Public-law institution jointly founded by the federal states and the Federation European Technical Assessment Body for construction products # **European Technical Assessment** ### ETA-08/0345 of 13 August 2025 English translation prepared by DIBt - Original version in German language #### **General Part** Technical Assessment Body issuing the European Technical Assessment: Trade name of the construction product Product family to which the construction product belongs Manufacturer Manufacturing plant This European Technical Assessment contains This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces Deutsches Institut für Bautechnik TOX Drop-in Anchor E / ES Fastener for use in concrete for redundant non-structural systems TOX-Dübel-Technik GmbH Brunnenstraße 31 72505 Krauchenwies-Ablach DEUTSCHLAND TOX Werk 10, Deutschland 19 pages including 3 annexes which form an integral part of this assessment EAD 330747-00-0601, Edition 06/2018 ETA-08/0345 issued on 27 February 2018 ### **European Technical Assessment ETA-08/0345** English translation prepared by DIBt Page 2 of 19 | 13 August 2025 The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such. This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011. Page 3 of 19 | 13 August 2025 #### **Specific Part** #### 1 Technical description of the product The TOX Drop-in Anchor E / ES is a fastener made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion. The fixture shall be anchored with a fastening screw or threaded rod according to Annex A2. The product description is given in Annex A. ## 2 Specification of the intended use in accordance with the applicable European Assessment Document The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B. The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works. #### 3 Performance of the product and references to the methods used for its assessment #### 3.1 Safety in case of fire (BWR 2) | Essential characteristic | Performance | |--------------------------|---------------------| | Reaction to fire | Class A1 | | Resistance to fire | See Annex C4 and C5 | #### 3.2 Safety in use (BWR 4) | Essential characteristic | Performance | |--|----------------------------| | Characteristic resistance for all load directions and modes of failure for simplified design | See Annex B3, B4, C1 to C3 | | Durability | See Annex B1 | ## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC]. The system to be applied is: 2+ ## **European Technical Assessment ETA-08/0345** English translation prepared by DIBt Page 4 of 19 | 13 August 2025 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik. Issued in Berlin on 13 August 2025 by Deutsches Institut für Bautechnik Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider ### **Drop-in Anchor E / ES** Anchor sizes and variations **Drop-in Anchor E** (without shoulder) **Drop-in Anchor ES** (with shoulder) Anchorage depth hef ≥ 30 mm (zinc plated, A4 or HCR) 0 ES M6x30 E M6x30 E M8x30 ES M8x30 ES M8x40 E M8x40 ES M10x30 (zinc plated) E M10x40 ES M10x40 E M12x50 ES M12x50 E M16x65 ES M16x65 **Drop-in Anchor ES** (with shoulder) Anchorage depth hef = 25 mm (zinc plated) ES M6x25 ES M8x25 ES M10x25 ES M12x25 Installation situation E/ES in concrete Installation situation ES in precast pre-stressed hollow core slabs for hef = 25 mm w / e ≤ 4,2 = core width W = web thickness е = flange thickness ≥35mm (or ≥ 30mm, see Annex C3) $\mathsf{d}_{\mathtt{b}}$ = anchorage depth = thickness of fixture t_fix = edge distance #### **TOX Drop-in Anchor E / ES** #### **Product description** Anchor sizes and variations / Installation situations Annex A1 #### **Table A1: Materials** | Part | Designation | Steel, zinc plated | Stainless steel A4 | High corrosion resistant steel HCR | |------|------------------|---|--|---| | 1 | Anchor
sleeve | Cold formed or
machining steel,
galvanized,
EN ISO 4042:2018 | Stainless steel
(e.g. 1.4401, 1.4404, 1.4571)
EN 10088:2014,
EN ISO 3506:2020 | Stainless steel,
1.4529, 1.4565,
EN 10088:2014,
EN ISO 3506:2020 | | 2 | Cone | Cold formed or machining steel | Stainless steel (e.g. 1.4401, 1.4
EN 10088:2014 | 1404, 1.4571) | ## Requirements on the fastening screw or the threaded rod and nut according to the engineering documents: - Minimum screw-in depth L_{sdmin} see Table B1 and B2 - The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}. - A₅ > 8 % Ductility - Materials - **Steel, zinc plated,** property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012 - Stainless steel A4 or high corrosion resistant steel HCR, property class 70 or 80 according to EN ISO 3506:2020 | TOX Drop-in Anchor E / ES | | |-------------------------------|----------| | Product description Materials | Annex A2 | #### **Anchor sleeve** #### Anchor version without shoulder (E) #### Anchor version with shoulder (ES) Cone M6x25 to M12x25, M6x30 and M10x30 remaining sizes Marking: see Table A2 identifying mark of manufacturing plant anchor identity (version without shoulder) anchor identity (version with shoulder) M8 size of thread40 anchorage depth #### additional marking A4 stainless steel HCR high corrosion resistant steel #### Table A2: Dimensions and marking | Anchor | An | chors | sleeve |) | | Marking | | | |--------|--------|-------|--------|-----------------|-------------------------------|-----------------------------|-------------|------| | size | thread | Ø b | Lн | L _{th} | Version E
(without sleeve) | Version ES
(with sleeve) | alternative | Cone | | M6x25 | М6 | 8 | 25 | 12 | - | S ES M6x25 | - | | | M6x30 | М6 | 8 | 30 | 13 | | S ES M6x30 | | | | M8x25 | M8 | 10 | 25 | 12 | - | | - | | | M8x30 | M8 | 10 | 30 | 13 | | ⇔ ES M8x30 | | | | M8x40 | M8 | 10 | 40 | 20 | | ⇔ ES M8x40 | | | | M10x25 | M10 | 12 | 25 | 12 | - | ⇔ ES M10x25 | - | | | M10x30 | M10 | 12 | 30 | 12 | - | ⇔ ES M10x30 | | | | M10x40 | M10 | 12 | 40 | 15 | | | | | | M12x25 | M12 | 15 | 25 | 12 | - | | - | | | M12x50 | M12 | 15 | 50 | 18 | E M12x50 | ⇔ ES M12x50 | | | | M16x65 | M16 | 19,7 | 65 | 23 | E M16x65 | ⇔ ES M16x65 | | | Dimensions in mm #### **TOX Drop-in Anchor E / ES** Product description Dimensions and Marking Annex A3 Table A3: Dimensions and marking of setting tools | Anchor Ø m f | | | | Setting tool fo | arking | Setting tool | | | | | |--------------|-------|------|------------|-----------------|------------|--------------|------------|-------------|------------|------------| | size | Ø 111 | ' | | Marking | | alternative | | Marking | | lternative | | M6x25 | 4,9 | 17 | \Diamond | M ES M6x25 | | - | \Diamond | ES M6x25 | | - | | M6x30 | 4,9 | 17 | \Diamond | M E/ES M6x30 | \Diamond | M E M6 | \Diamond | E/ES M6x30 | \Diamond | E M6 | | M8x25 | 6,4 | 17 | \Diamond | M ES M8x25 | | - | \Diamond | ES M8x25 | | - | | M8x30 | 6,4 | 18 | \Diamond | M E/ES M8x30 | \Diamond | M E M8 | \Diamond | E/ES M8x30 | \Diamond | E M8 | | M8x40 | 6,4 | 28 | \Diamond | M E/ES M8x40 | \Diamond | M E M8x40 | \Diamond | E/ES M8x40 | \Diamond | E M8x40 | | M10x25 | 8,0 | 18 | \Diamond | M ES M10x25 | | - | \Diamond | ES M10x25 | | - | | M10x30 | 8,0 | 18 | \Diamond | M ES M10x30 | \Diamond | M E M10x30 | \Diamond | ES M10x30 | \Diamond | E M10x30 | | M10x40 | 8,0 | 24 | \Diamond | M E/ES M10x40 | \Diamond | M E M10 | \Diamond | E/ES M10x40 | \Diamond | E M10 | | M12x25 | 10,0 | 15,5 | \Diamond | M ES M12x25 | | - | \Diamond | ES M12x25 | | - | | M12x50 | 10,0 | 30 | \Diamond | M E/ES M12x50 | \Diamond | M E M12 | \Diamond | E/ES M12x50 | \Diamond | E M12 | | M16x65 | 13,5 | 36 | \Diamond | M E/ES M16x65 | \Diamond | M E M16 | \Diamond | E/ES M16x65 | \Diamond | E M16 | Dimensions in mm | TOX Drop-in Anchor E / ES | | |---|----------| | Product description Setting tools / Dimensions and marking of setting tools | Annex A4 | #### Specifications of intended use | Drop-in Anchor E/ES | Anchorage depth h _{ef} ≥ 30 mm | | | | | | | | | |---|---|-------|-------|--------|--------|--------|--------|--|--| | Drop-III Anctior E/E3 | M6x30 | M8x30 | M8x40 | M10x30 | M10x40 | M12x50 | M16x65 | | | | Steel, zinc plated | ✓ | | | | | | | | | | Stainless steel A4 and high corrosion resistant steel HCR | | ✓ | | _1) 🗸 | | | | | | | Static and quasi-static loads | ✓ | | | | | | | | | | Fire exposure | | | | ✓ | | | | | | | Cracked and uncracked concrete | ✓ | | | | | | | | | | Solid concrete C20/25 to C50/60 | | | | ✓ | | | | | | | Dron in Anchor ES | Anchorage depth h _{ef} = 25 mm | | | | | | | | |---|---|-------|--------|--------|--|--|--|--| | Drop-in Anchor ES | M6x25 | M8x25 | M10x25 | M12x25 | | | | | | Steel, zinc plated | | , | / | | | | | | | Stainless steel A4 and high corrosion resistant steel HCR | - | | | | | | | | | Static and quasi-static loads | ✓ | | | | | | | | | Fire exposure (solid concrete, C20/25 to C50/60) | ✓ | | | | | | | | | Cracked and uncracked concrete | √ | | | | | | | | | Solid concrete C12/15 to C50/60 | ✓ | | | | | | | | | Precast pre-stressed hollow core slabs C30/37 to C50/60 | √ | | | | | | | | ¹⁾ Anchor version is not part of the ETA #### Use only for redundant, non-structural systems! #### Rase materials • Compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013 + A1:2016 #### **Use conditions:** - Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel) - Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal conditions, if no particularly aggressive conditions exist (stainless steel or high corrosion resistant steel) - Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particularly aggressive conditions exist (high corrosion resistant steel) Note: Particularly aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.) | TOX Drop-in Anchor E / ES | | |--------------------------------|----------| | Intended use
Specifications | Annex B1 | #### Specifications of intended use #### Design: - Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work - Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.) - The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer - Anchorages are designed acc. to EN 1992-4:2018 (if necessary in connection with TR 055) - Anchorages in solid concrete: design method B - Anchorages in precast pre-stressed hollow core slabs: design method C #### Installation: - Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools - Drill hole by hammer drilling or vacuum drilling | TOX Drop-in Anchor E / ES | | |--------------------------------|----------| | Intended use
Specifications | Annex B2 | Table B1: Installation parameters for h_{ef} ≥ 30 mm | Anchor size | | | M6x30 | M8x30 | M8x40 | M10x30 | M10x40 | M12x50 | M16x65 | |---|-------------------------|------|-------|-------|-------|--------|--------|--------|--------| | Depth of drill hole E | h ₀ = | [mm] | 30 | 30 | 40 | 30 | 40 | 50 | 65 | | Depth of drill hole ES | h₀ ≥ | [mm] | 30 | 30 | 40 | 30 | 40 | 50 | 65 | | Drill hole diameter | d ₀ = | [mm] | 8 | 10 | 10 | 12 | 12 | 15 | 20 | | Cutting diameter of drill bit | $d_{\text{cut}} \leq$ | [mm] | 8,45 | 10,45 | 10,45 | 12,5 | 12,5 | 15,5 | 20,55 | | Maximum installation torque | T _{inst} ≤ | [Nm] | 4 | 8 | 8 | 15 | 15 | 35 | 60 | | Diameter of clearance hole in the fixture | $d_f \! \leq \!$ | [mm] | 7 | 9 | 9 | 12 | 12 | 14 | 18 | | Thread length | L_{th} | [mm] | 13 | 13 | 20 | 12 | 15 | 18 | 23 | | Minimum screw-in depth | L _{sdmin} | [mm] | 7 | 9 | 9 | 10 | 11 | 13 | 18 | | Steel, zinc plated | | | | | | | | | | | Minimum thickness of member | h _{min} | [mm] | 100 | 100 | 100 | 120 | 120 | 130 | 160 | | Minimum spacing | Smin | [mm] | 55 | 60 | 80 | 100 | 100 | 120 | 150 | | Minimum distance | Cmin | [mm] | 95 | 95 | 95 | 115 | 135 | 165 | 200 | | Stainless steel A4, HCR | | | | | | | | | | | Minimum thickness of member | h _{min} | [mm] | 100 | 100 | 100 | _1) | 130 | 140 | 160 | | Minimum spacing | Smin | [mm] | 50 | 60 | 80 | _1) | 100 | 120 | 150 | | Minimum distance | C _{min} | [mm] | 80 | 95 | 95 | _1) | 135 | 165 | 200 | ¹⁾ Anchor version is not part of the ETA #### Table B2: Installation parameters for hef = 25 mm | Anchor size | M6x25 | M8x25 | M10x25 | M12x25 | | | | | | |--|---|-------|--------|--------|------|------|--|--|--| | Depth of drill hole | h ₀≥ | [mm] | 25 | 25 | 25 | 25 | | | | | Drill hole diameter | d ₀ = | [mm] | 8 | 10 | 12 | 15 | | | | | Cutting diameter of drill bit | $d_{\text{cut}} \leq$ | [mm] | 8,45 | 10,45 | 12,5 | 15,5 | | | | | Maximum installation torque | T _{inst} ≤ | [Nm] | 4 | 8 | 15 | 35 | | | | | Diameter of clearance hole in the fixture | $d_{f} \leq$ | [mm] | 7 | 9 | 12 | 14 | | | | | Thread length | L _{th} | [mm] | 12 | 12 | 12 | 12 | | | | | Minimum screw-in depth | L _{sdmin} | [mm] | 6 | 8 | 10 | 12 | | | | | Minimum thickness of member | h _{min,1} | [mm] | 80 | | | | | | | | Minimum spacing | Smin | [mm] | 30 | 70 | 70 | 100 | | | | | Minimum edge distance | C _{min} | [mm] | 60 | 100 | 100 | 130 | | | | | Standard thickness of member | h _{min,2} | [mm] | | 10 | 00 | | | | | | Minimum spacing | Smin | [mm] | 30 | 50 | 60 | 100 | | | | | Minimum edge distance | C _{min} | [mm] | 60 | 100 | 100 | 110 | | | | | Installation in precast pre-stressed hollo | Installation in precast pre-stressed hollow core slabs C30/37 to C50/60 | | | | | | | | | | Spacing | S _{min} | [mm] | 200 | | | | | | | | Edge distance | Cmin | [mm] | | 15 | 50 | | | | | | TOX Drop-in Anchor E / ES | | |---|----------| | Intended use
Installation parameters | Annex B3 | #### Admissible anchor positions in precast pre-stressed hollow core slabs (w / e \leq 4,2) Core distance: I_c ≥ 100 mm Pre-stressing steel distance: $I_p \ge 100 \text{ mm}$ Distance between anchor position and pre-stressing steel: $a_p \ge 50 \text{ mm}$ ## Minimum spacing and edge distance of anchors and distance in precast pre-stressed hollow core slabs Minimum edge distance $c_{min} \ge 150 \text{ mm}$ Minimum spacing $s_{min} \ge 200 \text{ mm}$ #### **TOX Drop-in Anchor E / ES** #### Intended use Installation in precast pre-stressed hollow core slabs Annex B4 # Installation instructions for solid concrete slabs Drill hole perpendicular to concrete surface. Using vacuum drill bit proceed with step 3. Blow out dust. Alternatively, vacuum clean down to the bottom of the 2 hole. Drive in anchor. 3 Drive in cone by using setting tool. 4 Shoulder of setting tool must fit on anchor rim. 5 T_{inst} Turn in screw or threaded rod with nut, observe minimum screw-in depth (see Annex B3). 6 Apply installation torque T_{inst}. | TOX Drop-in Anchor E / ES | | |---|----------| | Intended use Installation instructions for solid concrete slabs | Annex B5 | | 1 | | Search for the position of the reinforcement. | |---|-------------------|--| | 2 | | Mark the position of the pre-stressing steel and search for the other position of the pre-stressing steel. | | 3 | | Mark the positions of next pre-stressing steel. | | 4 | ≥50mm
≥100mm | Drill hole while maintaining the required distances. | | 5 | | Blow out dust. Alternatively vacuum clean down to the bottom of the hole. | | 6 | | Drive in anchor. | | 7 | | Drive in cone by using setting tool. | | 8 | | Shoulder of setting tool must fit on anchor rim. | | 9 | T _{inst} | Turn in screw or threaded rod with nut, observe the minimum screw-in depth (see Annex B3). Apply installation torque T _{inst} . | Z191956.25 8.06.01-191/25 Installation instructions for precast pre-stressed hollow core slabs Table C1: Characteristic resistance for hef ≥ 30 mm in solid concrete slabs | Anchor size | | | M6x30 | M8x30 | M8x40 | M10x30 | M10x40 | M12x50 | M16x65 | |--|-----------------------------|------|-------|-------|-------|--------|--------|--------|--------| | Installation factor | γinst | [-] | | | | 1,0 | | | | | Load in any direction | | | | | | | | | | | Characteristic resistance in concrete C20/25 to C50/60 | F ⁰ Rk | [kN] | 3 | 5 | 6 | 6 | 6 | 6 | 16 | | Partial factor | γ м $^{1)}$ | [-] | 1,8 | 2, | 16 | 2,1 | 2,16 | 1,8 | 1,8 | | Spacing | Scr | [mm] | 130 | 180 | 210 | 230 | 170 | 170 | 400 | | Edge distance | Ccr | [mm] | 65 | 90 | 105 | 115 | 85 | 85 | 200 | | Shear load with lever arm, stee | el zinc plate | ed | | | | | | | | | Characteristic resistance (Steel 4.6) | M ⁰ Rk,s | [Nm] | 6,1 | 15 | 15 | 30 | 30 | 52 | 133 | | Partial factor | $\gamma_{\text{Ms}}^{1)}$ | [-] | | | | 1,67 | | | | | Characteristic resistance (Steel 4.8) | M ⁰ Rk,s | [Nm] | 6,1 | 15 | 15 | 30 | 30 | 52 | 133 | | Partial factor | $\gamma_{\text{Ms}}^{1)}$ | [-] | | | | 1,25 | | | | | Characteristic resistance (Steel 5.6) | M^0 Rk,s | [Nm] | 7,6 | 19 | 19 | 37 | 37 | 65 | 166 | | Partial factor | $\gamma_{\text{Ms}}{}^{1)}$ | [-] | | | | 1,67 | | | | | Characteristic resistance (Steel 5.8) | M^0 Rk,s | [Nm] | 7,6 | 19 | 19 | 37 | 37 | 65 | 166 | | Partial factor | $\gamma_{\text{Ms}}^{1)}$ | [-] | | | | 1,25 | | | | | Characteristic resistance (Steel 8.8) | M^0 Rk,s | [Nm] | 12 | 30 | 30 | 59 | 60 | 105 | 266 | | Partial factor | $\gamma_{\text{Ms}}^{1)}$ | [-] | | | | 1,25 | | | | | Shear load with lever arm, stainless steel A4 / HCR | | | | | | | | | | | Characteristic resistance (Property class 70) | M ⁰ Rk,s | [Nm] | 11 | 26 | 26 | _2) | 52 | 92 | 233 | | Partial factor | $\gamma_{\text{Ms}}^{1)}$ | [-] | | | | 1,56 | | | | | Characteristic resistance (Property class 80) | M ⁰ Rk,s | [Nm] | 12 | 30 | 30 | _2) | 60 | 105 | 266 | | Partial factor | $\gamma_{ m Ms}^{1)}$ | [-] | | | · · · | 1,33 | | | | | TOX Drop-in Anchor E / ES | | |---|----------| | Performance Characteristic resistance for h _{ef} ≥ 30 mm in solid concrete | Annex C1 | ¹⁾ In absence of other national regulations 2) Anchor version is not part of the ETA Table C2: Characteristic resistance for hef = 25 mm in solid concrete slabs¹⁾ | Anchor size | M6x25 | M8x25 | M10x25 | M12x25 | | | | | |---|----------------------------|-------|----------|--------|-----|-----|--|--| | Installation factor | γinst | [-] | 1,0 | | | | | | | Load in any direction | | | | | | | | | | Characteristic resistance in concrete C12/15 and C16/20 | F^0_Rk | [kN] | 2,5 | 2,5 | 3,5 | 3,5 | | | | Characteristic resistance in concrete C20/25 to C50/60 | F^0_Rk | [kN] | 3,5 | 4,0 | 4,5 | 4,5 | | | | Partial factor | $\gamma_{\text{M}}{}^{2)}$ | [-] | | 1 | ,5 | | | | | Spacing | Scr | [mm] | 75 | 75 | 75 | 75 | | | | Edge distance | Ccr | [mm] | 38 | 38 | 38 | 38 | | | | Shear load with lever arm | | | | | | | | | | Characteristic resistance (Steel 4.6) | M ⁰ Rk,s | [Nm] | 6,1 | 15 | 30 | 52 | | | | Partial factor | $\gamma_{\text{Ms}^{2)}}$ | [-] | | 1, | 67 | | | | | Characteristic resistance (Steel 4.8) | M^0 Rk,s | [Nm] | 6,1 | 15 | 30 | 52 | | | | Partial factor | $\gamma_{\text{Ms}^{2)}}$ | [-] | | 1, | 25 | | | | | Characteristic resistance (Steel 5.6) | M^0 Rk,s | [Nm] | 7,6 | 19 | 37 | 65 | | | | Partial factor | $\gamma_{\text{Ms}^{2)}}$ | [-] | 1,67 | | | | | | | Characteristic resistance (Steel 5.8) | M^0 Rk,s | [Nm] | 7,6 | 19 | 37 | 65 | | | | Partial factor | $\gamma_{\text{Ms}^{2)}}$ | [-] | 1,25 | | | | | | | Characteristic resistance (Steel 8.8) | M^0 Rk,s | [Nm] | 12 30 60 | | | | | | | Partial factor | $\gamma_{\text{Ms}^{2)}}$ | [-] | | 1, | 25 | | | | ¹⁾ Use only in dry internal conditions | TOX Drop-in Anchor E / ES | | |---|----------| | Performance Characteristic resistance for hef = 25 mm in solid concrete | Annex C2 | ²⁾ In absence of other national regulations Table C3: Characteristic resistance for h_{ef} = 25 mm in precast pre-stressed hollow core Slabs¹⁾ | Anchor size | M6x25 | M8x25 | M10x25 | M12x25 | | | |--|---------------------------|-------|-------------|--------|--------|-----| | Installation factor | [-] | 1,0 | | | | | | Load in any direction | | | | | | | | Flange thickness | d♭ | [mm] | | ≥ 35 | (30)2) | | | Characteristic resistance in precast pre-stressed hollow core slabs C30/37 to C50/60 | F_Rk | [kN] | 3,5 | 4,0 | 4,5 | 4,5 | | Partial factor | $\gamma M^{3)}$ | [-] | | 1 | ,5 | | | Spacing | Scr | [mm] | | 20 | 00 | | | Edge distance | Ccr | [mm] | | 1 | 50 | | | Shear load with lever arm | | | | | | | | Characteristic resistance (Steel 4.6) | M ⁰ Rk,s | [Nm] | 6,1 | 15 | 30 | 52 | | Partial factor | $\gamma_{\text{Ms}^{3)}}$ | [-] | | 1, | 67 | | | Characteristic resistance (Steel 4.8) | M ⁰ Rk,s | [Nm] | 6,1 | 15 | 30 | 52 | | Partial factor | $\gamma_{\text{Ms}^{3)}}$ | [-] | | 1, | 25 | | | Characteristic resistance (Steel 5.6) | M^0 Rk,s | [Nm] | 7,6 | 19 | 37 | 65 | | Partial factor | $\gamma_{\text{Ms}^{2)}}$ | [-] | 1,67 | | | | | Characteristic resistance (Steel 5.8) | M ⁰ Rk,s | [Nm] | 7,6 19 37 6 | | | 65 | | Partial factor | $\gamma_{\text{Ms}^{3)}}$ | [-] | 1,25 | | | | | Characteristic resistance (Steel 8.8) | M ⁰ Rk,s | [Nm] | 12 30 60 10 | | | 105 | | Partial factor | $\gamma_{\text{Ms}^{3)}}$ | [-] | | 1, | 25 | | ¹⁾ Use only in dry internal conditions | TOX Drop-in Anchor E / ES | | |---|----------| | Performance Characteristic resistance for hef = 25 mm in precast pre-stressed hollow core slabs | Annex C3 | ²⁾ The anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core ³⁾ In absence of other national regulations Table C4: Characteristic values under fire exposure in solid concrete slabs C20/25 to C50/60 for $h_{ef} \ge 30 \text{ mm}$ | Anahai | v o!=o | | | | M6x30 | Moveo | Movan | M10x30 | M40×40 | M42vE0 | MAGWGE | |--|-----------|---------------------------|---------------------------------|--------|------------|-----------|----------|----------|----------|--------|--------| | Ancho | | I | | | Mex30 | M8x30 | IVI8X4U | WITUX3U | W1UX4U | W12X5U | WITOXO | | Fire res | | Load in any direc | | | | | | | | | | | | R 30 | | | [kN] | 0,4 | 0,6 | 0,6 | 0,9 | 0,9 | 1,5 | 3,1 | | Steel | R 60 | Characteristic resistance | $F^0_{Rk,fi}$ | [kN] | 0,35 | 0,6 | 0,6 | 0,8 | 0,8 | 1,3 | 2,4 | | 4.6 | R 90 | | r °Rk,fi | [kN] | 0,3 | 0,6 | 0,6 | 0,6 | 0,6 | 1,1 | 2,0 | | | R 120 | | | [kN] | 0,25 | 0,5 | 0,5 | 0,5 | 0,5 | 0,8 | 1,6 | | | R 30 | | | [kN] | 0,4 | 0,9 | 1,1 | 0,9 | 1,5 | 1,5 | 4,0 | | Steel | R 60 | Characteristic | - 0 | [kN] | 0,35 | 0,9 | 0,9 | 0,9 | 1,5 | 1,5 | 4,0 | | 4.8 | R 90 | resistance | F ⁰ _{Rk,fi} | [kN] | 0,3 | 0,6 | 0,6 | 0,9 | 1,1 | 1,5 | 3,0 | | | R 120 | 1 | | [kN] | 0,3 | 0,5 | 0,5 | 0,7 | 0,9 | 1,2 | 2,4 | | | R 30 | Characteristic resistance | | [kN] | 0,8 | 0,9 | 1,5 | 0,9 | 1,5 | 1,5 | 4,0 | | Steel | R 60 | | - 0 | [kN] | 0,8 | 0,9 | 1,5 | 0,9 | 1,5 | 1,5 | 4,0 | | ≥ 5.6 | R 90 | | F ⁰ Rk,fi | [kN] | 0,4 | 0,9 | 0,9 | 0,9 | 1,5 | 1,5 | 3,7 | | | R 120 | | | [kN] | 0,3 | 0,5 | 0,5 | 0,7 | 1,0 | 1,2 | 2,4 | | | R 30 | | | [kN] | 0,8 | 0,9 | 1,5 | _1) | 1,5 | 1,5 | 4,0 | | A4 / | R 60 | Characteristic | $F^0_{Rk,fi}$ | [kN] | 0,8 | 0,9 | 1,5 | _1) | 1,5 | 1,5 | 4,0 | | HCR | R 90 | resistance | r ⁻Rk,fi | [kN] | 0,4 | 0,9 | 0,9 | _1) | 1,5 | 1,5 | 3,7 | | | R 120 | | | [kN] | 0,3 | 0,5 | 0,5 | _1) | 1,0 | 1,2 | 2,4 | | | | Partial factor | γM,fi | [-] | | | | 1,0 | | | | | Steel z | inc plate | ed | | | | | | | | | | | | | Spacing | S _{cr,fi} | [mm] | 130 | 180 | 210 | 170 | 170 | 200 | 400 | | R 30 – R 120 | | Edge distance | C cr,fi | [mm] | 65 | 90 | 105 | 85 | 85 | 100 | 200 | | If the fire attack is from more than one side, the edge distance shall be \geq 300 mm. | | | | | | | | | | | | | Stainle | ss steel | A4, HCR | | | | | | | | | | | | | Spacing | S cr,fi | [mm] | 130 | 180 | 210 | _1) | 170 | 200 | 400 | | R 30 - | R 120 | Edge distance | C _{cr,fi} | [mm] | 65 | 90 | 105 | _1) | 85 | 100 | 200 | | | | If the fire attack is | from more t | han on | e side, tł | ne edge (| distance | shall be | ≥ 300 mr | m. | | ¹⁾ Anchor version is not part of the ETA | TOX Drop-in Anchor E / ES | | |--|----------| | Performance
Characteristic values under fire exposure for h _{ef} ≥ 30 mm | Annex C4 | ## Table C5: Characteristic values under fire exposure in solid concrete slabs C20/25 to C50/60 for h_{ef} = 25 mm | Anchor size | | | | | M6x25 | M8x25 | M10x25 | M12x25 | |----------------------------|-------|--|----------------------|------|-------|-------|--------|--------| | Fire resis-
tance class | | Load in any direction | | | | | | | | Steel
≥ 4.6 | R 30 | Characteristic resistance | | [kN] | 0,4 | 0,6 | 0,6 | 0,6 | | | R 60 | | F ⁰ Rk,fi | [kN] | 0,35 | 0,6 | 0,6 | 0,6 | | | R 90 | | ୮ °Rk,fi | [kN] | 0,3 | 0,6 | 0,6 | 0,6 | | | R 120 | | | [kN] | 0,25 | 0,5 | 0,5 | 0,5 | | | | Partial factor | γM,fi | [-] | 1,0 | | | | | R 30 – R 120 | | Spacing | S _{cr,fi} | [mm] | | | | | | | | Edge distance | C cr,fi | [mm] | 50 | 50 | 50 | 50 | | | | If the fire attack is from more than one side, the edge distance shall be \geq 300 mm. | | | | | | | **TOX Drop-in Anchor E / ES** **Performance** Characteristic values under fire exposure for h_{ef} = 25 mm **Annex C5**