

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0277 of 8 February 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U

Post-installed fasteners in concrete under fatigue cyclic loading

Hilti Aktiengesellschaft Feldkircherstrasse 100 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Plants

15 pages including 3 annexes which form an integral part of this assessment

EAD 330250-01-0601, Edition 10/2023

European Technical Assessment ETA-23/0277 English translation prepared by DIBt

Page 2 of 15 | 8 February 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-23/0277 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U is a bonded fasteners consisting of a cartridge with injection mortar Hilti HIT 200-A V3 or Hilti HIT 200-R V3 or HIT RE 500 V4 or mortar capsule HVU2 and steel element HAS-U A4 with lock nut, nut, spherical washer and Hilti sealing washer or a steel element HAS-U A4 with lock nut, nut and washer.

The load transfer is achieved by the bond between the steel element, the bonding mortar and the concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (Assessment method C: Linearized function)	Performance		
Characteristic fatigue resistance under cyclic tension loading			
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)			
Characteristic concrete cone and splitting fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)	See Annex C1 and C3		
Characteristic combined pull-out /concrete cone fatigue resistance $\Delta \tau_{Rk,p,0,n}$ (<i>n</i> = 1 to <i>n</i> = 10 ⁸)			
Characteristic fatigue resistance under cyclic shear loading			
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ($n = 1$ to $n = \infty$)			
Characteristic concrete edge fatigue resistance $\Delta V_{Rk,c,0,n}$ ($n = 1$ to $n = \infty$)	See Annex C2 and C3		
Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ (<i>n</i> = 1 to <i>n</i> = ∞)			

European Technical Assessment ETA-23/0277

Page 4 of 15 | 8 February 2024

English translation prepared by DIBt

Essential characteristic (Assessment method C: Linearized function)	Performance				
Characteristic fatigue resistance under cyclic combined tension and shear loading					
Characteristic steel fatigue resistance a_s ($n = 1$ to $n = \infty$)	See Annex C2 and C3				
Load transfer factor for cyclic tension and shear loading					
Load transfer factor ψ_{FN}, ψ_{FV}	See Annex C1 to C3				

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-01-0601, the applicable European legal act is: [96/582/EC].

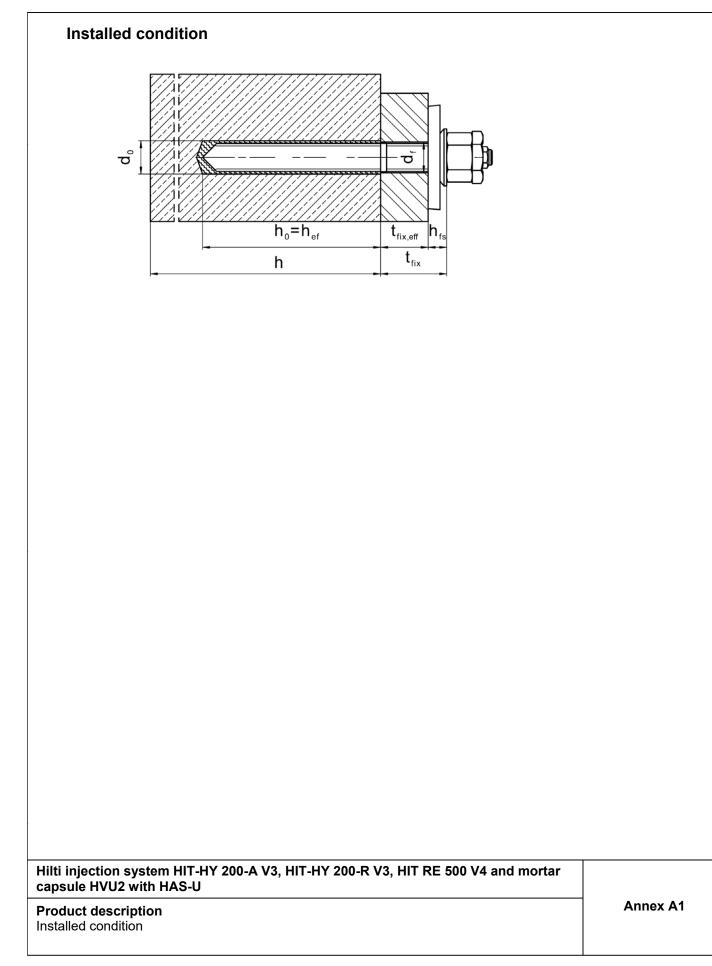
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

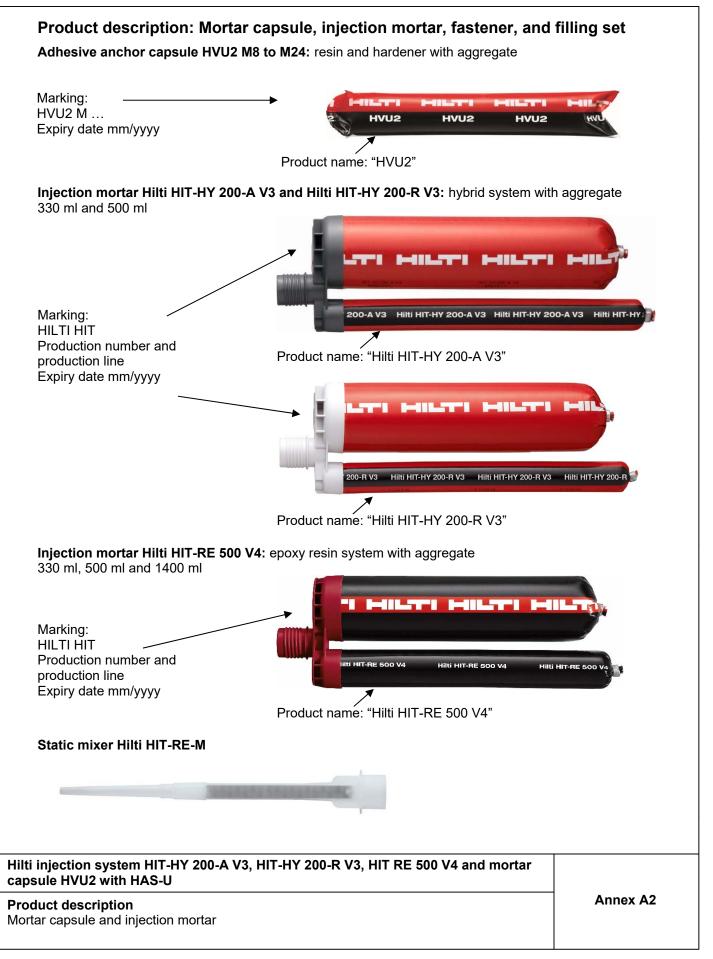
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

European Technical Assessment ETA-23/0277 English translation prepared by DIBt

Page 5 of 15 | 8 February 2024


The following standards and documents are referred to in this European Technical Assessment:

-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels
-	EN 10088-1:2014	Stainless steels - Part 1: List of stainless steels
-	EN 206:2013 + A2:2021	Concrete - Specification, performance, production and conformity
-	EN 1992-4:2018	Eurocode 2: Design of concrete structures - Part 4: Design of fastenings for use in concrete
-	EOTA TR 061	Design Method for fasteners in concrete under fatigue cyclic loading, August 2023
-	ETA-16/0515	European Technical Assessment for HVU2, 14 September 2023
-	ETA-19/0601	European Technical Assessment for Injection System Hilti HIT-HY 200-A V3 and HIT-HY 200-R V3, 29 January 2024
-	ETA-20/0541	European Technical Assessment for Injection system Hilti HIT-RE 500 V4, 9 June 2023


Issued in Berlin on 8 February 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Stiller

Steel element						
			Marking			
O		€]
HAS-U A4: M8 to M24	Sea was	-	pherical /asher	Nut	Loc	k nut
			Marking			
O)				
HAS-U A4: M8 to M12		V	/ Vasher	Nut	۲ Lock nu	t
Hilti Filling Set to fill the annular gap between ste Sealing washer	el eleme	e nt and fix Spherica		Fill	ing set	
					r	lfs
Hilti Filling Set	M8	M10	M12	M16	M20	M24
Diameter of sealing washer dvs [mm]	38	42	44	52	60	70
Thickness of sealing washerhvs[mm]Thickness of Hilti Filling Sethfs[mm]	8	5 9	10	11	6 13	15
Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V capsule HVU2 with HAS-U Product description Steel element and Hilti Filling Set	/3, HIT F	RE 500 V4	and mor	tar	Anne	əx A3

	de of stainless steel ce class (CRC) III according EN 1993-1-4
HAS-U A4	Strength class 70, f_{uk} = 700 N/mm ² , f_{yk} = 450 N/mm ² , Elongation at fracture (l_0 =5d) > 12% ductile.
Nut	Strength class 70, f _{uk} = 700 N/mm², f _{yk} = 450 N/mm²; Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1
Washer	Stainless steel EN 10088-1
Lock nut	Stainless steel EN 10088-1
Hilti Filling Set A4	Filling washer: Stainless steel EN 10088-1 Spherical washer: Stainless steel EN 10088-1 Lock nut: Stainless steel EN 10088-1

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortal
capsule HVU2 with HAS-U

Product description Materials Annex A4

Specifications of intended use

Anchorages subject to:

Fatigue cycling load for size M8 to M24.
Note: static and quasi-static load according to ETA-16/0515 for HVU2, ETA-19/0601 for HIT-HY 200-A V3 and HIT-HY 200-R V3 as well as ETA-20/0541 for HIT-RE 500 V4.

Base material:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206.
- Strength classes C20/25 to C50/60 according to EN 206.
- Cracked and uncracked concrete.

Temperature in the base material:

at installation and in-service:

See Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars. Note: max. short term temperature +80 °C for Hilti capsule and injection mortars.

Use conditions (Environmental conditions):

• For all conditions according EN 1993-1-4 corresponding to corrosion resistance classes Annex A4 Table A1 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages under fatigue cycling load are designed in accordance with: EN 1992-4 or EOTA Technical Report TR 061.

Installation:

See Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars.

Table B1: Specifications of intended use – drilling techniques

Mortar capsule and injection morta	ar	HVU2	HIT-HY 200-A V3 HIT-HY 200-R V3	HIT-RE 500 V4
Hammer drilling		\checkmark	✓	✓
Hammer drilling with hollow drill bit TE-CD or TE-YD		✓ ≥ M12	✓ ≥ M10	✓ ≥ M10
Diamond coring	\$ ()	~	-	✓ uncracked concrete only
Diamond coring with roughening with Hilti Roughening tool TE-YRT		-	✓ ≥ M16	✓ ≥ M16

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U

Annex B1

Intended use Specifications

Installation option	Annular gap filled	Annular gap not filled			
	Hilti filling set ¹⁾ (pre-setting or through-setting)	Hilti filling set	Washer, nut, lock nut		
all load direction	✓ M8 to M24	-	-		
tension load only	-	√ M8 to M24	✓ M8 to M12		

Filling the gap between steel element and fixture using Hilti filling set with injection mortar HIT-HY ... or HIT-RE

Table B3: Installation parameters¹⁾

-	HT-HY 200-A V3, HIT-HY 200-R V3, HT-RE 500 V4 and HVU2 with HAS-U A4				M12	M16	M20	M24
Steel stress cross section	As	[mm²]	36,6	58	84,3	157	245	353
<u>Pre-setting:</u> Maximum diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26
<u>Through-setting:</u> Maximum diameter of clearance hole in the fixture	d _f	[mm]	11	14	16	20	24	30
Minimum fixture thickness	t _{fix,min} 2)	[mm]	8	10	12	16	20	24
Thickness of Hilti Filling Set	h _{fs}	[mm]	8	9	10	11	13	15
Effective fixture thickness with Hilti Filling Set	t _{fix,eff}	[mm]	$t_{\text{fix,eff}} = t_{\text{fix}} - h_{\text{fs}} \ge t_{\text{fix,min}}$					

1) See Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars.

2) The minimum fixture thickness t_{fix,min} can be replaced by a reduced minimum fixture thickness t_{fix,min,red} if a reduced fatigue resistance in transverse direction $\Delta V_{Rk,s,0,red}$ is considered:

 $t_{\text{fix,min,red}} = (0.5 + 0.5 \cdot \Delta V_{\text{Rk,s},0,(n,\infty),\text{red}} / \Delta V_{\text{Rk,s}}) \cdot t_{\text{fix,min}}$

with $\Delta V_{Rk,s} = \Delta V_{Rk,s,0,n}$ for design method I (Table C2) $\Delta V_{Rk,s} = \Delta V_{Rk,s,0,\infty}$ for design method II (Table C5)

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U

Intended use Installation parameters Annex B2

Installation instruction See Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars. Installation of Hilti Filling Set to fill the annular gap between fastener and fixture. Note: if the fastener is loaded in axial direction the gap does not have to be filled. Use Hilti filling set with standard nut. Observe the correct orientation of filling washer and spherical washer. The applied installation torque shall not exceed the values max. Tinst given in Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars. Installation of lock nut. Tighten with a $\frac{1}{4}$ to $\frac{1}{2}$ turn. • L Fill the annular gap between the anchor rod and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY ... or HIT-RE ... Follow the installation instructions supplied with the Hilti injection mortar. After required curing time t_{cure} (see Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars) the anchor can be loaded. Setting the fastener with clearance between concrete and anchor plate (only if the fastener is loaded in axial direction) Set the fastener to the required embedment depth before working time twork (see Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars) has elapsed. Check if mortar excess from the borehole. The annular gap in the fixture does not have to be filled. After required curing time tcure (see Annex B of the relevant ETA for the corresponding Hilti capsule and injection mortars) backfill the anchor plate. Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U Annex B3 Intended use Installation instructions

Page 13 of European Technical Assessment ETA-23/0277 of 8 February 2024

English translation prepared by DIBt

HIT-HY 200-A V3, HIT-HY 200 HIT-RE 500 V4 and HVU2 wit			M8	M10	M12	M16	M20	M24			
Steel failure				•		•	•				
Characteristic steel resistance)	[N/mm²]] $\Delta\sigma_{Rk,s,N,0,n}$								
		n ≤ 10⁴									
Number of evolge		$10^4 \le n \le 5.10^6$	10 ^{(-0,194·}	log(n)+3,092)		10 ^(-0,148·)	og(n)+2,996)				
Number of cycles		5·10 ⁶ < n ≤ 10 ⁸	10(-0,089	log(n)+2,387)		10 ^{(-0,069·1}	og(n)+2,466)				
		n > 10 ⁸	4	7,3		82	2,0				
Characteristic steel resistance)	[kN]		ΔN	_{Rk,s,0,n} = A	$\Delta_{s} \cdot \Delta \sigma_{Rk,s,l}$	N,0,n				
		≤ 10 ⁴	7,6	12,0	21,4	39,8	62,1	89,5			
		2·10 ⁵	4,2	6,7	13,7	25,5	39,9	57,4			
Number of evolop	n	10 ⁶	3,1	4,9	10,8	20,1	31,4	45,3			
Number of cycles	n	2·10 ⁶	2,7	4,3	9,8	18,2	28,4	40,9			
		5·10 ⁶	2,3	3,6	8,5	15,9	24,8	35,7			
		≥ 10 ⁸	1,7	2,7	6,9	12,9	20,1	29,0			
Combined pull-out and cond	crete c	one failure in ur	ncracked	d and crac	cked cor	ncrete					
Characteristic combined pull- out/concrete cone resistance		[N/mm²]	mm ²] $\Delta \tau_{Rk,p(ucr,cr),0,n} = \eta_{k,p,N,fat,n} \cdot \tau_{Rk,(ucr,cr)} {}^{1)}$								
Reduction factor		[-]	ηĸ	.,p,N,fat,n = m	nax (1,2·r	^{-0,08} ; 0,4)	with $n \leq 1$	10 ⁸			
		≤ 10 ⁴	0,57								
Number of oveloo	5	2·10⁵			0,	45					
Number of cycles	n	10 ⁶	2.42								
		≤ 10 ⁸	0,40								
Concrete cone and splitting	failure	e in uncracked a	nd crac	ked conc	rete						
Characteristic concrete cone and splitting resistance		[kN]		$\Delta N_{Rk,(c,sp)}$	$_{0,0,n} = \eta_{k,(c)}$	c,p),N,fat,n · ┡	V Rk,(c,sp) ²⁾				
Reduction factor		[-]		ηk,(c,sp),N	_{,fat,n} = ma	ıx (1,1·n⁻ ^{₀,}	⁰⁵⁵ ; 0,5)				
		≤ 10 ⁴			0,	66					
Number of cycles	n	2·10 ⁵			0,	58					
NUMBER OF CYCLES	n	10 ⁶			0,	51					
		≥ 2·10 ⁶			0,	50					
Load transfer factor for			0,50								

NRk.(c,sp) see Annex C of the relevant ETA for the corresponding Hilti capsule and injection mortars and EN 1992-4.

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U

Annex C1

Performances Essential characteristics under tension fatigue load in concrete (Design method I acc. to TR 061)

HIT-HY 200-A V3, HIT-HY 200 HIT-RE 500 V4 and HVU2 wit			M8	M10	M12	M16	M20	M24		
Steel failure without lever ar	m	·			•	•				
Characteristic steel resistance		[N/mm²]] Δσ _{Rk,s,V,0,n}							
		n ≤ 10 ⁴	4 135,2							
Number of cycles		10 ⁴ ≤ n ≤ 5·10 ⁶	0 ⁶ 10 ^{(-0,144·log(n)+2,707)}							
Number of Cycles		$5 \cdot 10^6 < n \le 10^8$	8 10 ^{(-0,067·log(n)+2,192)}							
	n > 10 ⁸	⁸ 45,3								
Characteristic steel resistance		[kN]		ΔV	$V_{\text{Rk},s,0,n} = A$	$\Lambda_{s} \cdot \Delta \sigma_{Rk,s,v}$	√,0,n			
		≤ 10 ⁴	4,9	7,8	11,4	21,2	33,1	47,7		
Number of cycles		2·10⁵	3,2	5,1	7,4	13,8	21,5	31,0		
	n	10 ⁶	2,5	4,0	5,9	10,9	17,1	24,6		
Number of cycles	n	2·10 ⁶	2,3	3,7	5,3	9,9	15,4	22,3		
		5·10 ⁶	2,0	3,2	4,7	8,7	13,5	19,5		
		≥ 10 ⁸	1,7	2,6	3,8	7,1	11,1	16,0		
Concrete pry-out failure in u	ncrac	ked and cracked	concre	te						
Characteristic concrete pry-ou resistance	t	[kN]] $\Delta V_{Rk,cp,0,n} = \eta_{k,cp,V,fat,n} \cdot V_{Rk,cp} {}^{1)}$							
Reduction factor		[-]		η _{k,cp,V,}	_{fat,n} = max	<mark>‹ (1,2</mark> ∙n ^{-0,0}	⁸ ; 0,5)			
Number of evolution	5	≤ 10 ⁴	0,57							
Number of cycles	n	≥ 2·10 ⁵			0,	50				
Concrete edge failure in unc	racke	d and cracked co	oncrete							
Effective length of fastener	lf	[mm]			min (h _{ef} ;	12·d _{nom})		-		
Effective outside diameter	\mathbf{d}_{nom}	[mm]	8	10	12	16	20	24		
Characteristic concrete edge fatigue resistance		[kN]		ΔV_{R}	$_{k,c,0,n} = \eta_{k,n}$,c,V,fat,n \cdot VF	Rk,c ¹⁾			
Reduction factor		[-]		η k,c,V,f	_{fat,n} = max	(1,2·n ^{-0,08}	⁸ ; 0,5)			
Number of cycles	n	≤ 10 ⁴				57				
-		≥ 2·10 ⁵			0,	50				
Load transfer factor for fastener group	ΨFV	[-]	0,50							

¹⁾ V_{Rk,(cp,c)} see Annex C of the relevant ETA for the corresponding Hilti capsule and injection mortars and EN 1992-4.

Table C3: Essential characteristics for combined fatigue load in concrete (Design method I acc. to TR 061)

HIT-HY 200-A V3, HIT-HY 200-R V3, HIT-RE 500 V4 and HVU2 with HAS-U A4…		M8	M10	M12	M16	M20	M24
Exponent for combined fatigue $\alpha_s = \alpha_{sn}$	[-]	0,50 0,70					
load α _c	[-]	1,5					

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U

Annex C2

Performances Essential characteristics under shear and combined fatigue load in concrete (Design method I acc. to TR 061)

Table C4: Essential characteristics under tension fatigue load in concrete (Design method II acc. to TR 061) HIT-HY 200-A V3, HIT-HY 200-R V3, **M**8 M10 M12 M16 M20 M24 HIT-RE 500 V4 and HVU2 with HAS-U A4... Steel failure Characteristic steel resistance $\Delta N_{Rk,s,0,\infty}$ 12,9 20,1 29.0 [kN] 1,7 2,7 6.9 Combined pull-out and concrete failure in uncracked and cracked concrete Characteristic combined pull-out/concrete [N/mm²] $\Delta \tau_{\text{Rk},\text{p}(\text{ucr},\text{cr}),0,10^8} = 0.4 \cdot \tau_{\text{Rk},(\text{ucr},\text{cr})}^{1)}$ cone resistance Concrete cone and splitting failure in uncracked and cracked concrete Characteristic concrete cone and splitting [kN] $\Delta N_{\text{Rk},(c,\text{sp}),0,\infty} = 0.5 \cdot N_{\text{Rk},(c,\text{sp})}^{2)}$ resistance Load transfer factor for [-] 0.50 Ψfn fastener group $\tau_{RK,(ucr,cr)}$ see Annex C of the relevant ETA for the corresponding Hilti capsule and injection mortars. NRk,(c,sp) see Annex C of the relevant ETA for the corresponding Hilti capsule and injection mortars and EN 1992-4. Essential characteristics under shear fatigue load in concrete Table C5: (Design method II acc. to TR 061) HIT-HY 200-A V3. HIT-HY 200-R V3. M20 **M8** M10 M12 M16 M24 HIT-RE 500 V4 and HVU2 with HAS-U A4... Steel failure without lever arm Characteristic resistance 11,1 16,0 [kN] 1,7 2,6 3,8 7,1 $\Delta V_{Rk.s.0,\infty}$ Concrete pry-out failure in uncracked and cracked concrete Characteristic concrete pry-out resistance [kN] $\Delta V_{Rk,cp,0,\infty} = 0.5 \cdot V_{Rk,cp}$ ¹⁾ Concrete edge failure in uncracked and cracked concrete Effective length of fastener [mm] min (hef; 12·dnom) f Effective outside diameter of [mm] 8 10 12 16 20 24 dnom fastener Characteristic concrete edge fatigue [kN] $\Delta V_{Rk,c,0,\infty} = 0.5 \cdot V_{Rk,c}^{(1)}$ resistance Load transfer factor for [-] 0.50 ΨFV fastener group

¹⁾ V_{Rk,(cp,c)} see Annex C of the relevant ETA for the corresponding Hilti capsule and injection mortars and EN 1992-4.

Table C6:Essential characteristics for combined fatigue load in concrete
(Design method II acc. to TR 061)

HIT-HY 200-A V3, HIT-HY 200-R V3, HIT-RE 500 V4 and HVU2 with HAS-U A4…		M8	M10	M12	M16	M20	M24
Exponent for combined fatigue load	$\alpha_{\rm s} = \alpha_{\rm sn}$ [-]	0,50			0,70	
	α[·]	1,5				

Hilti injection system HIT-HY 200-A V3, HIT-HY 200-R V3, HIT RE 500 V4 and mortar capsule HVU2 with HAS-U

Annex C3

Performances Essential characteristics under tension, shear and combined fatigue load in concrete (Design method II acc. to TR 061)