared by DIBt

Essential characteristics – Joint Type 18							
Figure 24: Dimer	isions						
	222						
	172 50						
^{237.2}							
ρ φ1210 μ01212 μ01213							

Table 23: Characteristic values of load bearing capacity

Characteristic values for joint Type 18										
Characteristic	Number of rotation keys									
	2	4	6	8	10	12	16	18	20	24
V _{Rk} [kN]	6793									
M _{Rk} [kNm]	6482									
M _{T,Rk} [kNm]	199	397	596	795	994	1192	1590	1789	1987	2385
For interaction										
V _{R,i,k} [kN]	4498									
M _{R,i,k} [kNm]	2221									

For combined acting shear forces and bending moments, linear interaction values can be determined using $M_{R,i,k}$ and $V_{R,i,k}$ based on figure 5 in annex A4.

Laqnican Joint

Essential characteristics - Joint Type 18