

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-23/0946 of 5 January 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

KFX Screw Bolt

Fasteners for use in concrete for redundant non-structural systems

Kernow Fixings Ltd. Manfield Way ST AUSTELL, PL25 3 HQ GROSSBRITANNIEN

Plant 1

16 pages including 3 annexes which form an integral part of this assessment

330747-00-0601, Edition 06/2018

European Technical Assessment ETA-23/0946

Page 2 of 16 | 5 January 2024

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-23/0946

Page 3 of 16 | 5 January 2024

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The KFX Screw Bolt is an anchor of size 5 and 6 mm made of galvanised steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C3

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, Annex C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Durability	See Annex B1

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-23/0946

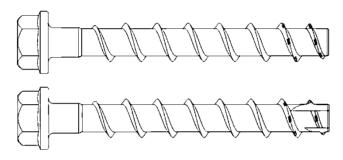
Page 4 of 16 | 5 January 2024

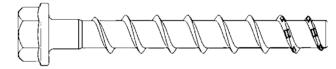
English translation prepared by DIBt

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

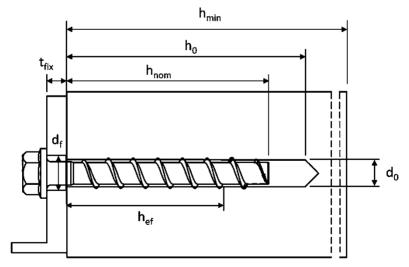
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 5 January 2024 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel


Product in installed condition

KFX Screw Bolt (KFX 5 & KFX 6)


- Galvanized carbon steel (G)
- Zinc flakes coated carbon steel (Z)

- Stainless steel A4 (S)
- High corrosion resistant steel HCR (C)

e.g. KFX Screw Bolt, zinc flakes coated, with hexagon head and fixture

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

df = clearance hole diameter

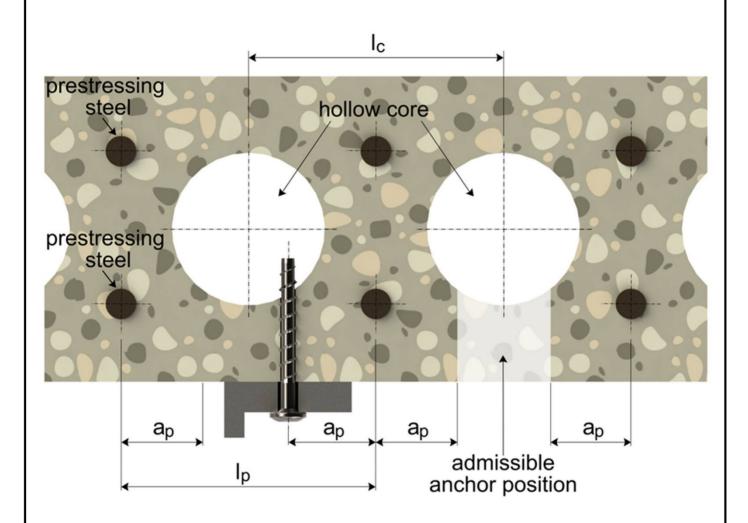
h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

KFX Screw Bolt


Product description

Product in installed condition

Annex A1

Installed condition in precast prestressed hollow core slabs

Important ratio:
$$\frac{w}{e} \leq 4$$
, 2

w = core width

e = web thickness

I_c = core distance ≥ 100 mm

l_p = prestressing steel ≥ 100 mm

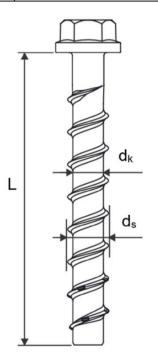
a_p = distance between anchor position and prestressing steel ≥ 50mm

KFX Screw Bolt	
Product description	Α

Installed condition in precast prestressed hollow core slabs

Annex A2

		Configuration with metric conne and hexagon socket e.g. KFX Scre			
	0	Configuration with metric conne and hexagon drive e.g. KFX Screv M10			
	(SA)	Configuration with washer and he.g. KFX Screw Bolt BXZ-08080	exagon head		
	(SA)	Configuration with washer, hexage TORX drive e.g. KFX Screw Bolt B			
	(SM)	Configuration with hexagon head e.g. KFX Screw Bolt BXZ-08080	d		
	(SA)	Configuration with countersunk head and TORX e.g. KFX Screw Bolt BSK-08080			
		Configuration with pan head and TORX drive e.g. KFX Screw Bolt BDZ-08080			
	(SM)	Configuration with large pan hea drive e.g. KFX Screw Bolt BDZ-08			
		Configuration with countersunk connection thread e.g. KFX Screv			
		Configuration with hexagon drive connection thread e.g. KFX Screv			
	nd and It BHZ-06055 M8/10				
KFX Screw Bolt					
Product descripti Screw types	Annex A3				


Table 1: Material

Part	Product name	Material
all	KFX Screw Bolt G/Z	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5μm)
types	KFX Screw Bolt S	1.4401; 1.4404; 1.4571; 1.4578
990, 20	KFX Screw Bolt C	1.4529

Part Product name		Nominal chara	Rupture	
		Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]
	KFX Screw Bolt G/Z			
all types	KFX Screw Bolt S	560	700	≤8
Lypes	KFX Screw Bolt C			

Table 2: Dimensions

Anchor size			KFX 5	KFX 6
Screw length	≤L	[mm]	2	200
Core diameter	d _k	[mm]	4,0	5,1
Thread outer diameter	ds	[mm]	6,5	7,5

Marking:

KFX Screw Bolt G/Z
Screw type: TSM
Screw size: 10
Screw length: 100

KFX Screw Bolt S
Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

15M

KFX Screw Bolt C

Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

Marking "k" or "x" for anchors with connection thread and h_{nom}= 35mm

KFX Screw Bolt

Product description

Material, Dimensions and markings

Annex A4

Specification of Intended use

Anchorages subject to:

- · static and quasi static loads
- Only for redundant non-structural systems according to EN 1992-4:2018
- Fire exposure (not for using in prestressed hollow core slabs): size 5 and 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete structures subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A4, screw type KFX Screw Bolt S with marking A4: CRC III
 - High corrosion resistant steel acc. to Annex A4, type KFX Screw Bolt C with marking HCR: CRC V

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

KFX Screw Bolt

Intended use
Specification

Annex B1

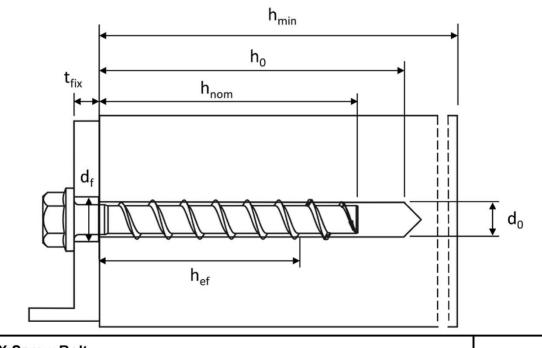
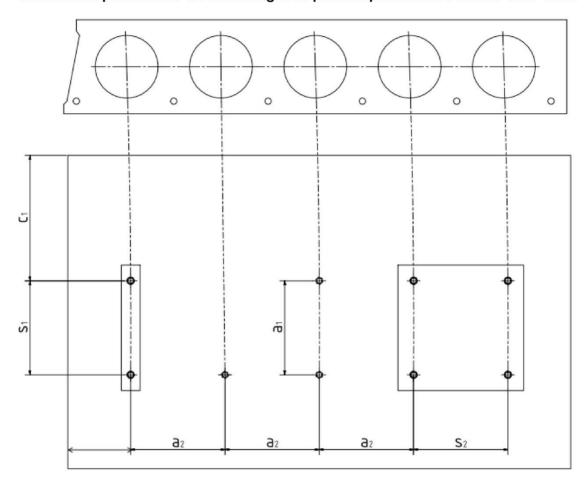


Table 3: Installation parameters

KFX Screw Bolt Size			KFX 5	KFX 6		
Nominal embedment depth			h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment depth		[mm]	35	35	55	
Nominal drill hole diameter	d ₀	[mm]	5	6	5	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,40		
Drill hole depth	h₀ ≥	[mm]	40	40 60		
Clearance hole diameter	d _f ≤	[mm]	7	8		
Installation torque (version with connection thread)	T _{inst} ≤	[Nm]	8	10		
Recommended torque impact screw driver		[NIm]	Max. torque acco	ording to manufactu	rer's instructions	
		[Nm]	110	160		

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

KFX Screw Bolt Size			KFX 5	KFX 6		
Naminal ambadasan dan th			h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment de	Nominal embedment depth		35	35	55	
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	C _{min}	[mm]	35	35	40	
Minimum spacing	S _{min}	[mm]	35	35	40	



ľ	(F	٠)	(S	С	r	е	۷	٧	В	0	ľ	t

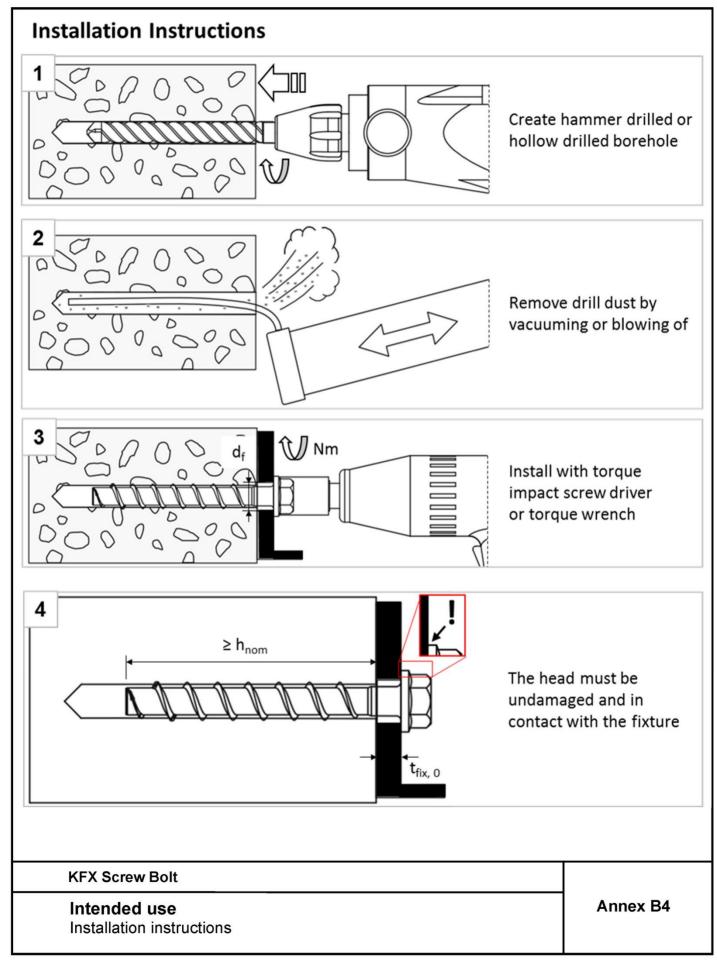
Intended use Installation parameters Annex B2

Installation parameters for anchorages in precast prestressed hollow core slabs

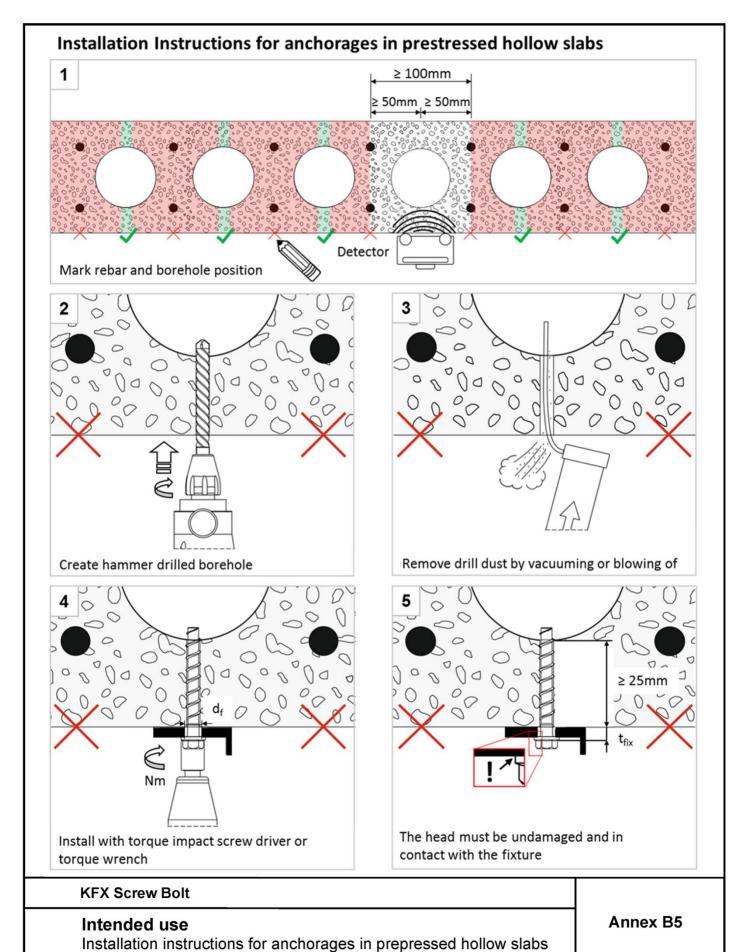
 c_1 , c_2 = edge distance

 s_1, s_2 = anchor spacing

 a_1 , a_2 = distance between anchor groups


 c_{min} = minimum edge distance \geq 100 mm

 s_{min} = minimum anchor spacing ≥ 100 mm


a_{min} = minimum distance between anchor groups ≥ 100 mm

Intended use Installation parameters for anchorages in precast prestressed hollow slabs Annex B3

KFX Screw B	olt size			KFX 5	KF	X 6	
			h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment depth			[mm]	35	35	55	
Steel failure	for tension and	d shear	loadin	σ	1		
Characteristic		N _{Rk,s}	[kN]	8,7	1	4,0	
Partial factor		γ _{Ms,N}	[-]	,-,-	1,5	.,,-	
Characteristic	c resistance	V _{Rk,s}	[kN]	4,4		7,0	
Partial factor		γ _{Ms,V}	[-]	31- 3 -1	1,25		
Ductility factor	or	k ₇	[-]		0,8		
Characteristic moment	bending	M ⁰ _{Rk,s}	[Nm]	5,3	1	0,9	
Pull-out failu	ıre						
Characteristic	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
resistance in C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5	
Increasing	C25/30				1,12	1	
factor for C30/37	Ψς	r_1	1,22				
$N_{Rk,p} =$	C40/50	* c	[-]		1,41		
N _{Rk,p(C20/25)} * ψ ₀	C50/60			1,58			
Concrete fai	lure: Splitting f	ailure,	concret	e cone failure and	pry-out failure		
Effective emb	edment depth	h _{ef}	[mm]	27 27		44	
l. footou	cracked	k ₁ =k _{cr}	[-]		7,7		
k-factor	uncracked	k ₁ = k _{ucr}	[-]		11,0		
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}		
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}		
	resistance	N ⁰ Rk,Sp	[kN]		min(N ⁰ _{Rk,c} ; N _{Rk,p})		
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160	
idilare	edge distance	C _{cr,Sp}	[mm]	60	60	80	
Factor for pry	/-out failure	k ₈	[-]		1,0		
Installation fa	actor	γinst	[-]	1,2	1,0	1,0	
Concrete ed	ge failure						
Effective leng	th in concrete	I _f = h _{ef}	[mm]	27	27	44	
Nominal oute screw	er diameter of	d _{nom}	[mm]	5		6	
KFX S	crew Bolt				T		

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

KFX Screw Bolt Size			KFX 6				
Bottom flange thickness	d₀	[mm]	≥ 25	≥ 30	≥ 35		
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3		
Edge distance	Ccr	[mm]	100				
Spacing	Scr	[mm]	200				
Installation factor	γinst	[-]	1,0				

Table 7: Limiting distances for application in precast prestressed hollow core slabs

2								
Distances for application in precast prestressed hollow core slabs								
Minimum edge distance	C _{min}	[mm]	≥ 100					
Minimum anchor spacing	S _{min}	[mm]	≥ 100					
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100					
Distance of core	l _c	[mm]	≥ 100					
Distance of prestressing steel	Ιp	[mm]	≥ 100					
Distance between anchor position and prestressing steel	a _p	[mm]	≥ 50					

KFX Screw Bolt	
Performances Characteristic values and limiting distances in precast prestressed hollow core slabs	Annex C2

KFX Screw Bolt Size			KFX 5	KFX 6				
Material				KFX Screw Bolt G/Z	KFX Screw Bolt G/Z		KFX Screw Bolt S/C	
Nominal embedment depth			h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	
· [mm]			35	35	55	35	55	
Steel failure fo		and shear lo	10 AV 5 AV	$K_{r,s,fi} = N_{Rk,s,fi} = V_{Rk,s}$				
Characteristic Resistance	R30	F _{Rk,s,fi30}	[kN]	0,8	0,9		1,2	
	R60	F _{Rk,s,fi60}	[kN]	0,6	0,8		1,2	
	R90	F _{Rk,s,fi90}	[kN]	0,4	0,6		1,2	
	R120	F _{Rk,s,fi120}	[kN]	0,3	0,4		0,8	
	R30	M ⁰ _{Rk,s,fi30}	[Nm]	0,5	0,7		0,9	
	R60	M ⁰ Rk,s,fi60	[Nm]	0,4	0,6		0,9	
	R90	M ⁰ Rk,s,fi90	[Nm]	0,2	0,5		0,9	
	R120	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	0,3		0,6	
Pull-out failure	е							
Characteristic Resistance	R30-R90	N _{Rk,p,fi}	[kN]	0,375	0,75	1,875	0,75	1,875
	R120	N _{Rk,p,fi}	[kN]	0,3	0,6	1,5	0,6	1,5
Concrete cone	failure							
Characteristic	R30-R90	N ⁰ Rk,c,fi	[kN]	0,65	0,65	2,21	0,65	2,21
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,52	0,52	1,76	0,52	1,76
Edge distance								
R30 - R120		C _{cr,fi}	[mm]	2 x h _{ef}				
In case of fire a	ttack from	more than o	ne side,	the minimum edg	ge distanc	e shall be	≥300mm.	
Spacing								
R30 - R120			4 x h _{ef}					

¹⁾ Not for application in prestressed hollow core slabs

KFX Screw Bolt	
Performances Characteristic values under fire exposure	Annex C3