

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-06/0136 of 31 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR
Product family to which the construction product belongs	Mechanical fastener for use in concrete
Manufacturer	EFCO Befestigungstechnik AG Grabenstraße 1 8606 NÄNIKON SCHWEIZ
Manufacturing plant	Werk 1, Deutschland
This European Technical Assessment contains	15 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601, Edition 05/2021
This version replaces	ETA-06/0136 issued on 9 June 2015

Page 2 of 15 | 31 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR is a fastener made of zinc coated steel or stainless steel which is placed into a drilled hole and anchored by application of the installation torque.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static loading) Method A	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi static loading)	See Annex C3
Displacements	See Annex C4
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

Page 4 of 15 | 31 March 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 31 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

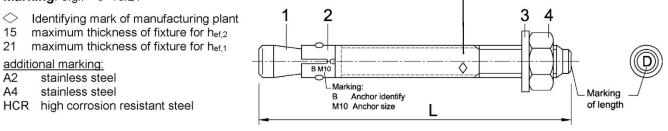

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR Conical bolt Expansion sleeve Washer Hexagon nut Free cut version Cold formed version

Table A1: Dimensions

Anchoroine		Mronob oizo		
Anchor size	Embedment depth hef,1	Embedment depth hef,2	Embedment depth hef,3	Wrench size
M6	t _{fix hef,1} + 47,4	t _{fix,hef,2} + 57,4	t _{fix,hef,3} + 77,4	10
M8	t _{fix hef,1} + 57,4	t _{fix,hef,2} + 66,4	t _{fix,hef,3} + 92,4	13
M10	t _{fix hef,1} + 68,0	t _{fix,hef,2} + 74,0	t _{fix,hef,3} + 106,0	17
M12	t _{fix hef,1} + 82,3	t _{fix,hef,2} + 97,3	t _{fix,hef,3} + 132,3	19
M16	t _{fix hef,1} + 103,0 (t _{fix hef,1} + 101,8) ¹⁾	$t_{fix,hef,2}$ + 121,0 ($t_{fix,hef,2}$ + 117,8) ¹⁾	t _{fix,hef,3} + 159,0 (t _{fix,hef,3} + 157,8) ¹⁾	24
M20	t _{fix hef,1} + 120,7	t _{fix,hef,2} + 142,7	t _{fix,hef,3} + 157,7	30

¹⁾ Anchor version B A2 / B A4 / B HCR

Marking: e.g.: <> 15/21 -

Marking of length	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
Length of anchor min \geq	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Length of anchor max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2
Marking of length N O P O R S T U V W X Y													
Marking of length	Ν	0	Р	Q	R	S	Т	U	V	W	X	Y	z
Marking of length Length of anchor min ≥	N 203,2		P 228,6		R 254,0	S 279,4	T 304,8	U 330,2	V 355,6	W 381,0	X 406,4	Y 431,8	Z 457,2

Dimensions in mm

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Product description Marking and Dimensions

Annex A1

Fable	A2: Materials	
Part	Designation	Material
Zinc p	lated steel	
в	electroplated	≥ 5 µm according to EN ISO 4042:1999
B fvz	hot-dip galvanized	≥ 50 µm (average coating thickness according to EN ISO 10684:2004+AC:2009 or EN ISO 1461:2009)
B sh	sherardized	≥ 45 µm according to EN ISO 17668:2016
1	Conical bolt	Cold formed or machined steel
2	Expansion sleeve	Stainless steel
3	Washer	Steel, zinc plated
4	Hexagon nut	Steel, zinc plated
Stainle	ess steel	
B A2 s	tainless steel CRC II ¹⁾	
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
B A4 s	tainless steel CRC III	1)
1	Conical bolt	Stainless steel
2	Expansion sleeve	Stainless steel
3	Washer	Stainless steel
4	Hexagon nut	Stainless steel
BHCF	R High corrosion resista	ant steel CRC V ¹⁾
1	Conical bolt	High corrosion resistant steel
2	Expansion sleeve	Stainless steel
3	Washer	High corrosion resistant steel
4	Hexagon nut	High corrosion resistant steel

¹⁾ Corrosion resistance class according to EN 1993-1-4:2015, Annex A, Table A.3

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Product description Materials Annex A2

Specification	ons of intended use										
B / B fvz / B	sh / B A2 / B A4 / B HCR	M6	M8	M10	M12	M16	M20				
	B (electroplated)	~	~	×	✓	✓	~				
zinc plated steel	B fvz (hot-dip galvanized)	_1)	~	~	✓	✓	~				
	B sh (sherardized)	~	~	~	✓	~	 ✓ 				
	B A2	~	~	~	✓	~	~				
stainless steel	B A4	✓	~	~	✓	~	~				
	BHCR	~	~	~	✓	~	~				
	static or quasi-static action			,	/						
all versions	uncracked concrete		×								

¹⁾ No performance assessed

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

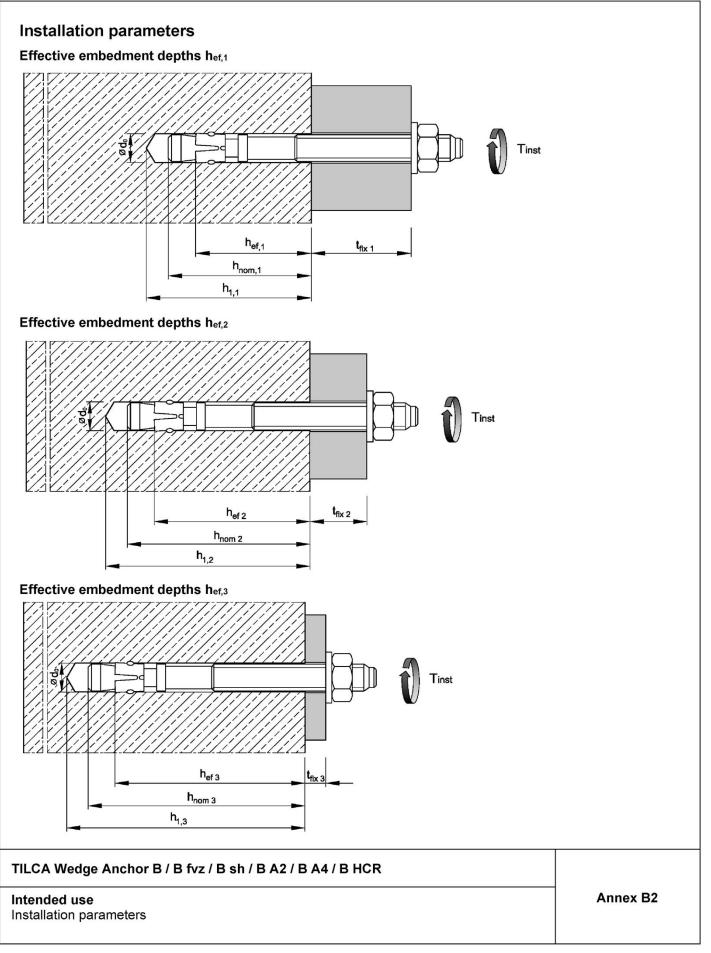
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials)
- For all other conditions:

Anchor version	Use according to EN 1993-1-4:2015 corresponding to the corrosion resistance class CRC according to Annex A, Table A2
B A2	CRC II
B A4	CRC III
B HCR	CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 or TR 055:2018.


Installation:

- Hole drilling by hammer drill bit or vacuum drill bit.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener.
- The anchor can be set in pre- or through-setting installation.

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use Specifications

Deutsches Institut für Bautechnik

Table	B1: Installation pa	rameters							
Anchor size				M6	M8	M10	M12	M16	M20
Nomina	al drill hole diameter	d ₀ =	[mm]	6	8	10	12	16	20
Cutting	diameter of drill bit	$d_{cut} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
L	В	T _{inst} =	[Nm]	8	15	30	50	100	200
Installation torque	B fvz	T _{inst} =	[Nm]	_2)	15	30	40	90	120
torc	B sh	T _{inst} =	[Nm]	5	15	30	40	90	120
<u> </u>	B A2 / B A4 / B HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
Diame [.] in the f	ter of clearance hole ïxture	$d_{\rm f} \leq$	[mm]	7	9	12	14	18	22
Embeo	dment depth h _{ef,1}								
Effectiv	ve embedment depth	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Depth	of drill hole	$\mathbf{h}_{1,1} \geq$	[mm]	45	55	65	75	95	110
Embec	lment depth	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Embed	dment depth h _{ef,2}								
Effectiv	ve embedment depth	$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	82 (80) ¹⁾	100
Depth	of drill hole	$h_{1,2} \geq$	[mm]	55	65	70	90	110	130
Embec	lment depth	$h_{\text{nom},2} \geq$	[mm]	49	56	62	82	102	121
Embeo	dment depth h _{ef,3}								
Effectiv	ve embedment depth	$h_{\text{ef},3} \geq$	[mm]	60	70	80	100	120	115
Depth	of drill hole	$h_{1,3} \geq$	[mm]	75	91	102	125	148	145
Embec	Iment depth	$h_{nom,3} \geq$	[mm]	69	82	94	117	140	136

¹⁾ Anchor version B A2 / B A4 / B HCR

²⁾ No performace assessed

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use Installation parameters

Deutsches Institut für Bautechnik

Table B2: Minimum spacings and edge distances, zinc plated steel ¹⁾

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1						•		
Minimum member thickness	\mathbf{h}_{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	40	55	100	100	140
Minimum edge distance	Cmin	[mm]	40	45	65	100	100	140
Embedment depth hef,2								
Minimum member thickness	\mathbf{h}_{min}	[mm]	100	100	100	130	170	200
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125
Embedment depth hef,3								
Minimum member thickness	\mathbf{h}_{min}	[mm]	120	126	132	165	208	215
Minimum spacing	Smin	[mm]	35	40	55	75	90	105
Minimum edge distance	Cmin	[mm]	40	45	65	90	105	125

¹⁾ Anchor version B fvz: M8-M20

Table B3: Minimum spacings and edge distances, stainless steel

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1								
Minimum member thickness	h _{min}	[mm]	80	80	100	100	130	160
Minimum spacing	Smin	[mm]	35	60	55	100	110	140
Minimum edge distance	Cmin	[mm]	40	60	65	100	110	140
Embedment depth hef,2								
Minimum member thickness	h _{min}	[mm]	100	100	100	130	160	200
Minimum anaging	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for $c \ge$	[mm]	40	65	70	100	120	150
	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s \geq	[mm]	60	110	80	100	140	180
Embedment depth hef,3								
Minimum member thickness	h _{min}	[mm]	120	126	132	165	200	215
Minimum analian	Smin	[mm]	35	35	45	60	80	100
Minimum spacing	for $c \ge$	[mm]	40	65	70	100	120	150
	Cmin	[mm]	35	45	55	70	80	100
Minimum edge distance	for s ≥	[mm]	60	110	80	100	140	180

Intermediate values by linear interpolation.

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use

Minimum spacings and edge distances

Inst	allation instructions	
		Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
	2	Blow out dust. Alternatively, vacuum clean down to the bottom of the hole.
	3	Drive in anchor, such that the selected embedment depth is met.
	4 Tinst	Apply installation torque T _{inst} as specified in Table B1.

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Intended use

Installation instructions

Deutsches Institut für Bautechnik

Anchor size				M6	M8	M10	M12	M16	M20	
Installation factor		γinst	[-]			1	,0	L		
Steel failure										
Characteristic resistance		$N_{Rk,s}$	[kN]	8,7	15,3	26	35	65	107	
Partial factor 4)		γMs	[-]		1,	,5		1	,6	
Pull-out										
Characteristic resistance	for h	ef,1 NRk,p	[kN]	6,5 ²⁾	10,2 ²⁾	13,4	17,4	25,2	33,9	
in uncracked concrete	for h	ef,2 NRk,p	[kN]	10	13	16,4	25,8	36,5	49,2	
C20/25	for h	ef,3 NRk,p	[kN]	10	13	16,4	26	40	55	
Increasing factor $N_{Rk,p} = \psi_{C} \cdot N_{Rk,p}$ (C20/25) ψ_{C}					$\left(\frac{f_{ck}}{20}\right)$	-)0,5		$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^0$	
Splitting										
Characteristic resistance $N^{0}_{Rk,sp}$				min [N _{Rk,p} ; N ⁰ _{Rk,c} ³⁾]						
Embedment depth hef,1										
Spacing		S cr,sp	[mm]	180	210	230	240	320	400	
Edge distance		Ccr,sp	[mm]	90	105	115	120	160	200	
Embedment depth hef,2										
Spacing		Scr,sp	[mm]	160	220	240	330	410	500	
Edge distance		Ccr,sp	[mm]	80	110	120	165	205	250	
Embedment depth hef,3										
Spacing		Scr,sp	[mm]	160	220	240	330	410	520	
Edge distance		Ccr,sp	[mm]	80	110	120	165	205	260	
Concrete cone failure										
	_	for h _{ef,1}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78	
Effective embedment depth	· _	for h _{ef,2}	[mm]	40	44	48	65	82	100	
for		for h _{ef,3}	[mm]	60	70	80	100	120	115	
Spacing		S cr,N	[mm]				(1,2,3)			
Edge distance		C cr,N	[mm]				ef ^(1,2,3)			
Factor uncracked	l concrete	k ucr,N	[-]			11	1,0			
	l concrete	k cr,N	[-]		No p	performa	nce asse	ssed		

¹⁾ Anchor version B fvz: M8-M20

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

³⁾ N⁰_{Rk,c} according to EN 1992-4:2018

⁴⁾ In absence of other national regulations

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance Characteristic values for tension loads, zinc plated steel

Deutsches Institut für Bautechnik

And	chor size		M6	M8	M10	M12	M16	M20					
Inst	allation factor		γinst	[-]			1	,0					
Ste	el failure												
Cha	aracteristic resistance		N _{Rk,s}	[kN]	10	18	30	44	88	134			
Par	tial factor 3)		γMs	[-]			1,50			1,68			
Pul	l-out												
Che	aracteristic resistance in	or h _{ef,1}	N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9			
	racked concrete C20/25 $-$	or h _{ef,2}	N _{Rk,p}	[kN]	8	15	16,4	25	35,2	49,2			
	f	or h _{ef,3}	N _{Rk,p}	[kN]	8	15	16,4	25	42	60			
	easing factor _p = ψ _C • N _{Rk,p} (C20/25)		ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{2}\right)^{0,5}$					
Spl	itting												
Characteristic resistance N ⁰ _{Rk,sp}					min [N _{Rk,p} ; N ⁰ _{Rk,c} ²⁾]								
Em	bedment depth h _{ef,1}												
Spa	acing	[mm]	180	210	230	300	320	400					
Edge distance C _{cr,sp}					90	105	115	150	160	200			
Em	bedment depth hef,2												
The	higher one of the decisive r	r one of the decisive resistances of Case 1 and Case 2 is applicable											
	Characteristic resistance	racteristic resistance N ⁰ _{Rk,sp}			6	9	12	20	30	40			
-	Spacing	Scr,sp			3 h _{ef}								
ase	Edge distance	tance C _{cr,sp}				1,5 h _{ef}							
ö	Increasing factor $N^{0}_{Rk,sp} = \psi_{C} \cdot N^{0}_{Rk,sp}$ (C20/25	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$										
e 2	Spacing	S _{cr,sp}			160	220	240	340	410	560			
Case	Edge distance	Edge distance C _{cr,sp}				110	120	170	205	280			
Em	bedment depth h _{ef,3}												
Spa	acing		Scr,sp	[mm]	160	220	240	340	410	620			
	e distance		Ccr,sp	[mm]	80	110	120	170	205	310			
Co	ncrete cone failure												
			$h_{\text{ef},1} \!\geq\!$	[mm]	30 ¹⁾	35 ¹⁾	42	50	64	78			
Effe	ective embedment depth		$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	80	100			
_		for	$h_{\text{ef,3}} \geq$	[mm]	60 70 80 100 120 115								
	acing		Scr,N	[mm]	3 hef								
Edg	e distance		C _{cr,N}	[mm]	1,5 h _{ef}								
Fac	tor uncracked con		K _{ucr,N}	[-]		25 - Q		1,0					
	cracked con	[-]		No	performa	nce asses	sed						

¹⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

 $^{\scriptscriptstyle 2)}\,N^0{}_{\text{Rk,c}}$ according to EN 1992-4:2018

³⁾ In absence of other national regulations

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance

Characteristic values for tension loads, stainless steel

Page 14 of European Technical Assessment ETA-06/0136 of 31 March 2025

English translation prepared by DIBt

Anchor size					M6	M8	M10	M12	M16	M20		
Installation factor	Installation factor γ _{inst} [-]						1,0					
Steel failure without le	ever arm				•							
Characteristic	zinc plated	d steel ¹⁾	V ⁰ Rk.s	[kN]	5	11	17	25	44	69		
resistance	stainless steel		V ⁰ Rk,s	[kN]	7	12	19	27	50	86		
Ductility factor			k 7	[-]	1,0							
Steel failure with lever	r arm					7						
Characteristic bending resistance	zinc plated	d steel ¹⁾	M ⁰ Rk.s	[Nm]	9	23	45	78	186	363		
	stainless s	steel	M ⁰ Rk,s	[Nm]	10	24	49	85	199	454		
Partial factor ⁴⁾ for	zinc plated steel ¹⁾ $\gamma_{\rm N}$			[-]	1,25				1,3	1,33		
$V^0{}_{Rk,s} \text{and} M^0{}_{Rk,s}$	stainless steel		γMs	[-]	1,25					1,4		
Concrete pry-out failu	re											
Factor for b	zinc plated	d steel ¹⁾	k ₈	[-]	1,0	2,3	2,5	2,9	2,8	3,1		
Factor for h ef	stainless steel		k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3		
Concrete edge failure												
		for h ef,1	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78		
Effective length of anch shear loading	or in	for h ef,2	lf	[mm]	40	44	48	65	82 (80) ³⁾	100		
		for h ef,3	lf	[mm]	60	70	80	100	120	115		
Outside diameter of anchor d _{nom} [mi					6	8	10	12	16	20		

¹⁾ Anchor version B fvz: M8-M20

²⁾ Restricted to the use of structural components which are statically indeterminate and subject to internal exposure conditions only

³⁾ Anchor version stainless steel

⁴⁾ In absence of other national regulations

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance Characteristic values for shear loads

Anchor size			M6	M8	M10	M12	M16	M20
Embedment depth hef,1				1	•			
zinc plated steel 1)								
Tension load	N	[kN]	2,9	5,0	6,5	8,5	12,3	16,6
Diaplacement	δηο	[mm]	0,3			0,4		
Displacement	δ _{N∞}	[mm]	0,6			1,8		
stainless steel				•				
Tension load	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Displacement	δηο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Displacement	δ _{N∞}	[mm]			1,3			2,9
Embedment depth hef,2 and hef,3								
zinc plated steel 1)								
Tension load	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8
Disalessant	δηο	[mm]	0,4			0,5		
Displacement	δ _{N∞}	[mm]	0,7			2,3		
stainless steel								
Tension load	Ν	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Diaplacement	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Displacement	δ _{N∞}	[mm]			1,8			4,2

¹⁾ Anchor version B fvz: M8-M20

Table C5: Displacements under shear loads

Anchor size			M6	M8	M10	M12	M16	M20	
zinc plated steel 1)									
Shear load	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0	
Displacement	δvo	[mm]	1,2	1,5	1,6	2,6	3,1	4,4	
Displacement	δv∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6	
stainless steel									
Shear load	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7	
Dianlagament	δvo	[mm]	1,1	2,0	1,2	2,0	2,2	2,1	
Displacement	δv∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2	

¹⁾ Anchor version B fvz: M8-M20

TILCA Wedge Anchor B / B fvz / B sh / B A2 / B A4 / B HCR

Performance Displacements