

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/0047 of 27 March 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2- FM, M7R4-FM, M7-HCR
Product family to which the construction product belongs	Mechanical fastener for use in concrete
Manufacturer	Mungo S.p.a. Via Germania 23 z.i. 35127 PADOVA (PD) ITALIEN
Manufacturing plant	Plant 41
This European Technical Assessment contains	15 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	330232-01-0601, Edition 05/2021

Page 2 of 15 | 27 March 2024

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static loading) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static loading)	See Annex C3
Displacements	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

Page 4 of 15 | 27 March 2024

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 27 March 2024 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller

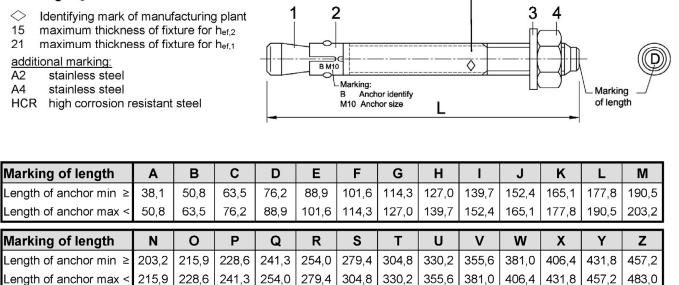

Mungo Wedge Anchor M7-FM / M7-FVZ / M7-SH / M7R2-FM / M7R4-FM / M7-HCR

Table A1: Dimensions

Anchoroine		Anchor length L		Wronch cito
Anchor size	Embedment depth hef,1	Embedment depth hef,2	Embedment depth hef,3	Wrench size
M6	t _{fix hef,1} + 47,4	t _{fix,hef,2} + 57,4	t _{fix,hef,3} + 77,4	10
M8	t _{fix hef,1} + 57,4	t _{fix,hef,2} + 66,4	t _{fix,hef,3} + 92,4	13
M10	t _{fix hef,1} + 68,0	t _{fix,hef,2} + 74,0	t _{fix,hef,3} + 106,0	17
M12	t _{fix hef,1} + 82,3	t _{fix,hef,2} + 97,3	t _{fix,hef,3} + 132,3	19
M16	t _{fix hef,1} + 103,0 (t _{fix hef,1} + 101,8) ¹⁾	t _{fix,hef,2} + 121,0 (t _{fix,hef,2} + 117,8) ¹⁾	t _{fix,hef,3} + 159,0 (t _{fix,hef,3} + 157,8) ¹⁾	24
M20	t _{fix hef,1} + 120,7	t _{fix,hef,2} + 142,7	t _{fix,hef,3} + 157,7	30

¹⁾ Anchor version M7R2-FM / M7R4-FM / M7-HCR

Marking: e.g.: <> 15/21 -

Dimensions in mm

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Product description Marking and Dimensions Annex A1

Part	Designation	Material
Zinc plate	d steel	
M7-FM	electroplated	≥ 5µm
M7-FVZ	hot-dip galvanized	≥ 50 μm (average coating thickness according to EN ISO 10684:2004+AC:2009 or EN ISO 1461:2009)
M7-SH	sherardized	≥ 45 µm according to EN ISO 17668:2016
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel
3	Washer	Steel, zinc plated
4	Hexagon nut	Steel, zinc plated
Stainless	steel	
M7R2-FM	stainless steel CRC II	1)
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
M7R4-FM	stainless steel CRC III	1)
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
M7-HCR H	ligh corrosion resistan	t steel CRC V ¹⁾
1	Conical bolt	High corrosion resistant steel
2	Expansion sleeve	Stainless steel
3	Washer	High corrosion resistant steel
4	Hexagon nut	High corrosion resistant steel

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Product description Materials Annex A2

Deutsches Institut für Bautechnik

M7-FM / M7·	FVZ / M7-SH / M7R2-FM / M7R4-FM / M7-HCR	M6	M8	M10	M12	M16	M20	
	M7-FM (electroplated)	✓	✓	✓	✓	✓	✓	
zinc plated steel	M7-FVZ (hot-dip galvanized)	_1)	~	✓	✓	✓	~	
	M7-SH (sherardized)	~	~	~	~	~	~	
	M7R2-FM	✓	~	~	~	~	~	
stainless steel	M7R4-FM	~	~	✓	~	~	✓	
	M7-HCR	✓	~	✓	✓	✓	✓	
static or quasi-static action		✓ · · · · · · · · · · · · · · · · · · ·						
all versions	uncracked concrete	✓						

¹⁾ No performance assessed

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

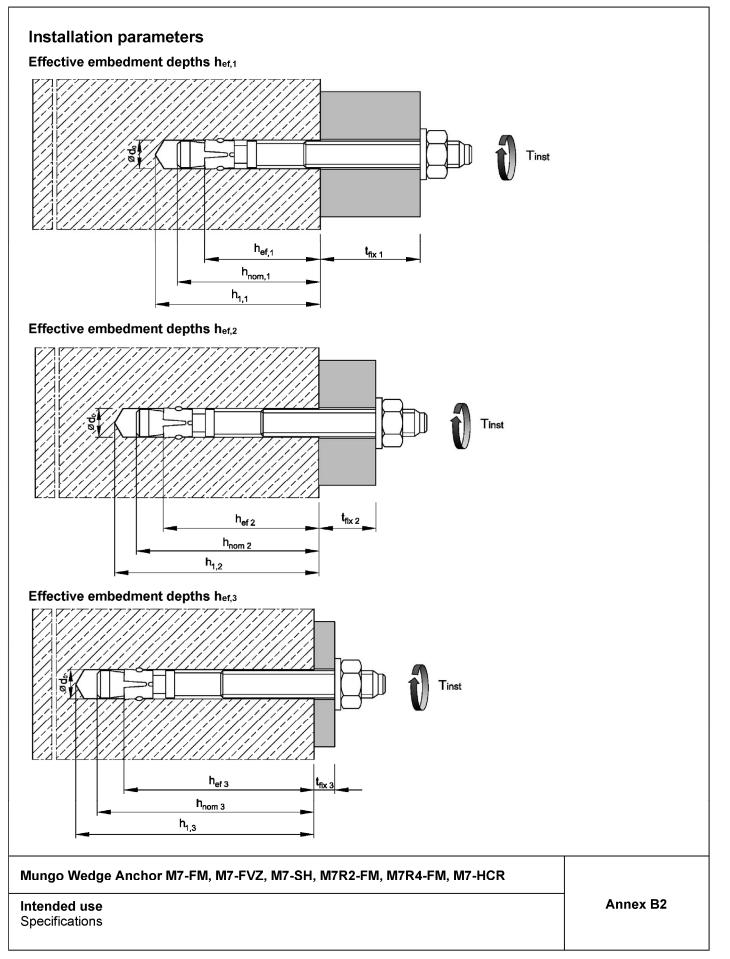
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A2
M7R2-FM	CRC II
M7R4-FM	CRC III
M7-HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 or TR 055:2018.


Installation:

- Hole drilling by hammer drill bit or vacuum drill bit.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.
- The anchor can be set in pre- or through-setting installation

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Intended use Specifications

Deutsches Institut für Bautechnik

Ancho	or size			M6	M8	M10	M12	M16	M20
Nominal drill hole diameter $d_0 =$			[mm]	6	8	10	12	16	20
Cutting diameter of drill bit $d_{cut} \leq$		[mm]	6,40	8,45	10,45	12,5	16,5	20,55	
	M7-FM	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque	M7-FVZ	T _{inst} =	[Nm]	_2)	15	30	40	90	120
stallatic torque	M7-SH	T _{inst} =	[Nm]	5	15	30	40	90	120
lns t	M7R2-FM / M7R4-FM / M7-HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
Diameter of clearance hole $d_f \leq$		[mm]	7	9	12	14	18	22	
Embe	dment depth h _{ef,1}								
Effective embedment depth hef,		$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Depth	of drill hole	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Embeo	lment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Embe	dment depth h _{ef,2}								
Effectiv	ve embedment depth	$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	82 (80) ¹⁾	100
Depth	of drill hole	$h_{1,2} \geq$	[mm]	55	65	70	90	110	130
Embedment depth $h_{nom,2} \ge$		[mm]	49	56	62	82	102	121	
Embe	dment depth h _{ef,3}								
Effectiv	ve embedment depth	$h_{\text{ef},3} \geq$	[mm]	60	70	80	100	120	115
Depth	of drill hole	h 1,3 ≥	[mm]	75	91	102	125	148	145
Embeo	lment depth	hnom,3 ≥	[mm]	69	82	94	117	140	136

¹⁾ Anchor version M7R2-FM / M7R4-FM / M7-HCR

 $^{\rm 2)}$ No performance assessed

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Intended use Installation parameters

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1						•	•	
Minimum member thickness	\mathbf{h}_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140
Embedment depth hef,2								
Minimum member thickness	\mathbf{h}_{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125
Embedment depth hef,3								
Minimum member thickness	\mathbf{h}_{min}	[mm]	120	126	132	165	208	215
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125

¹⁾ Anchor version M7-FVZ: M8-M20

Table B3: Minimum spacings and edge distances, stainless steel

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	Cmin	[mm]	40	60	65	100	110	140
Embedment depth hef,2								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
••••••	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for $c \ge$	[mm]	40	65	70	100	120	150
••••••	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s \geq	[mm]	60	110	80	100	140	180
Embedment depth hef,3								
Minimum member thickness	h _{min}	[mm]	120	126	132	165	200	215
Minimum and a second second	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for $c \ge$	[mm]	40	65	70	100	120	150
	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s \geq	[mm]	60	110	80	100	140	180

Intermediate values by linear interpolation.

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Intended use

Minimum spacings and edge distances

Inst	tallation instructions	
1		Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
2		Blow out dust. Alternatively, vacuum clean down to the bottom of the hole.
3		Drive in anchor, such that the selected embedment depth is met.
4	Tinst	Apply installation torque T _{inst} as specified in Table B1.

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Intended use Installation instructions

Anchor size				M6	M8	M10	M12	M16	M20	
Installation factor		γinst	[-]		1	1	,0			
Steel failure										
Characteristic resistar	nce	$N_{Rk,s}$	[kN]	8,7	15,3	26	35	65	107	
Partial factor ⁴⁾		γмѕ	[-]		1,	,5		1	,6	
Pull-out										
Characteristic resistar	nce for h	lef,1 NRk,p	[kN]	6,5 ²⁾	10,2 ²⁾	13,4	17,4	25,2	33,9	
in uncracked concrete	for h	lef,2 NRk,p	[kN]	10	13	16,4	25,8	36,5	49,2	
C20/25	for h	lef,3 NRk,p	[kN]	10	13	16,4	26	40	55	
Increasing factor N _{Rk,p} = ψc • N _{Rk,p} (C20/25) Ψc			[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5} \qquad \left(\frac{f_{ck}}{20}\right)^{0,33} \left(\frac{f_{ck}}{20}\right)^{0,33} \right)$						
Splitting										
Characteristic resistance $N^{0}_{Rk,sp}$				min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]						
Embedment depth h	ef,1									
Spacing		S cr,sp	[mm]	180	210	230	240	320	400	
Edge distance		C _{cr,sp}	[mm]	90	105	115	120	160	200	
Embedment depth h	ef,2									
Spacing		S cr,sp	[mm]	160	220	240	330	410	500	
Edge distance		C _{cr,sp}	[mm]	80	110	120	165	205	250	
Embedment depth h	ef,3									
Spacing		S cr,sp	[mm]	160	220	240	330	410	520	
Edge distance		Ccr,sp	[mm]	80	110	120	165	205	260	
Concrete cone failur	e									
		for h _{ef,1}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Effective embedment	depth	for h _{ef,2}	[mm]	40	44	48	65	82	100	
		for h _{ef,3}	[mm]	60	70	80	100	120	115	
Spacing	[mm]	3 h _{ef (1,2,3)}								
Edge distance		C cr,N	[mm]	1,5 h _{ef (1,2,3)}						
Factor uncr	acked concrete	k ucr,N	[-]	11,0						
Cr	acked concrete	k cr,N	[-]		No p	performar	nce asse	ssed		

¹⁾ Anchor version M7-FVZ: M8-M20

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Performance

Characteristic values for tension loads, zinc plated steel

Deutsches Institut für Bautechnik

Anchor size					M6	M8	M10	M12	M16	M20		
Ins	stallation factor		[-]	1,0								
Ste	eel failure											
Ch	aracteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134		
Pa	rtial factor ³⁾		γMs	[-]	1,50							
Pu	III-out											
~		for h _{ef,}	1 NRk,p	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9		
	aracteristic resistance cracked concrete C20/	tor need	2 NRk,p	[kN]	8	15	16,4	25	35,2	49,2		
un		for h _{ef,}	3 NRk,p	[kN]	8	15	16,4	25	42	60		
	creasing factor _{k,p} = ψc • N _{Rk,p} (C20/25)	ψс	[-]	$\left \left(\frac{f_{ck}}{20} \right)^{0,5} \right $							
Sp	litting											
Ch	aracteristic resistance		$N^0_{Rk,sp}$	[kN]	min [N _{Rk,p} ; N ⁰ _{Rk,c} ²)]							
En	nbedment depth h _{ef,1}											
Spacing s _{cr,sp}				[mm]	180	210	230	300	320	400		
Edge distance C _{cr,sp}				[mm]	90	105	115	150	160	200		
En	nbedment depth h _{ef,2}											
Th	e higher one of the dec	cisive resista	nces of	Case 1	and Case	e 2 is appl	icable					
	Characteristic resista	nce	N^0 Rk,sp	[kN]	6	9	12	20	30	40		
	Spacing	Scr,sp				3 h _{ef}						
ase	Edge distance	nce C _{cr,sp}			1,5 h _{ef}							
ů	Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \bullet N^{0}_{Rk,sp}$ (C20/25)	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$)0,5				
e 2	Spacing		S cr,sp	[mm]	160	220	240	340	410	560		
Case	Edge distance		C _{cr,sp}	[mm]	80	110	120	170	205	280		
En	nbedment depth h _{ef,3}											
Sp	acing		S cr,sp	[mm]	160	220	240	340	410	620		
Ed	ge distance		Ccr,sp	[mm]	80	110	120	170	205	310		
Co	oncrete cone failure											
			or $h_{\text{ef},1} \geq$	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78		
Eff	ective embedment dep		$h_{ef,2} \ge$	[mm]	40	44	48	65	80	100		
		fo	$h_{ef,3} \ge$	[mm]	60	70	80	100	120	115		
	acing		S cr,N	[mm]								
Edge distance C _{cr,N}				[mm]	1,5 h _{ef}							
	uncracked concrete k _{ucr,N}			11,0								
	ctor uncrack	ed concrete	K ucr,N	[-]			I	1,0				

¹⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{\rm 2)}$ $N^0{}_{\rm Rk,c}$ according to EN 1992-4:2018

³⁾ In absence of other national regulations

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Performance

Characteristic values for tension loads, stainless steel

Anchor size					M6	M8	M10	M12	M16	M20
Installation factor				[-]			,	1,0		
Steel failure without le	ever arm									
Characteristic resistance	zinc plat	ed steel ¹⁾	$V^0_{Rk.s}$	[kN]	5	11	17	25	44	69
	stainless	s steel	V ⁰ Rk,s	[kN]	7	12	19	27	50	86
Ductility factor			k 7	[-]	1,0					
Steel failure with lever	r arm									
Characteristic bending resistance	zinc plat	ed steel ¹⁾	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363
	stainless	s steel	M ⁰ Rk,s	[Nm]	10	24	49	85	199	454
Partial factor ⁴⁾ for $V^{0}_{Rk,s}$ and $M^{0}_{Rk,s}$	zinc plat	γMs	[-]	1,25 1					,33	
	stainless steel		γMs	[-]	1,25				1,4	
Concrete pry-out failu	re									
	zinc plat	ed steel ¹⁾	k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1
Factor for h ef	stainless	s steel	k 8	[-]	1,0	2,3	2,8	2,8	3,0	3,3
Concrete edge failure										
		for h ef,1	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effective length of anch shear loading	or in	for h ef,2	lf	[mm]	40	44	48	65	82 (80) ³⁾	100
		for h ef,3	lf	[mm]	60	70	80	100	120	115
Outside diameter of and	chor		d _{nom}	[mm]	6	8	10	12	16	20

¹⁾ Anchor version M7-FVZ: M8-M20

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version stainless steel

⁴⁾ In absence of other national regulations

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Performance Characteristic values for **shear loads**

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1				•	•	•		
zinc plated steel ¹⁾								
Tension load	Ν	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Displacement	δνο	[mm]	0,3			0,4		
Displacement	δ _{N∞}	[mm]	0,6			1,8		
stainless steel								
Tension load	Ν	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δνο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	δ _{N∞}	[mm]		•	1,3			2,9
Embedment depth hef,2 and hef,3								
zinc plated steel ¹⁾								
Tension load	Ν	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Disala concert	δηο	[mm]	0,4			0,5		
Displacement	δ _{N∞}	[mm]	0,7	2,3				
stainless steel		/						
Tension load	Ν	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Displacement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δ _{N∞}	[mm]			1,8			4,2

¹⁾ Anchor version M7-FVZ: M8-M20

Table C5: Displacements under shear loads

Anchor size			M6	M8	M10	M12	M16	M20
zinc plated steel 1)								
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Disalessant	δvo	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
Displacement	δ _{V∞}	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
stainless steel								
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
Displacement	δ _{V∞}	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Anchor version M7-FVZ: M8-M20

Mungo Wedge Anchor M7-FM, M7-FVZ, M7-SH, M7R2-FM, M7R4-FM, M7-HCR

Performance Displacements