

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-10/0356 of 17 February 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Bonded fasteners and bonded expansion fasteners for use in concrete

AC MARCA ADHESIVES, S.A. Av. Carrilet 293-299 08907 L'HOSPITALET DE LI. SPANIEN

AC MARCA ADHESIVES S.A.., Plant1 Germany

3 pages which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-10/0356 issued on 12 December 2017

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z010373.25

European Technical Assessment ETA-10/0356

English translation prepared by DIBt

Page 2 of 4 | 17 February 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 4 | 17 February 2025

Specific Part

1 Technical description of the product

The "Ceys Injection System TACO QUÍMICO VINYLESTER for concrete" is a bonded anchor consisting of a cartridge with injection mortar X TACO QUÍMICO VINYLESTER and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1, C 2, C 3, C 5 and C 7
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4, C 6 and C 8
Displacements (static and quasi-static loading)	See Annex C 9 to C 11
Characteristic resistance for seismic performance categories C1	See Annex C 12 and C 13
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	No performance assessed	

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-10/0356

English translation prepared by DIBt

Page 4 of 4 | 17 February 2025

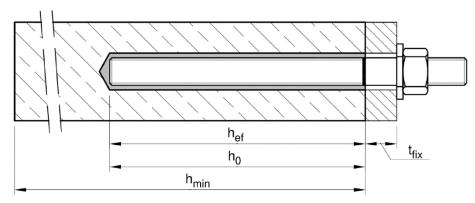
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

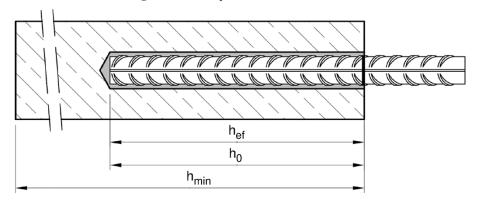
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

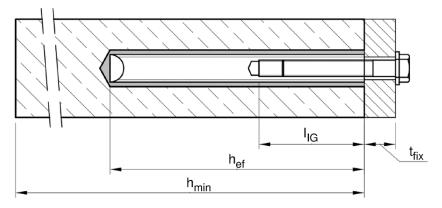
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 17 February 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture h_0 = nominal drill hole diameter

 h_{ef} = effective embedment depth I_{IG} = thread engagement length

h_{min} = minum thickness of member

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Product description

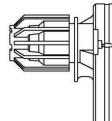
Installed condition

Annex A 1

Cartridge system

Coaxial Cartridge:

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml

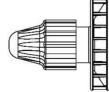

Imprint:

TACO QUÍMICO VINYLESTER

Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Side-by-Side Cartridge:

235 ml, 345 ml up to 360 ml and 825 ml


Imprint:

TACO QUÍMICO VINYLESTER

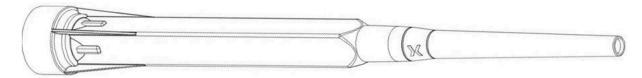
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Foil tube Cartridge:

165 ml and 300 ml



Imprint:


TACO QUÍMICO VINYLESTER

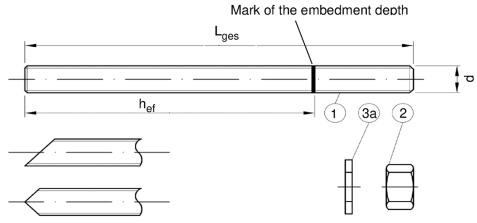
Processing and safety instructions, shelf life, charge number, manufacturer's information, quantity information

Static mixer CRW 14W

Static mixer PM-19E

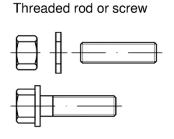
Piston plug VS and mixer extension VL

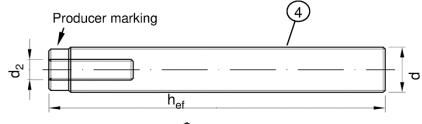
Ceys Injection system TACO QUÍMICO VINYLESTER for concrete


Product description

Injection system

Annex A 2


Threaded rod M8 up to M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Internal threaded rod IG-M6 to IG-M20



Marking Internal thread
Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

Filling washer VFS

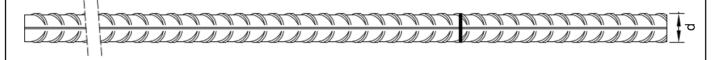
Mixer reduction nozzle MR

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Product description

Threaded rod; Internal threaded rod Filling washer; Mixer reduction nozzle

Annex A 3


	ble A1: Mate	erials				
Par	Designation	Material				
Stee z h	el, zinc plated (Steel nc plated ≥ 5 ot-dip galvanised ≥ 4	acc. to EN ISO 683-4:25 µm acc. to EN ISO 40 µm acc. to EN ISO 45 µm acc. to EN ISO	4042 146	2:2022 or 1:2022 and EN ISO 10684:	2004+AC:2009 or	
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%
	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
	Timedada red	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 300 N/mm ²	A ₅ > 8%
		EN 150 696-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 8%
<u>.</u>	Hexagon nut	acc. to	5	for anchor rod class 4.6 o for anchor rod class 5.6 o		
•	Toxagon nat	EN ISO 898-2:2012	8	for anchor rod class 8.8		
3a	Washer			galvanised or sherardized N ISO 7089:2000, EN ISC	7093:2000 or EN ISO	7094:2000)
3b	Filling washer	Steel, zinc plated, ho	t-dip	galvanised or sherardized		
	Internal threaded	Property class		Characteristic steel	Characteristic steel	Elongation at
	Internal threaded			ultimate tensile strength	yield strength	fracture
ļ	Internal threaded anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
ı	1	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²		
Stai Stai	anchor rod nless steel A2 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014)	A ₅ > 8%
Stai Stai	anchor rod nless steel A2 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1 .4565, acc. to EN 10088 Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel	A ₅ > 8%
Stai Stai Hig	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45	8.8 .431 .457	f _{uk} = 500 N/mm ² f _{uk} = 800 N/mm ² 1 / 1.4567 or 1.4541, acc. t 1 / 1.4362 or 1.4578, acc. t 1.4565, acc. to EN 10088	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014)	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at
Stai Stai Hig	anchor rod nless steel A2 (Mate	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to	8.8 .431 .457 529 or	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{1 / 1.4567 or 1.4541, acc. t} \\ \text{1 / 1.4362 or 1.4578, acc. t} \\ \text{1 .4565, acc. to EN 10088} \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture
Stai Stai Hig	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class	8.8 .431 .457 529 or	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$
Stai Stai Hig	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020	8.8 .431 .457 529 o	$\begin{aligned} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{1 / 1.4567 or 1.4541, acc. t} \\ \text{1 / 1.4362 or 1.4578, acc. t} \\ \text{1 .4565, acc. to EN 10088} \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \end{aligned}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	nless steel A2 (Mate nless steel A4 (Mate n corrosion resistan	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to	8.8 .431 .457 529 of 70 80 50	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{1 / 1.4567 or 1.4541, acc. t} \\ \text{1 / 1.4362 or 1.4578, acc. t} \\ \text{1 / 1.4365, acc. to EN 10088} \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Material Material Ma	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 acc. to EN ISO 3506-1:2020	8.8 .431 .457 629 or 50 70 80 50 70 80	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ²	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Material Material Ma	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.4529	8.8 .431 .457 529 or 70 80 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \end{split}$	$\begin{aligned} &f_{yk} = 400 \text{ N/mm}^2 \\ &f_{yk} = 640 \text{ N/mm}^2 \\ &o \text{ EN } 10088\text{-}1\text{:}2014) \\ &o \text{ EN } 10088\text{-}1\text{:}2014) \\ &-1\text{: }2014) \\ &\text{Characteristic steel yield strength} \\ &f_{yk} = 210 \text{ N/mm}^2 \\ &f_{yk} = 450 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \\ &f_{yk} = 600 \text{ N/mm}^2 \\ \end{aligned}$	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig	anchor rod nless steel A2 (Material Material Corrosion resistant Threaded rod 1)3) Hexagon nut 1)3)	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ere steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20	8.8 .431 .457 529 of 50 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1 / 1.4365, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ 07 / 1.4311 / 1.4567 \text{ or } 1.4 \\ 04 / 1.4571 / 1.4362 \text{ or } 1.4 \\ .4565, \text{ acc. to EN } 10088-1 \\ \text{EN ISO } 7089:2000, \text{ EN ISO } \text{orrosion resistance steel} \end{split}$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088- 578, acc. to EN 10088- : 2014	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Hig 1 1 2 3a	anchor rod nless steel A2 (Material National Corrosion resistant Threaded rod 1)3) Hexagon nut 1)3) Washer Filling washer	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ere steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452 (e.g.: EN ISO 887:20	8.8 .431 .457 529 of 50 70 80 71.43 71.44 9 or 1	$\begin{split} f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 800 \text{ N/mm}^2 \\ 1 / 1.4567 \text{ or } 1.4541, \text{ acc. t} \\ 1 / 1.4362 \text{ or } 1.4578, \text{ acc. t} \\ 1.4565, \text{ acc. to EN } 10088 \\ \text{Characteristic steel} \\ \text{ultimate tensile strength} \\ f_{uk} &= 500 \text{ N/mm}^2 \\ f_{uk} &= 700 \text{ N/mm}^2 \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ 07 / 1.4311 / 1.4567 \text{ or } 1.4 \\ 04 / 1.4571 / 1.4362 \text{ or } 1.4 \\ 04 / 1.4571 / 1.4362 \text{ or } 1.4 \\ 04 / 1.4571 / 1.4362 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4571 / 1.4567 \text{ or } 1.4 \\ 05 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4571 / 1.4$	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088-578, acc. to EN 10088-: 2014 0 7093:2000 or EN ISO Characteristic steel yield strength	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$
Stai Stai Hig 1	anchor rod nless steel A2 (Material	EN ISO 898-1:2013 erial 1.4301 / 1.4307 / 1 erial 1.4401 / 1.4404 / 1 ce steel (Material 1.45 Property class acc. to EN ISO 3506-1:2020 A2: Material 1.4301 / A4: Material 1.4401 / HCR: Material 1.452: (e.g.: EN ISO 887:20 Stainless steel A4, H	8.8 .431 .457 529 of 50 70 80 71.43 71.44 9 or 1	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $1 / 1.4567 \text{ or } 1.4541, \text{ acc. t}$ $1 / 1.4362 \text{ or } 1.4578, \text{ acc. t}$ $1 / 1.4365, \text{ acc. to EN } 10088$ Characteristic steel ultimate tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for anchor rod class 50 for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 $07 / 1.4311 / 1.4567 \text{ or } 1.4$ $04 / 1.4571 / 1.4362 \text{ or } 1.4$ $.4565, \text{ acc. to EN } 10088-1$ EN ISO 7089:2000, EN ISO orrosion resistance steel Characteristic steel	f _{yk} = 400 N/mm ² f _{yk} = 640 N/mm ² o EN 10088-1:2014) o EN 10088-1:2014) -1: 2014) Characteristic steel yield strength f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² 541, acc. to EN 10088-578, acc. to EN 10088-: 2014 0 7093:2000 or EN ISO	$A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 1:2014 1:2014 7094:2000)

Property class 70 or 80 for anchor rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16
 for IG-M20 only property class 50
 Property class 80 only for stainless steel A4 and HCR

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-1:2011 Rib height of the bar shall be in the range $0.05d \le h_{rib} \le 0.07d$ (d: Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A2: Materials Reinforcing bar

Part Designation Material					
Reba	ar				
	Reinforcing steel according to EN 1992 1 1:2011, Annex C	Bars and rebars from ring class B or C f_{yk} and k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$			

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Product description Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life	50 years	Working life 100 years				
Base material	uncracked concrete	cracked concrete	Base material	uncracked concrete			
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M Ø8 to Ø IG-M6 to I	Ø 32 ,	No performano	e assessed			
Temperature Range	I: - 40°C t II: - 40°C t III: - 40°C t	o +80°C ²⁾	No performanc	e assessed			

Fasteners subject to (seismic action):

	Performance Category C1	Performance Category C2		
Base material	Cracked and uncracked concrete			
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 to M30, Ø8 to Ø32	No performance assessed		
Temperature Range	I: - 40°C to +40°C ¹⁾ II: - 40°C to +80°C ²⁾ III: - 40°C to +120°C ³⁾	No performance assessed		

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base material:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A2:2021.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+ A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max. long-term temperature +50°C and max. short-term temperature +80°C)

^{3) (}max. long-term temperature +72°C and max. short-term temperature +120°C)

Page 11 of European Technical Assessment ETA-10/0356 of 17 February 2025

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air (CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature in concrete:
 - TACO QUÍMICO VINYLESTER: -10°C up to +40°C for the standard variation of temperature after installation.

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Intended Use Specifications (Continued)	Annex B 2

Table B1: Installation parameters for threaded rod											
Threaded rod	Threaded rod M8 M10 M12 M16 M20 M24 M27 M30							M30			
Diameter of elemen	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedme	F		[mm]	60	60	70	80	90	96	108	120
Effective embedmer	пі аеріп	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins	tallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture	Push through i		[mm]	12	14	16	20	24	30	33	40
Maximum installatio	n torque	max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]	_	ef + 30 m : 100 mr			ŀ	n _{ef} + 2do)	
Minimum spacing		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	Minimum edge distance		[mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for reinforcing bar

Reinforcing bar				Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d_0	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Effective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	"	+ 30 mm 00 mm	1	h _{ef} + 2d ₀					
Minimum spacing	s _{min}	[mm]	40 50		60	70	80	100	125	140	160
Minimum edge distance	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded anchor rod

Internal threaded anchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Internal diameter of anchor rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of anchor rod1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective analysis of the state	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}		200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum installation torque	max T _{inst}	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	c _{min}	[mm]	50	60	80	100	120	150
4)								

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Intended Use Installation parameters	Annex B 3

Table B4	Table B4: Parameter cleaning and installation tools										
					mmi	a de la companya de l					
Threaded Rod	Re- inforcing bar	Internal threaded anchor rod	d ₀ Drill bit - Ø HD, HDB, CD	d _t Brush		d _{b,min} min. Brush - Ø	Piston Installation direction an plug of piston plug				
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1	
M8	8		10	RBT10	12	10,5					
M10	8 / 10	IG-M6	12	RBT12	14	12,5		No plug	roquirod		
M12	10 / 12	IG-M8	14	RBT14	16	14,5		No plug	required		
	12		16	RBT16	18	16,5					
M16	14	IG-M10	18	RBT18	20	18,5	VS18				
	16		20	RBT20	22	20,5	VS20				
M20		IG-M12	24	RBT24	26	24,5	VS24				
	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} >	all	
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all	
M27	25		32	RBT32	34	32,5	VS32				
M30	28	IG-M20	35	RBT35	37	35,5	VS35				
	32		40	RBT40	41,5	40,5	VS40				

Cleaning and installation tools

Hand pump

(Volume 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20 mm$)

Compressed air tool

(min 6 bar)

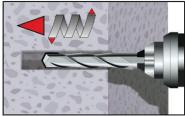
Brush RBT

Piston Plug VS

Brush extension RBL

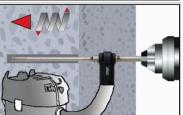
Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Intended Use Cleaning and installation tools	Annex B 4

Table B5:	Worki	ng time and o	uring time TACO QUÍMICO VI	NYLESTER
Temperature in base material		se material	Minimum curing time ¹⁾	
	Т		t _{gel}	t _{cure}
- 10°C	to	- 6°C	90 min ²⁾	24 h
- 5°C	to	- 1 °C	90 min	14 h
0°C	to	+ 4°C	45 min	7 h
+ 5°C	to	+ 9°C	25 min	2 h
+ 10°C	to	+ 19°C	15 min	80 min
+ 20 °C	to	+ 29°C	6 min	45 min
+ 30 °C	to	+ 34 °C	4 min	25 min
+ 35 °C	to	+ 39°C	2 min	20 min
	+40°C		1,5 min	15 min
Cartridge temperature			+5°C to	+40°C


 ¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.
 2) Cartridge temperature must be at least +15°C

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Intended Use Working time and curing time	Annex B 5

Installation instructions


Drilling of the bore hole

Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth.

Drill bit diameter according to Table B1, B2 or B3. Aborted drill holes shall be filled with mortar. Proceed with Step 2 (CAC and MAC).

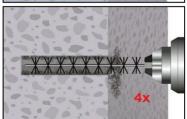
1b. Hollow drill bit system (HDB)

Drill a hole to the required embedment depth.

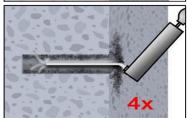
Drill bit diameter according to Table B1, B2 or B3.

Aborted drill holes shall be filled with mortar.

Proceed with Step 2 (CAC and MAC).


Attention! Standing water in the bore hole must be removed before cleaning

Manual Air Cleaning (MAC)

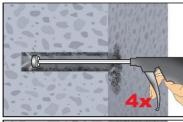

for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm uncracked concrete only) with drilling method HD, HDB and CD

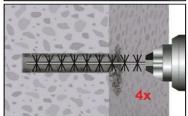
Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)

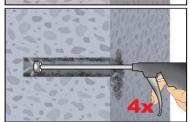
2c.

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

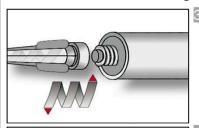

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Intended Use Installation instructions	Annex B 6



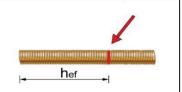
Installation instructions (continuation)


Compressed Air Cleaning (CAC):

All diameter with drilling method HD, HDB and CD



Brush the bore hole minimum 4x with brush RBT according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 4x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

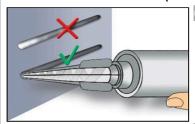
Screw on static-mixing nozzle CRW 14W/PM-19E and load the cartridge into an appropriate dispensing tool. With foil tube cartridges cut off the foil tube clip before use.

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

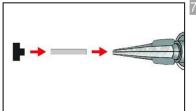
Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

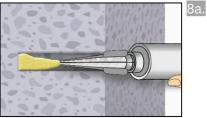
Ceys Injection system TACO QUÍMICO VINYLESTER for concrete


Intended Use

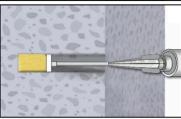
Installation instructions (continuation)


Annex B 7

Installation instructions (continuation)

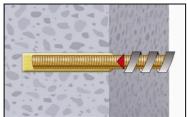


Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes, for foil tube cartridges at least 6 full storkes).


Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:

- Horizontal and vertical downwards direction: Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Vertical upwards direction: Drill bit- \emptyset d₀ \geq 18 mm Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

Injecting mortar without piston plug VS:


Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets. Observe the temperature related working time t_{work} (Annex B 5).

Injecting mortar with piston plug VS:

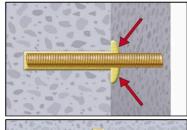
Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

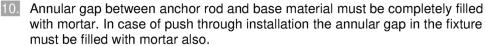
Observe the temperature related working time t_{work} (Annex B 5). .

Insert the anchor rod while turning slightly up to the embedment mark.

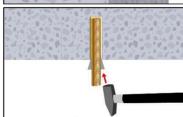
Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

9.

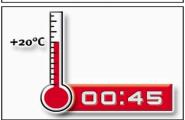

Intended Use


Installation instructions (continuation)

Annex B 8



Installation instructions (continuation)



Otherwise, the installation must be repeated starting from step 7 before the maximum working time twork has expired.

For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 5) must be observed. Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1, B2 or B3).

In case of static requirements (e.g. seismic), fill the annular gab in the fixture with mortar (Annex A 3). Therefore replace the washer by the filling washer VFS and use the mixer reduction nozzle MR.

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete

Intended Use

Installation instructions (continuation)

Annex B 9

T	Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods										
Th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cr	aracteristic tension resistance, Steel failu	re ¹⁾		•							
Ste	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ste	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Sta	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cr	naracteristic tension resistance, Partial fac	tor ²⁾									
Ste	eel, Property class 4.6 and 5.6										
Ste	eel, Property class 4.8, 5.8 and 8.8	γMs,N	[-]				1,	5			
Sta	Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,N}$ [-] 2,86										
Sta	nless steel A2, A4 and HCR, class 70 $\gamma_{Ms,N}$ [-] 1,87										
	Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-] 1,6										
Cr	naracteristic shear resistance, Steel failure	1)		1							
=	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
r arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
۱Ħ	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s		19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	М ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
×	Stainless steel A2, A4 and HCR, class 70	М ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto										
Ste	Steel, Property class 4.6 and 5.6 $\gamma_{Ms,V}$ [-] 1,67										
Ste	Steel, Property class 4.8, 5.8 and 8.8										
Sta	Stainless steel A2, A4 and HCR, class 50 $\gamma_{Ms,V}$ [-] 2,38										
Sta	Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,V}$ [-] 1,56										
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	33			
1	1) Values are only valid for the given stress area A. Values in proclets are valid for undersized threeded rade with smaller										

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ in absence of national regulation

Table C2:	Characteristic v	alues of te	nsion load	ls under static and quasi-static actio
Fastener				All Anchor types and sizes
Concrete cone f	ailure			
Uncracked concre	ete	k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance	'	s _{cr,sp}	[mm]	2 c _{cr,sp}

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Threa						M8	M10	M12	M16	M20	M24	M27	M30
Steel f			_	l.	I			Λ τ	/	T-1-	I- O1)		
		tic tension resi	stance	N _{Rk,s}	[kN]				ık (or s		le C1)		
Partial Comb			concrete failure	γ _{Ms,N}	[-]				see Ta	ible C1			
			ance in uncracke	d concrete C20	/25								
	l:	40°C/24°C				10	12	12	12	12	11	10	9,0
ange	II:	80°C/50°C	Dry, wet concrete			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5
Femperature range	III:	120°C/72°C		T	[N]/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
perat	I:	40°C/24°C		^T Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5				
Tem	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5	No Performance Assessed			e
		120°C/72°C				4,0	5,0	5,0	5,0				
Chara			ance in cracked o	concrete C20/25	5								
4	l: 	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
ange	II:	80°C/50°C	Dry, wet concrete	^{- τ} Rk,cr		2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
ture	111:	120°C/72°C			 [N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range	<u>l:</u>	40°C/24°C			[14/11111]	4,0	4,0	5,5	5,5	No Performance Assessed			
Tem	II:	80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0				
III: 120°C/72°C						2,0	2,5	3,0	3,0				
Reduk	tion f	factor $\psi^0_{ extsf{Sus}}$ in	cracked and und	racked concret	e C20/25								
ture	l:	40°C/24°C	Dry, wet	Ψ ⁰ sus	[-]	0,73							
Temperature range	II:	80°C/50°C	concrete and flooded bore			0,65							
Теп	III:	120°C/72°C	hole			0,57							
Increa	sing	factors for con	crete	Ψ _C	[-]	(f _{ck} / 20) ^{0,11}							
Chara	cteris	stic bond resist	ance depending		τ _{Rk,ucr} =	ψ _c • τ _{Rk,ucr} (C20/25)							
		crete strength o	class		$\tau_{Rk,cr} =$			Ψο	• τ _{Rk,c}	r(C20/2	25)		
		cone failure							see Ta	bla C2			
Splitti		arameter							See 1a	ible 02			
		arameter							see Ta	ble C2			
		n factor wet concrete		T		1,0				1,2			
		bore hole		γ _{inst}	[-]	1,0	1	,4			lo Perfo	ormano essed	e
Ceys			n TACO QUÍMI	CO VINYLES	TER for c	oncre	te				Anne		

Table C4: Characteristic	values	of sh	ear lo	ads ui	nder s	tatic a	nd qu	asi-st	atic acti	on		
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm					•	•	•					
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]	0,6 ⋅ A _s ⋅ f _{uk} (or see Table C1)									
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)										
Partial factor	γ _{Ms,V}	[-]	see Table C1									
Ductility factor k ₇ [-]				1,0								
Steel failure with lever arm												
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 •	W _{el} • f _{uk}	(or see	Table C	21)			
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874		
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1				
Concrete pry-out failure												
Factor	k ₈	[-]					2,0					
Installation factor	γ _{inst}	[-]					1,0					
Concrete edge failure												
Effective length of fastener	I _f	[mm]	$\min(h_{ef}; 12 \cdot d_{nom})$ $\min(h_{ef}; 300m)$						300mm)			
Outside diameter of fastener	d _{nom}	[mm]] 8 10 12 16 20 24 27					30				
Installation factor	[-]	1,0										

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Internal threaded anchor roo Steel failure ¹⁾	ds			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Characteristic tension resistan	ice. 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, strength class	8.8			16	27	46	67	121	196		
		N _{Rk,s}	[kN]								
Partial factor, strength class 5		γ _{Ms,N}	[-]		1,5						
Characteristic tension resistar Steel A4 and HCR, Strength o		N _{Rk,s}	[kN]	14	14 26 41 59 110						
Partial factor		γ _{Ms,N}	[-]			1,87			2,86		
Combined pull-out and cond	crete cone failu	re									
Characteristic bond resistance	in uncracked o	oncrete	C20/25								
u 1: 40°C/24°C	Dry, wet			12	12	12	12	11	9,0		
1: 40°C/50°C 1: 40°C/50°C 1: 40°C/50°C 1: 40°C/50°C 1: 80°C/50°C 1: 8	concrete			9,0	9,0	9,0	9,0	8,5	6,5		
ह्य च	Concrete	TDI	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0		
<u>ਲੂੰ ਬੁ l: 40°C/24°C</u>	flooded bore	^τ Rk,ucr	[[,,,,,,,,,,,]	8,5	8,5	8,5					
<u>ங்</u> <u>II: 80°C/50°C</u>	hole			6,5	6,5	6,5	No Perf	ormance A	ssesse		
III: 120°C/72°C			10./05	5,0	5,0	5,0					
Characteristic bond resistance	e in cracked con	icrete G2	20/25	E O	- F - F	- F	- F - F	- E - E	C E		
<u>B</u> <u>I: 40°C/24°C</u> <u>II: 80°C/50°C</u>	Dry, wet			5,0	5,5 4,0	5,5 4,0	5,5	5,5	6,5 4,5		
## ## 111: 120°C/72°C	concrete			3,5 2,5	3,0	3,0	4,0 3,0	4,0 3,0	3,5		
Bo an		^τ Rk,cr	[N/mm ²]	4,0	5,5	5,5	3,0	3,0	3,5		
E II: 80°C/50°C	flooded bore			3,0	4,0	4,0	No Borf	n Performance Δε			
III: 120°C/72°C	hole			2,5	3,0	3,0	No Performance Asses				
Reduktion factor ψ^0_{sus} in cra-	⊥ cked and uncra	cked con	crete C2		0,0						
	Dry, wet			0,73							
III: 120°C/72°C III: 120°C/72°C	concrete and	Ψ ⁰ sus	[-]	0,65							
은 III: 120°C/72°C	flooded bore hole	7 303		0,57							
Increasing factors for concrete		W	[-]				20) ^{0,11}				
		Ψ _C	Rk,ucr =				cr(C20/25)				
Characteristic bond resistance the concrete strength class	e depending on		τ _{Rk,cr} =			Ψc • τ _{Rk}	cr(020/25) cr(C20/25)				
Concrete cone failure		1	,01								
Relevant parameter						see Ta	able C2				
Splitting failure											
Relevant parameter						see Ta	able C2				
Installation factor											
for dry and wet concrete		γ _{inst}	[-]			1	,2				
for flooded bore hole		'Inst	1, 1		1,4		⊢ No Perf	ormance A	ssessec		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Internal threaded anchor rod)	Annex C 5

²⁾ For IG-M20 strength class 50 is valid

Internal threaded anchor rods				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure without lever arm ¹)									
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61	
Steel, strength class	8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98	
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25			
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40	
Partial factor	γ _{Ms,V}	[-]			1,56			2,38		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm1)										
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325	
Steel, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]	1,25						
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456	
Partial factor		γ _{Ms,V}	[-]	1,56 2,38						
Concrete pry-out failure										
Factor		k ₈	[-]	2,0						
Installation factor		γ _{inst}	[-]	1,0						
Concrete edge failure		•								
Effective length of fastener		I _f	[mm]		min	(h _{ef} ; 12 • d	I _{nom})		min (h _{ef} ; 300m	
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor		γ _{inst}	[-]				1,0			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances	Annex C 6
Characteristic values of shear loads under static and quasi-static action	
(Internal threaded anchor rod)	

²⁾ For IG-M20 strength class 50 is valid

Table C7: Characteristic	values of	f tensio	n Ioa	ds un	der s	tatic	and q	uasi-	static	actio	on	
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure												
Characteristic tension resistance	N _{Rk,s}	[kN]				/	۹ _s • f _{uk}	1)				
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,N}	[-]	1,42)									
Combined pull-out and concrete fail												
Characteristic bond resistance in uncra	cked concre	te C20/25										
<u>l: 40°C/24°C</u> Dry, wet			10	12	12	12	12	12	11	10	8,5	
II: 80°C/50°C concrete			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
## 05 6/05 Concrete III: 120°C/72°C concrete	τ _{Rk,ucr}	[N/mm ²]	5,5 7,5	6,5 8,5	6,5 8,5	6,5 8,5	6,5 8,5	6,5	6,0	5,0	4,5	
II: 80°C/50°C Illooded	,		5,5	6,5	6,5	6,5	6,5	No Performance			е	
III: 120°C/72°C bore hole			4,0	5,0	5,0	5,0	5,0		Asse	ssed		
Characteristic bond resistance in crack	ed concrete	C20/25	,	,	,	,	,					
<u>l: 40°C/24°C</u> Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
1 3 11 00:0/30:0 1 :			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
## 150°C/72°C concrete 1: 40°C/24°C flooded	τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
E I: 40°C/24°C flooded	1 111,01		4,0 2,5	4,0 3,0	5,5 4,0	5,5 4,0	5,5 4,0	N	No Performance Assessed			
III: 120°C/72°C bore hole			2.0	2,5	3,0	3,0	3,0					
Reduktion factor $\psi^0_{ {\hbox{\scriptsize Sus}}}$ in cracked and	uncracked c	oncrete C		,_								
		[-]	0,73									
II: 40°C/24°C Dry, wet concrete and flooded bore hole	Ψ^0 sus		0,65									
Flooded bore hole			0,57									
Increasing factors for concrete	Ψ _C	[-]	(f _{ck} / 20) ^{0,11}									
Characteristic bond resistance		τ _{Rk,ucr} =				Ψ _c • τ _F	Rk,ucr(C	20/25)				
depending on the concrete strength class		τ _{Rk,cr} =				ψ _c • τ	Rk,cr(C	20/25)				
Concrete cone failure	•											
Relevant parameter						see	Table	C2				
Splitting												
Relevant parameter					see	Table	C2					
Installation factor												
for dry and wet concrete	↓	,,	1,0				1	,2				
for flooded bore hole	γinst	[-]			1,4			N	lo Perfo Asse	ormanc ssed	e	

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances	Annex C 7
Characteristic values of tension loads under static and quasi-static action	
(Reinforcing bar)	

²⁾ in absence of national regulation

Table C8: Characteristic values of shear loads under static and quasi-static action												
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 · A _s	· f _{uk} 1)				
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Ductility factor k ₇ [-] 1,0												
Steel failure with lever arm	·	•										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)				
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾					
Concrete pry-out failure		•										
Factor	k ₈	[-]					2,0					
Installation factor	γinst	[-]					1,0					
Concrete edge failure		_										
Effective length of fastener	If	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mn					mm)				
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 14 16 20 25 28			28	32					
Installation factor	ctor γ_{inst} [-] 1,0											

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 8

²⁾ in absence of national regulation

Table C9:	Displacem	ents under tensio	n load	1)							
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Uncracked concrete	e C20/25 und	der static and quasi-st	atic acti	on							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-stati	c action								
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90	0,070						
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170						
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255	0,245						
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219		0,170						
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \ \tau;$

τ: action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C10: Displacements under shear load¹⁾

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C20/25 under static and quasi-static action										
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{v∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete (C20/25 under	static and quasi-station	c action							
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances	Annex C 9
Displacements under static and quasi-static action	
(threaded rods)	

Table C11: D	isplaceme	nts under tens	sion load	1 1)						
Internal threaded a	nchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Uncracked concrete C20/25 under static and quasi-static action										
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049		
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Cracked concrete C	20/25 under s	tatic and quasi-st	atic action							
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,090			0,070				
I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,105			0,105				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,219			0,170				
II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,255			0,245				
Temperature range δ _{N0} -factor [mm/(N/mm²)] 0,219 0,170										
III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,255			0,245				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 $\boldsymbol{\tau}\text{:}$ action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Displacements under shear load¹ Table C12:

Internal threaded	d anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Uncracked and cracked concrete C20/25 under static and quasi-static action									
All temperature δ _{V0} -factor [mm/kN] 0,07 0,06 0,06 0,05 0,04 0									
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor $\cdot V$; $\delta v_\infty = \delta v_\infty$ -factor $\cdot V$;

V: action shear load

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances	Annex C 10
Displacements under static and quasi-static action	
(Internal threaded anchor rod)	

8.06.01-248/24 Z010376.25

Table C13: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinf	Anchor size reinforcing bar Ø 8 Ø 10 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28 Ø 32									Ø 32	
Uncracked concre	Incracked concrete C20/25 under static and quasi-static action										
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range III: 120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic actior	1						
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,0	90				0,070			
range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05				0,105			
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219				0,170			
range II: 80°C/50°C	0,2	255	0,245								
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,2	0,219 0,170							
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \quad \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C14: Displacement under shear load¹⁾ (rebar)

Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25 under static and quasi-static action											
All temperature	δ _{v0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	ler static and qu	asi-stat	ic action	1						
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor \cdot V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Ceys injection system TACO doimico vin TESTEN for concrete	
Performances	Annex C 11
Displacements under static and quasi-static action	
(Reinforcing bar)	

Tab		acteristic voice c			ion load	is un	ider s	eismi	c acti	ion			
	ded rod					M8	M10	M12	M16	M20	M24	M27	M30
Steel			N.		FI N.17	T			10.	NI .			
	cteristic tension resi	stance	N _{Rk,s,e}	q,C1	[kN]					N _{Rk,s}			
	I factor pined pull-out and o	concrete failu	γ _{Ms,N}		[-]				see 1a	able C1			
	cteristic bond resist			acked (concrete C	20/25							
	I: 40°C/24°C					2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
ange							2,2	2,7	2,7	2,7	2,8	3,1	3,1
Temperature range	III: 120°C/72°C		750		[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
perat	I: 40°C/24°C		TRk,eq,C	31	[14/11111-]	2,5	2,5	3,7	3,7				
Tem	II: 80°C/50°C	flooded bore hole				1,6	1,9	2,7	2,7		lo Perfo Asse	ormand essed	e
	III: 120°C/72°C					1,3	1,6	2,0	2,0				
	sing factors for con-		Ψc		[-]				1	,0			
on the	cteristic bond resist concrete strength of	•	g	τ	Rk,eq,C1 =			Ψc •	^τ Rk,eq,	_{C1} (C20	0/25)		
	lation factor and wet concrete					1,0				1,2			
	oded bore hole		γ_{inst}		[-]					 	lo Porf	ormano	e
				h .				,4 				essed	
Tab	le C16: Char (perf	racteristic v formance c			ar loads		er sei:	smic		n	Asse	essed	
Tab	le C16: Char (perf	ormance c			ar loads	und			actio			essed	M30
Tab Threa	le C16: Char (perf ded rod failure without leve	ormance c	ategory	C1)	ar loads		er sei:	smic M16	M20	n M24	Asse	essed	
Tab Threa Steel Chara	le C16: Char (perf	ormance c			ar loads		er sei:	smic M16		n M24	Asse	essed	
Threa Steel Chara (Seisn	le C16: Char (perf ded rod failure without leve	er arm	ategory	C1)	ar loads		er sei:	M16 0,70	M20	M24	Asse	essed	
Threa Steel Chara (Seisn Partia	le C16: Char (perf ded rod failure without leve acteristic shear resis nic C1)	er arm tance V	Rk,s,eq,C1 Ms,V gap	[kN] [-]	ar loads	/ 110	er sei	M16 0,70 see	• V ⁰ _{Rk} Table C	M24	Asse	7	M30
Threa Steel Chara (Seisn Partia Facto	le C16: Char (perf ided rod failure without leve acteristic shear resis nic C1)	er arm tance V 71	Rk,s,eq,C1 Ms,V gap	[kN] [-]	ar loads	/ 110	er sei	M16 0,70 see	• V ⁰ _{Rk} Table C	M24	Asse	7	M30
Threa Steel Chara (Seisn Partia Facto 1) Va	le C16: Char (perf ided rod failure without leve acteristic shear resis nic C1) I factor r for annular gap lue in brackets valid f	er arm tance V for filled annular ided	Rk,s,eq,C1 Ms,V gap gab between	[kN] [-] en faste	M8 M	A10	er seis	M16 0,70 see	• V ⁰ _{Rk} Table C	m M24	Asse	7 ing was	M30

Table C17: Characteristic (performance of			n loa	ds un	der s	eism	ic act	ion			
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure											
Characteristic tension resistance	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s • 1	f _{uk} 1)			
Cross section area	A_s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,N}	[-]					1,42)				
Combined pull-out and concrete faile	ure										
Characteristic bond resistance in uncra	cked and cra	acked con	crete C	20/25							
<u>θ</u> <u>I: 40°C/24°C</u> Dry, wet			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
1 3 11: 80°C/50°C 37 .			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
tr b lili: 120°C/72°C concrete	τ _{Rk, eq,C1}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
I: 40°C/24°C flooded	Tik, eq,OT	[2,5	2,5	3,7	3,7	3,7	N	lo Perf	ormanc	e
bore hole			1,6	1,9	2,7	2,7	2,7			ssed	
III: 120°C/72°C			1,3 1,6 2,0 2,0 2,0								
Increasing factors for concrete	Ψc	[-]					1,0				
Characteristic bond resistance depending on the concrete strength class	^τ Ri	_{k,eq,C1} =	$= \psi_{c} \cdot \tau_{Rk,eq,C1}(C20/25)$								
Installation factor											
for dry and wet concrete			1,2				1	,2			
for flooded bore hole	γ _{inst}	[-]			1,4			١		ormanc essed	е

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

Characteristic values of shear loads under seismic action Table C18: (performance category C1)

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s,eq,C1}	[kN]				0,3	5 • A _s •	f _{uk} ²⁾			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,5 ²⁾				
Factor for annular gap	$\alpha_{\sf gap}$	[-]				(0,5 (1,0) ³⁾			

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

Ceys Injection system TACO QUÍMICO VINYLESTER for concrete	
Performances	Annex C 13
Characteristic values of tension loads and shear loads under seismic action	
(performance category C1) (Reinforcing bar)	

²⁾ in absence of national regulation

 ²⁾ in absence of national regulation
 3) Value in brackets valid for filled annular gab between fastener and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended