

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-09/0175 of 5 May 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Vorpa Heavy-duty anchor TOP
Product family to which the construction product belongs	Torque controlled expansion anchor for use in non-cracked concrete
Manufacturer	VORPA srl Via S. Leo 5 47838 Riccione (RN) ITALIEN
Manufacturing plant	VORPA srl, ITALY
This European Technical Assessment contains	12 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601, Edition 05/2021
This version replaces	ETA-09/0175 issued on 22 August 2014

Page 2 of 12 | 5 May 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 5 May 2025

Specific Part

1 Technical description of the product

The Vorpa heavy-duty anchor TOP (type TOP/TOP A4, type TOP BU/TOP BU A4 and type TOP BP) in the range of M6, M8, M10 and M12 is an anchor made of galvanised steel or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 2
Characteristic resistance for seismic performance category C1 and C2	No performance assessed
Displacements	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B 1

Page 4 of 12 | 5 May 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 5 May 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Ziegler

Page 5 of European Technical Assessment ETA-09/0175 of 5 May 2025

English translation prepared by DIBt

Table A1: Materials

Comp.	Denomination	Туре	Material
1	Conical nut	TOP TOP BU TOP BP TOP A4 TOP BU A4	Steel, EN 10139:2016+A1:2020 Electrolytic zinc plated ≥ 5 µm according to EN ISO 4042:2022 Stainless steel 1.4401, 1.4404 or 1.4571 according to EN 10088-1:2014
2	Expander	TOP TOP BU TOP BP TOP A4 TOP BU A4	Cold formed steel, EN 10111:2008 Electrolytic zinc plated $\ge 5 \ \mu m$ according to EN ISO 4042:2022 Stainless steel 1.4401, 1.4404 or 1.4571 according to EN 10088-1:2014
3/7	Washer	TOP TOP BU TOP BP TOP A4 TOP BU A4	Steel min. 140 HV Electrolytic zinc plated ≥ 5 µm according to EN ISO 4042:2022 Stainless steel 1.4401, 1.4404 or 1.4571 according to EN 10088-1:2014
4	Hexagonal head	TOP TOP BU TOP BP	Steel, property class 8.8 EN ISO 898-1:2012 Electrolytic zinc plated ≥ 5 µm according to EN ISO 4042:2022
		TOP A4 TOP BU A4	Stainless steel 1.4401, 1.4404 or 1.4571 according to EN 10088-1:2014
5	Spacer ring	TOP BP	Polypropylene
6	Distance sleeve	TOP BP	Cold formed steel, EN 10111:2008 or Drawn pipe E235+C, EN 10305-2:2016 Electrolytic zinc plated ≥ 5 µm according to EN ISO 4042:2022

Vorpa Heavy-duty anchor TOP

Product description Materials Annex A 3

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021.
- Uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III: TOP A4 and TOP BU A4 (stainless steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018

Installation:

- Hole drilling by hammer drilling only.
- Clean the drill hole.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the
 person responsible for technical matters of the site.
- in case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- anchor installation such that the effective anchorage depth is complied with. This compliance is
 ensured, if the leading edge of expander does not more exceed the concrete surface

Vorpa Heavy-duty anchor TOP

Intended Use Specifications Annex B 1

Deutsches Institut DIBt für Bautechnik

Table B1: Ins	tallation Par	ramet	ers				
Anchor size				M6	M8	M10	M12
Effective anchorage d	epth	h _{ef}	[mm]	39,5	44,5	51,5	63,0
Nominal drill hole dian	neter	d ₀	[mm]	10	12	14	18
Cutting diameter of dr	ill bit	d _{cut} ≤	[mm]	10,45	12,50	14,50	18,50
Drill hole depth		h₁ ≥	[mm]	$L_{S} - t_{fix} + 10$	$L_{\rm S}-t_{\rm fix}$ + 10	$L_{\rm S}-t_{\rm fix}$ + 10	$L_{S} - t_{fix} + 10$
Clearance hole	TOP (A4) TOP BU (A4)	d _f ≤	[mm]	7	9	12	14
diameter in the fixture	TOP BP	d _f ≤	[mm]	12	14	18	20
Torque moment		T _{inst}	[Nm]	10	25	40	75
Minimum fixture thickness	TOP (A4) TOP BU (A4) TOP BP	t _{fix.min}	[mm]	1	1	1	1
	TOP	t _{fix.max}	[mm]	150	200	250	300
Maximum fixture	TOP A4	t _{fix.max}	[mm]	50	65	85	70
thickness	TOP BU (A4)	t _{fix,max}	[mm]	10	14	20	25
	TOP BP	t _{fix,max}	[mm]	30	35	38	43
	TOP (A4)	L _s ≥	[mm]	t _{fix} +45	t _{fix} +51	t _{fix} +60	t _{fix} +75
Hexagonal head bolt length	TOP BU (A4)	Ls	[mm]	55	65	80	100
lengui	TOP BP	Ls	[mm]	80	90	100	120

Table B2: Minimum thickness of concrete member, minimum spacing and edge distances

Anchor size	M6	M8	M10	M12		
Minimum member thickness	h _{min}	[mm]	135	135	140	160
Minimum spacing	S _{min}	[mm]	65	90	135	165
Minimum edge distance	C _{min}	[mm]	45	70	85	115

Vorpa Heavy-duty anchor TOP	

Installation parameters

Minimum thickness of concrete member, minimum spacing and edge distances

Intended Use

Table C1: Design method A, Characteristic values for tension loads

Anchor size			M6	M8	M10	M12	
Steel failure					•		
Characteristic resistance, Anchor type TOP, TOP BU, TOP BP	N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4	
Partial safety factor	γ _{Ms} 1)			1,5			
Characteristic resistance, Anchor type TOP A4, TOP BU A4	N _{Rk,s}	[kN]	14,1	25,6	40,6	59,0	
Partial safety factor	$\gamma_{Ms}{}^{1)}$			1,87			
Pullout failure							
Characteristic resistance in uncracked concrete C20/25, Anchor type TOP, TOP BU, TOP BP	$N_{Rk,p}$	[kN]	9	12	16	20	
Characteristic resistance in uncracked concrete C20/25, Anchor type TOP A4, TOP BU A4	N _{Rk,p}	[kN]	7,5	9	12	16	
	C30/37	[-]	1,17	1,08		1,22	
Increasing factors for concrete ψ_{C}	C40/50	[-]	1,33	1,	15	1,41	
	C50/60	[-]	1,50	1,	23	1,55	
Concrete cone failure							
Effective anchoring depth	h _{ef}	[mm]	39,5	44,5	51,5	63,0	
Factor uncracked concrete	k _{ucr,N}	[-]		11	1,0		
Spacing	S _{cr,N}	[mm]		3	h _{ef}		
Edge distance	C _{cr,N}	[mm]		1,5	i h _{ef}		
Splitting failure							
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	$Min (N_{Rk,p}; N^0_{Rk,c}{}^2))$			⁽⁾)	
Spacing	S _{cr,sp}	[mm]	160	200	260	280	
Edge distance	C _{cr,sp}	[mm]	80	100	130	140	
Installation safety factor (TOP, TOP BU, TOP BP)	γinst	[-]	1,2	1,4	1,4	1,0	
Installation safety factor (TOP A4, TOP BU A4)	γinst	[-]	1,0	1,2	1,2	1,2	

¹⁾ In absence of other national regulations.

²⁾ N⁰_{Rk,c} according to EN 1992-4:2018

Table C2: Displacements under tension loads

Anchor size			M6	M8	M10	M12
Tension load	Ν	[kN]	3,6	4,1	5,4	9,5
Displacement	δ_{N0}	[mm]	0,4	0,3	0,3	0,3
Displacement	δ _{N∞}	[mm]		1	,2	

Vorpa Heavy-duty anchor TOP

Performances

Design method A, Characteristic values of resistance under tension loads Displacements under tension loads Annex C 1

Deutsches Institut für Bautechnik

Anchor size			M6	M8	M10	M12	
Steel failure without level arm			1	1	1		
Characteristic resistance, Anchor type TOP, TOP BU, TOP BP	$V^0_{Rk,s}$	[kN]	8,0	14,6	23,2	33,7	
Partial safety factor	γ _{Ms} 1)	[-]		1,	25		
Characteristic resistance, Anchor type TOP A4, TOP BU A4	$V^0_{Rk,s}$	[kN]	7,0	12,8	20,3	29,5	
Partial safety factor	$\gamma_{Ms}{}^{1)}$	[-]	1,56				
Ductility factor	k ₇	[-]		1	,0		
Steel failure with level arm							
Characteristic bending moment, Anchor type TOP, TOP BU, TOP BP	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,8	
Partial safety factor	$\gamma_{Ms}{}^{1)}$	[-]		1,	25		
Characteristic bending moment, Anchor type TOP A4, TOP BU A4	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,7	
Partial safety factor	$\gamma_{Ms}{}^{1)}$	[-]		1,	56		
Concrete pry out failure							
Pryout factor	k ₈	[-]	1,0	1,0	1,0	2,0	
Concrete edge failure			1	1		1	
Effective length of anchor in shear loading	l _f	[mm]	39,5	44,5	51,5	63,0	
Effective external diameter of anchor	d _{nom}	[mm]	10	12	14	18	

¹⁾ In absence of other national regulations.

Table C4: Displacements under shear loads

Anchor size			M6	M8	M10	M12
Shear load	V	[kN]	5,1	6,9	7,6	9,5
Displacement	δ_{V0}	[mm]	6,0	5,3	5,3	5,0
Displacement	δ _{v∞}	[mm]	9,0	8,0	8,0	7,5

Vorpa Heavy-duty anchor TOP

Performances

Design method A, Characteristic values of resistance under shear loads Displacements under shear loads Annex C 2