

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-07/0332 vom 11. April 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

JCP Throughbolt ETA OPTION 7

Mechanischer Dübel zur Verankerung im Beton

Hexstone Ltd. T/A JCP Construction Products Opal Way Stone Business Park, Stone . Staffordshire ST 15 0SW

GROSSBRITANNIEN

Plant2, Germany

15 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 05/2021

ETA-07/0332 vom 30. Januar 2015

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z117254.25

Seite 2 von 15 | 11. April 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 15 | 11. April 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der JCP Throughbolt ETA OPTION 7 ist ein Dübel aus verzinktem Stahl oder nichtrostendem Stahl, der in ein Bohrloch gesteckt und durch Aufbringen des Montagedrehmoments verankert wird.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Lasten) Methode A	Siehe Anhang B4, C1 und C2
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhang C3
Verschiebungen	Siehe Anhang C4
Charakteristischer Widerstand für die seismischen Leistungskategorien C1 und C2	Keine Leistung bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Keine Leistung bewertet

3.3 Aspekte der Dauerhaftigkeit

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B1

Seite 4 von 15 | 11. April 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 11. April 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

JCP Throughbolt ETA OPTION 7

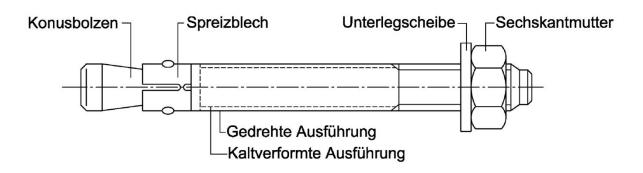
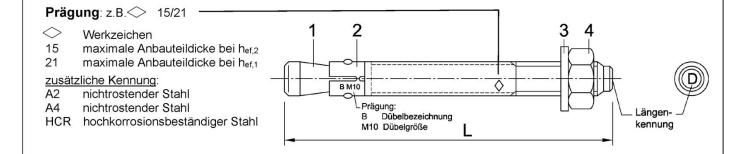



Tabelle A1: Dübelabmessungen

Dübolarößo		Dübellänge L		Schlüsselweite
Dübelgröße	Verankerungstiefe hef,1	Verankerungstiefe hef,2	Verankerungstiefe h _{ef,3}	Schlüsselweite
M6	$t_{fix hef, 1} + 47, 4$	$t_{fix,hef,2} + 57,4$	$t_{fix,hef,3} + 77,4$	10
M8	$t_{fix hef, 1} + 57, 4$	$t_{fix,hef,2} + 66,4$	$t_{fix,hef,3} + 92,4$	13
M10	t _{fix hef,1} + 68,0	$t_{fix,hef,2} + 74,0$	t _{fix,hef,3} + 106,0	17
M12	$t_{fix hef, 1} + 82, 3$	$t_{fix,hef,2} + 97,3$	$t_{fix,hef,3} + 132,3$	19
M16	$t_{\text{fix hef},1} + 103,0$ $(t_{\text{fix hef},1} + 101,8)^{1)}$	$t_{\text{fix,hef,2}} + 121,0$ $(t_{\text{fix,hef,2}} + 117,8)^{1)}$	$t_{\text{fix,hef,3}} + 159,0$ $(t_{\text{fix,hef,3}} + 157,8)^{1)}$	24
M20	$t_{fix hef,1} + 120,7$	$t_{fix,hef,2} + 142,7$	$t_{fix,hef,3} + 157,7$	30

¹⁾ Dübelausführung A2 Nichtrostender Stahl / A4 Nichtrostender Stahl / HCR

Längenkennung	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
Dübellänge min ≥	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Dübellänge max <	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2

Längenkennung	N	0	P	Ø	R	S	Т	U	V	W	Х	Υ	Z
Dübellänge min ≥	203,2	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2
Dübellänge max <	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	483,0

Maße in mm

JCP Throughbolt ETA OPTION 7	
Produktbeschreibung Prägung und Dübelabmessungen	Anhang A1

Tabelle A2: Werkstoffe

Teil	Benennung	Werkstoff
Verzinkter	Stahl	
Galvanisc	h verzinkt	≥ 5 µm
Feuerverzi	nkt	≥ 50 µm (mittlere Schichtdicke gem. EN ISO 10684:2004+AC:2009 oder EN ISO 1461:2009)
Diffusions	verzinkt	≥ 45 µm gemäß EN ISO 17668:2016
1	Konusbolzen	Kaltstauch- bzw. Automatenstahl
2	Spreizblech	Nichtrostender Stahl
3	Unterlegscheibe	Stahl, verzinkt
4	Sechskantmutter	Stahl, verzinkt
Nichtroste	nder Stahl	
A2 nichtros	tender Stahl CRC II 1)	
1	Konusbolzen	Nichtrostender Stahl
2	Spreizblech	Nichtrostender Stahl
3	Unterlegscheibe	Nichtrostender Stahl
4	Sechskantmutter	Nichtrostender Stahl
A4 nichtros	tender Stahl CRC III 1)	
1	Konusbolzen	Nichtrostender Stahl
2	Spreizblech	Nichtrostender Stahl
3	Unterlegscheibe	Nichtrostender Stahl
4	Sechskantmutter	Nichtrostender Stahl
HCR hochk	korrosionsbeständiger (Stahl CRC V 1)
1	Konusbolzen	Hochkorrosionsbeständiger Stahl
2	Spreizblech	Nichtrostender Stahl
3	Unterlegscheibe	Hochkorrosionsbeständiger Stahl
4	Sechskantmutter	Hochkorrosionsbeständiger Stahl

¹⁾ Korrosionsbeständigkeitsklasse nach EN 1993-1-4:2015, Anhang A, Tabelle A.3

JCP Throughbolt ETA OPTION 7	
Produktbeschreibung Werkstoffe	Anhang A2

Spezifizierung des Verwendungszwecks

JCP Throughbol	M6	M8	M10	M12	M16	M20		
	Galvanisch verzinkt	✓	✓	✓	✓	✓	✓	
Verzinkter Stahl	Feuerverzinkt	_1)	✓	✓	✓	✓	✓	
	Diffusionsverzinkt	✓	✓	✓	✓	✓	✓	
	A2	✓	✓	✓	✓	✓	✓	
Nichtrostender Stahl	A4	✓	✓	✓	✓	✓	✓	
	HCR	✓	✓	✓	✓	✓	✓	
alle	√							
Ausführungen	ungerissener Beton			v	/			

¹⁾ Keine Leistung bewertet

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206:2013 + A1:2016
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206:2013 + A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Werkstoffe).
- Für alle anderen Bedingungen gilt:

Dübelausführung	Verwendung gemäß EN 1993-1-4:2015 entsprechend der Korrosionsbeständigkeitsklasse CRC nach Anhang A, Tabelle A2
A2 Nichtrostender Stahl	CRC II
A4 Nichtrostender Stahl	CRC III
HCR	CRC V

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerung erfolgt nach EN 1992-4:2018 oder TR 055:2018.

Einbau:

- Bohrlochherstellung mit Hammer- oder Saugbohrer
- Verwendung wie vom Hersteller geliefert, ohne Austausch einzelner Teile
- Der Dübel kann in Vorsteck- und Durchsteckmontage gesetzt werden.

JCP Throughbolt ETA OPTION 7	
Verwendungszweck Spezifikationen	Anhang B1

Tabelle B1: Montagekennwerte

Dübelgröße				М6	M8	M10	M12	M16	M20
Bohrernenndurchmesser $d_0 = [mm]$				6	8	10	12	16	20
Bohrer	schneidendurchmesser	$d_{\text{cut}} \leq$	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
- u	Galvanisch verzinkt	T _{inst} =	[Nm]	8	15	30	50	100	200
Montage- drehmoment	Feuerverzinkt	T _{inst} =	[Nm]	_2)	15	30	40	90	120
Nont	Diffusionsverzinkt	T _{inst} =	[Nm]	5	15	30	40	90	120
a b	A2 / A4 / HCR	T _{inst} =	[Nm]	6	15	25	50	100	160
Durchg	angsloch im Anbauteil	$d_f \leq$	[mm]	7	9	12	14	18	22
Veranl	kerungstiefe h _{ef,1}								
Verank	erungstiefe	$h_{\text{ef},1} \geq$	[mm]	30	35	42	50	64	78
Bohrlo	chtiefe	$h_{1,1}\geq$	[mm]	45	55	65	75	95	110
Setztie	fe	$h_{\text{nom},1} \geq$	[mm]	39	47	56	67	84	99
Veranl	kerungstiefe h _{ef,2}								
Verank	erungstiefe	$h_{\text{ef},2} \geq$	[mm]	40	44	48	65	82 (80)1)	100
Bohrlo	chtiefe	h _{1,2} ≥	[mm]	55	65	70	90	110	130
Setztiefe $h_{nom,2} \ge [mm]$			[mm]	49	56	62	82	102	121
Verankerungstiefe hef,3									
Verank	erungstiefe	$h_{\text{ef,3}} \geq$	[mm]	60	70	80	100	120	115
Bohrlo	Bohrlochtiefe $h_{1,3} \ge [n]$		[mm]	75	91	102	125	148	145
Setztie	fe	$h_{\text{nom},3} \geq$	[mm]	69	82	94	117	140	136

¹⁾ Dübelausführung A2 / A4 / HCR

JCP Throughbolt ETA OPTION 7	
Verwendungszweck Montagekennwerte	Anhang B3

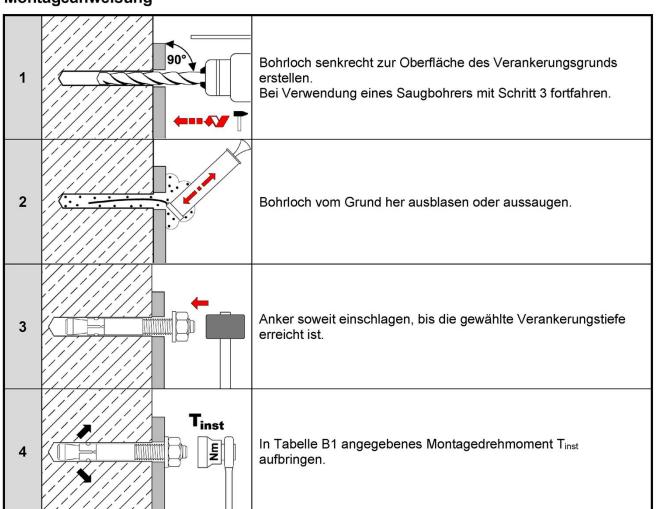
²⁾ Keine Leistung bewertet

Tabelle B2: Minimale Achs- und Randabstände, verzinkter Stahl 1)

Dübelgröße			M6	M8	M10	M12	M16	M20
Verankerungstiefe hef,1								
Mindestbauteildicke	h_{min}	[mm]	80	80	100	100	130	160
Minimaler Achsabstand	Smin	[mm]	35	40	55	100	100	140
Minimaler Randabstand	Cmin	[mm]	40	45	65	100	100	140
Verankerungstiefe h _{ef,2}			· ·					
Mindestbauteildicke	$h_{\text{min}} \\$	[mm]	100	100	100	130	170	200
Minimaler Achsabstand	Smin	[mm]	35	40	55	75	90	105
Minimaler Randabstand	Cmin	[mm]	40	45	65	90	105	125
Verankerungstiefe h _{ef,3}								
Mindestbauteildicke	$h_{\text{min}} \\$	[mm]	120	126	132	165	208	215
Minimaler Achsabstand	Smin	[mm]	35	40	55	75	90	105
Minimaler Randabstand	Cmin	[mm]	40	45	65	90	105	125

¹⁾ Dübelausführung Feuerverzinkt: M8-M20

Tabelle B3: Minimale Achs- und Randabstände, nichtrostender Stahl


Dübelgröße			M6	M8	M10	M12	M16	M20
Verankerungstiefe h _{ef,1}								
Mindestbauteildicke	h_{min}	[mm]	80	80	100	100	130	160
Minimaler Achsabstand	Smin	[mm]	35	60	55	100	110	140
Minimaler Randabstand	C _{min}	[mm]	40	60	65	100	110	140
Verankerungstiefe h _{ef,2}								
Mindestbauteildicke	h_{min}	[mm]	100	100	100	130	160	200
Minimaler Achsabstand	Smin	[mm]	35	35	45	60	80	100
Willimaler Achsabstand	für c≥	[mm]	40	65	70	100	120	150
Minimalar Dandahatand	C _{min}	[mm]	35	45	55	70	80	100
Minimaler Randabstand	für s ≥	[mm]	60	110	80	100	140	180
Verankerungstiefe h _{ef,3}								
Mindestbauteildicke	h_{min}	[mm]	120	126	132	165	200	215
Minimalar Ashashatand	Smin	[mm]	35	35	45	60	80	100
Minimaler Achsabstand	für c≥	[mm]	40	65	70	100	120	150
Minimaler Randabstand	C _{min}	[mm]	35	45	55	70	80	100
Minimaler Kandabstand	für s≥	[mm]	60	110	80	100	140	180

Zwischenwerte dürfen interpoliert werden

JCP Throughbolt ETA OPTION 7	
Verwendungszweck Minimale Achs- und Randabstände	Anhang B4

Montageanweisung

JCP Throughbolt ETA OPTION 7		
Verwendungszweck Montageanweisung	Anhang B5	

Tabelle C1: Charakteristische Werte bei Zugbeanspruchung, verzinkter Stahl 1)

					,				
Dübelgröße				М6	М8	M10	M12	M16	M20
Montagebeiwert		γinst	[-]			1	,0		
Stahlversagen									
Charakteristischer Widerstand		N _{Rk,s}	[kN]	8,7	15,3	26	35	65	107
Teilsicherheitsbeiwert 4)		γMs	[-]		1	5		1	,6
Herausziehen									
Charakteristischer _	für h _{ef,1}	$N_{Rk,p}$	[kN]	6,5 ²⁾	10,22)	13,4	17,4	25,2	33,9
Widerstand im ungerissenen	für h _{ef,2}	$N_{Rk,p}$	[kN]	10	13	16,4	25,8	36,5	49,2
Beton C20/25	für h _{ef,3}	$N_{Rk,p}$	[kN]	10	13	16,4	26	40	55
Erhöhungsfaktor $N_{Rk,p} = \psi_C \cdot N_{Rk,p}$ (C20/25)		ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$	-)0,5		$\left(\frac{f_{ck}}{20}\right)^{0,33}$	$\left(\frac{f_{ck}}{20}\right)^{0,3}$
Spalten									
Charakteristischer Widerstand		$N^0_{Rk,sp}$	[kN]		n	nin [N _{Rk,p}	o; N ⁰ Rk,c ³	3)]	
Verankerungstiefe h _{ef,1}				2					
Achsabstand		Scr,sp	[mm]	180	210	230	240	320	400
Randabstand		C _{cr,sp}	[mm]	90	105	115	120	160	200
Verankerungstiefe h _{ef,2}									
Achsabstand		Scr,sp	[mm]	160	220	240	330	410	500
Randabstand		C _{cr,sp}	[mm]	80	110	120	165	205	250
Verankerungstiefe h _{ef,3}									
Achsabstand		Scr,sp	[mm]	160	220	240	330	410	520
Randabstand		C _{cr,sp}	[mm]	80	110	120	165	205	260
Betonausbruch									
	1	für h _{ef,1}	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Effektive Verankerungstiefe		für h _{ef,2}	[mm]	40	44	48	65	82	100
	1	für h _{ef,3}	[mm]	60	70	80	100	120	115
Achsabstand		S _{cr,N}	[mm]				f (1,2,3)		
Randabstand		C _{cr,N}	[mm]				ef (1,2,3)		
Faktor ungerissene		k ucr,N	[-]			35. 5	1,0		
gerissene	er Beton	$\mathbf{k}_{cr,N}$	[-]		kei	ne Leistu	ing bewe	ertet	

¹⁾ Dübelausführung Feuerverzinkt: M8-M20

JCP Throughbolt ETA OPTION 7	
Leistung Charakteristische Werte bei Zugbeanspruchung, verzinkter Stahl	Anhang C1

²⁾ Befestigungen mit h_{ef} < 40mm sind auf die Verwendung statisch unbestimmter Bauteile unter Innenraumbedingungen beschränkt.

³⁾ N⁰Rk,c nach EN 1992-4:2018

⁴⁾ Sofern nationale Regelungen fehlen

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl

Dül	belgröße			M6	M8	M10	M12	M16	M20	
Мо	ntagebeiwert	γinst	[-]			1	,0			
Sta	hlversagen	·								
Cha	arakteristischer Widerstand	N _{Rk,s}	[kN]	10	18	30	44	88	134	
Teil	sicherheitsbeiwert 3)	γMs	[-]		•	1,50			1,68	
Her	ausziehen									
Cha	arakteristischer	für h _{ef,1} N _{Rk,p}	[kN]	6,5 ¹⁾	9 ¹⁾	12	17,4	25,2	33,9	
	lerstand im ungerissenen	für h _{ef,2} N _{Rk,p}	[kN]	8	15	16,4	25	35,2	49,2	
Bet	on C20/25	für h _{ef,3} N _{Rk,p}	[kN]	8	15	16,4	25	42	60	
	öhungsfaktor $_{p,p} = \psi_{C} \cdot N_{Rk,p} (C20/25)$	ψο	[-]			$\left(\frac{f_{ck}}{20}\right)$	$\left(\frac{1}{100}\right)^{0.5}$			
Spa	alten	<u> </u>	-	I.		384,007.00	. 92			
Cha	arakteristischer Widerstand	N ⁰ Rk,sp	[kN]		ļ	min [N _{Rk,}	p; N ⁰ Rk,c ²⁾]		
Ver	ankerungstiefe h _{ef,1}									
Ach	sabstand	S cr,sp	[mm]	180	210	230	300	320	400	
Rar	ndabstand	C cr,sp	[mm]	90	105	115	150	160	200	
Ver	rankerungstiefe h _{ef,2}									
Es	darf der höhere Widerstand	d aus Fall 1 und	Fall 2	angesetzt	werden					
	Charakteristischer Widers	stand N ⁰ _{Rk,sp}	[kN]	6	9	12	20	30	40	
_	Achsabstand	S cr,sp	[mm]	m] 3 h _{ef}						
<u></u>	Randabstand	C cr,sp	[mm]	1,5 h _{ef}						
ш	Erhöhungsfaktor $N^0_{Rk,sp} = \psi_C \cdot N^0_{Rk,sp}$ (C20)	/25) Ψc	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5			
12	Achsabstand	S _{cr,sp}	[mm]	160	220	240	340	410	560	
Fall	Randabstand	C cr,sp	[mm]	80	110	120	170	205	280	
Ver	ankerungstiefe h _{ef,3}									
Ach	sabstand	S cr,sp	[mm]	160	220	240	340	410	620	
Rar	ndabstand	C cr,sp	[mm]	80	110	120	170	205	310	
Bet	onausbruch									
		für h _{ef,1}		30 ¹⁾	35 ¹⁾	42	50	64	78	
Effe	ektive Verankerungstiefe	für h _{ef,2}		40	44	48	65	80	100	
für h _{ef,3}										
Achsabstand s _{cr,N}			[mm]	3 h _{ef}						
ĸar	ndabstand	C _{cr,N}					h _{ef}			
Fak	tor ungerissener	-	[-]	11,0						
	gerissener	[-]		ke	ine Leistu	ing bewer	tet			

¹⁾ Befestigungen mit hef < 40mm sind auf die Verwendung statisch unbestimmter Bauteile unter Innenraumbedingungen beschränkt.

³⁾ Sofern andere nationale Regelungen fehlen

JCP Throughbolt ETA OPTION 7	
Leistung Charakteristische Werte bei Zugbeanspruchung, nichtrostender Stahl	Anhang C2

²⁾ N⁰_{Rk,c} nach EN 1992-4:2018

Tabelle C3: Charakteristische Werte bei Querbeanspruchung

Dübelgröße					M6	M8	M10	M12	M16	M20
Montagebeiwert γ _{inst} [-]								1,0		
Stahlversagen ohr	ne Hebelar	m	12							
Charakteristischer	verzinkte	r Stahl ¹⁾	$V^0_{Rk.s}$	[kN]	5	11	17	25	44	69
Widerstand	nichtrost	ender Stahl	V^0 Rk.s	[kN]	7	12	19	27	50	86
Duktilitätsfaktor			k ₇	[-]				1,0		
Stahlversagen mit	Hebelarm									
Charakteristischer	verzinkte	r Stahl ¹⁾	$M^0_{Rk.s}$	[Nm]	9	23	45	78	186	363
Biegewiderstand	nichtrost	ender Stahl	M ⁰ Rk.s	[Nm]	10	24	49	85	199	454
Teilsicherheits- beiwert ⁴⁾ für	verzinkte	r Stahl ¹⁾	γMs	[-]		1,:	25		1,;	33
V ⁰ _{Rk,s} und M ⁰ _{Rk,s}	nichtrostender Stahl		γMs	[-]	1,25					1,4
Betonausbruch au	f der lasta	bgewandten	Seite							
Faktor für h ef	verzinkte	r Stahl ¹⁾	k 8	[-]	1,0	2,3	2,5	2,9	2,8	3,1
raktoriur nef	nichtrost	ender Stahl	k ₈	[-]	1,0	2,3	2,8	2,8	3,0	3,3
Betonkantenbruch	Ĭ									
		für h ef,1	lf	[mm]	30 ²⁾	35 ²⁾	42	50	64	78
Wirksame Dübellän Querlast	ge bei	für h ef,2	l _f	[mm]	40	44	48	65	82 (80) ³⁾	100
		für h ef,3	lf	[mm]	60	70	80	100	120	115
Wirksamer Außend	urchmesse	r	d_{nom}	[mm]	6	8	10	12	16	20

¹⁾ Dübelausführung Feuerverzinkt: M8-M20

JCP Throughbolt ETA OPTION 7	
Leistung Charakteristische Werte bei Querbeanspruchung	Anhang C3

²⁾ Befestigungen mit h_{ef} < 40mm sind auf die Verwendung statisch unbestimmter Bauteile unter Innenraumbedingungen beschränkt

³⁾ Dübelausführung nichtrostender Stahl

⁴⁾ Sofern andere nationale Regelungen fehlen

Tabelle C4: Verschiebung unter Zuglast

Dübelgröße		М6	M8	M10	M12	M16	M20		
Verankerungstiefe hef,1									
verzinkter Stahl 1)									
Zuglast	Ν	[kN]	2,9	5,0	6,5	8,5	12,3	16,6	
Verschiebung	δηο	[mm]	0,3	0,4					
	$\delta_{N\infty}$	[mm]	0,6	1,8					
nichtrostender Stahl									
Zuglast	Ν	[kN]	2,9	4,3	5,7	8,5	12,3	16,6	
Verschiebung	δηο	[mm]	0,4	0,7	0,4	0,4	0,6	1,5	
	$\delta_{N\infty}$	[mm]		1,3				2,9	
Verankerungstiefe hef,2 und hef,3	i								
verzinkter Stahl 1)									
Zuglast	N	[kN]	4,3	5,8	7,6	11,9	16,7	23,8	
Verschiebung	δηο	[mm]	0,4	0,5					
	$\delta_{N\infty}$	[mm]	0,7	2,3					
nichtrostender Stahl									
Zuglast	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0	
Verschiebung	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1	
	διν∞	[mm]		1,8					

¹⁾ Dübelausführung Feuerverzinkt: M8-M20

Tabelle C5: Verschiebung unter Querlast

Dübelgröße			M6	M8	M10	M12	M16	M20
verzinkter Stahl 1)						**		
Querlast	V	[kN]	2,9	6,3	9,7	14,3	23,6	37,0
Verschiebung	δνο	[mm]	1,2	1,5	1,6	2,6	3,1	4,4
	δν∞	[mm]	2,4	2,2	2,4	3,9	4,6	6,6
nichtrostender Stahl								
Querlast	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
Verschiebung	δνο	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

¹⁾ Dübelausführung Feuerverzinkt: M8-M20

JCP Throughbolt ETA OPTION 7	
Leistung Verschiebung	Anhang C4