

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-05/0010 vom 28. August 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

MULTI-MONTI Schraubanker MMS

Mechanische Dübel zur Verwendung im Beton

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND

HECO-Werk 1 HECO-Werk 2

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 05/2021

ETA-05/0010 vom 21. Januar 2015

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z203971.25 8.06.01-417/25

Seite 2 von 14 | 28. August 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 14 | 28. August 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der MULTI-MONTI Schraubanker MMS ist ein Dübel in den Größen 7,5, 10, 12, 14 und 16 mm aus galvanisch verzinktem Stahl. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch geschraubt. Das Spezialgewinde schneidet während des Setzvorgangs ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B2 und C1			
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1			
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C4			
Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2	Keine Leistung bewertet			

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung				
Brandverhalten	Klasse A1				
Feuerwiderstand	Siehe Anhang C2 und C3				

3.3 Aspekte der Dauerhaftigkeit in Bezug auf die Grundanforderungen an Bauwerke

Wesentliches Merkmal	Leistung			
Dauerhaftigkeit	Siehe Anhang B1			

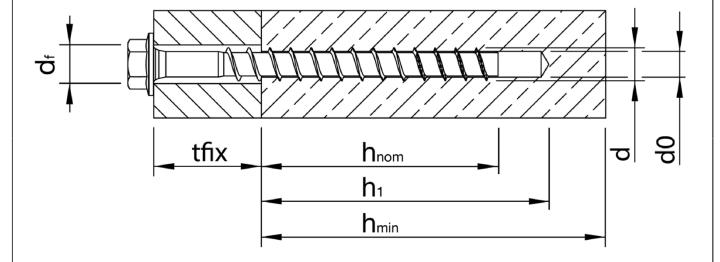
Seite 4 von 14 | 28. August 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 28. August 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Tempel

Produkt im Einbauzustand

MMS-SS (Ausführung mit Sechskantkopf und Scheibe Größe 7,5, 10, 12, 14 und 16)

 d_0 = nomineller Bohrlochdurchmesser h_{nom} = nominelle Verankerungstiefe

 $\begin{array}{lll} h_1 & = & & Bohrlochtiefe \\ h_{min} & = & Mindestbauteildicke \\ t_{fix} & = & H\"{o}he \ des \ Anbauteils \end{array}$

d_f = Durchmesser des Durchgangslochs im Anbauteil

MULTI-MONTI Schraubanker MMS

Produktbeschreibung

Produkt im Einbauzustand

Anhang A 1

Tabelle A1: Material und Ausführungen

٩rt	Bezeichnung / Material									
	Schraubanker / Stahl 1)									
1, 2,	Größe MMS			7	,5	10	12	14	16]
3, 4, 5, 6,	Nennwert der charakteristischen Streckgrenze	f _{yk} [N/mm ²		72	20	720	720	720	720	
7, 8, 9, 10,	Nennwert der charakteristischen	fuk	[N/mm²]	80	00	800	800	800	800	-
1	Zugfestigkeit Bruchdehnung	A ₅	[%]				<u> </u>			-
	1) galvanisch verzinkter Stahl nach EN 1			nrlagi	ge Be	schichtun		sind mögl	ich)	J
			¥ 380	4	1)					ilagescheiber unter dem
					2)	angepr	-MONTI S esster Sc nus unter	hreibe (a	Iternative	opf und Ausführung
			xx v v v v v v v v v v v v v v v v v v	H	3)	MULTI-	-MONTI F	P, PanHe	ad, kleine	er Rundkopf
			3 (S. C. 200)		4)		-MONTI N Rundkop		ageschie	nenanker,
		ž Č		5)	MULTI-MONTI F, mit Senkkopf					
			NE SEL)E	6)	MULTI-MONTI FT, mit Senkkopf und Unterkopfgewinde, eingängig oder mehrgängi				
				E	7)	Unterko	ativ auch	de, eingär	ngig oder	mehrgängig
		(A)	8)		-MONTI S ussgewin		anker mit	metr.
			(@		9)) MULTI-MONTI I, mit metr. Anschlussgewind Aufnahme einer Innengewindehülse (vormo mit Hülse)				
)	10) MULTI-MONTI V, Vorsteckanker m Anschlussgewinde				nit metr.	
					11)	MULTI- verschi	-MONTI 7 edenen <i>A</i>	ΓC, mit Ur Ausführun	nterkopfg gen	ewinde in

MULTI-MONTI Schraubanker MMS

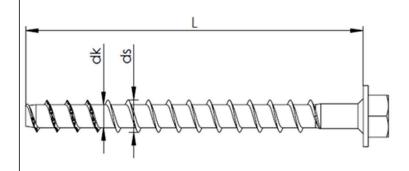
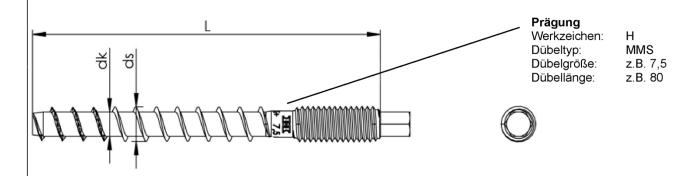

Produktbeschreibung Schraubenausführungen Anhang A 2

Tabelle A2: Abmessungen und Kopfmarkierungen

Größe MMS			7,5	10	12	14	16
			h _{nom}				
Einschraubtiefe im Be	Einschraubtiefe im Beton [mm]				75	95	115
Außendurchmesser	ds	[mm]	7,5	10,1	12,0	14,4	16,7
Kerndurchmesser	d _k	[mm]	5,7	7,6	9,4	11,4	13,35
Länge	L≥	[mm]	35	50	75	100	140
Länge	L≤	[mm]	500	500	600	800	800

Prägung im Kopfbereich



Prägung Werkzeichen:

Dübeltyp: MMS
Dübelgröße: z.B. 7,5
Dübellänge: z.B. 80

Prägung im Schaftbereich

MULTI-MONTI Schraubanker MMS Produktbeschreibung Abmessungen und Kopfmarkierungen Anhang A 3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: alle Größen.
- · Brandbeanspruchung: alle Größen.

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013.
- · Gerissener oder ungerissener Beton.

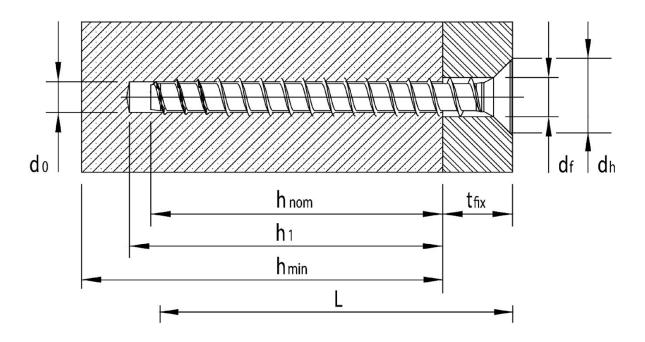
Anwendungsbedingungen (Umweltbedingungen):

· Bauteile unter den Bedingungen trockener Innenräume.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerung unter statischen und quasi-statischen Lasten und Brandbeanspruchung erfolgt nach EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018
- Die Bemessung unter Querbeanspruchung nach EN 1992-4:2018, Abschnitt 6.2.2 gilt für alle in Anhang B2, Tabelle B1 angegebenen Durchmesser df des Durchgangslochs im Anbauteil.

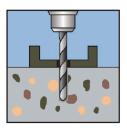
Einbau:

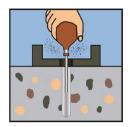

- · Bohrlochherstellung nur durch Hammerbohren, Saugbohren oder Hohlbohren.
- · Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Der Dübelkopf liegt am Anbauteil an, ist nicht beschädigt und die erforderliche Einschraubtiefe h_{nom} ist erreicht.

MULTI-MONTI Schraubanker MMS	
Verwendungszweck Spezifikationen	Anhang B 1

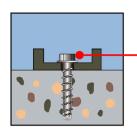
Tabelle B1: Montagekennwerte MMS

Größe MMS				7,5	10	12	14	16	
				h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}	
Einschraubtief	e im Beton		[mm]	55	65	75	95	115	
Bohrernenndu	rchmesser	d ₀	[mm]	6	8	10	12	14	
Bohrschneider	n-Ø	d _{cut} ≤	[mm]	6,40	8,45	10,45	12,50	14,50	
Bohrlochtiefe		h₁≥	[mm]	65	75	85	105	130	
Durchgangsloo	ch Anbauteil	d _f ≤	[mm]	9	12	14	16	18	
Durchmesser \$	Senkkopf	dh	[mm]	13,6	17	24	1	-	
Mindestbauteil	dicke	h _{min}	[mm]	100	115	125	150	180	
gerissener und	Minimaler Achs- abstand	Smin	[mm]	40	50	60	90	100	
ungerissener Beton	Minimaler Rand- abstand	C _{min}	[mm]	40	50	60	90	100	
empfohlenes Setzgerät [Nm]				Elektrischer Tangential-Schlagschrauber, max. Leistungsabgabe T _{max} gemäß Herstellerangabe					
				100	250	250	350	500	
Montagedrehmoment für metrisches Gewinde (MMS-V)		T _{inst}	[Nm]	15	20	30	55	70	


MULTI-MONTI Schraubanker MMS	
Verwendungszweck Montagekennwerte	Anhang B 2


Setzanweisung

Informationen der Zulassung beachten!


Bohrloch dreh-schlagend bis zur erforderlichen Bohrlochtiefe erstellen

Bohrmehl entfernen, z.B. durch Ausblasen

Setzen des Schraubankers mit Tangential-Schlagschrauber oder von Hand

Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt

MULTI-MONTI Schraubanker MMS

Verwendungszweck Setzanweisung **Anhang B 3**

Tabelle C1: Charakteristische Werte für statische und quasi-statische Beanspruchung

Größe MMS				7,5	10	12	14	16		
				h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}		
Einschraubtiefe	im Beton		[mm]	55	65	75	95	115		
Stahlversagen										
Charakteristisch	ne Tragfähigkeit	N _{Rk,s}	[kN]	19,4	16	25	30	43		
Teilsicherheitsb	eiwert	γMs	[-]			1,4				
Charakteristisch	ne Tragfähigkeit	V _{Rk,s}	[kN]	6,9	16	23	36	49		
Teilsicherheitsb	eiwert	γMs	[-]			1,5	•			
Faktor für Duktil	lität	k ₇	[-]			0,8				
Charakteristisch	ne Tragfähigkeit	M ⁰ Rk,s	[Nm]	19	38	71	132	217		
Herausziehen						•				
Charakteristisch	ne Tragfähigkeit		FL-N13	7.5	42	15	00	20		
in ungerissenen	n Beton C20/25	N _{Rk,p}	[kN]	7,5	13	15	26	32		
Charakteristisch	ne Tragfähigkeit		[L.N.17	4.5		44.5	00	00		
in gerissenem E	Beton C20/25	N _{Rk,p}	[kN]	4,5	9	11,5	20	26		
Erhöhungsfakto	r für									
$N_{Rk,p} = N_{Rk,p(C20)}$	25) * Ψc) Ne	[-]	(f _{ck} /20) ^{0,50}						
für Druckfestigk	eitsklassen	Ψο								
C20/25 bis C50	/60									
Betonausbruch	n und Spalten									
Effektive Veranl	kerungstiefe	h _{ef}	[mm]	40	47,5	54,5	71,5	87,0		
Faktor für	gerissen	k _{cr,N}	[-]	7,7						
raktoriui	ungerissen	k _{ucr,N}	[-]			11,0				
Betonausbruch	Randabstand	C _{cr,N}	[mm]			1,5 h _{ef}				
	Achsabstand	S _{cr,N}	[mm]			3 h _{ef}				
	Widerstand	N ⁰ Rk,sp	[kN]	min(N ⁰ _{Rk,c} ; N _{Rk,p})						
Spalten	Randabstand	C _{cr,sp}	[mm]			1,5 h _{ef}				
	Achsabstand	S _{cr,sp}	[mm]			3 h _{ef}				
Montagebeiwer	t	γinst	[-]			1,2				
Betonausbruci	n auf der lastabo	gewandt	en Seite							
k-Faktor		k ₈	[-]	1,0		2	,0			
Betonkantenbr	uch									
		l _{ef} = h _{ef}	[mm]	40	47,5	54,5	71,5	87,5		
	nango									

MULTI-MONTI Schraubanker MMS	
Leistung Charakteristische Werte für statische und quasi-statische Beanspruchung	Anhang C 1

Tabelle C2: Charakteristische Zugtragfähigkeit unter Brandbeanspruchung

Größe MMS				7,5	10	12	14	16
				h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}
Einschraubtiefe	im Beton		[mm]	55	65	75	95	115
Charakteristisc	he Tragfähigke	it						
Charakteris-	R30]		1,7	3,4	5,9	8,3	10,8
tische	R60	N	[kN]	1,2	2,5	4,4	6,3	8,1
Tragfähigkeit	R90	N _{Rk,s,fi}	[KIN]	0,8	1,7	3,0	4,2	5,4
	R120			0,6	1,2	2,2	3,1	4,1
Charakteris-	R30			1,7	1,8	1)	1)	1)
tische Trag-	R60			1,2	1,5	1)	1)	1)
fähigkeit für die	R90	$N_{Rk,s,fi}$	[kN]	0,8	1,1	1)	1)	1)
Ausführung MMS-St	R120			0,6	1,0	1)	1)	1)
Herausziehen								•
Charakteris-	R30							
tische	R60		[kN]	1,1	2,3	2,9	5,0	6,5
Tragfähigkeit in	R90	$N^0_{Rk,p,fi}$						
Beton C20/25 bis C50/60	R120			0,9	1,8	2,3	4,0	5,2
Betonversagen								
Charakteris-	R30							
tische	R60			1,7	2,7	3,8	7,4	12,3
Tragfähigkeit in	R90	$N_{Rk,c,fi}$	[k N]					
Beton C20/25 bis C50/60	R120			1,4	2,1	3,0	6,0	9,9
Randabstand								
		C _{cr,fi}	[mm]			2 x h _{ef}		
	R30 bis R120	Bei Brandbeanspruchung von mehr als einer Seite muss der Randabstand der Betonschraube mehr als 300 mm betragen.						
Achsabstand								
	R30 bis R120	Scr,fi	[mm]			4 x h _{ef}		

¹⁾ Keine Leistung bewertet

MULTI-MONTI Schraubanker MMS Leistung Charakteristische Werte unter Brandbeanspruchungen Anhang C 2

Tabelle C3: Charakteristische Quertragfähigkeit unter Brandbeanspruchung

			7,5	10	12	14	16
			h _{nom}	h _{nom}	h _{nom}	h _{nom}	h _{nom}
im Beton		[mm]	55	65	75	95	115
che Tragfähigke	it						
R30			1,7	3,4	5,9	8,3	10,8
R60		[kN]	1,2	2,5	4,4	6,3	8,1
R90	V Rk,s,fi		0,8	1,7	3,0	4,2	5,4
R120			0,6	1,2	2,2	3,1	4,1
R30	B #0	[Nm]	1,5	4,0	8,8	15,0	22,0
R60			1,1	3,0	6,6	11,0	17,0
R90	IVI°Rk,s,fi		0,7	2,0	4,4	7,4	11,0
R120			0,5	1,5	3,3	5,6	8,3
R30 bis R120	Ccr,fi	[mm]			2 x h _{ef}		
R30 bis R120	Scr,fi	[mm]			4 x h _{ef}		
	R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120	R30 R60 R90 R120 R30 R60 R120 R30 R60 R90 R120 R120 R30 bis R120 Ccr,fi	R30	Nom Nom S5	N _{nom} S5 65 65 N _{che Tragfähigkeit}	N _{nom} N	Name

Leistungen

Charakteristische Werte unter Brandbeanspruchung

Anhang C 3

Tabelle C4: Verschiebungen unter Zuglast

Größe MMS			7,5	10	12	14	16
			h _{nom}				
Einschraubtiefe im Beton		[mm]	55	65	75	95	115
Zuglast ungerissener Beton	N	[kN]	3,0	5,2	6,0	10,3	12,7
Verschiebung	δ_{N0}	[mm]	0,1	0,1	0,2	0,3	0,4
	δ _{N∞}	[mm]	0,2	0,3	0,6	0,8	0,8
Zuglast gerissener Beton	N	[kN]	1,8	3,6	4,6	7,9	10,3
Verschiebung	δ _{N0}	[mm]	0,1	0,1	0,2	0,3	0,4
	δ _{N∞}	[mm]	0,2	0,3	0,6	0,8	0,8

Tabelle C5: Verschiebungen unter Querlast

Größe MMS			7,5	10	12	14	16
			h _{nom}				
Einschraubtiefe im Beton		[mm]	55	65	75	95	115
Querlast ungerissener und gerissener Beton	V	[kN]	3,3	7,6	11,0	17,1	23,3
Verschiebung	δ_{V0}	[mm]	0,8	3,0	3,0	3,0	4,5
	δν∞	[mm]	1,2	4,5	4,5	4,5	6,0

MULTI-MONTI Schraubanker MMS	
Leistungen Verschiebungen	Anhang C 4