

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-08/0237 of 29 April 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Chemofast Injection System VK, VK Nordic for concrete

Bonded fasteners and bonded expansion fasteners for use in concrete

CHEMOFAST Anchoring GmbH Hanns-Martin-Schleyer-Straße 23 47877 Willich DEUTSCHLAND

CHEMOFAST Anchoring GmbH

34 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

European Technical Assessment ETA-08/0237

English translation prepared by DIBt

Page 2 of 34 | 29 April 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 34 | 29 April 2025

Specific Part

1 Technical description of the product

The "Chemofast Injection system VK, VK Nordic for concrete" is a bonded anchor consisting of a cartridge with injection mortar VK or VK Nordic and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 14 to C 16

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-08/0237

English translation prepared by DIBt

Page 4 of 34 | 29 April 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

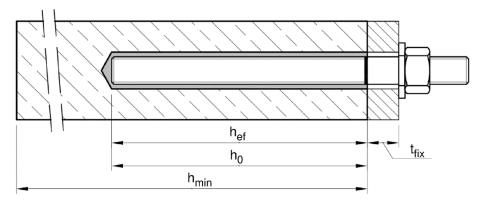
In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

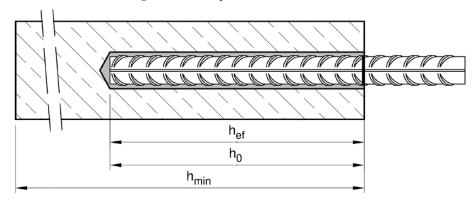
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

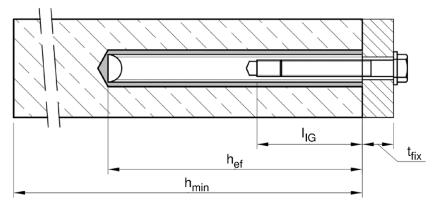
Issued in Berlin on 29 April 2025 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Stiller



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture h_0 = nominal drill hole diameter

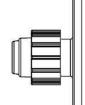
 h_{ef} = effective embedment depth I_{IG} = thread engagement length

 h_{min} = minum thickness of member

Chemofast Injection System VK, VK Nordic for concrete

Product description

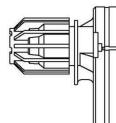
Installed condition


Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

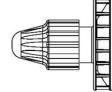

Imprint:

VK or VK Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

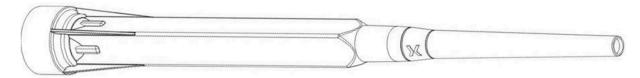
VK or VK Nordic

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil tube Cartridge:

165 ml and 300 ml

Imprint:


VK or VK Nordic

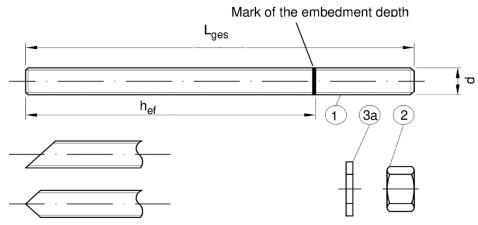
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Static mixer SM-14W

Static mixer PM-19E

Piston plug VS and mixer extension VL

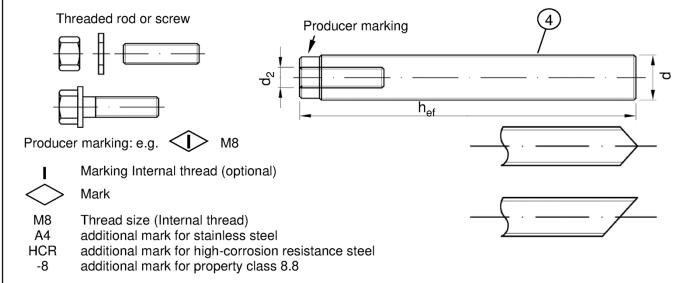
Chemofast Injection System VK, VK Nordic for concrete


Product description

Injection system

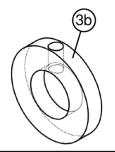
Annex A 2

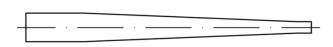
Threaded rod M8 up to M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth


For hot dip galvanized elements, the requirements with regards to the combination of nuts and rods according to EN ISO 10684:2004+AC:2009 Annex F shall be considered.


Internal threaded rod IG-M6 to IG-M20

Filling washer VFS

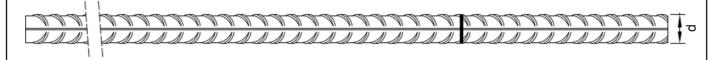
Mixer reduction nozzle MR

Chemofast Injection System VK, VK Nordic for concrete

Product description

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3


ia	ble A1: Mate	erials				
Par	Designation	Material				
Stee zi h	el, zinc plated (Steel nc plated ≥ 5 ot-dip galvanised ≥ 4	acc. to EN ISO 683-4:25 µm acc. to EN ISO 40 µm acc. to EN ISO 45 µm acc. to EN ISO	4042 146	2:2022 or 1:2022 and EN ISO 10684:	2004+AC:2009 or	
	- 1	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
				f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%
		LIV 130 090-1.2013		f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
		and to	4	for anchor rod class 4.6 o	r 4.8	
-	Hexagon nut	acc. to EN ISO 898-2:2022	5	for anchor rod class 5.6 o	r 5.8	
			8	for anchor rod class 8.8		
3a	Washer	(e.g.: EN ISO 887:20	06, E	galvanised or sherardized EN ISO 7089:2000, EN ISC	7093:2000 or EN ISC	7094:2000)
3b_	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized		
	Internal threaded	Property class		Characteristic steel	Characteristic steel	Elongation at
	Internal threaded			ultimate tensile strength	yield strength	fracture
ļ	anchor rod	acc. to		f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%
1		acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²		
Stai Stai	anchor rod nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023)	A ₅ > 8%
Stai Stai	anchor rod nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1	8.8 .431 .457	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ 1 / 1.4567 or 1.4541, acc. t	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel	A ₅ > 8%
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t r 1.4565, acc. to EN 10088 Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023)	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at
Stai Stai Higl	anchor rod nless steel A2 (Mate nless steel A4 (Mate	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to	8.8 .431 .457 .29 oi	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class	8.8 .431 .457 29 or	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 .4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020	8.8 .431 .457 29 or	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to	8.8 .431 .457 .29 or 50 70 80	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ²	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Higl	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020	8.8 .431 .457 29 or 50 70 80 50 70 80	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \end{split}$	$\begin{aligned} &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &o \text{ EN } 10088\text{-}1\text{:}2023) \\ &-1\text{:}2023) \\ &\text{Characteristic steel yield strength} \\ &f_{yk} = 210 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \end{aligned}$	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan Threaded rod ¹⁾³⁾	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529	8.8 .431 .457 29 or 1 .457 .70 .80 .70 .80 .71 .43 .43 .43 .44 .49 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2023$ $1:2023$
Stai Stai High	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant) Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	8.8 .431 .457 29 or 70 80 70 80 11.43 11.44 9 or 1	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_1 \ge 8\%$ 1:2023 1:2023
Stai High 1 1 2 3a	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant) Threaded rod 1)3) Hexagon nut 1)3) Washer Filling washer	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20	8.8 .431 .457 29 or 70 80 70 80 11.43 11.44 9 or 1	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. to 1.4565, acc. to EN 10088 Characteristic steel ultimate tensile strength f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 2023$ 1:2023
Stai Stai High	anchor rod nless steel A2 (Mate nless steel A4 (Mate n corrosion resistant) Threaded rod ¹⁾³⁾ Hexagon nut ¹⁾³⁾ Washer	EN ISO 898-1:2013 rial 1.4301 / 1.4307 / 1 rial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529 (e.g.: EN ISO 887:20 Stainless steel A4, H	8.8 .431 .457 29 or 70 80 70 80 11.43 11.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ 07 / 1.4311 / 1.4567 \text{ or } 1.4 \\ 04 / 1.4571 / 1.4362 \text{ or } 1.4 \\ 04 / 1.4565, \text{ acc. to EN } 10088-1 \\ \text{EN ISO } 7089:2000, \text{ EN ISO } \\ \text{orrosion resistance steel} \\ \text{Characteristic steel} \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2023) o EN 10088-1:2023) -1:2023) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088-578, acc. to EN 10088-:2023 D 7093:2000 or EN ISC	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $1:2023$ $1:2023$ $1:2023$ $1:2023$

Property class 70 or 80 for anchor rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16
 for IG-M20 only property class 50
 Property class 80 only for stainless steel A4 and HCR

Chemofast Injection System VK, VK Nordic for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range $0.05d \le h_{rib} \le 0.07d$ (d: Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A2: Materials Reinforcing bar

Part	Designation	Material
Reba	ar	
	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Chemofast Injection System VK, VK Nordic for concrete	
Product description Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life 50 years		Working life 100 years	
Base material	uncracked concrete	cracked concrete	uncracked concrete	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø IG-M6 to I	Ø 32 ,	No performand	e assessed
Temperature Range	II: - 40°C t	0 +40°C¹) 0 +80°C²) 0 +120°C³)	No performanc	e assessed

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2
Base material	Cracked and und	cracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, Ø8 to Ø32	No performance assessed
Temperature Range	I: -40°C to +40°C ¹⁾ II: -40°C to +80°C ²⁾ III: -40°C to +120°C ³⁾	No performance assessed

Fasteners subject to (fire exposure):

Base material	Cracked and uncracked concrete
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, ∅8 to ∅32, IG-M6 to IG-M20
Temperature Range:	I: -40°C to +40°C ¹⁾ II: -40°C to +80°C ²⁾ III: -40°C to +120°C ³⁾

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Specifications	Annex B 1

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

^{3) (}max. long-term temperature +72°C and max. short-term temperature +120°C)

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A2:2021.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055,
 Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:

VK:	-10°C up to +40°C for the standard variation of temperature after installation.
VK Nordic:	-20°C up to +10°C for the standard variation of temperature after installation.

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Specifications (Continued)	Annex B 2

Table B1:	Installation parameters for threaded rod

Threaded rod					M10	M12	M16	M20	M24	M27	M30
Diameter of element d = d _{nom}			[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d_0	[mm]	10	12	14	18	24	28	32	35
Effective embedme	at donth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedment depth		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins	repositioned installation d _f ≤		9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through installation d _f		[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]	-	f + 30 m : 100 mr			ľ	n _{ef} + 2do)	
Minimum spacing		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ince	c _{min}	[mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for reinforcing bar

Reinforcing bar	Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Enective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	, .	+ 30 mm 00 mm				h _{ef} + 2	d ₀		
Minimum spacing	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20		
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30		
Nominal drill hole diameter	d ₀	[mm]	12	14	18	24	28	35		
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120		
Effective embedment depth	h _{ef,max}		200	240	320	400	480	600		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22		
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100		
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40		
Minimum thickness of member	h . + 30 mm			h _{ef} -	- 2d ₀					
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150		
Minimum edge distance	c _{min}	[mm]	50	60	80	100	120	150		
1) MCH	1) With marking through a condition to FN 1000 1 0,0000									

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Chemofast Injection System VK, VK Nordic for concrete

Intended Use

Installation parameters

Annex B 3

Table B4	Table B4: Parameter cleaning and installation tools										
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _b Brush - Ø		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio		
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1	
M8	8		10	RBT10	12	10,5					
M10	8 / 10	IG-M6	12	RBT12	14	12,5		No plug	roquirod		
M12	10 / 12	IG-M8	14	RBT14	16	14,5		No plug	required		
	12		16	RBT16	18	16,5					
M16	14	IG-M10	18	RBT18	20	18,5	VS18				
	16		20	RBT20	22	20,5	VS20				
M20		IG-M12	24	RBT24	26	24,5	VS24	h . >	h. \		
	20		25	RBT25	27	25,5	VS25	h _{ef} > 250 mm	h _{ef} > 250 mm	all	
M24		IG-M16	28	RBT28	30	28,5	VS28	230 111111	200 111111		
M27	25		32	RBT32	34	32,5	VS32				
M30	28	IG-M20	35	RBT35	37	35,5	VS35				
	32		40	RBT40	41,5	40,5	VS40				

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

Brush RBT

Piston Plug VS

Brush extension RBL

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Cleaning and installation tools	Annex B 4

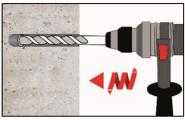
Table B5:	Worki	ng time and o	euring time VK				
Tempera	ture in bas	se material	Maximum working time	Minimum curing time ¹⁾			
	Т		t _{gel}	t _{cure}			
- 10 °C to - 6 °C		- 6°C	90 min ²⁾	24 h			
-5°C to -1°C		- 1 °C	90 min	14 h			
0°C	0°C to + 4°C		45 min	7 h			
+ 5°C	to	+ 9°C	25 min	2 h			
+ 10°C	to	+ 19°C	15 min	80 min			
+ 20 °C	to	+ 29 °C	6 min	45 min			
+ 30 °C	to	+ 34 °C	4 min	25 min			
+ 35 °C	to	+ 39 °C	2 min	20 min			
	+40°C		1,5 min	15 min			
Cartr	idge tempe	erature	+5°C to +40°C				

The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

Table B6: Working time and curing time VK Nordic

Tempera	ature in bas	e material	Maximum working time	Minimum curing time 1)		
	Т		t _{gel}	t _{cure}		
- 20°C	0°C to -16°C		75 min	24 h		
- 15°C to - 11°C		- 11 °C	55 min	16 h		
- 10°C	to	- 6°C	35 min	10 h		
- 5°C	to	- 1 °C	20 min	5 h		
0°C	to	+ 4 °C	10 min	2,5 h		
+ 5°C	to	+ 9 °C	6 min	80 min		
	+ 10 °C		6 min	60 min		
Cart	tridge tempe	rature	-20°C to +10°C			

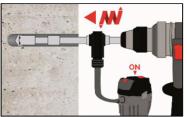
¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Working time and curing time	Annex B 5

²⁾ Cartridge temperature must be at least +15°C

Installation instructions

Drilling of the bore hole


1a. Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.

Drill bit diameter according to Table B1, B2 or B3.

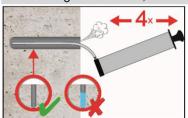
Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).

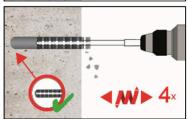
1b. Hollow drill bit system (HDB)

Drill a hole to the required embedment depth.

Drill bit diameter according to Table B1, B2 or B3.


Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).


Attention! Standing water in the bore hole must be removed before cleaning

Manual Air Cleaning (MAC)

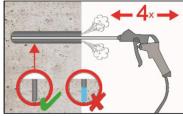
for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm uncracked concrete only) with drilling method HD, HDB and CD

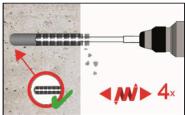
Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

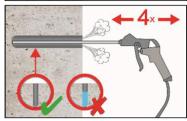
2c.

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

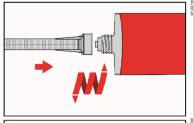

Chemofast Injection System VK, VK Nordic for concrete	
Intended Use Installation instructions	Annex B 6


Installation instructions (continuation)

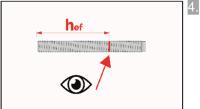
Compressed Air Cleaning (CAC):


All diameter with drilling method HD, HDB and CD

2a. Blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)



2b. Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

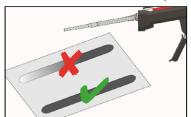
Screw on static-mixing nozzle SM-14W/PM-19E and load the cartridge into an appropriate dispensing tool. With foil tube cartridges cut off the foil tube clip before use.

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

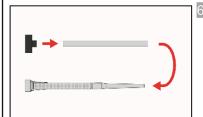
Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

Chemofast Injection System VK, VK Nordic for concrete

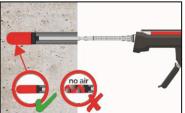

Intended Use

Installation instructions (continuation)


Annex B 7

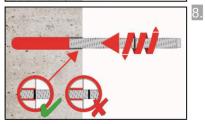
Installation instructions (continuation)

Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes, for foil tube cartridges at least 6 full storkes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø $d_0 \ge 18$ mm and embedment depth $h_{ef} > 250$ mm
- Vertical upwards direction: Drill bit- \emptyset d₀ \geq 18 mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Injecting mortar without piston plug VS:

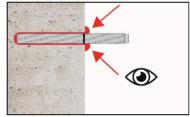

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets. Observe the temperature related working time t_{work} (Annex B 5).

Injecting mortar with piston plug VS:

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time twork (Annex B 5). .

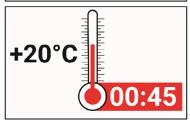
Insert the anchor rod while turning slightly up to the embedment mark.


Chemofast Injection System VK, VK Nordic for concrete

Intended Use
Installation instructions (continuation)

Annex B 8

Installation instructions (continuation)



Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.

Otherwise, the installation must be repeated starting from step 7 before the maximum working time t_{work} has expired.

For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed.
 Do not move or load the fastener during curing time.

2. Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

Chemofast Injection System VK, VK Nordic for concrete

Intended Use

Installation instructions (continuation)

Annex B 9

Т	able C1:	Characteristic values resistance of threade			ension	resist	ance	and s	teel s	hear		
Th	readed rod				M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	l	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Ch	naracteristic ter	nsion resistance, Steel failu	re ¹⁾	•							•	
	eel, Property cla		N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ste	eel, Property cla	ss 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property cla	ss 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2	A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2	A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
-		and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Ch	naracteristic tei	nsion resistance, Partial fac	tor ²⁾									
Ste	eel, Property cla	ss 4.6 and 5.6	γ _{Ms,N}	[-]				2,	0			
Ste	eel, Property cla	ss 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5			
-		, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8				
\vdash		, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8				
-		and HCR, class 80	γMs,N	[-]	1,6							
Ch		ear resistance, Steel failure	, 1)	Ι	I	I					I	
lΕ		class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property	class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property	class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	Stainless steel	A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel	A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel	A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property	class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property	class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property	class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
th lever	Stainless steel	A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
×	Stainless steel	A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel	A4 and HCR, class 80	М ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Ch	naracteristic sh	ear resistance, Partial facto	r ²⁾									
Ste	eel, Property cla	ss 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	57			
Ste	Steel, Property class 4.8, 5.8 and 8.8			[-]				1,2	25			
Sta	ainless steel A2	A4 and HCR, class 50	γMs,V	[-]				2,3	88			
-		A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
Sta	ainless steel A4	and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic v	alues of te	nsion load	ls under static and quasi-static action
Fastener				All Anchor types and sizes
Concrete cone f	ailure			
Uncracked concr	ete	k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	•	s _{cr,sp}	[mm]	2 c _{cr,sp}

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Thread	ded ı	rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure	е											
Charac	cteris	tic tension resi	istance	N _{Rk,s}	[kN]					ee Tab	le C1)		
Partial				γ _{Ms,N}	[-]				see Ta	ıble C1			
			concrete failure ance in uncracke	d concrete C20)/25								
	l:	40°C/24°C				10	12	12	12	12	11	10	9,0
ınge		80°C/50°C	Dry, wet			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5
Temperature range	III:	120°C/72°C	Concrete	_	[N1/mm mm 2]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
erat	I:	40°C/24°C		^τ Rk,ucr	[N/mm²] -	7,5	8,5	8,5	8,5	No Performance Assessed			
emp	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5				е
_	III:	120°C/72°C				4,0	5,0	5,0	5,0				
Charac	cteris	stic bond resist	ance in cracked o	oncrete C20/2	5								
•	1:	40°C/24°C	D			4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range	II:	80°C/50°C	Dry, wet concrete		[N/mm²] -	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
ure r	III:	120°C/72°C		^{- τ} Rk,cr		2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
perat	1:	40°C/24°C	flooded bore hole			4,0	4,0	5,5	5,5	No Performance Assessed			
Temp	II:	80°C/50°C				2,5	3,0	4,0	4,0				е
·	III: 120°C/72°C				2,0	2,5	3,0	3,0					
Reduk	tion f	factor ψ ⁰ sus in	cracked and und	racked concre	te C20/25								
re	I:	40°C/24°C	Dry wet	Ψ ⁰ sus	[-]	0,73							
Temperature range	II:	80°C/50°C	Dry, wet concrete and flooded bore			0,65							
Tem	III:	120°C/72°C	hole			0,57							
Increas	sing t	factors for con-	crete	Ψ _c	[-]				(f _{ck} / 2	20) 0,11			
Charad	cteris	stic bond resist	ance depending		τ _{Rk,ucr} =			Ψc		cr(C20/	25)		
		crete strength o			τ _{Rk,cr} =					r(C20/2			
		cone failure arameter				Ι			T-	bla CO			
Splittii		arameter							see ra	ble C2			
		arameter							see Ta	ıble C2			
		n factor wet concrete				1,0				1,2			
for flooded bore hole				γ _{inst}	[-]	1,0	1,	,4		No Performance			
for floo	nofa	bore hole	System VK, VK			1,0	1,	,4				essed	

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm		l I								
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	W _{el} • f _{uk}	(or see	Table C	(1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	I _f	[mm]		m	nin(h _{ef} ; 1	2 · d _{nor}	_m)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Internal threaded anchor rod	ls			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾		N.	FL 8 12	40			40	70	400	
Characteristic tension resistan	,	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class 8.8			[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.8 and 8.8			[-]		1,5					
Characteristic tension resistan Steel A4 and HCR, Strength c		N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms,N}	[-]			1,87	2,86			
Combined pull-out and conc	rete cone failu									
Characteristic bond resistance	in uncracked c	oncrete	C20/25							
υ <u>I: 40°C/24°C</u>	Dry, wet			12	12	12	12	11	9,0	
### ### ##############################	concrete			9,0	9,0	9,0	9,0	8,5	6,5	
## ## ## ## ## ## ## ## ## ## ## ## ##	Concrete	^τ Rk,ucr	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
<u>ਨੂੰ ਫ਼ : 40°C/24°C</u>	flooded bore hole		[, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	8,5	8,5	8,5				
<u> </u>				6,5	6,5	6,5	No Perf	ormance A	ssessec	
III: 120°C/72°C				5,0	5,0	5,0				
Characteristic bond resistance	in cracked con	crete C2	0/25							
υ <u>I: 40°C/24°C</u>	Dry, wet		[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5	
1: 40°C/24°C	concrete			3,5	4,0	4,0	4,0	4,0	4,5	
## 95		τ _{Rk,cr}		2,5	3,0	3,0	3,0	3,0	3,5	
ਰ ਫ਼ੁ <u> </u> : 40°C/24°C	flooded bore	TRK,CI		4,0	5,5	5,5				
<u>ы</u> <u>II: 80°С/50°С</u>	hole			3,0	4,0	4,0	No Perf	ormance A	ssessec	
III: 120°C/72°C		<u> </u>		2,5	3,0	3,0				
Reduktion factor $\psi^0_{ ext{sus}}$ in crac	ked and uncra	cked con	crete C2	0/25						
9 I: 40°C/24°C	Dry, wet					0,	73			
III: 40°C/24°C III: 80°C/50°C III: 120°C/72°C	concrete and flooded bore	Ψ^0 sus	[-]			0,	65			
<u>□</u> III: 120°C/72°C	hole						57			
Increasing factors for concrete		Ψc	[-]				20) 0,11			
Characteristic bond resistance	depending on	τ	Rk,ucr =				cr(C20/25)	1		
the concrete strength class			τ _{Rk,cr} =			ψ _c • τ _{Rk,c}	cr(C20/25)			
Concrete cone failure										
Relevant parameter						see Ta	able C2			
Splitting failure			-							
Relevant parameter						see Ta	able C2			
Installation factor		I					0			
for dry and wet concrete		γ _{inst}	[-]		1 1	1	,2	- una - ua A		
for flooded bore hole					1,4		No Peri	ormance A	ssessec	

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 5

²⁾ For IG-M20 strength class 50 is valid

Internal threaded anchor rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure without lever arm ¹)									
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61	
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98	
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25			
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40	
Partial factor		γ _{Ms,V}	[-]			1,56			2,38	
Ductility factor	k ₇	[-]				1,0				
Steel failure with lever arm1)										
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325	
Steel, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]	1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Partial factor		γ _{Ms,V}	[-]		2,38					
Concrete pry-out failure										
Factor		k ₈	[-]				2,0			
Installation factor		γ _{inst}	[-]	1,0						
Concrete edge failure		•								
Effective length of fastener		I _f	[mm]		min	(h _{ef} ; 12 • c	I _{nom})		min (h _{ef} ; 300mn	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor		γ _{inst}	[-]				1,0			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 6
Characteristic values of shear loads under static and quasi-static action (Internal threaded anchor rod)	

²⁾ For IG-M20 strength class 50 is valid

	orcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel f													
Charac	cteristic tension res	istance	N _{Rk,s}	[kN]					۱ _s ・f _{uk}	1)			
Cross	section area		A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor γ _{Ms,N} [-]									1,4 ²⁾				
Combi	ined pull-out and	concrete fail											
Charac	cteristic bond resist	ance in uncra	cked concr	ete C20/25									
Φ	I: 40°C/24°C	Dry, wet			10	12	12	12	12	12	11	10	8,5
Ď,	II: 80°C/50°C concrete			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
Temperature range	III: 120°C/72°C	CONTOICE	TDI	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
ra re	I: 40°C/24°C	flooded	^τ Rk,ucr	[[,,,,,,,,,]	7,5	8,5	8,5	8,5	8,5	N	lo Perfo	ormano	Δ
<u>ja</u>	II: 80°C/50°C	bore hole			5,5	6,5	6,5	6,5	6,5	No Performance Assessed		•	
	III: 120°C/72°C				4,0	5,0	5,0	5,0	5,0		7,000		
Charac	cteristic bond resist	ance in crack	ed concrete	C20/25									
æ	I: 40°C/24°C	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range	II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
nperati range	III: 120°C/72°C		τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	No Performance			3,5
g ra	1: 40°C/24°C	flooded	1 113,01	' '	4,0	4,0	5,5	5,5	5,5				е
<u>a</u>	II: 80°C/50°C	bore hole			2,5	3,0	4,0	4,0	4,0				
	III: 120°C/72°C		<u> </u>		2,0	2,5	3,0	3,0	3,0				
Reduk	tion factor $\psi^0_{ extsf{Sus}}$ ir	cracked and	uncracked	concrete C	20/25								
Ф	1 4000/0400	Dry, wet							0,73				
atur	I: 40°C/24°C	concrete							0,73				
nperatur range	II: 80°C/50°C	concrete	Ψ ⁰ sus	[-]					0,73				
Temperature range			Ψ^0 sus	[-]					0,65				
<u> </u>	II: 80°C/50°C	and flooded bore hole	Ψ ⁰ sus	[-]				(f _C)	0,65	0,11			
Increas Charac	II: 80°C/50°C III: 120°C/72°C sing factors for concernistic bond resist	and flooded bore hole crete ance		[-]					0,65 0,57 (/ 20)				
Increas Charac depend	II: 80°C/50°C III: 120°C/72°C sing factors for con	and flooded bore hole crete ance		[-] τ _{Rk,ucr} =				ψ _c • τ _F	0,65 0,57 (/ 20) (20/25)			
Increas Charad depend class	II: 80°C/50°C III: 120°C/72°C sing factors for concteristic bond resist ding on the concret	and flooded bore hole crete ance		[-]				ψ _c • τ _F	0,65 0,57 (/ 20)	20/25)			
Increase Charace dependence class Concre	II: 80°C/50°C III: 120°C/72°C sing factors for concernistic bond resisted in gone the concrete concernistic bond resisted in gone the concrete cone failure	and flooded bore hole crete ance		[-] τ _{Rk,ucr} =				ψ _c • τ _F ψ _c • τ	0,65 0,57 (/ 20) (20/25) 20/25)			
Increase Character Charact	II: 80°C/50°C III: 120°C/72°C sing factors for conceristic bond resist ding on the concrete tete cone failure ant parameter	and flooded bore hole crete ance		[-] τ _{Rk,ucr} =				ψ _c • τ _F ψ _c • τ	0,65 0,57 (/ 20) (Rk,ucr(C	20/25) 20/25)			
Increas Charac depend class Concr Releva Splitti	II: 80°C/50°C III: 120°C/72°C sing factors for conceristic bond resist ding on the concrete tete cone failure ant parameter	and flooded bore hole crete ance		[-] τ _{Rk,ucr} =				$ψ_c • τ_F$ $ψ_c • τ$ see	0,65 0,57 (/ 20) (Rk,ucr(C)	20/25) 20/25) C2			
Increase Character Charact	II: 80°C/50°C III: 120°C/72°C sing factors for concerteristic bond resist ding on the concrete tete cone failure ant parameter ng	and flooded bore hole crete ance		[-] τ _{Rk,ucr} =				$ψ_c • τ_F$ $ψ_c • τ$ see	0,65 0,57 (/ 20) (Rk,ucr(Cr Rk,cr(Cr	20/25) 20/25) C2			
Increase Character Charact	II: 80°C/50°C III: 120°C/72°C sing factors for concerteristic bond resisted in gone the concrete tete cone failure ant parameter the parameter that the control of the co	and flooded bore hole crete ance		[-] τ _{Rk,ucr} =	1,0			$ψ_c • τ_F$ $ψ_c • τ$ see	0,65 0,57 (/ 20) (Rk,ucr(Cr Rk,cr(Cr	C2 C2			

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 7
Characteristic values of tension loads under static and quasi-static action	
(Reinforcing bar)	

²⁾ in absence of national regulation

Table C8: Characterist	ic values	of shea	ır load	ds un	der s	tatic a	and q	uasi-	static	actio	n	
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ Rk,s	[kN]	0,50 • A _s • f _{uk} ¹⁾									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	[-]					1,5 ²⁾						
Ductility factor	[-]					1,0						
Steel failure with lever arm		•										
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)				
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Concrete pry-out failure	•	•										
Factor	k ₈	[-]					2,0					
Installation factor	γ _{inst}	[-]					1,0					
Concrete edge failure	'	•										
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mr						mm)			
Outside diameter of fastener	[mm]	8	10	12	14	16	20	25	28	32		
Installation factor	γinst	[-]				'	1,0					

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 8

²⁾ in absence of national regulation

Table C9:	Displacem	ents under tensio	n load	1)							
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete	e C20/25 und	ler static and quasi-sta	atic actio	on							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-station	caction								
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature range	[mm/(N/mm²)]	0,2	219	0,170							
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170						
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$

Table C10: Displacements under shear load 1)

Threaded rod				M10	M12	M16	M20	M24	M27	M30
Uncracked concre	atic actio	on								
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete	static and quasi-stati	c action								
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 9
Displacements under static and quasi-static action	
(threaded rods)	

Table C11: D	isplaceme	nts under tens	sion load	1)								
Internal threaded a	nchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Uncracked concrete C20/25 under static and quasi-static action												
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049				
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,056	0,063	0,075	0,088	0,100	0,119				
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Cracked concrete C	20/25 under s	tatic and quasi-st	atic action									
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,090			0,070						
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,105			0,105						
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170						
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255	0,245								
Temperature range	δ _{N0} -factor	[mm/(N/mm ²)]	0,219			0,170		·				
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245						

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C12: Displacements under shear load¹

Internal threade	d anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked and c	racked concrete (C20/25 under s	static and q	uasi-static a	action			
All temperature	δ _{v0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 10

Table C13: Di	Table C13: Displacements under tension load ¹⁾ (rebar)													
Anchor size reinf	nchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 3													
Uncracked concrete C20/25 under static and quasi-static action														
Temperature δ _{N0} -factor [mm/(N/mm²)] 0,021 0,023 0,026 0,028 0,031 0,036 0,043 0,047														
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126			
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126			
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181			
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1									
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070						
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	105	0,105									
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170									
range II: 80°C/50°C	range II: $80^{\circ}\text{C}/50^{\circ}\text{C}$ $\delta_{\text{N}_{\infty}}$ -factor [mm/(N/mm²)]		0,255					0,245						
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170						
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255				0,245						

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C14: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concre	nder static and	quasi-si	tatic acti	ion							
All temperature	δ _{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	ler static and qu	asi-stat	ic action	ı							
All temperature	δ _{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 11
Displacements under static and quasi-static action	
(Reinforcing bar)	

Table	e C 1		acteristic ormance				ion Ic	oad	s un	der s	eismi	c acti	ion			
Thread									M8	M10	M12	M16	M20	M24	M27	M30
Steel fa		ic tension resi	stance		No		[kN]	1				10.	No			
Partial			<u> </u>		,-											
		pull-out and o	oncrete fail	ure	1110,11								DIE O I			
		ic bond resista			and cra	acked	concrete	e C2	20/25							
Ø		40°C/24°C	Dry wet						2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
rang			Dry, wet concrete						1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
Temperature range		120°C/72°C			τ _{Rk,eq,C}) 1	[N/mn	n²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
npera		40°C/24°C	flooded bore	۵.	,,,,,,,,	-		2,5	2,5	3,7	3,7		lo Perfo	ırmana	Δ	
Ten		80°C/50°C	hole	J					1,6	1,9	2,7	2,7	'`	Asse		, C
_		120°C/72°C							1,3	1,6	2,0	2,0	<u></u>			
		actors for cond			Ψc		[-]					1	,0			
	concr	rete strength o		ing ——		τ	Rk,eq,C1	1 =			Ψ _c •	^τ Rk,eq,	_{,C1} (C20)/25)		
		vet concrete							1,0	Т			1,2			
		ore hole			γ _{inst}		[-]		1,4				No Performance Assessed			
Thread	ded ro		ormance				M8	М	I10	M12	M16	M20	M24	M2	7	M30
Steel fa	ailure	e without leve	er arm													
Charac (Seism		ic shear resist)	tance	V _{Rk,s}	,eq,C1 [kN] 0,70 · V ⁰ _{Rk,s}											
Partial	facto	r		γMs,\	/	[-]					see 7	Γable C	;1			
		ınnular gap		$\alpha_{\sf gap}$		[-]						(1,0) ¹⁾				
Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended																
Perfo Chara	Chemofast Injection System VK, VK Nordic for concrete Performances Characteristic values of tension loads and shear loads under seismic action (performance category C1) (Threaded rod)									-	Anne	x C 1	2			

Table C17: Characteristic (performance			n Ioa	ds un	der s	eismi	ic act	ion				
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure												
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s • 1	uk ¹⁾				
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]					1,42)					
Combined pull-out and concrete fail												
Characteristic bond resistance in uncra	cked and cra	cked con	crete C	20/25								
<u>u</u> 1: 40°C/24°C Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
\(\text{II.} \(80^{\circ} \) \(\text{II.} \)			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
The second sec	T.D. 0.1	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
्रहें <u>I: 40°C/24°C</u> flooded	^τ Rk, eq,C1	[14/11111]	2,5	2,5	3,7	3,7	3,7					
☐ II: 80°C/50°C bore hole			1,6	1,9	2,7	2,7	2,7	No Performance Assessed				
III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0		7336	sseu		
Increasing factors for concrete	Ψς	[-]					1,0					
Characteristic bond resistance depending on the concrete strength class	τ _{Ri}	k,eq,C1 =	Ψ _C • τ _{Rk,eq,C1} (C20/25)									
Installation factor	•											
for dry and wet concrete			1,2				1	,2				
for flooded bore hole	γinst	[-]			1,4			N		ormanc essed	е	

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Characteristic values of shear loads under seismic action Table C18: (performance category C1)

Reinforcing bar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Steel failure without lever arm												
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]	[kN] $0.35 \cdot A_s \cdot f_{uk}^{2}$									
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,V}	[-]		1,52)								
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾									

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Chemofast Injection System VK, VK Nordic for concrete	
Performances	Annex C 13
Characteristic values of tension loads and shear loads under seismic action	
(performance category C1) (Reinforcing bar)	

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

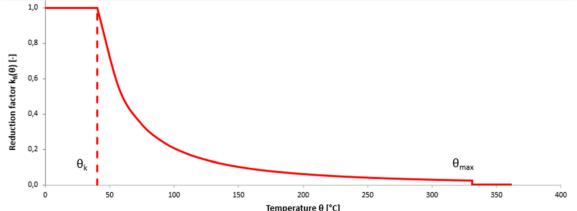


Table C19: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

Threaded rod						M10	M12	M16	M20	M24	M27	M30
Steel failure												
Characteristic tension resistance; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50 and higher		FI - N 17	[kN] Fire exposur e time [min]	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
	N			60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
	N _{Rk,s,fi}	[KIN]		90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
				120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

Temperature reduction factor $k_{fi,p}(\theta) \qquad \begin{bmatrix} -1 \end{bmatrix} \frac{\theta < 21^{\circ}C}{21^{\circ}C \leq \theta \leq 331^{\circ}C} \qquad \qquad 1,0 \\ \frac{21^{\circ}C \leq \theta \leq 331^{\circ}C}{\theta > 331^{\circ}C} \qquad \qquad 589,7 \cdot \theta^{-1,726} \leq 1,0 \\ 0,0 \qquad \qquad 0,0$

	Temperature θ [°C]													
Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$		[N/mm	2]	$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$									
Steel failure without lever arm														
Characteristic shear resistance; Steel, Stainless Steel A2, A4 and HCR, strength class 5.8 resp. 50			Fire	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2		
	V _{Rk,s,fi}	[kN]	ovnosur	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1		
				90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7		
and higher				120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9		
Steel failure with lever arm	n													
Characteristic bending			Fire	30	1,1	2,2	4,7	12,0	23,4	40,4	59,9	81,0		
moment; Steel, Stainless	N/O	[Nm	exposur	60	0,9	1,8	3,5	9,0	17,5	30,3	44,9	60,7		
Steel A2, A4 and HCR, strength class 5.8 resp. 50	M ⁰ Rk,s,fi]]	e time	90	0,7	1,3	2,5	6,3	12,3	21,3	31,6	42,7		
and higher		[min]	120	0,5	1,0	1,8	4,7	9,1	15,7	23,3	31,5			

¹⁾ τ_{Rk,cr,(C20/25)} characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

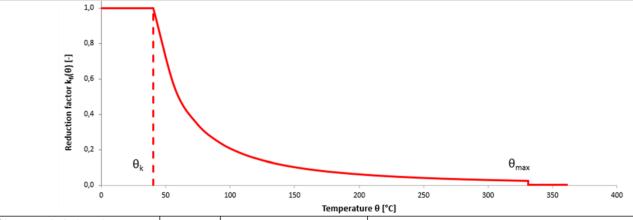

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod)	Annex C 14

Table C20: Characteristic values of tension and shear loads under fire exposure in hammer drilled holes (HD), compressed air drilled holes (CD) and in hammer drilled holes with hollow drill bit (HDB)

Internal threaded anchor ro	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20						
Steel failure												
Characteristic tension resistance; Steel, Stainless Steel A4 and HCR, strength class 5.8 and 8.8 resp. 70	N _{Rk,s,fi}		Fire -	30	0,3	1,1	1,7	3,0	5,7	8,8		
		[LVI]	exposure time [min]	60	0,2	0,9	1,4	2,3	4,2	6,6		
		[kN]		90	0,2	0,7	1,0	1,6	3,0	4,7		
				120	0,1	0,5	0,8	1,2	2,2	3,4		

Characteristic bond resistance in cracked and uncracked concrete C20/25 up to C50/60 under fire conditions for a given temperature θ

				remperata	c 0 [c]									
Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$		[N/mm²	²]	$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$									
Steel failure without lever arm														
Characteristic shear resistance; Steel, Stainless Steel A4 and HCR, strength			Fire	30	0,3	1,1	1,7	3,0	5,7	8,8				
	$V_{Rk,s,fi}$	[kN]	Fire exposure	60	0,2	0,9	1,4	2,3	4,2	6,6				
			time [min]	90	0,2	0,7	1,0	1,6	3,0	4,7				
class 5.8 and 8.8 resp. 70				120	0,1	0,5	0,8	1,2	2,2	3,4				
Steel failure with lever arm														
Characteristic banding			Fire	30	0,2	1,1	2,2	4,7	12,0	23,4				
, ,	N40	[N]mal	ovnocuro	60	0,2	0,9	1,8	3,5	9,0	17,5				
	M ⁰ Rk,s,fi	[Nm]	time [min]	90	0,1	0,7	1,3	2,5	6,3	12,3				
class 5.8 and 8.8 resp. 70				120	0.1	0.5	1.0	1.0	4.7	0.1				

120

0,1

0,5

1,0

1,8

4,7

9,1

τ_{Rk,cr,(C20/25)} characteristic bond resistance for cracked concrete for concrete strength class C20/25 for the relevant temperature range

Chemofast Injection System VK, VK Nordic for concrete	
Performances Characteristic values of tension and shear loads under fire exposure (internal threaded anchor rod)	Annex C 15

Table C21: Char			-luge of	tensio	n anı	d cha	ar lo		ında	r firo			in		
hamr	mer drille ed holes	ed h	noles (HD	D), con	npres	ssed								ner	
Reinforcing bar					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure															
			Fire	30	0,5	1,2	2,3	3,1	4,0	6,3	9,0	9,8	12,3		
Characteristic tension	N _{Rk,s,fi}	[kN]	exposure	60	0,5	1,0	1,7	2,3	3,0	4,7	6,8	7,4	9,2	12,1	
resistance; BSt 500	1,5,	-	time [min]	90	0,4	0,8	1,5	2,0	2,6	4,1	5,9	6,4	8,0	10,5	
Characteristic bond res	ietance in	crac		120	0,3	0,6	1,1	1,5	2,0 C50/6	3,1	4,5 er fire	4,9	6,2	8,0	
given temperature θ	IStance m	Clau	Keu anu u	TUTAL NE	a con	Siele C	,2U/2U	up to	C50/0	U una	er in e	Conun	110115 1	01 a	
			$\theta < 2^{-1}$	1°C					1	,0					
Temperature reduction factor	$k_{fi,p}(\theta)$	[-]	21°C ≤ θ :	≤ 243°C				0,81	I • е ⁻¹	,357∙θ ≤	1,0				
1,0			θ > 24	3°C					0	,0					
Reduction factor k _{fl} (θ) [-] - 9'0 9'0	θ_k	_							E) _{max}					
0,0	50		100	Ten	150 nperature	- 9 [90]	2	200		250		300	0		
Characteristic bond resistance for a given temperature (θ)	$\tau_{Rk,fi}(\theta)$		[N/mm²]		Iperutur 2	.0[0]	$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$								
Steel failure without lev	er arm														
			Fire	30	0,5	1,2	2,3	3,1	4,0	6,3	9,0	9,8	12,3		
Characteristic shear resistance; BSt 500	V _{Rk,s,fi}	[kN]	exposure time	60	0,5	1,0	1,7	2,3	3,0	4,7	6,8	7,4	9,2	12,1	
Tesistance, Dot 500			[min]	90	0,4	0,8	1,5	2,0	2,6	4,1	5,9	6,4	8,0	10,5	
Steel failure with lever a				120	0,3	0,6	1,1	1,5	2,0	3,1	4,5	4,9	6,2	8,0	
Ottor idilara mini ioco.				30	0,6	1,8	4,1	6,5	9,7	18,8	32,6	36,8	51,7	77,2	
Characteristic bending		ſNm	Fire exposure	60	0,5	1,5	3,1	4,8	7,2	14,1	24,4	27,6	38,8	_	
moment; BSt 500	M ⁰ Rk,s,fi]	time	90	0,4	1,2	2,6	4,2	6,3	12,3	21,2	23,9	33,6		
			[min]	120	0,3	0,9	2,0	3,2	4,8	9,4	16,3	18,4	25,9	_	
1) $ au_{ m Rk,cr,(C20/25)}$ characte temperature range	ristic bond	resista	ance for cra	icked con	ncrete f	for cond	crete st	rength	class (C20/25	for the	releva	ınt		
Chemofast Injection S Performances							/ calcul		1 · ·		A	nnex	C 16	 3	
Performances Characteristic values of	of tension a	and s	hear loads	under f	ire exp	oosure	reinf	orcing	b	ar)	ear)			Annex C 16	