

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-11/0449 vom 8. August 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

enthält

Herstellungsbetrieb

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU)

Nr. 305/2011, auf der Grundlage von

Diese Europäische Technische Bewertung

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

Mapei S.p.A. via Cafiero, 22 20158 MILANO (MI) ITALIEN

Mapei S.p.A., Plant1 Germany

34 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-11/0449 vom 4. Dezember 2017

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z192832.25 8.06.01-185/25

Seite 2 von 34 | 8. August 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z192832.25 8.06.01-185/25

Seite 3 von 34 | 8. August 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Mapei Injektionssystem Mapefix VE SF or VE SF CC für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Mapefix VE SF oder Mapefix VE SF CC und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen M8 bis M30 oder eine Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1, C 2, C 3, C 5 und C 7			
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 4, C 6 und C 8			
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9 bis C 11			
Charakteristischer Widerstand für seismische Leitungskategorie C1	Siehe Anhang C 12 und C 13			
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C2	Leistung nicht bewertet			

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 14 bis C 16

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z192832.25 8.06.01-185/25

Seite 4 von 34 | 8. August 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

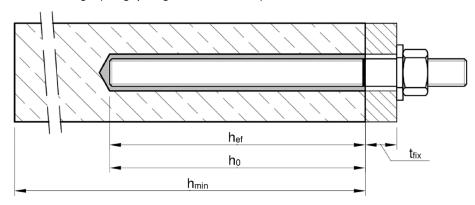
Folgendes System ist anzuwenden: 1

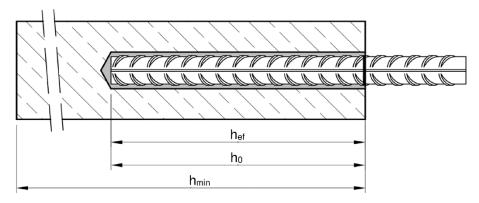
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

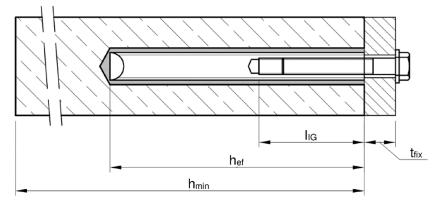
Ausgestellt in Berlin am 8. August 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Z192832.25 8.06.01-185/25


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

Dicke des Anbauteils $\mathsf{t}_{\mathsf{fix}}$

Effektive Verankerungstiefe

 h_0 Bohrlochtiefe

Einschraublänge I_{IG}

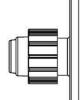
Mindestbauteildicke h_{min}

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton

Produktbeschreibung

Einbauzustand

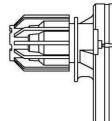
h_{ef}


Anhang A 1

Kartuschensystem

Koaxial Kartusche:

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml

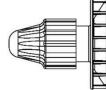

Aufdruck:

Mapefix VE SF oder Mapefix VE SF CC

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:

235 ml, 345 ml bis 360 ml und 825 ml

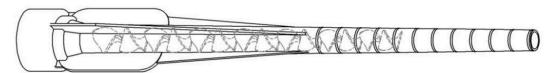

Aufdruck:

Mapefix VE SF oder Mapefix VE SF CC

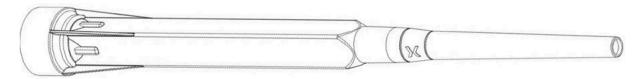
Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Schlauchfolien Kartusche:

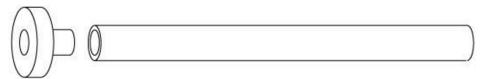
165 ml und 300 ml



Aufdruck:


Mapefix VE SF oder Mapefix VE SF CC

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

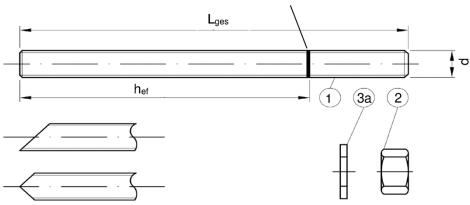

Statikmischer SM-14W

Statikmischer

Verfüllstutzen VS und Mischerverlängerung VL

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton

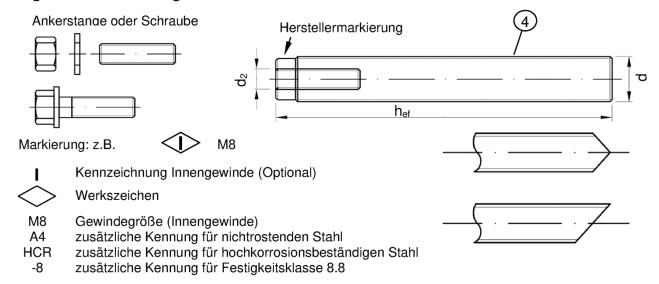
Produktbeschreibung


Injektionssystem

Anhang A 2

Gewindestange M8 bis M30 mit Unterlegscheibe und Sechskantmutter

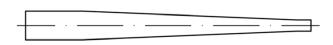
Markierung der Verankerungstiefe



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Dokument sollte aufbewahrt werden.
- Markierung der Setztiefe


Für feuerverzinkte Elemente sind die Anforderungen an die Kombination von Muttern und Gewindestangen gemäß EN ISO 10684:2004+AC:2009 Anhang F zu berücksichtigen.


Innengewindeankerstange IG-M6 bis IG-M20

Verfüllscheibe VFS

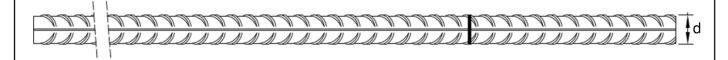
Mischerreduzierung MR

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton

Produktbeschreibung

Gewindestange; Innengewindeankerstange;

Verfüllscheibe; Mischerreduzierung


Anhang A 3

	Benennung	Werkstoff						
	nlteile aus verzinktem Stahl (Stah alvanisch verzinkt ≥5 μm gem	nl gemäß EN ISO 683-4 näß EN ISO 4042:2022 (oder EN 10263:20)17)			
		näß EN ISO 1461:2022		N ISO 10684:2004	1+AC:2009	oder		
- d	iffusionsverzinkt ≥ 45 μm gem	iäß EN ISO 17668:2016	3					
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteri Streckgrer		Bruchdehnung	
			4.6	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N}$	√l/mm²	A ₅ > 8%	
1	Gewindestange		4.8	$f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 320 \text{ N}$	√mm²	A ₅ > 8%	
		gemäß EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N}$	√/mm²	A ₅ > 8%	
		EN 130 696-1.2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N	√/mm²	A ₅ > 8%	
			8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N	l/mm²	A ₅ ≥ 8%	
			4	für Gewindestang	en der Klas	se 4.6 c	der 4.8	
2	Sechskantmutter	gemäß EN ISO 898-2:2022	5	für Gewindestang				
		EN 130 030-2.2022	8	für Gewindestang	en der Klas	se 8.8		
		Stahl, galvanisch verz						
3a	Unterlegscheibe	(z.B.: EN ISO 887:20	06, E	N ISO 7089:2000	, EN ISO 7	093:200	00 oder	
3b	Verfüllscheibe	EN ISO 7094:2000) Stahl, galvanisch verz	inkt	fouorvorzinkt odor	diffusionsy	orzinkt		
טנ	Vertuiiscrieibe		iiikt,	Charakteristische	1			
		Festigkeitsklasse		Zugfestigkeit	Streckgrer		Bruchdehnun	
4	Innengewindeankerstange	gemäß	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N		A ₅ > 8%	
		EN ISO 898-1:2013		f _{uk} = 800 N/mm ²	f _{vk} = 640 N		A ₅ > 8%	
	ntrostender Stahl A4 (Werkstoff 1 hkorrosionsbeständiger Stahl (V				3-1:2023)	istische	Bruchdehnun	
_	0 1/2/	410)		$f_{uk} = 500 \text{ N/mm}^2$	f _{vk} = 210 N		A ₅ ≥ 8%	
1	Gewindestange ¹⁾³⁾	gemäß	50 70	f _{uk} = 700 N/mm ²	f _{vk} = 450 N		A ₅ ≥ 8%	
		EN ISO 3506-1:2020	80	f _{uk} = 800 N/mm ²	$f_{yk} = 600 \text{ N}$		A ₅ ≥ 8%	
			50	für Gewindestang	,		115 = 070	
2	Sechskantmutter ¹⁾³⁾	gemäß		für Gewindestang				
_		EN ISO 3506-1:2020	80					
EN ISO 3300-1.2020								
		EN ISO 7094:2000)			"l: ·- C4-	hl		
3a 3b	Verfüllscheibe	Nichtrostender Stahl	44, H				I	
3b			44, H	Charakteristische Zugfestigkeit	Charakteri Streckgrer	istische nze		
3b	Verfüllscheibe Innengewindeankerstange ¹⁾²⁾	Nichtrostender Stahl / Festigkeitsklasse gemäß	50	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	Charakteri Streckgrer f _{yk} = 210 N	istische nze N/mm²	Bruchdehnung	
		Nichtrostender Stahl / Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteri Streckgrer	istische nze N/mm²		
3b 4		Nichtrostender Stahl / Festigkeitsklasse gemäß EN ISO 3506-1:2020 estangen und Muttern bis Ma	50 70 24 und	Charakteristische Zugfestigkeit f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ² Innengewindeankers	Charakteri Streckgrer f _{yk} = 210 N f _{yk} = 450 N	istische nze V/mm² V/mm²	A ₅ > 8%	

Betonstahl Ø8 bis Ø32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05 φ ≤ h_{rib} ≤ 0,07 φ betragen
 (d: Nenndurchmesser des Stabes; h_{rib}: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Produktbeschreibung Werkstoffe Betonstahl	Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung (Statische und quasi-statische Lasten)

		=0.1.1		400 1 1		
	Nutzungsdaue	er 50 Jahre	Nutzungsdauer 100 Jahre			
Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton		
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis 9 Ø8 bis 9 IG-M6 bis	Ø32,	Keine Leistun	g bewertet		
Temperaturbereich:	II: - 40°C I	bis +40°C¹) bis +80°C²) bis +120°C³)	Keine Leistun	g bewertet		

Beanspruchung der Verankerung (Seismische Einwirkung):

	Leistungskategorie C1	Leistungskategorie C2
Verankerungsgrund	ungerissener und gerissener Beton	ungerissener und gerissener Beton
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, Ø8 bis Ø32	Keine Leistung bewertet
Temperaturbereich:	I: - 40°C bis +40°C ¹⁾ II: - 40°C bis +80°C ²⁾ III: - 40°C bis +120°C ³⁾	Keine Leistung bewertet

Beanspruchung der Verankerung (Brandeinwirkung):

Verankerungsgrund	ungerissener und gerissener Beton
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, ∅8 bis ∅32, IG-M6 bis IG-M20
Temperaturbereich:	I: -40°C bis +40°C1) II: -40°C bis +80°C2) III: -40°C bis +120°C3)

^{1) (}max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C)

^{3) (}max. Langzeit-Temperatur +72°C und max. Kurzzeit-Temperatur +120°C

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A2:2021.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A2:2021.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbautemperatur im Beton:

Mapefix VE SF:
-10°C bis +40°C für die üblichen Temperaturveränderungen nach dem Einbau.

-20°C bis +10°C für die üblichen Temperaturveränderungen nach dem Einbau.

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton

Verwendungszweck
Spezifikationen (Forsetzung)

Anhang B 2

Tabelle B1: Montagekennwerte für Gewindestangen											
Gewindestange		M8	M10	M12	M16	M20	M24	M27	M30		
Durchmesser Gewind	lestange	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	ser	d ₀	[mm]	10	12	14	18	24	28	32	35
Effektive Verankerung	actiofo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Ellektive verankerung	gstiele	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Bauteil	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment		max T _{inst}		10	20	40	60	100	170	250	300
Mindestbauteildicke		h _{min}	[mm]	h _{ef} + 30	0 mm ≥ 1	00 mm			$h_{ef} + 2d_0$		
Minimaler Achsabstar	Minimaler Achsabstand s _{min} [mm]			40	50	60	80	100	120	135	150
Minimaler Randabsta	nd	c _{min}	[mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montagekennwerte für Betonstahl

Betonstahl			Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Mindestbauteildicke	h _{min}	[mm]		- 30 mm 00 mm				h _{ef} + 2	!d₀		
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimaler Randabstand	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ Beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

Innengewindeankerstange			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Innendurchmesser der Hülse	d_2	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse ¹⁾	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d_0	[mm]	12	14	18	24	28	35
Effektive Verenkerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Effektive Verankerungstiefe	h _{ef,max}		200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	max T _{ins}	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]		30 mm O mm		h _{ef} +	- 2d₀	
Minimaler Achsabstand	s _{min}	[mm]	50	60	80	100	120	150
Minimaler Randabstand	c _{min}	[mm]	50	60	80	100	120	150

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Verwendungszweck Montagekennwerte	Anhang B 3

Tabelle	B4: Para	ameter fü	Reinigun	gs- und	d Setz	zzubehör						
					4177 TO 18	Hilliamila						
Gewinde- stangen	Betonstahl	Innen- gewinde- hülsen	d ₀ Bohrer - Ø HD, HDB, CD	d _b Bürsten - Ø		Büreten Ø		d _{b,min} min. Bürsten - Ø	Verfüll- stutzen	Anv	tionsrichti wendung v erfüllstutze	von
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1		
M8	8		10	RBT10	12	10,5						
M10	8 / 10	IG-M6	12	RBT12	14	12,5	Kair	Vortülletu	tzon notuu	andia		
M12	10 / 12	IG-M8	14	RBT14	16	14,5	Keii	i veriulisiu	tzen notwe	enaig		
	12		16	RBT16	18	16,5						
M16	14	IG-M10	18	RBT18	20	18,5	VS18					
	16		20	RBT20	22	20,5	VS20					
M20		IG-M12	24	RBT24	26	24,5	VS24					
	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} >	all		
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all		
M27	25		32	RBT32	34	32,5	VS32					
M30	28	IG-M20	35	RBT35	37	35,5	VS35					
	32		40	RBT40	41,5	40,5	VS40					

Reinigungs- und Installationszubehör

Handpumpe

(Volumen 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20 mm$)

Druckluftpistole

(min 6 bar)

Bürste RBT

Verfüllstutzen VS

Bürstenverlängerung RBL

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Verwendungszweck Reinigungs-und Setzzubehör	Anhang B 4

+5°C bis +40°C

Tabelle B5	Verark	peitungs- und	Aushärtezeiten Mapefix VE S	F
Temperatur	im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
	Т		t _{gel}	t _{cure}
- 10°C	bis	- 6°C	90 min ²⁾	24 h
- 5°C	bis	- 1 °C	90 min	14 h
0°C	bis	+ 4 °C	45 min	7 h
+ 5°C	bis	+ 9 °C	25 min	2 h
+ 10°C	bis	+ 19°C	15 min	80 min
+ 20 °C	bis	+ 29 °C	6 min	45 min
+ 30 °C	bis	+ 34 °C	4 min	25 min
+ 35 °C	bis	+ 39 °C	2 min	20 min
	+40°C		1,5 min	15 min

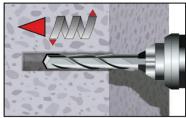
¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Kartuschentemperatur

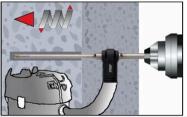
Tabelle B6: Verarbeitungs- und Aushärtezeiten Mapefix VE SF CC

Temperatur	im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾				
	Т		t _{gel}	t _{cure}				
- 20°C	bis	- 16°C	75 min	24 h				
- 15°C	bis	- 11 °C	55 min	16 h				
- 10°C	bis	- 6°C	35 min	10 h				
- 5°C	bis	- 1 °C	20 min	5 h				
0°C	bis	+ 4°C	10 min	2,5 h				
+ 5°C	bis	+ 9°C	6 min	80 min				
	+ 10 °C		6 min	60 min				
Kartı	uschentemp	eratur	-20°C bis	+10°C				

¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.


Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B 5

²⁾ Kartuschentemperatur muss mindestens +15°C betragen


Setzanweisung

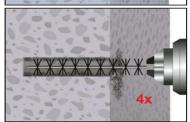
Bohrloch erstellen

Hammerbohren (HD) / Druckluftbohren (CD)

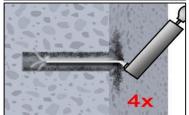
Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).

1b. Hammerbohren mit Hohlbohrer (HDB)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Handpumpen-Reinigung (MAC)

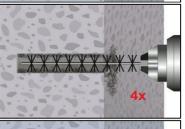

für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm nur ungerissenem Beton) mit Bohrmethode HD, HDB und CD

Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

Bohrloch mindestens 4x mit Bürste RBT gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBLverwenden) ausbürsten.

Abschließend Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

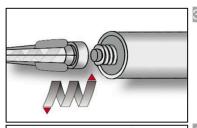
Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton Verwendungszweck Setzanweisung Anhang B 6


Setzanweisung (Fortsetzung)

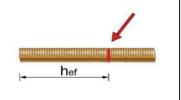
Druckluft-Reinigung (CAC):

Alle Durchmesser mit Bohrmethode HD, HDB und CD

2a. Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.



Bohrloch mindestens 4x mit Bürste RBT gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.


Abschließend Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

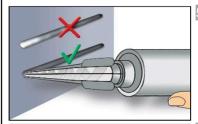
Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

Statikmischer SM-14W/ aufschrauben und Kartusche in geeignetes Auspressgerät einlegen. Bei Schlauchfolienkartuschen den Schlauchfolienclip vor der Verwendung abschneiden.

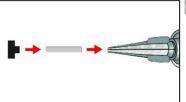
Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 5) und bei neuen Kartuschen, neuen Statikmischer verwenden.

Verankerungstiefe auf dem Ankerstab markieren. Der Bewehrungsstab muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton


Verwendungszweck

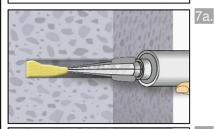
Setzanweisung (Fortsetzung)


Anhang B 7

Setzanweisung (Fortsetzung)

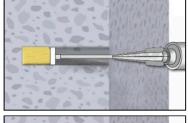
Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe, bei Schlauchfolienkartuschen min. 6 Hübe)

Verfüllstutzen VS und Mischerverlängerung VL sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:


- In horizontaler und vertikaler Richtung nach unten: Bohrer-Ø $d_0 \ge 18$ mm und Setztiefe $h_{ef} > 250$ mm
- In vertikaler Richtung nach oben: Bohrer-Ø d₀ ≥ 18 mm
 Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.

Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung verwenden) her mit Mörtel befüllen, bis Mörtel-Füllmarke $\rm I_m$ sichtbar wird.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.


Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

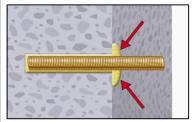
Injizieren mit Verfüllstutzen VS:

Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch mit Mörtel befüllen, bis Mörtel-Füllmarke I_m sichtbar wird. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des

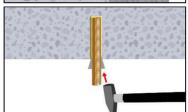
Mörtels aus dem Bohrloch gedrückt. Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

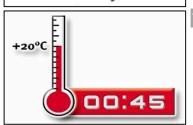
Ankerstange mit leichter Drehbewegung bis zur Markierung einführen.

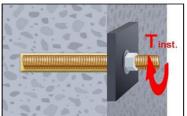
Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton


Verwendungszweck

Setzanweisung (Fortsetzung)


Anhang B 8


Setzanweisung (Fortsetzung)


Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 7 wiederholen.

Bei Anwendungen in vertikaler Richtung nach oben ist der Ankerstange zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 5) muss eingehalten werden. Die Installation der Anschlussbewehrung und der Schalung, darf nach Erreichen der anfänglichen Aushärtezeit $t_{cure,ini}$ fortgesetzt werden. Die volle Belastung darf erst nach Erreichen der vollen Aushärtezeit t_{cure} erfolgen.

Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Tabelle B1, B2 oder B3) beachten. Bei statischer Vorgabe (z.B. Erdbeben), Ringspalt im Anbauteil mit Mörtel (Anhang A 3) verfüllen. Dazu Unterlegscheibe durch Verfüllscheibe VFS ersetzen und Mischerreduzierung MR verwenden.

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 9

G	windostongo			M8	M10	M12	M16	M20	M24	M27	M30
	ewindestange annungsquerschnitt	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
	ıarakteristische Zugtragfähigkeit, Stahlversagei		[]	00,0		01,0	107	210	000	100	001
	ahl, Festigkeitsklasse 4.6 und 4.8		[kN]	15 (13)	23 (21)	34	63	98	141	184	224
	ahl, Festigkeitsklasse 4.0 und 4.0	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
	<u> </u>	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
			[kN]	18	29	42	79	123	177	230	281
Nichtrostender Stahl A2, A4 und HCR, Klasse 50			[kN]	26	41	59	110	171	247	_3)	_3)
Nichtrostender Stahl A2, A4 und HCR, Klasse 70 Nichtrostender Stahl A4 und HCR, Klasse 80			[kN]	29	46	67	126	196	282	_3)	_3)
Nichtrostender Stahl A4 und HCR, Klasse 80 Charakteristische Zugtragfähigkeit, Teilsicherheit				29	40	67	120	190	202		
	ahl, Festigkeitsklasse 4.6 und 5.6		[-]				2,0				
	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γMs,N	[-]				1,5				
	chtrostender Stahl A2, A4 und HCR, Klasse 50	γ _{Ms,N}	[-]	2,86							
	chtrostender Stahl A2, A4 und HCR, Klasse 70	γMs,N		1,87							
		γMs,N	[-]								
	chtrostender Stahl A4 und HCR, Klasse 80	γMs,N	[-]	1,6							
Cr	arakteristische Quertragfähigkeit, Stahlversage Stahl, Festigkeitsklasse 4.6 und 4.8	₹ n ''	[LAI]	0 (8)	14 (12)	20	38	59	85	110	135
Ē	Stahl, Festigkeitsklasse 5.6 und 5.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13) 17 (16)	25	47	74	106	138	168
Hebelarm	Stahl, Festigkeitsklasse 8.8	V ⁰ Rk,s	[KN]	<u>`</u>	23 (21)	34	63	98	141	184	224
FE	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Ohne	Nichtrostender Stahl A2, A4 und HCR, Klasse 30	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
ှ	Nichtrostender Stahl A4 und HCR, Klasse 80	I TIKIS		15	23	34	63	98	141	_3)	_3)
	Stahl, Festigkeitsklasse 4.6 und 4.8	V ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
٦	Stahl, Festigkeitsklasse 5.6 und 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
lebe	Nichtrostender Stahl A2, A4 und HCR, Klasse 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
	Nichtrostender Stahl A2, A4 und HCR, Klasse 70	M ⁰ Rk,s	[Nm]						784	_3)	_3)
2	Nichtrostender Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s		26 30	52 59	92 105	232 266	454 519	896	_3)	_3)
Cr	parakteristische Quertragfähigkeit, Teilsicherhe					100	200	313	000		
	ahl, Festigkeitsklasse 4.6 und 5.6	γ _{Ms,V}	[-]				1,67	,			
	ahl, Festigkeitsklasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,25				
	chtrostender Stahl A2, A4 und HCR, Klasse 50		[-]				2,38				
	chtrostender Stahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]								
. 411	elation at a state of the late	γ _{Ms,V}	r J	1,56							

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

|γ_{Ms,V} | [-] |

Nichtrostender Stahl A4 und HCR, Klasse 80

³⁾ Dübelvariante nicht in ETA enthalten

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasistatischer Belastung

Dübel			Alle Dübelarten und -größen			
Betonausbruch						
ungerissener Be	ton	k _{ucr,N}	[-]	11,0		
gerissener Beton		k _{cr,N} [-]		7,7		
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}		
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}		
Spalten						
	h/h _{ef} ≥ 2,0			1,0 h _{ef}		
Randabstand	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$		
	h/h _{ef} ≤ 1,3			2,4 h _{ef}		
Achsabstand	•	s _{cr,sp}	[mm]	2 c _{cr,sp}		

Leistungen

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 2

Stahlversagen	е				M8	M10	M12	M16	M20	M24	M27	M30
) _	7		N	FL-NII		Λ	• f (odor ci	oho To	halla C	11	
Charakteristisch		ragranigkeit	N _{Rk,s}	[kN]		Α,			ehe Ta		1)	
Teilsicherheitsb		en durch Herausziehen u	γ _{Ms,N}	[-]			S	iene ia	abelle C	71		
		undtragfähigkeit im ungeris										
I: 40°C/2					10	12	12	12	12	11	10	9,0
II: 80°C/5 II: 80°C/5 II: 80°C/5		trockener und feuchter			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5
를 III: 120°C	/72°C	Beton			5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
1: 40°C/2	24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5			,	
Ⅱ: 80°C/5	50°C	wassergefülltes Bohrloch			5,5	6,5	6,5	6,5	Keine	e Leistu	ung bev	verte
Ψ III: 120°C					4,0	5,0	5,0	5,0			Ü	
		undtragfähigkeit im gerisse	nen Beto	on C20/25	,		,		<u> </u>			
I: 40°C/2					4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
II: 80°C/2 II:	50°C	trockener und feuchter Beton			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
린 III: 120°C	/72°C	Deton		[N/mm ²] -	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5
I: 40°C/2	24°C	wassergefülltes Bohrloch	^τ Rk,cr		4,0	4,0	5,5	5,5	Keine Leistung bewert			
II: 80°C/5	50°C				2,5	3,0	4,0	4,0				
III: 120°C	/72°C				2,0	2,5	3,0	3,0				
Reduktionsfakto	or ψ ⁰ sus	im gerissenen und ungeri	ssenen B	Beton C20/2	25							
								0,	73			
	50°C	trockener und feuchter Beton, sowie	ψ ⁰ sus	[-]	0,65							
三 <u>路</u> - III: 120°C	/72°C	wassergefülltes Bohrloch			0,57							
 Erhöhungsfakto	r für Be	l eton	Ψ _c	[-]	(f _{ck} / 20) ^{0,11}							
		undtragfähigkeit in	1 10	Ψ _C • τ _{Rk,ucr} (C20/25)								
		Betonfestigkeitsklasse		$\tau_{Rk,ucr} = $ $\tau_{Rk,cr} = $	Ψ _C • τ _{Rk,cr} (C20/25)							
Betonausbrucl	1			7 111,01				7 111,0				
Relevante Para	meter						S	iehe Ta	abelle C	2		
Spalten												
							S	iehe Ta	abelle (;2		
Relevante Para	rτ	hten Reton		[-]	1,0				1,2			
Montagebeiwe	nd feuc	en und feuchten Beton gefülltes Bohrloch			1,0				Keine Leistung bewertet			

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ Rk,s	[kN]		0	,6 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ Rk,s	[kN]		0	,5 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]				siehe T	abelle C	21		
Duktilitätsfaktor	k ₇	[-]					1,0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 · W _{el}	· f _{uk} (od	er siehe	Tabelle	C1)	
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γMs,V	[-]				siehe T	abelle C	21		
Betonausbruch auf der lastabgewandt	en Seite									
Faktor	k ₈	[-]				:	2,0			
Montagebeiwert	γinst	[-]					1,0			
Betonkantenbruch										
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300						300mm	
Außendurchmesser des Dübels	d _{nom}	[mm]	m] 8 10 12 16 20 24 27				27	30		
Montagebeiwert γ_{inst} [-] 1,0										

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 4

Innengewindeankerstange				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Stahlversagen ¹⁾				100	10	10	10	10	100	
Charakteristische Zugtragfäh	igkeit, Stahl, 5.8	N	FL-N IZ	10	17	29	42	76	123	
Festigkeitsklasse	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Teilsicherheitsbeiwert 5.8 un	d 8.8	γ _{Ms,N}	[-]	1,5						
Charakteristische Zugtragfäh Nichtrostender Stahl A4 und		N _{Rk,s}	[kN]	14 26 41 59 110					124	
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]	1,87 2,86						
Kombiniertes Versagen du	rch Herausziehen			ruch						
Charakteristische Verbundtra	gfähigkeit im unge	rissener	n Beton C	20/25						
I: 40°C/24°C	trockener und			12	12	12	12	11	9,0	
Ħ: 80°C/50°C	feuchter Beton			9,0	9,0	9,0	9,0	8,5	6,5	
변 등 III: 120°C/72°C	Toddittor Boton	TDk	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0	
II: 80°C/50°C III: 120°C/72°C II: 40°C/24°C II: 80°C/50°C II: 80°C/5	wassergefülltes	- nk,uci		8,5	8,5	8,5				
<u>II: 80°C/50°C</u>	Bohrloch			6,5	6,5	6,5	Keine L	eistung b	ewertet	
III: 120°C/72°C	afähiaksit im assis		leten COO	5,0	5,0	5,0				
Charakteristische Verbundtra I: 40°C/24°C	igranigkeit im geris:	senen E	eton C20		5,5	5,5	5,5	5,5	6.5	
II: 80°C/50°C	trockener und			5,0 3,5	4,0	4,0	4,0	4,0	6,5 4,5	
II: 80°C/50°C	feuchter Beton			2,5	3,0	3,0	3,0	3,0	3,5	
Hi: 150°C/25°C Hi: 150°C/25°C Hi: 150°C/24°C Hi: 150°C/24°C Hi: 150°C/25°C Hi:		^τ Rk,cr	[N/mm ²] -	4,0	5,5	5,5	0,0	0,0	0,0	
□ II: 80°C/50°C	wassergefülltes			3,0	4,0	4,0	Keine L	ewerte		
III: 120°C/72°C	Bohrloch			2,5	3,0	3,0				
Reduktionsfaktor ψ ⁰ sus im ge	erissenen und unge	rissene	n Beton C	20/25						
	trockener und			0,73						
III: 40°C/24°C	feuchter Beton, sowie wassergefülltes	Ψ ⁰ sus	[-]	0,65						
[∞] III: 120°C/72°C	Bohrloch					0,	57			
Erhöhungsfaktor für Beton		Ψc	[-]			(f _{ck} / 2	20) 0,11			
Charakteristische Verbundtra	ıgfähigkeit in		Rk,ucr =			Ψc • τ _{Rk,u}				
Abhängigkeit von der Betonfe			τ _{Rk,cr} =				cr(C20/25)			
Betonausbruch										
Relevante Parameter						siene La	abelle C2			
Spalten Relevante Parameter			I			siehe Ta	abelle C2			
Montagebeiwert						310110 12	Delle UZ			
ür trockenen und feuchten B	eton		T T			1	,2			
für wassergefülltes Bohrloch		γ _{inst}	[-]		1,4	· ·	i	eistung b	oworto	

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 5

Statis	cher B	eiastur	ıg								
Innengewindeankerstang	е			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Stahlversagen ohne Hebe	elarm ¹⁾										
Charakteristische	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61		
Quertragfähigkeit, Stahl, Festigkeitsklasse	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98		
Teilsicherheitsbeiwert 5.8 u	nd 8.8	Y _{Ms,V}	[-]				1,25				
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 un Festigkeitsklasse 70 ²⁾	d HCR,	V ⁰ Rk,s	[kN]	7	13	20	30	55	40		
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]		1,56						
Duktilitätsfaktor		k ₇	[-]		1,0						
Stahlversagen mit Hebela	ırm¹)										
Charakteristisches	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
Biegemoment, Stahl, Festigkeitsklasse	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519		
Teilsicherheitsbeiwert 5.8 u	nd 8.8	γ _{Ms,V}	[-]								
Charakteristisches Biegemenicht-rostender Stahl A4 un Festigkeitsklasse 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456		
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]		2,38						
Betonausbruch auf der la	stabgew	andten S	Seite								
Faktor		k ₈	[-]				2,0				
Montagebeiwert		γ _{inst}	[-]				1,0				
Betonkantenbruch											
Effektive Dübellänge		If	[mm]		min	min(h _{ef} ; 300mm					
Außendurchmesser des Dübels d _{nom} [mm]				10 12 16 20 24 30							
Montagebeiwert γ_{inst} [-] 1,0							•				

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 6

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen	_											
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]				,	۹ _s • f _{uk}	1)				
Stahlspannungsquerschnitt	As	[mm ²]	50	79	113	154	201	314	491	616	804	
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]					1,42)					
Kombiniertes Versagen durch Herausz	iehen und	Betonau	sbruc	h								
Charakteristische Verbundtragfähigkeit in	n ungeriss	enen Beto	n C20/	25								
l: 40°C/24°C trockener und			10	12	12	12	12	12	11	10	8,5	
II: 80°C/50°C fouchter Beton			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
≗ .⊖ III: 120°C/72°C	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
I: 40°C/24°C wassergefülltes		[, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,5	8,5	8,5	8,5	8,5		Keine Leistung bewe			
			5,5	6,5	6,5	6,5	6,5	Keine				
III: 120°C/72°C			4,0	5,0	5,0	5,0	5,0					
Charakteristische Verbundtragfähigkeit in	n gerissen	en Beton C	220/25									
l: 40°C/24°C trockener und			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
= 80°C/50°C = .			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
HII: 120°C/72°C feuchter Beton	- τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
I: 40°C/24°C wassergefülltes	1 '		4,0	4,0	5,5	5,5	5,5	17 - 1	Koino Loietung bow			
			2,5	3,0	4,0	4,0	4,0	Keine Leistung bewe				
III: 120°C/72°C			2,0	2,5	3,0	3,0	3,0					
Reduktionsfaktor ψ ⁰ _{sus} im gerissenen un	d ungeriss	enen Beto	n C20/	25								
i: 40°C/24°C trockener und			0,73									
II: 40°C/24°C trockener und feuchter Beton, sowie wassergefülltes	Ψ^0 sus	[-]	0,65									
wassergefülltes							0,57					
Erhöhungsfaktor für Beton	Ψς	[-]				(f _c	k / 20)	0,11				
Charakteristische Verbundtragfähigkeit in		τ _{Rk,ucr} =					Rk,ucr(C					
Abhängigkeit von der Betonfestigkeitsklasse		τ _{Rk,cr} =					Rk,cr(C					
Betonausbruch		, ,										
Relevante Parameter						siehe	e Tabel	le C2				
Spalten												
Relevante Parameter						siehe	e Tabel	le C2				
Montagebeiwert												
für trockenen und feuchten Beton	γ:	[-]	1,0 1,2									
für wassergefülltes Bohrloch	γinst	[[]			1,4			Keine	Leistu	ıng bev	verte	
1) fuk ist den Spezifikationen des Betonstal	ehmen											

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 7

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C8: Charakteri statischer			er Que	ertrag	fähigk	ceit ur	iter st	atisch	er un	d qua	si-
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]				0,5	O·A _s ·	f _{uk} ²⁾			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]					1,52)				
Duktilitätsfaktor	k ₇	[-]					1,0				
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾				
Betonausbruch auf der lastabge	ewandten Sei	te									
Faktor	k ₈	[-]					2,0				
Montagebeiwert	γ _{inst}	[-]					1,0				
Betonkantenbruch											
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)						mm)		
Außendurchmesser des Dübels	d _{nom}	[mm]	m] 8 10 12 14 16 20 25 28				32				
Montagebeiwert γ _{inst} [-]				1,0							

 $^{^{\}rm 1)}$ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen $^{\rm 2)}$ Sofern andere nationalen Regelungen fehlen

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 8

Tabelle C9: V	erschiebu	ıng unter Zugbea	nspru	chung	1)						
Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30	
Ungerissener Beto	n C20/25 ur	iter statischer und qu	uasi-sta	tischer	Belastu	ng					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Gerissener Beton	C20/25 unte	r statischer und quas	si-statis	cher Be	lastung	l					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	05			0,1	05			
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255	0,245						
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	70			
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty}\text{-Faktor}\cdot \tau;$

Tabelle C10: Verschiebung unter Querbeanspruchung¹⁾

Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30			
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle	δ _{v0} -Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
Temperaturbereiche	δ _{V∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Gerissener Beton C	20/25 unter s	statischer und quas	i-statis	cher Be	lastung	l					
Alle	δ _{v0} -Faktor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07	
Temperaturbereiche	δ _{V∞} -Faktor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10	

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V;$

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 9

Innengewindeanke	rstange		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung												
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049				
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119				
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172				
Gerissener Beton (C20/25 unter st	atischer, quasi-sta	tischer Be	elastung								
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,090			0,070						
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,105			0,105						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,219			0,170						
II: 80°C/50°C			0,255	0,245								
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,219			0,170						
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,255			0,245						

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C12: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindeankerstange)

Innengewindeanker	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Gerissener und ungerissener Beton C20/25 unter statischer und quasi-statischer Bel								
Alle	δ _{v0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V;$

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung	Anhang C 10
(Innengewindeankerstange)	

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung												
Temperaturbereich	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
I: 40°C/24°C	$\delta_{\text{N}\infty}\text{-}\text{Faktor}$	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperaturbereich	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
II: 80°C/50°C	$\delta_{\text{N}\infty}\text{-}\text{Faktor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Gerissener Beton	C20/25 unt	er statischer u	ınd qua	si-statis	scher B	elastunç	9					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90	0,070							
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	05				0,105				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219				0,170				
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255				0,245				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219				0,170				
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm ²)]	0,2	255	0,245							

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C14:Verschiebung unter Querbeanspruchung¹⁾

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle	δνο-Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Gerissener Beton C	20/25 unter s	statischer ı	ınd qua	si-statis	scher B	elastun	g				
Alle	δ _{v0} -Faktor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-Faktor}\cdot\text{V};$

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 11

	Tabelle C15: Charakteristische Werte der Zugtragfähigkeit unter seisr (Leistungskategorie C1)	nisch	er Ei	nwirk	ung
--	---	-------	-------	-------	-----

Gev	vind	estange		M8	M 10	M12	M16	M20	M24	M27	M30		
Sta	hlve	rsagen											
Cha	ırakte	eristische Zug	tragfähigkeit	N _{Rk,s,eq,C1}	[kN]	1,0 • N _{Rk,s}							
Teil	siche	erheitsbeiwert		γ _{Ms,N}	[-]			s	iehe Ta	abelle C	21		
Kor	nbin	iertes Versag	en durch Herausziehe		ausbruch								
Cha	ırakte	eristische Verk	oundtragfähigkeit im gei	rissenen und	ungerisser	en Bet	ton C20)/25					
ر	I:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
Temperaturbereich	II:	80°C/50°C	trockener und feuchter Beton		[N/mm2]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
nrbe	III:	120°C/72°C		T		1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
erat	1:	40°C/24°C		^τ Rk,eq,C1	[N/mm²]	2,5	2,5	3,7	3,7	Keine Leistung bev			
emp	II:	80°C/50°C	wassergefülltes Bohrloch			1,6	1,9	2,7	2,7				wertet
	III:	120°C/72°C				1,3	1,6	2,0	2,0				
Erh	öhun	gsfaktor für B	eton	Ψ _C	[-]				1	,0			
			oundtragfähigkeit in Betonfestigkeitsklasse	τ	Rk,eq,C1=			Ψ c •	τ _{Rk, ec}	_{I,C1} (C2	0/25)		
		ebeiwert	-										
für t	rock	enen und feuc	hten Beton		r 1	1,0				1,2			
fürν	vass	ergefülltes Bo	hrloch	^γ inst	[-]		1	,4		Keine	Leistu	ung be	wertet

Tabelle C16: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30		
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit	[kN]	0,70 • V ⁰ Rk,s								
Teilsicherheitsbeiwert	[-]	siehe Tabelle C1								
Faktor für Ringspalt	[-]				0,5	(1,0) ¹⁾				

¹⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) (Gewindestange)	Anhang C 12

Tabelle C17: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)																		
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32							
Stahlversagen																		
Charakteristische Zugtragfähigkeit	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s •	f _{uk} 1)										
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804							
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]					1,42)											
Kombiniertes Versagen durch Heraus	ziehen und	Betonaus	bruch															
Charakteristische Verbundtragfähigkeit i	m gerissene	n und ung	erissen	en Bet	on C20	/25												
I: 40°C/24°C			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5							
The second secon			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1							
The second sec	7	T	T DI	TDI O1	TDI 04	TDI 04	TDI O4	TDI: O1	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
i: 40°C/24°C	^τ Rk,eq,C1	[[N/IIII12]	2,5	2,5	3,7	3,7	3,7											
II: 80°C/50°C wassergefülltes			1,6	1,9	2,7	2,7	2,7	Keine	Leist u	ıng bev	wertet							
III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0											
Erhöhungsfaktor für Beton	Ψς	[-]					1,0											
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse	τμ	Rk,eq,C1=	= Ψ _C • τ _{Rk, eq,C1} (C20/25)															
Montagebeiwert																		
für trockenen und feuchten Beton	١,٠,٠	[]	1,0				1	,2										
für wassergefülltes Bohrloch	γinst	[-]			1,4			Keine	Leistu	ıng bev	wertet							

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C18: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Betonstahl	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V _{Rk,s,eq,C1}	[kN]				0,3	5 • A _s •	f _{uk} 1)			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾								
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾								

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) (Betonstahl)	Anhang C 13

²⁾ Sofern andere nationalen Regelungen fehlen

²⁾ Sofern andere nationalen Regelungen fehlen

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen dem Betonstahl und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

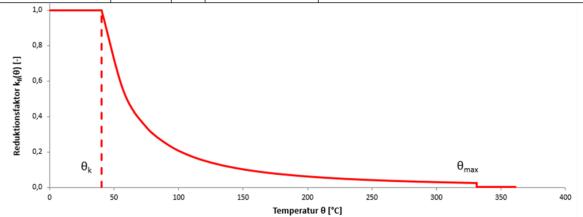


Tabelle C19: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30				
Stahlversagen												
Charakteristische Zugtrag-			Brand-	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
fähigkeit; Stahl,	N	[kN]	einwirk- zeit	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 5.8 bzw. 50 und höher	'NRk,s,fi			90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
		[min]	120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9	

Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ

			θ < 21°C	1,0
Temperaturabhängiger Reduktionsfaktor	$k_{fi,p}(\theta)$	[-]	21°C ≤ θ ≤ 331°C	$589.7 \cdot \theta^{-1.726} \le 1.0$
Troughtion or action			θ > 331°C	0,0

Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]					$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$					
Stahlversagen ohne Hebelarm												
Charakteristische			Brand-	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
Quertragfähigkeit; Stahl, Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse	V _{Rk,s,fi} [k	1 1	einwirk- zeit [min]	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
				90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
5.8 bzw. 50 und höher				120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9
Stahlversagen mit Hebelarr	n											
Charakteristisches			Duand	30	1,1	2,2	4,7	12,0	23,4	40,4	59,9	81,0
Biegemoment; Stahl, Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse 5.8 bzw. 50 und höher	M ⁰ _{Rk,s,fi}	[Nm]	Brand- einwirk-	60	0,9	1,8	3,5	9,0	17,5	30,3	44,9	60,7
			zeit [min]	90	0,7	1,3	2,5	6,3	12,3	21,3	31,6	42,7
				120	0,5	1,0	1,8	4,7	9,1	15,7	23,3	31,5

τ_{Rk,cr,(C20/25)} charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

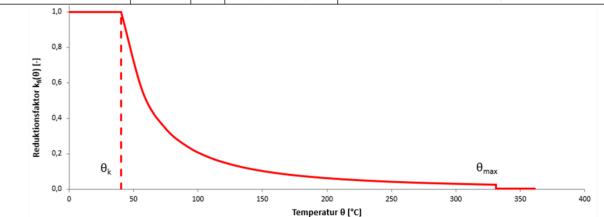

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Gewindestange)	Anhang C 14

Tabelle C20: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Innengewindeankerstange	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Stahlversagen										
Charakteristische Zugtrag-			Brand-	30	0,3	1,1	1,7	3,0	5,7	8,8
fähigkeit; Stahl,	N _{Rk,s,fi} [FLANIT	einwirk-	60	0,2	0,9	1,4	2,3	4,2	6,6
Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 5.8 und 8.8 bzw. 70		[kN]	zeit	90	0,2	0,7	1,0	1,6	3,0	4,7
			[min]	120	0,1	0,5	0,8	1,2	2,2	3,4

Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ

					,						
Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]			$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$						
Stahlversagen ohne Hebela	ılversagen ohne Hebelarm										
Charakteristische			Brand-	30	0,3	1,1	1,7	3,0	5,7	8,8	
Quertragfähigkeit; Stahl, Nichtrostender Stahl A4 und	V _{Rk,s,fi}	[kN]	einwirk- zeit [min]	60	0,2	0,9	1,4	2,3	4,2	6,6	
HCR, Festigkeitsklasse 5.8				90	0,2	0,7	1,0	1,6	3,0	4,7	
und 8.8 bzw. 70				120	0,1	0,5	0,8	1,2	2,2	3,4	
Stahlversagen mit Hebelarr	n										
Charakteristisches			Brand-	30	0,2	1,1	2,2	4,7	12,0	23,4	
Biegemoment; Stahl, Nichtrostender Stahl, A4 und HCR, Festigkeitsklasse	M ⁰ _{Rk,s,fi} [N	[Nm]	einwirk-	60	0,2	0,9	1,8	3,5	9,0	17,5	
		ן נוזורון 	zeit	90	0,1	0,7	1,3	2,5	6,3	12,3	
5.8 und 8.8 bzw. 70		[min	[min]	120	0,1	0,5	1,0	1,8	4,7	9,1	

¹⁾ $au_{Rk,cr,(C20/25)}$ charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Innengewindeankerstange)	Anhang C 15

(Betonstahl)

Tabelle C21: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB) Betonstahl Ø 8 |Ø 10 |Ø 12 |Ø 14 |Ø 16 |Ø 20 |Ø 24 |Ø 25 |Ø 28 | Ø 32 Stahlversagen 30 0,5 1,2 2,3 3,1 4,0 6,3 9,0 9,8 12,3 16,1 Brand-0,5 1,7 2,3 4,7 7,4 9,2 12,1 60 1,0 3,0 6,8 Charakteristische Zugtrageinwirk- $N_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [kN] fähigkeit; BSt 500 zeit 10,5 90 0,4 8,0 1,5 2,0 2,6 4,1 5,9 6,4 0,8 [min] 0,3 120 0,6 1,1 1,5 2,0 3,1 4,5 4,9 0,8 Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ θ < 21°C 1,0 Temperaturabhängiger $0.81 \cdot e^{-0.016 \cdot \theta} \le 1.0$ $k_{fi,p}(\theta)$ $21^{\circ}C \le \theta \le 243^{\circ}C$ Reduktionsfaktor θ > 243°C 0,0 1.0 Reduktionsfaktor k_{fi}(θ) [-] 0,6 0.2 θ_{max} 0,0 200 250 100 150 300 Temperatur θ [°C] Charakteristische Verbundtragfähigkeit für die $| au_{\mathsf{Rk},\mathsf{fi}}(heta)|$ $k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$ [N/mm²] Temperatur (θ) Stahlversagen ohne Hebelarm 30 0.5 1,2 2,3 3,1 4,0 6,3 9,0 9,8 12,3 16,1 Brand-60 0,5 1,0 1,7 2,3 3,0 4,7 6,8 7,4 9,2 12,1 Charakteristische Quertrageinwirk- $V_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [kN] fähigkeit; BSt 500 zeit 0.4 1.5 10.5 90 8.0 2.0 2.6 4.1 5.9 6.4 8.0 [min] 120 0,3 0,6 1,1 1,5 2,0 3,1 4,5 4,9 6,2 0,8 Stahlversagen mit Hebelarm 30 0,6 1,8 4,1 6,5 9,7 18,8 32,6 36,8 51,7 77,2 Brand-27,6 60 0,5 1,5 3,1 4,8 7,2 14,1 24,4 38,8 57,9 Charakteristisches einwirk-M⁰_{Rk.s.fi} [Nm] Biegemoment; BSt 500 zeit 90 0.4 1,2 2,6 4,2 6,3 12,3 21,2 23,9 50,2 33,6 [min] 120 0,3 0,9 2,0 3,2 4,8 9,4 16,3 | 18,4 | 25,9 | 38,6 1) $au_{
m Rk,cr.(C20/25)}$ charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches Mapei Injektionssystem Mapefix VE SF oder VE SF CC für Beton Anhang C 16 Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung