

Allgemeine Bauartgenehmigung Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Zulassungs- und Genehmigungsstelle für Bauprodukte und Bauarten

Datum: Geschäftszeichen:

19.04.2024 III 46-1.19.51-15/24

Nummer:

Z-19.51-2356

Antragsteller:

International Farbenwerke GmbH Sachsenkamp 5 20097 Hamburg Geltungsdauer

vom: 1. Mai 2024 bis: 1. Mai 2029

Gegenstand dieses Bescheides:

Ausführung der reaktiven Brandschutzbeschichtung "Interchar 212" auf Stahlbauteilen

Der oben genannte Regelungsgegenstand wird hiermit allgemein bauaufsichtlich genehmigt. Dieser Bescheid umfasst sechs Seiten und 16 Anlagen.

Seite 2 von 6 | 19. April 2024

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen Bauartgenehmigung ist die Anwendbarkeit des Regelungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Dieser Bescheid ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 3 Dieser Bescheid wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Dem Anwender des Regelungsgegenstandes sind, unbeschadet weitergehender Regelungen in den "Besonderen Bestimmungen", Kopien dieses Bescheides zur Verfügung zu stellen. Zudem ist der Anwender des Regelungsgegenstandes darauf hinzuweisen, dass dieser Bescheid an der Anwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden ebenfalls Kopien zur Verfügung zu stellen.
- Dieser Bescheid darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen diesem Bescheid nicht widersprechen, Übersetzungen müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Dieser Bescheid wird widerruflich erteilt. Die Bestimmungen können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
- Dieser Bescheid bezieht sich auf die von dem Antragsteller im Genehmigungsverfahren zum Regelungsgegenstand gemachten Angaben und vorgelegten Dokumente. Eine Änderung dieser Genehmigungsgrundlagen wird von diesem Bescheid nicht erfasst und ist dem Deutschen Institut für Bautechnik unverzüglich offenzulegen.

Seite 3 von 6 | 19. April 2024

II BESONDERE BESTIMMUNGEN

1 Regelungsgegenstand und Anwendungsbereich

- (1) Die allgemeine Bauartgenehmigung gilt für die Ausführung feuerwiderstandsfähiger Stahlbauteile unter Anwendung der reaktiven Brandschutzbeschichtung "Interchar 212" nach Europäischem Bewertungsdokument (EAD)¹ und ETA 10/0470, mit entsprechender Leistungserklärung (Declaration of Performance) Nr. "DOP-212-03" vom 15. September 2021 und CE-Kennzeichnung.
- (2) Die nach dieser allgemeinen Bauartgenehmigung ausgeführten Stahlbauteile an der Außenseite von Gebäuden (Nutzungstyp X), in offenen Hallen (Nutzungstyp Y), sowie im Gebäudeinneren (Nutzungstypen Z₁, Z₂) dürfen dort angewendet werden, wo die bauaufsichtlichen Anforderungen an feuerhemmende, hochfeuerhemmende² und feuerbeständige³ Bauteile bestehen⁴.
- (3) Für Bauteile mit einer Feuerwiderstandsfähigkeit von 120 Minuten ist zur Erfüllung der bauaufsichtlichen Anforderungen eine Abweichentscheidung nach MBO § 67 erforderlich, da die reaktive Brandschutzbeschichtung ein brennbarer Baustoff ist (vgl. Muster-Hochhaus-Richtlinie, Abschnitt 3.1).
- (4) Der Bescheid gilt für die Anwendung des Regelungsgegenstandes als brandschutztechnisch notwendige Beschichtung (Ummantelung) auf Vollwandträgern mit Biegebeanspruchung und Druckgliedern aus Baustahl S235, S275, S355 nach DIN EN 10025⁵, Teil 1 bis 6 zur Erhöhung der Feuerwiderstandsfähigkeit entsprechend der nachfolgenden Tabelle 1.

Tabelle 1 Feuerwiderstandsfähigkeit in Abhängigkeit vom Profilfaktor⁶

Sp.	1	2	3	4	5
		Prof	filfaktor ⁶	A _m /V [m	n ⁻¹]
Zeile	Bauteiltyp und Profiltyp	Feuerwid	erstand	sfähigke	it [Min.]
		30	60	90	120
1	Vollwandträger mit Biegebeanspruchung, bestehend aus offenen Profilen ⁷	316	316	316	316
2	Druckglieder, bestehend aus offenen Profilen ⁷	316	316	316	316
3	Träger und Druckglieder, bestehend aus geschlossenen Profilen (quadratische Hohlprofile)	315	315	315	160
4	Träger und Druckglieder, bestehend aus geschlossenen Profilen (kreisförmige Hohlprofile)	310	310	250	120

Europäisches Bewertungsdokument EAD 350402-00-1106

2 hochfeuerhemmend und in den wesentlichen Teilen aus nichtbrennbaren Baustoffen

³ feuerbeständig (tragende und aussteifende Teile nichtbrennbar)

Für die Zuordnung von Feuerwiderstandsklassen zu den bauaufsichtlichen Anforderungen siehe Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVVTB), Ausgabe 2023/1, Anhang 4, Tabelle 4.3.1.1

DIN EN 10025-1:2005-02 Warmgewalzte Erzeugnisse aus Baustählen, Teil 1: Allgemeine technische Lieferbedingungen

DIN EN 10025-2:2019-10 Warmgewalzte Erzeugnisse aus Baustählen, Teil 2: Technische Lieferbedingungen für unlegierte Stähle

DIN EN 10025-3:2019-10 Warmgewalzte Erzeugnisse aus Baustählen, Teil 3: Technische Lieferbedingungen für normalgeglühte/normalisierend gewalzte schweißgeeignete Feinkornbaustähle DIN EN 10025-4:2019-10 Warmgewalzte Erzeugnisse aus Baustählen, Teil 4: Technische Lieferbedingungen

für thermomechanisch gewalzte schweißgeeignete Feinkornbaustähle

DIN EN 10025-5:2019-10

Warmgewalzte Erzeugnisse aus Baustählen, Teil 5: Technische Lieferbedingungen

für wetterfeste Baustähle

DIN EN 10025-6:2020-02

Warmgewalzte Erzeugnisse aus Baustählen, Teil 6: Technische Lieferbedingungen für Flacherzeugnisse aus Stählen mit höherer Streckgrenze im vergüteten Zustand

Berechnung der Profilfaktors A_m/V der Stahlprofile gemäß DIN EN 13381-8:2013-08, Bild 1

⁷ I-, T-, U- und L- förmige Walz- und zusammengesetzte Profile

Seite 4 von 6 | 19. April 2024

- (5) Für die reaktive Brandschutzbeschichtung sind Grundierung, Dämmschichtbildner und ggf. Decklack zu verwenden. Die Ausführung muss gemäß den Bestimmungen des Abschnitts 2.2 erfolgen.
- (6) Sofern Anforderungen an den Gesundheitsschutz für die Anwendung in Aufenthaltsräumen bestehen, sind diese gesondert nachzuweisen.
- (7) Die Anwendung des Regelungsgegenstands auf Vollprofilen aus Stahl ist nicht nachgewiesen.
- (8) Die Anwendung des Regelungsgegenstands auf verzinkten Stahlbauteilen ist möglich.
- (9) Der Regelungsgegenstand ist vorgesehen für die Anwendung in vollständig der Witterung ausgesetzten Bereichen (Nutzungstyp X nach EAD¹) in teilweise der Witterung ausgesetzten Bereichen (einschließlich Frost, aber ohne direkte Beanspruchung durch Feuchtigkeit/Regen und begrenzter oder nur gelegentlicher UV-Beanspruchung; Nutzungstyp Y nach EAD¹), im Innenbereich mit erhöhter Luftfeuchtigkeit (Nutzungstyp Z_1 nach EAD¹), sowie im trockenen Innenbereich (Nutzungstyp Z_2 nach EAD¹).

2 Bestimmungen für Planung, Bemessung und Ausführung

2.1 Planung

- (1) Die mit der reaktiven Brandschutzbeschichtung beschichteten Stahlbauteile dürfen keine Bekleidungen oder sonstige Ummantelungen erhalten, die den Dämmschichtbildner am Aufschäumen hindern können.
- (2) Es ist nachzuweisen, dass thermische Längenänderungen der Stahlbauteile⁸ vom Tragsystem ohne Beeinträchtigung der Standsicherheit aufnehmbar sind. Andernfalls sind geeignete konstruktive Maßnahmen zu treffen, um die Standsicherheit zu gewährleisten.
- (3) Beim Anschluss anderer Bauteile ist die Anschlussstelle so auszubilden, dass eine Brandbeanspruchung des zu schützenden Bauteils ausreichend verhindert wird, oder es sind die anzuschließenden Bauteile selbst so zu schützen, dass sie die Erwärmung des zu schützenden Bauteils nicht fördern⁸.

2.2 Ausführung

2.2.1 Schulung der ausführenden Betriebe

- (1) Die Beschichtungsstoffe dürfen nur von Fachkräften, die mit der Wirkungsweise und der Verarbeitungsweise der reaktiven Brandschutzbeschichtung durch den Hersteller der reaktiven Brandschutzbeschichtung in intensiver Schulung vertraut gemacht worden sind, und nur entsprechend der Abschnitte 2.2.2 bis 2.2.4 aufgebracht werden. Über die Schulung der Fachkräfte hat der Hersteller Aufzeichnungen anzufertigen. Sie sind dem Deutschen Institut für Bautechnik auf Verlangen vorzulegen.
- (2) Die Bestimmungen der Abschnitte 2.2.2 bis 2.2.4 sind zu beachten.

2.2.2 Grundierung

- (1) Der Regelungsgegenstand darf mit den in der Leistungserklärung Nr. "DOP-212-03" vom 15. September 2021 genannten Grundierungen ausgeführt werden.
- (2) Die erforderliche Trockenschichtdicke der Grundierung entsprechend der Herstellerangaben ist einzuhalten.

Es gelten im Übrigen die Bestimmungen von DIN 4102-4 – Brandverhalten von Baustoffen und Bauteilen; Zusammenstellung und Anwendung klassifizierter Baustoffe, Bauteile und Sonderbauteile –

Seite 5 von 6 | 19. April 2024

2.2.3 Reaktive Beschichtung

(1) Der Regelungsgegenstand ist in Abhängigkeit von Bauteiltyp, Profiltyp, Profilfaktor und Stahlbemessungstemperatur mit einer Trockenschichtdicke der reaktiven Beschichtung "Interchar 212" nach den in Tabelle 2 genannten Anlagen zu versehen.

Tabelle 2 Anlagen mit Angaben der erforderlichen Mindesttrockenschichtdicke DFT der reaktiven Brandschutzbeschichtung

Spalte	1	2	3	4	5	
Zeile	Bauteiltyp und Profiltyp	Anlagen				
		Feuerwiderstandsfähigke [Min.]				
		30	60	90	120	
1	Vollwandträger mit Biegebeanspruchung, bestehend aus offenen Profilen ⁷	1	2	3	4	
2	Druckglieder, bestehend aus offenen Profilen ⁷	5	6	7	8	
3	Träger und Druckglieder, bestehend aus geschlossenen Profilen (quadratische Hohlprofile)	9	10	11	12	
4	Träger und Druckglieder, bestehend aus geschlossenen Profilen (kreisförmige Hohlprofile)	13	14	15	16	

(2) Die in den Anlagen angegebenen Schichtdicken beziehen sich nur auf die mindestens zu erzielende Trockenschichtdicke des Dämmschichtbildners. Die Nassauftragsmenge ist so zu wählen, abhängig vom Auftragsverfahren, dass die Trockenschichtdicke an allen Stellen des Stahlbauteils erreicht wird. Spritz- und Tropfverluste sind einzukalkulieren.

2.2.4 Deckbeschichtung

(1) Der Regelungsgegenstand darf mit den in der Leistungserklärung Nr. "DOP-212-03" vom 15. September 2021 genannten Deckbeschichtungen ausgeführt werden.

2.3 Kennzeichnung der reaktiven Brandschutzbeschichtung

Die mit der reaktiven Brandschutzbeschichtung versehene Konstruktion ist durch ein oder – bei größeren Bauvorhaben – durch mehrere Schilder witterungsbeständig zu kennzeichnen. Darauf ist Folgendes anzugeben:

Die reaktive Beschichtung "Interchar 212" nach ETA 10/0470 wurde gemäß der allgemeinen Bauartgenehmigung des DIBt Nr. Z-19.51-2356 vom 19. April 2024 in (Anzahl) Schichten am (Datum) durch (Name und Anschrift der ausführenden Firma) aufgebracht.

Im Jahre ist der Deckanstrich bzw. die reaktive Beschichtung zu überprüfen. Zur Ausbesserung des Deckanstrichs dürfen nur geeignete Beschichtungsstoffe verwendet werden. Keine weiteren Anstriche aufbringen, weil sonst die Brandschutzwirkung beeinträchtigt werden kann!

2.4 Übereinstimmungserklärung

(1) Der mit der Ausführung der Bauart betraute Betrieb muss für jedes Bauvorhaben die Übereinstimmung der Bauart mit der allgemeinen Bauartgenehmigung mit einer Übereinstimmungserklärung bestätigen (s. §§ 16 a Abs. 5 i. V. m. 21 Abs. 2 MBO⁹).

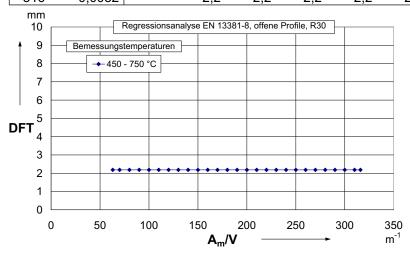
⁹ Nach Landesbauordnung

Seite 6 von 6 | 19. April 2024

- (2) Sie muss schriftlich erfolgen und außerdem mindestens die folgenden Angaben enthalten:
- Z-19.51-2356,
- Ausführung feuerwiderstandsfähiger Stahlbauteile unter Anwendung der reaktiven Brandschutzbeschichtung "Interchar 212",
- Name und Anschrift des bauausführenden Betriebs,
- Bezeichnung der baulichen Anlage,
- Datum der Errichtung /der Fertigstellung,
- Ort und Datum der Ausstellung der Erklärung sowie Unterschrift des Verantwortlichen.
- (3) Die Übereinstimmungserklärung ist in jedem Einzelfall zur ggf. erforderlichen Weiterleitung an die zuständige Bauaufsichtsbehörde dem Bauherrn zur Verfügung zu stellen und von ihm in die Bauakte aufzunehmen.

3 Bestimmungen für Nutzung, Unterhalt und Wartung

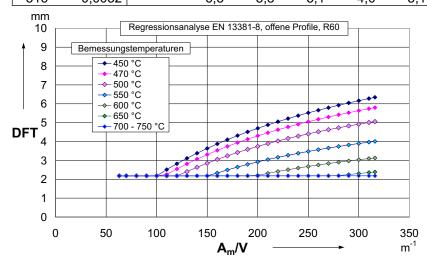
- (1) Bei jeder Ausführung der reaktiven Brandschutzbeschichtung hat der ausführende Betrieb den Bauherrn schriftlich darauf hinzuweisen, dass die Brandschutzwirkung auf Dauer nur sichergestellt ist, wenn die reaktive Brandschutzbeschichtung stets in ordnungsgemäßem Zustand gehalten wird, und er hat anzugeben, welche Beschichtungsstoffe für Ausbesserung und Erneuerung der reaktiven Brandschutzbeschichtung verwendet werden dürfen.
- (2) Die beschichteten Bauteile müssen für Kontroll- und Instandhaltungsarbeiten zugänglich sein.
- (3) Der bauaufsichtlich Verantwortliche hat dafür Sorge zu tragen, dass die ausgeführte reaktive Brandschutzbeschichtung in regelmäßigen Abständen, auf den ordnungsgemäßen Zustand hin durch eine Sichtkontrolle auf Schäden z. B. durch Feuchteeinfluss in Form von flüssigem oder gasförmigem Wasser (Niederschlag und Kondensation), Korrosion, mechanische Schäden, etc. untersucht wird. Die Schäden sind zu dokumentieren und unverzüglich nach Herstelleranleitung zu beheben.
- (4) Der Hersteller hat dem Ausführenden eine Anleitung zur Behebung von Beschädigungen zur Verfügung zu stellen.


Johanna Held	Beglaubigt
Referatsleiterin	Dreyer

Anlage 1

Träger mit offenen Profilen

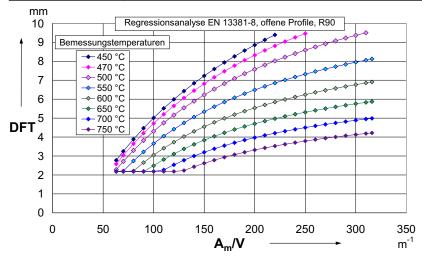
			Feuerwiderstandsfähigkeit 30 Minuten								
				ssungste							
A/V	V/A	450	470	500	550	600	650	700	750		
		Erford	derliche M	lindesttro	ckensch	ichtdicke	DFT in	mm			
m ⁻¹	m		(ohne (Grundieru	ing und E	Deckanst	rich)				
63	0,0159	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
70	0,0143	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
80	0,0125	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
90	0,0111	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
100	0,0100	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
110	0,0091	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
120	0,0083	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
130	0,0077	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
140	0,0071	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
150	0,0067	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
160	0,0063	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
170	0,0059	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
180	0,0056	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
190	0,0053	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
200	0,0050	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
210	0,0048	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
220	0,0045	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
230	0,0043	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
240	0,0042	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
250	0,0040	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
260	0,0038	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
270	0,0037	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
280	0,0036	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
290	0,0034	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
300	0,0033	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
310	0,0032	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		
316	0,0032	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2		



Anlage 2

Träger mit offenen Profilen

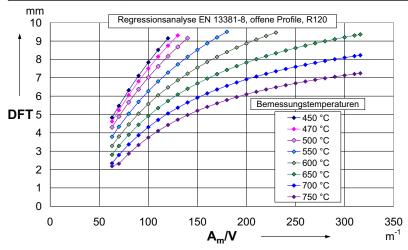
			Feuerwi	derstand	lsfähick <i>i</i>	eit 60 Mi	nuten		
					emperatu				
A/V	V/A	450	470	500	550	600	650	700	750
	• • • • • • • • • • • • • • • • • • • •		derliche M						
m ⁻¹	m				ing und E				
63	0,0159	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
70	0,0143	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
80	0,0125	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
90	0,0111	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
100	0,0100	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
110	0,0091	2,5	2,3	2,2	2,2	2,2	2,2	2,2	2,2
120	0,0083	2,8	2,5	2,2	2,2	2,2	2,2	2,2	2,2
130	0,0077	3,1	2,8	2,4	2,2	2,2	2,2	2,2	2,2
140	0,0071	3,4	3,1	2,6	2,2	2,2	2,2	2,2	2,2
150	0,0067	3,6	3,3	2,9	2,2	2,2	2,2	2,2	2,2
160	0,0063	3,9	3,5	3,1	2,3	2,2	2,2	2,2	2,2
170	0,0059	4,1	3,7	3,2	2,5	2,2	2,2	2,2	2,2
180	0,0056	4,3	3,9	3,4	2,6	2,2	2,2	2,2	2,2
190	0,0053	4,5	4,1	3,6	2,8	2,2	2,2	2,2	2,2
200	0,0050	4,7	4,3	3,7	2,9	2,2	2,2	2,2	2,2
210	0,0048	4,9	4,5	3,9	3,0	2,3	2,2	2,2	2,2
220	0,0045	5,1	4,6	4,0	3,2	2,4	2,2	2,2	2,2
230	0,0043	5,2	4,8	4,2	3,3	2,5	2,2	2,2	2,2
240	0,0042	5,4	4,9	4,3	3,4	2,6	2,2	2,2	2,2
250	0,0040	5,5	5,0	4,4	3,5	2,7	2,2	2,2	2,2
260	0,0038	5,7	5,2	4,5	3,6	2,8	2,2	2,2	2,2
270	0,0037	5,8	5,3	4,6	3,7	2,8	2,2	2,2	2,2
280	0,0036	5,9	5,4	4,7	3,7	2,9	2,2	2,2	2,2
290	0,0034	6,0	5,5	4,8	3,8	3,0	2,3	2,2	2,2
300	0,0033	6,2	5,6	4,9	3,9	3,0	2,3	2,2	2,2
310	0,0032	6,3	5,7	5,0	4,0	3,1	2,4	2,2	2,2
316	0,0032	6,3	5,8	5,1	4,0	3,1	2,4	2,2	2,2



Anlage 3

Träger mit offenen Profilen

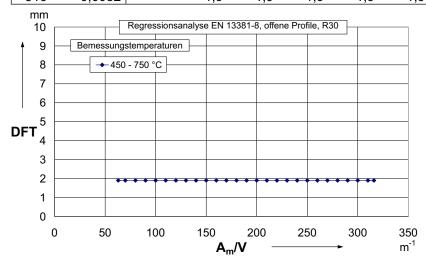
			Feuerwi	derstand	dsfähigk	eit 90 Mi	nuten					
			Beme	essungste	emperatu	ren θ_D in	°C					
A/V	V/A	450	470	500	550	600	650	700	750			
		Erfor	Erforderliche Mindesttrockenschichtdicke DFT in mm									
m ⁻¹	m		(ohne (Grundieru			rich)					
63	0,0159	2,8	2,6	2,3	2,2	2,2	2,2	2,2	2,2			
70	0,0143	3,3	3,0	2,7	2,2	2,2	2,2	2,2	2,2			
80	0,0125	3,9	3,6	3,3	2,7	2,2	2,2	2,2	2,2			
90	0,0111	4,5	4,2	3,8	3,2	2,7	2,2	2,2	2,2			
100	0,0100	5,0	4,7	4,3	3,7	3,0	2,5	2,2	2,2			
110	0,0091	5,5	5,2	4,8	4,1	3,4	2,8	2,3	2,2			
120	0,0083	6,0	5,6	5,2	4,4	3,7	3,1	2,5	2,2			
130	0,0077	6,4	6,1	5,5	4,7	4,0	3,4	2,8	2,2			
140	0,0071	6,8	6,4	5,9	5,1	4,3	3,6	3,0	2,4			
150	0,0067	7,2	6,8	6,2	5,3	4,5	3,8	3,2	2,6			
160	0,0063	7,6	7,2	6,5	5,6	4,8	4,0	3,4	2,8			
170	0,0059	7,9	7,5	6,8	5,8	5,0	4,2	3,5	2,9			
180	0,0056	8,3	7,8	7,1	6,1	5,2	4,4	3,7	3,1			
190	0,0053	8,6	8,1	7,3	6,3	5,4	4,6	3,8	3,2			
200	0,0050	8,9	8,3	7,6	6,5	5,5	4,7	4,0	3,3			
210	0,0048	9,1	8,6	7,8	6,7	5,7	4,8	4,1	3,4			
220	0,0045	9,4	8,8	8,0	6,9	5,8	5,0	4,2	3,5			
230	0,0043		9,0	8,2	7,0	6,0	5,1	4,3	3,6			
240	0,0042		9,3	8,4	7,2	6,1	5,2	4,4	3,7			
250	0,0040		9,5	8,6	7,3	6,2	5,3	4,5	3,8			
260	0,0038			8,8	7,5	6,4	5,4	4,6	3,9			
270	0,0037			8,9	7,6	6,5	5,5	4,7	3,9			
280	0,0036			9,1	7,7	6,6	5,6	4,7	4,0			
290	0,0034			9,2	7,8	6,7	5,7	4,8	4,1			
300	0,0033			9,4	8,0	6,8	5,8	4,9	4,1			
310	0,0032			9,5	8,1	6,9	5,8	5,0	4,2			
316	0,0032				8,1	6,9	5,9	5,0	4,2			



Anlage 4

Träger mit offenen Profilen

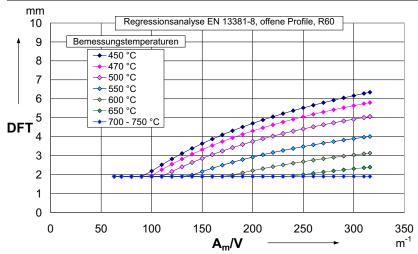
			Feuerwi	derstand		it 120 Mi	nuten		
			Bem	essungst	emperatu	ren θ_{D} in '	°C		
A/V	V/A	450	470	500	550	600	650	700	750
		Erfo	rderliche	Mindesttr	ockensch	ichtdicke	DFT in m	ım	
m ⁻¹	m		(ohne		ung und E	Deckanstr	ich)		
63	0,0159	4,8	4,6	4,3	3,8	3,3	2,8	2,3	2,2
70	0,0143	5,5	5,2	4,9	4,3	3,8	3,3	2,8	2,3
80	0,0125	6,3	6,1	5,7	5,0	4,5	3,9	3,4	2,9
90	0,0111	7,1	6,8	6,4	5,7	5,0	4,4	3,9	3,3
100	0,0100	7,8	7,5	7,0	6,3	5,6	4,9	4,3	3,7
110	0,0091	8,5	8,1	7,6	6,8	6,0	5,3	4,7	4,1
120	0,0083	9,2	8,7	8,2	7,3	6,5	5,7	5,1	4,4
130	0,0077		9,3	8,7	7,7	6,9	6,1	5,4	4,7
140	0,0071			9,2	8,1	7,2	6,4	5,7	5,0
150	0,0067				8,5	7,6	6,7	5,9	5,2
160	0,0063				8,9	7,9	7,0	6,1	5,4
170	0,0059				9,2	8,1	7,2	6,4	5,6
180	0,0056				9,5	8,4	7,4	6,6	5,8
190	0,0053					8,6	7,6	6,7	5,9
200	0,0050					8,9	7,8	6,9	6,1
210	0,0048					9,1	8,0	7,1	6,2
220	0,0045					9,3	8,2	7,2	6,4
230	0,0043					9,5	8,3	7,4	6,5
240	0,0042						8,5	7,5	6,6
250	0,0040						8,6	7,6	6,7
260	0,0038						8,8	7,7	6,8
270	0,0037						8,9	7,8	6,9
280	0,0036						9,0	7,9	7,0
290	0,0034						9,1	8,0	7,1
300	0,0033						9,2	8,1	7,1
310	0,0032						9,3	8,2	7,2
316	0,0032						9,4	8,2	7,2



Anlage 5

Druckglieder mit offenen Profilen

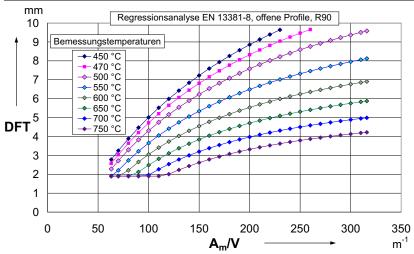
			Fellerwi	iderstand	lefähiak	eit 30 Mi	nuten				
				essungste							
A/V	V/A	450	470	500	550	600	650	700	750		
/ V	VII								730		
m ⁻¹	m	2.101	Erforderliche Mindesttrockenschichtdicke DFT in mm (ohne Grundierung und Deckanstrich)								
63	0,0159	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
70	0,0143	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
80	0,0125	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
90	0,0111	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
100	0,0100	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
110	0,0091	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
120	0,0083	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
130	0,0077	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
140	0,0071	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
150	0,0067	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
160	0,0063	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
170	0,0059	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
180	0,0056	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
190	0,0053	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
200	0,0050	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
210	0,0048	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
220	0,0045	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
230	0,0043	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
240	0,0042	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
250	0,0040	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
260	0,0038	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
270	0,0037	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
280	0,0036	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
290	0,0034	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
300	0,0033	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
310	0,0032	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		
316	0,0032	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9		



Anlage 6

Druckglieder mit offenen Profilen

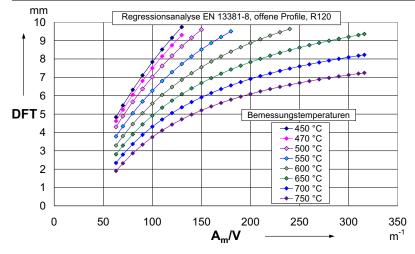
			Feuerwi	derstand	dsfähigk	eit 60 Mi	nuten					
			Beme	ssungste	emperatu	ren θ_D in	°C					
A/V	V/A	450	470	500	550	600	650	700	750			
		Erfor	Erforderliche Mindesttrockenschichtdicke DFT in mm									
m ⁻¹	m		,		ıng und [rich)					
63	0,0159	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9			
70	0,0143	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9			
80	0,0125	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9			
90	0,0111	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9			
100	0,0100	2,2	1,9	1,9	1,9	1,9	1,9	1,9	1,9			
110	0,0091	2,5	2,3	1,9	1,9	1,9	1,9	1,9	1,9			
120	0,0083	2,8	2,5	2,2	1,9	1,9	1,9	1,9	1,9			
130	0,0077	3,1	2,8	2,4	1,9	1,9	1,9	1,9	1,9			
140	0,0071	3,4	3,1	2,6	2,0	1,9	1,9	1,9	1,9			
150	0,0067	3,6	3,3	2,9	2,2	1,9	1,9	1,9	1,9			
160	0,0063	3,9	3,5	3,1	2,3	1,9	1,9	1,9	1,9			
170	0,0059	4,1	3,7	3,2	2,5	1,9	1,9	1,9	1,9			
180	0,0056	4,3	3,9	3,4	2,6	2,0	1,9	1,9	1,9			
190	0,0053	4,5	4,1	3,6	2,8	2,1	1,9	1,9	1,9			
200	0,0050	4,7	4,3	3,7	2,9	2,2	1,9	1,9	1,9			
210	0,0048	4,9	4,5	3,9	3,0	2,3	1,9	1,9	1,9			
220	0,0045	5,1	4,6	4,0	3,2	2,4	1,9	1,9	1,9			
230	0,0043	5,2	4,8	4,2	3,3	2,5	1,9	1,9	1,9			
240	0,0042	5,4	4,9	4,3	3,4	2,6	1,9	1,9	1,9			
250	0,0040	5,5	5,0	4,4	3,5	2,7	2,0	1,9	1,9			
260	0,0038	5,7	5,2	4,5	3,6	2,8	2,1	1,9	1,9			
270	0,0037	5,8	5,3	4,6	3,7	2,8	2,1	1,9	1,9			
280	0,0036	5,9	5,4	4,7	3,7	2,9	2,2	1,9	1,9			
290	0,0034	6,0	5,5	4,8	3,8	3,0	2,3	1,9	1,9			
300	0,0033	6,2	5,6	4,9	3,9	3,0	2,3	1,9	1,9			
310	0,0032	6,3	5,7	5,0	4,0	3,1	2,4	1,9	1,9			
316	0,0032	6,3	5,8	5,1	4,0	3,1	2,4	1,9	1,9			



Anlage 7

Druckglieder mit offenen Profilen

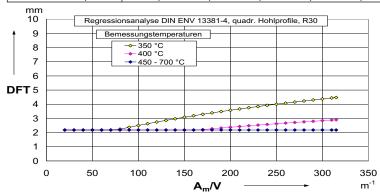
			Feuerwi	derstand	dsfähigk	eit 90 Mi	nuten					
			Beme	ssungste	emperatu	ren θ_D in	°C					
A/V	V/A	450	470	500	550	600	650	700	750			
		Erfor	Erforderliche Mindesttrockenschichtdicke DFT in mm									
m ⁻¹	m		(ohne (<u>Grundier</u> u	ıng und [Deckanst	trich)					
63	0,0159	2,8	2,6	2,3	1,9	1,9	1,9	1,9	1,9			
70	0,0143	3,3	3,0	2,7	2,2	1,9	1,9	1,9	1,9			
80	0,0125	3,9	3,6	3,3	2,7	2,2	1,9	1,9	1,9			
90	0,0111	4,5	4,2	3,8	3,2	2,7	2,1	1,9	1,9			
100	0,0100	5,0	4,7	4,3	3,7	3,0	2,5	2,0	1,9			
110	0,0091	5,5	5,2	4,8	4,1	3,4	2,8	2,3	1,9			
120	0,0083	6,0	5,6	5,2	4,4	3,7	3,1	2,5	2,0			
130	0,0077	6,4	6,1	5,5	4,7	4,0	3,4	2,8	2,2			
140	0,0071	6,8	6,4	5,9	5,1	4,3	3,6	3,0	2,4			
150	0,0067	7,2	6,8	6,2	5,3	4,5	3,8	3,2	2,6			
160	0,0063	7,6	7,2	6,5	5,6	4,8	4,0	3,4	2,8			
170	0,0059	7,9	7,5	6,8	5,8	5,0	4,2	3,5	2,9			
180	0,0056	8,3	7,8	7,1	6,1	5,2	4,4	3,7	3,1			
190	0,0053	8,6	8,1	7,3	6,3	5,4	4,6	3,8	3,2			
200	0,0050	8,9	8,3	7,6	6,5	5,5	4,7	4,0	3,3			
210	0,0048	9,1	8,6	7,8	6,7	5,7	4,8	4,1	3,4			
220	0,0045	9,4	8,8	8,0	6,9	5,8	5,0	4,2	3,5			
230	0,0043	9,6	9,0	8,2	7,0	6,0	5,1	4,3	3,6			
240	0,0042		9,3	8,4	7,2	6,1	5,2	4,4	3,7			
250	0,0040		9,5	8,6	7,3	6,2	5,3	4,5	3,8			
260	0,0038		9,7	8,8	7,5	6,4	5,4	4,6	3,9			
270	0,0037			8,9	7,6	6,5	5,5	4,7	3,9			
280	0,0036			9,1	7,7	6,6	5,6	4,7	4,0			
290	0,0034			9,2	7,8	6,7	5,7	4,8	4,1			
300	0,0033			9,4	8,0	6,8	5,8	4,9	4,1			
310	0,0032			9,5	8,1	6,9	5,8	5,0	4,2			
316	0,0032			9,6	8,1	6,9	5,9	5,0	4,2			



Anlage 8

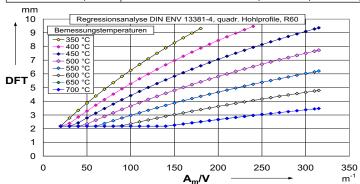
Druckglieder mit offenen Profilen

	""		Feuerwic	derstands	sfähigkei	t 120 Min	uten				
			Beme	essungste	mperature	en θ_{D} in °(С				
A/V	V/A	450	470	500	550	600	650	700	750		
		Erfor	Erforderliche Mindesttrockenschichtdicke DFT in mm								
m ⁻¹	m		(ohne (Grundieru	ing und D	eckanstric	ch)				
63	0,0159	4,8	4,6	4,3	3,8	3,3	2,8	2,3	1,9		
70	0,0143	5,5	5,2	4,9	4,3	3,8	3,3	2,8	2,3		
80	0,0125	6,3	6,1	5,7	5,0	4,5	3,9	3,4	2,9		
90	0,0111	7,1	6,8	6,4	5,7	5,0	4,4	3,9	3,3		
100	0,0100	7,8	7,5	7,0	6,3	5,6	4,9	4,3	3,7		
110	0,0091	8,5	8,1	7,6	6,8	6,0	5,3	4,7	4,1		
120	0,0083	9,2	8,7	8,2	7,3	6,5	5,7	5,1	4,4		
130	0,0077	9,7	9,3	8,7	7,7	6,9	6,1	5,4	4,7		
140	0,0071			9,2	8,1	7,2	6,4	5,7	5,0		
150	0,0067			9,6	8,5	7,6	6,7	5,9	5,2		
160	0,0063				8,9	7,9	7,0	6,1	5,4		
170	0,0059				9,2	8,1	7,2	6,4	5,6		
180	0,0056				9,5	8,4	7,4	6,6	5,8		
190	0,0053					8,6	7,6	6,7	5,9		
200	0,0050					8,9	7,8	6,9	6,1		
210	0,0048					9,1	8,0	7,1	6,2		
220	0,0045					9,3	8,2	7,2	6,4		
230	0,0043					9,5	8,3	7,4	6,5		
240	0,0042					9,6	8,5	7,5	6,6		
250	0,0040						8,6	7,6	6,7		
260	0,0038						8,8	7,7	6,8		
270	0,0037						8,9	7,8	6,9		
280	0,0036						9,0	7,9	7,0		
290	0,0034						9,1	8,0	7,1		
300	0,0033						9,2	8,1	7,1		
310	0,0032						9,3	8,2	7,2		
316	0,0032						9,4	8,2	7,2		



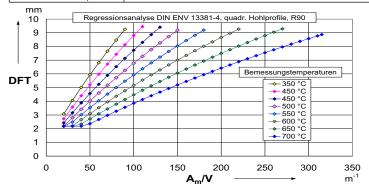
Anlage 9

Träger und Druckglieder mit quadratischen Hohlprofilen


			F	euerwic	lerstand	sfähigke	eit 30 Mi	nuten		
				Bemes	ssungste	mperatu	ren θ_{D} in	°C		
A/V	V/A	350	400	450	500	550	600	650	700	750
			Erforde	erliche M					mm	
m ⁻¹	m			(ohne G	rundieru	ng und E	eckanst)	rich)		
20	0,0500	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
30	0,0333	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
40	0,0250	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
50	0,0200	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
60	0,0167	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
70	0,0143	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
80	0,0125	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
90	0,0111	2,4	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
100	0,0100	2,5	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
110	0,0091	2,6	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
120	0,0083	2,7	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
130	0,0077	2,9	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
140	0,0071	3,0	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
150	0,0067	3,1	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
160	0,0063	3,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
170	0,0059	3,3	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
180	0,0056	3,4	2,3	2,2	2,2	2,2	2,2	2,2	2,2	
190	0,0053	3,5	2,3	2,2	2,2	2,2	2,2	2,2	2,2	
200	0,0050	3,6	2,4	2,2	2,2	2,2	2,2	2,2	2,2	
210	0,0048	3,7	2,4	2,2	2,2	2,2	2,2	2,2	2,2	
220	0,0045	3,8	2,5	2,2	2,2	2,2	2,2	2,2	2,2	
230	0,0043	3,8	2,5	2,2	2,2	2,2	2,2	2,2	2,2	
240	0,0042	3,9	2,6	2,2	2,2	2,2	2,2	2,2	2,2	
250	0,0040	4,0	2,6	2,2	2,2	2,2	2,2	2,2	2,2	
260	0,0038	4,1	2,7	2,2	2,2	2,2	2,2	2,2	2,2	
270	0,0037	4,2	2,7	2,2	2,2	2,2	2,2	2,2	2,2	
280	0,0036	4,2	2,8	2,2	2,2	2,2	2,2	2,2	2,2	
290	0,0034	4,3	2,8	2,2	2,2	2,2	2,2	2,2	2,2	
300	0,0033	4,4	2,8	2,2	2,2	2,2	2,2	2,2	2,2	
310	0,0032	4,4	2,9	2,2	2,2	2,2	2,2	2,2	2,2	
315	0,0032	4,5	2,9	2,2	2,2	2,2	2,2	2,2	2,2	

Träger und Druckglieder mit quadratischen Hohlprofilen

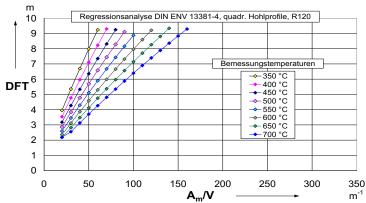
			Feuerwiderstandsfähigkeit 60 Minuten							
				Bemes	ssungste	mperatu	ren θ_{D} in	°C		
A/V	V/A	350	400	450	500	550	600	650	700	750
			Erforde	erliche M	indesttro	ckenschi	ichtdicke	DFT in i	mm	
m ⁻¹	m			(ohne G	rundieru	ng und E	eckanst)	rich)		
20	0,0500	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
30	0,0333	2,8	2,4	2,2	2,2	2,2	2,2	2,2	2,2	
40	0,0250	3,3	2,8	2,4	2,2	2,2	2,2	2,2	2,2	
50	0,0200	3,9	3,3	2,8	2,3	2,2	2,2	2,2	2,2	
60	0,0167	4,4	3,7	3,1	2,6	2,2	2,2	2,2	2,2	
70	0,0143	4,9	4,1	3,5	2,9	2,4	2,2	2,2	2,2	
80	0,0125	5,4	4,5	3,8	3,2	2,6	2,2	2,2	2,2	
90	0,0111	5,8	4,9	4,1	3,4	2,8	2,2	2,2	2,2	
100	0,0100	6,3	5,3	4,4	3,7	3,0	2,4	2,2	2,2	
110	0,0091	6,7	5,6	4,7	3,9	3,2	2,5	2,2	2,2	
120	0,0083	7,1	6,0	5,0	4,1	3,3	2,6	2,2	2,2	
130	0,0077	7,5	6,3	5,3	4,4	3,5	2,8	2,2	2,2	
140	0,0071	7,9	6,7	5,6	4,6	3,7	2,9	2,2	2,2	
150	0,0067	8,3	7,0	5,8	4,8	3,9	3,0	2,3	2,2	
160	0,0063	8,6	7,3	6,1	5,0	4,0	3,2	2,3	2,2	
170	0,0059	9,0	7,6	6,3	5,2	4,2	3,3	2,4	2,2	
180	0,0056	9,3	7,9	6,6	5,4	4,4	3,4	2,5	2,2	
190	0,0053		8,2	6,8	5,6	4,5	3,5	2,6	2,2	
200	0,0050		8,4	7,1	5,8	4,7	3,6	2,7	2,2	
210	0,0048		8,7	7,3	6,0	4,8	3,7	2,7	2,2	
220	0,0045		9,0	7,5	6,2	5,0	3,8	2,8	2,2	
230	0,0043		9,2	7,7	6,4	5,1	4,0	2,9	2,2	
240	0,0042		9,5	7,9	6,5	5,2	4,1	3,0	2,2	
250	0,0040			8,1	6,7	5,4	4,2	3,0	2,2	
260	0,0038			8,3	6,9	5,5	4,3	3,1	2,2	
270	0,0037			8,5	7,0	5,6	4,4	3,2	2,2	
280	0,0036			8,7	7,2	5,8	4,5	3,2	2,2	
290	0,0034			8,9	7,3	5,9	4,6	3,3	2,2	
300	0,0033			9,1	7,5	6,0	4,7	3,4	2,2	
310	0,0032			9,3	7,7	6,1	4,7	3,4	2,2	
315	0,0032			9,4	7,7	6,2	4,8	3,5	2,2	



Anlage 11

Träger und Druckglieder mit quadratischen Hohlprofilen

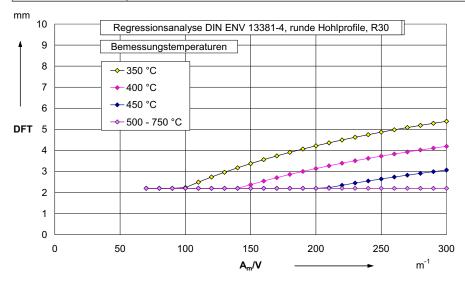
			F	euerwic	lerstand	sfähigke	eit 90 Mi	nuten		
				Bemes	ssungste	mperatu	ren θ_{D} in	°C		
A/V	V/A	350	400	450	500	550	600	650	700	750
			Erforde	erliche M	indesttro	ckenschi	ichtdicke	DFT in i	mm	
m ⁻¹	m			(ohne G	rundieru	ng und E	eckanst)	rich)		
20	0,0500	3,1	2,7	2,4	2,2	2,2	2,2	2,2	2,2	
30	0,0333	4,1	3,6	3,2	2,8	2,5	2,2	2,2	2,2	
40	0,0250	5,0	4,4	3,9	3,4	3,0	2,7	2,3	2,2	
50	0,0200	5,9	5,2	4,6	4,0	3,5	3,1	2,7	2,4	
60	0,0167	6,8	6,0	5,2	4,6	4,0	3,5	3,1	2,7	
70	0,0143	7,7	6,7	5,9	5,2	4,5	4,0	3,4	3,0	
80	0,0125	8,5	7,4	6,5	5,7	5,0	4,4	3,8	3,3	
90	0,0111	9,3	8,1	7,1	6,3	5,5	4,8	4,1	3,6	
100	0,0100		8,8	7,7	6,8	5,9	5,2	4,5	3,8	
110	0,0091		9,5	8,3	7,3	6,4	5,5	4,8	4,1	
120	0,0083			8,9	7,8	6,8	5,9	5,1	4,4	
130	0,0077			9,4	8,3	7,2	6,3	5,4	4,7	
140	0,0071				8,7	7,6	6,7	5,8	4,9	
150	0,0067				9,2	8,0	7,0	6,1	5,2	
160	0,0063					8,4	7,3	6,4	5,4	
170	0,0059					8,8	7,7	6,6	5,7	
180	0,0056					9,2	8,0	6,9	5,9	
190	0,0053						8,3	7,2	6,2	
200	0,0050						8,7	7,5	6,4	
210	0,0048						9,0	7,8	6,7	
220	0,0045						9,3	8,0	6,9	
230	0,0043							8,3	7,1	
240	0,0042							8,5	7,3	
250	0,0040							8,8	7,5	
260	0,0038							9,0	7,8	
270	0,0037							9,3	8,0	
280	0,0036								8,2	
290	0,0034								8,4	
300	0,0033								8,6	
310	0,0032								8,8	
315	0,0032								8,9	



Anlage 12

Träger und Druckglieder mit quadratischen Hohlprofilen

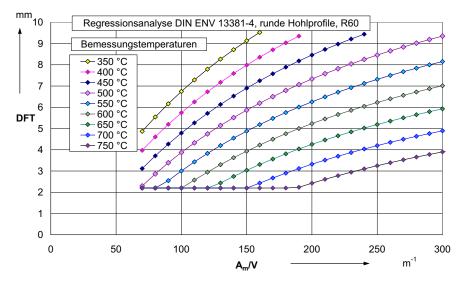
			F	euerwid	erstands	sfähigke	it 120 M	inuten		
				Bemes	ssungste	mperatu	ren θ_{D} in	°C		
A/V	V/A	350	400	450	500	550	600	650	700	750
			Erforde	erliche M	indesttro	ckensch	ichtdicke	DFT in ı	nm	
m ⁻¹	m			(ohne G	rundieru	ng und E	Deckanst	rich)		
20	0,0500	4,0	3,5	3,2	2,9	2,6	2,4	2,2	2,2	
30	0,0333	5,4	4,8	4,3	3,8	3,5	3,1	2,8	2,5	
40	0,0250	6,7	6,0	5,3	4,8	4,3	3,9	3,5	3,1	
50	0,0200	8,0	7,1	6,4	5,7	5,1	4,6	4,1	3,7	
60	0,0167	9,2	8,2	7,3	6,6	5,9	5,3	4,8	4,3	
70	0,0143		9,3	8,3	7,4	6,7	6,0	5,4	4,8	
80	0,0125			9,2	8,3	7,4	6,7	6,0	5,3	
90	0,0111				9,1	8,2	7,3	6,6	5,9	
100	0,0100					8,9	8,0	7,1	6,4	
110	0,0091						8,6	7,7	6,9	
120	0,0083						9,2	8,3	7,4	
130	0,0077							8,8	7,9	
140	0,0071							9,3	8,4	
150	0,0067								8,8	
160	0,0063								9,3	
170	0,0059									
180	0,0056									
190	0,0053									
200	0,0050									
210	0,0048									
220	0,0045									
230	0,0043									
240	0,0042									
250	0,0040									
260	0,0038									
270	0,0037									
280	0,0036									
290	0,0034									
300	0,0033									
310	0,0032									



Anlage 13

Träger und Druckglieder mit kreisförmigen Hohlprofilen

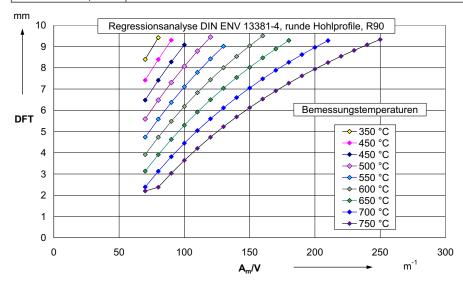
			j	euerwic	lerstand	sfähigke	eit 30 Mi	nuten			
				Beme	ssungste	mperatu	ren θ_{D} in	°C			
A/V	V/A	350									
			Erford			ckensch			mm		
m ⁻¹	m			(ohne G	rundieru	ing und E	Deckanst	rich)			
70	0,0143	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
80	0,0125	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
90	0,0111	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
100	0,0100	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
110	0,0091	2,5	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
120	0,0083	2,7	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
130	0,0077	3,0	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
140	0,0071	3,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
150	0,0067	3,4	2,4	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
160	0,0063	3,6	2,5	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
170	0,0059	3,7	2,7	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
180	0,0056	3,9	2,9	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
190	0,0053	4,1	3,0	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
200	0,0050	4,2	3,1	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
210	0,0048	4,4	3,3	2,2	2,2	2,2	2,2	2,2	2,2	2,2	
220	0,0045	4,5	3,4	2,3	2,2	2,2	2,2	2,2	2,2	2,2	
230	0,0043	4,6	3,5	2,4	2,2	2,2	2,2	2,2	2,2	2,2	
240	0,0042	4,7	3,6	2,5	2,2	2,2	2,2	2,2	2,2	2,2	
250	0,0040	4,9	3,7	2,6	2,2	2,2	2,2	2,2	2,2	2,2	
260	0,0038	5,0	3,8	2,7	2,2	2,2	2,2	2,2	2,2	2,2	
270	0,0037	5,1	3,9	2,8	2,2	2,2	2,2	2,2	2,2	2,2	
280	0,0036	5,2	4,0	2,9	2,2	2,2	2,2	2,2	2,2	2,2	
290	0,0034	5,3	4,1	3,0	2,2	2,2	2,2	2,2	2,2	2,2	
300	0,0033	5,4	4,2	3,1	2,2	2,2	2,2	2,2	2,2	2,2	
310	0,0032	5,5	4,3	3,1	2,2	2,2	2,2	2,2	2,2	2,2	



Anlage 14

Träger und Druckglieder mit kreisförmigen Hohlprofilen

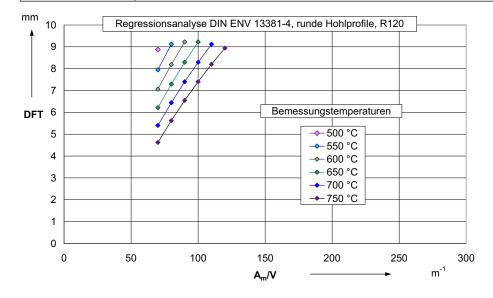
			Feuerwiderstandsfähigkeit 60 Minuten								
				Beme	ssungste	mperatu	ren θ_{D} in	°C			
A/V	V/A	350	400	450	500	550	600	650	700	750	
			Erforderliche Mindesttrockenschichtdicke DFT in mm								
m ⁻¹	m			(ohne G	Grundieru	ing und E	Deckanst	rich)			
70	0,0143	4,9	4,0	3,1	2,3	2,2	2,2	2,2	2,2	2,2	
80	0,0125	5,5	4,6	3,7	2,9	2,2	2,2	2,2	2,2	2,2	
90	0,0111	6,2	5,2	4,3	3,4	2,5	2,2	2,2	2,2	2,2	
100	0,0100	6,7	5,7	4,8	3,9	3,0	2,2	2,2	2,2	2,2	
110	0,0091	7,3	6,3	5,3	4,3	3,4	2,6	2,2	2,2	2,2	
120	0,0083	7,8	6,7	5,7	4,7	3,8	2,9	2,2	2,2	2,2	
130	0,0077	8,3	7,2	6,1	5,1	4,2	3,3	2,4	2,2	2,2	
140	0,0071	8,7	7,6	6,5	5,5	4,5	3,6	2,7	2,2	2,2	
150	0,0067	9,1	8,0	6,9	5,9	4,9	3,9	3,0	2,2	2,2	
160	0,0063	9,5	8,4	7,2	6,2	5,2	4,2	3,3	2,4	2,2	
170	0,0059		8,7	7,6	6,5	5,5	4,5	3,6	2,7	2,2	
180	0,0056		9,0	7,9	6,8	5,8	4,8	3,8	2,9	2,2	
190	0,0053		9,3	8,2	7,1	6,0	5,0	4,0	3,1	2,2	
200	0,0050			8,5	7,3	6,3	5,2	4,3	3,3	2,4	
210	0,0048			8,7	7,6	6,5	5,5	4,5	3,5	2,6	
220	0,0045			9,0	7,8	6,7	5,7	4,7	3,7	2,8	
230	0,0043			9,2	8,0	6,9	5,9	4,8	3,9	2,9	
240	0,0042			9,4	8,3	7,1	6,0	5,0	4,0	3,1	
250	0,0040				8,5	7,3	6,2	5,2	4,2	3,2	
260	0,0038				8,7	7,5	6,4	5,3	4,3	3,4	
270	0,0037				8,8	7,7	6,6	5,5	4,5	3,5	
280	0,0036				9,0	7,8	6,7	5,7	4,6	3,7	
290	0,0034				9,2	8,0	6,9	5,8	4,8	3,8	
300	0,0033				9,4	8,2	7,0	5,9	4,9	3,9	
310	0,0032				9,5	8,3	7,2	6,1	5,0	4,0	



Anlage 15

Träger und Druckglieder mit kreisförmigen Hohlprofilen

			Feuerwiderstandsfähigkeit 90 Minuten								
				Beme	ssungste	mperatu	ren θ_{D} in	°C			
A/V	V/A	350	400	450	500	550	600	650	700	750	
			Erford	erliche M					mm		
m ⁻¹	m			(ohne G	Brundieru	ıng und E	Deckanst	rich)			
70	0,0143	8,4	7,4	6,5	5,6	4,7	3,9	3,1	2,4	2,2	
80	0,0125	9,4	8,4	7,4	6,5	5,6	4,7	3,9	3,1	2,4	
90	0,0111		9,3	8,3	7,3	6,4	5,5	4,6	3,8	3,0	
100	0,0100			9,1	8,1	7,1	6,2	5,3	4,5	3,6	
110	0,0091				8,8	7,8	6,8	5,9	5,0	4,2	
120	0,0083				9,4	8,4	7,4	6,5	5,6	4,7	
130	0,0077					9,0	8,0	7,0	6,1	5,2	
140	0,0071						8,5	7,5	6,6	5,7	
150	0,0067						9,0	8,0	7,1	6,1	
160	0,0063						9,5	8,5	7,5	6,5	
170	0,0059							8,9	7,9	6,9	
180	0,0056							9,3	8,3	7,3	
190	0,0053								8,6	7,6	
200	0,0050								9,0	7,9	
210	0,0048								9,3	8,2	
220	0,0045									8,5	
230	0,0043									8,8	
240	0,0042									9,1	
250	0,0040									9,3	
260	0,0038										
270	0,0037										
280	0,0036										
290	0,0034										
300	0,0033										
310	0,0032										



Anlage 16

Träger und Druckglieder mit kreisförmigen Hohlprofilen

"Interchar 212"				Feuerwi	iderstan	dsdauer	120 Mir	uten		
merc	nar 212			Beme	ssungste	mperatu	ren θ_D in	°C		
A/V	V/A	350	400	450	500	550	600	650	700	750
			Erford	erliche M	indesttro	ckensch	ichtdicke	DFT in	mm	
m ⁻¹	m			(ohne G	Brundieru	ıng und [Deckanst	rich)		
70	0,0143				8,9	7,9	7,1	6,2	5,4	4,6
80	0,0125					9,1	8,2	7,3	6,4	5,6
90	0,0111						9,2	8,3	7,4	6,5
100	0,0100							9,2	8,3	7,4
110	0,0091								9,1	8,2
120	0,0083									8,9
130	0,0077									
140	0,0071									
150	0,0067									
160	0,0063									
170	0,0059									
180	0,0056									
190	0,0053									
200	0,0050									
210	0,0048									
220	0,0045									
230	0,0043									
240	0,0042									
250	0,0040									
260	0,0038									
270	0,0037									
280	0,0036									
290	0,0034									
300	0,0033									
310	0,0032									

