

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-12/0164 vom 8. August 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 3

34 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-12/0164 vom 12. November 2015

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z192850.25 8.06.01-188/25

Seite 2 von 34 | 8. August 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 34 | 8. August 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel WIT-VM 250 oder WIT-NORDIC und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen \varnothing 8 bis \varnothing 32 mm oder eine Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1, C 2, C 3, C 5 und C 7
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 4, C 6 und C 8
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9 bis C 11
Charakteristischer Widerstand für seismische Leitungskategorie C1	Siehe Anhang C 12 und C 13
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C2	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung			
randverhalten Klasse A1				
Feuerwiderstand	Siehe Anhang C 14 bis C 16			

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 34 | 8. August 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

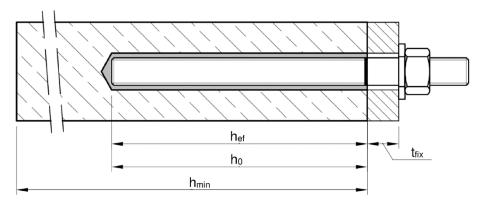
Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

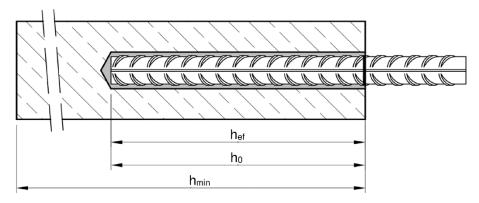
Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

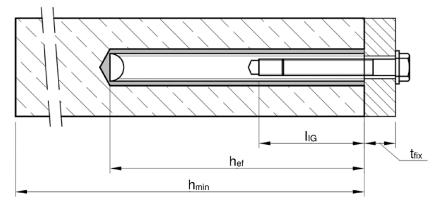
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 8. August 2025 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

 t_{fix} = Dicke des Anbauteils

Effektive Verankerungstiefe

h₀ I_{IG} Bohrlochtiefe

Einschraublänge

h_{ef} h_{min}

Mindestbauteildicke

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

Produktbeschreibung

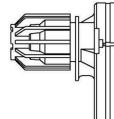
Einbauzustand

Anhang A 1

Kartuschensystem

Koaxial Kartusche:

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml

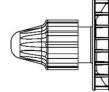

Aufdruck:

WIT-VM 250 oder WIT-NORDIC

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:

235 ml, 345 ml bis 360 ml und 825 ml

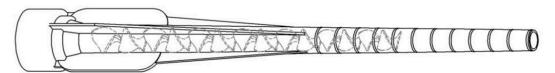

Aufdruck:

WIT-VM 250 oder WIT-NORDIC

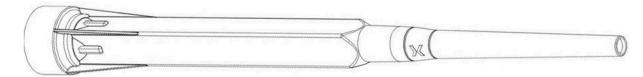
Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Schlauchfolien Kartusche:

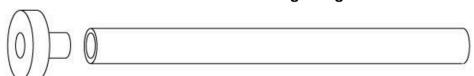
165 ml und 300 ml



Aufdruck:


WIT-VM 250 oder WIT-NORDIC

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

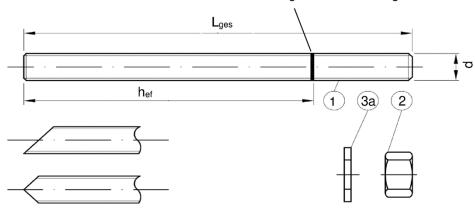

Statikmischer WIT-M 14 W / Fill & Clean

Statikmischer WIT-M19 W / WIT-MX

Verfüllstutzen WIT-VS und Mischerverlängerung

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

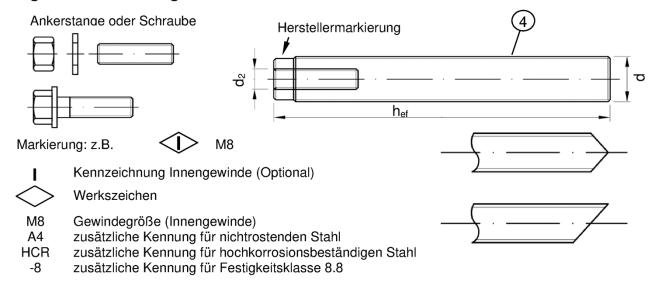
Produktbeschreibung


Injektionssystem

Anhang A 2

Gewindestange M8 bis M30 mit Unterlegscheibe und Sechskantmutter

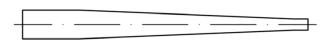
Markierung der Verankerungstiefe



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Dokument sollte aufbewahrt werden.
- Markierung der Setztiefe


Für feuerverzinkte Elemente sind die Anforderungen an die Kombination von Muttern und Gewindestangen gemäß EN ISO 10684:2004+AC:2009 Anhang F zu berücksichtigen.


Innengewindeankerstange IG-M6 bis IG-M20

Verfüllscheibe WIT-SHB

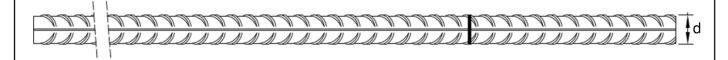
Mischerreduzierung WIT-MR

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

Produktbeschreibung

Gewindestange; Innengewindeankerstange;

Verfüllscheibe; Mischerreduzierung


Anhang A 3

leil	Benennung	Werkstoff					
- ga - fe	uerverzinkt ≥ 40 µm ge	ahl gemäß EN ISO 683-4 mäß EN ISO 4042:2022 mäß EN ISO 1461:2022 mäß EN ISO 17668:2016	oder und E		•	oder	
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakter Streckgrei		Bruchdehnung
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N	V/mm²	A ₅ > 8%
1	Gewindestange		4.8	f _{uk} = 400 N/mm ²	f _{vk} = 320 N	V/mm²	A ₅ > 8%
	gemäß EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N	V/mm²	A ₅ > 8%	
		EN 130 696-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N		A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N	V/mm²	A ₅ ≥ 8%
			4	für Gewindestang	en der Klas	se 4.6 c	oder 4.8
2	Sechskantmutter	gemäß EN ISO 898-2:2022	5	für Gewindestang	en der Klas	se 5.6 c	oder 5.8
			8	für Gewindestang			
3a	Unterlegscheibe	Stahl, galvanisch verz (z.B.: EN ISO 887:20 EN ISO 7094:2000)	06, E	N ISO 7089:2000	EN ISO 7	093:200	00 oder
3b	Verfüllscheibe	Stahl, galvanisch verz	zinkt,				T
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Streckgrei	nze	Bruchdehnun
4	Innengewindeankerstange	gemäß	5.8	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 400 N	N/mm²	A ₅ > 8%
		f _{yk} = 640 N	√/mm²	A ₅ > 8%			
loc	hkorrosionsbeständiger Stahl (Werkstoff 1.4529 oder 1. Festigkeitsklasse	4565	, gemäß EN 10088 Charakteristische Zugfestigkeit			Bruchdehnun
1	Gewindestange ¹⁾³⁾		50	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 210 N	N/mm²	A ₅ ≥ 8%
	3	gemäß EN ISO 3506-1:2020	70	$f_{uk} = 700 \text{ N/mm}^2$	f _{yk} = 450 N	N/mm²	A ₅ ≥ 8%
		214 100 0000 1.2020	80	f _{uk} = 800 N/mm ²	f _{yk} = 600 N	√/mm²	A ₅ ≥ 8%
		gemäß	50	für Gewindestang	en der Klas	se 50	
2	Sechskantmutter ¹⁾³⁾	EN ISO 3506-1:2020		für Gewindestangen der Klasse 70 für Gewindestangen der Klasse 80			
		A2: Werkstoff 1.4301	80				110000 1,0000
3a	Unterlegscheibe	A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000)	/ 1.44 29 ode	104 / 1.4571 / 1.436 er 1.4565, EN 1008	62 oder 1.4 88-1:2023	578, EN	1 10088-1:2023
3b	Verfüllscheibe	Nichtrostender Stahl	44, H				
,	100	Festigkeitsklasse		Charakteristische Zugfestigkeit	Streckgrei	nze	Bruchdehnun
4	Innengewindeankerstange ¹⁾²⁾	gemäß EN ISO 3506-1:2020	50 70	$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N}$ $f_{vk} = 450 \text{ N}$		A ₅ > 8% A ₅ > 8%
2)	 Festigkeitsklasse 70 oder 80 für Gewin für IG-M20 nur Festigkeitsklasse 50 Festigkeitsklasse 80 nur für nichtrosten	l destangen und Muttern bis M	24 und	Innengewindeankers	J · ·		M5 > 076
	oduktbeschreibung	M 250 oder WIT-NORI	DIC f	ür Beton		Λ.	nhang A 4

Betonstahl Ø8 bis Ø32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05 φ ≤ h_{rib} ≤ 0,07 φ betragen
 (d: Nenndurchmesser des Stabes; h_{rib}: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Produktbeschreibung Werkstoffe Betonstahl	Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung (Statische und quasi-statische Lasten)

	Nutzungsdaue	er 50 Jahre	Nutzungsdauer 100 Jahre						
Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton					
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis ⊘8 bis IG-M6 bis	Ø 32 ,	Keine Leistun	g bewertet					
Temperaturbereich:	II: - 40°C I	bis +40°C¹) bis +80°C²) bis +120°C³)	Keine Leistun	g bewertet					

Beanspruchung der Verankerung (Seismische Einwirkung):

	Leistungskategorie C1	Leistungskategorie C2							
Verankerungsgrund	ungerissener und gerissener Beton	ungerissener und gerissener Beton							
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, Ø8 bis Ø32	Keine Leistung bewertet							
Temperaturbereich:	I: - 40°C bis +40°C ¹⁾ II: - 40°C bis +80°C ²⁾ III: - 40°C bis +120°C ³⁾	Keine Leistung bewertet							

Beanspruchung der Verankerung (Brandeinwirkung):

Verankerungsgrund	ungerissener und gerissener Beton
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, ∅8 bis ∅32, IG-M6 bis IG-M20
Temperaturbereich:	I: -40°C bis +40°C1) II: -40°C bis +80°C2) III: -40°C bis +120°C3)

^{1) (}max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

²⁾ (max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C)

^{3) (}max. Langzeit-Temperatur +72°C und max. Kurzzeit-Temperatur +120°C

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A2:2021.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A2:2021.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.
- Die Bemessung der Verankerungen unter Brandeinwirkung erfolgt nach Technical Report TR 082, Fassung Juni 2023.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbautemperatur im Beton:

WIT-VM 250: -10°C bis +40°C für die üblichen Temperaturveränderungen nach dem Einbau. WIT-NORDIC: -20°C bis +10°C für die üblichen Temperaturveränderungen nach dem Einbau.

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Verwendungszweck Spezifikationen (Forsetzung)	Anhang B 2

Tabelle B1: Montagekennwerte für Gewindestangen											
Gewindestange				M8	M10	M12	M16	M20	M24	M27	M30
Durchmesser Gewind	lestange	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	ser	d ₀	[mm]	10	12	14	18	24	28	32	35
Effoltivo Vorankorun	acticfo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effektive Verankerung	gstiele	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Durchste		eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment		max T _{inst}	[Nm]	10	20	40	60	100	170	250	300
Mindestbauteildicke		h _{min}	[mm]	h _{ef} + 30	0 mm ≥ 1	00 mm			$h_{ef} + 2d_0$		
Minimaler Achsabstand		s _{min}	[mm]	40	50	60	80	100	120	135	150
Minimaler Randabstand		c _{min}	[mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montagekennwerte für Betonstahl

Betonstahl			Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	$d = d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Ellektive verankerungstiele	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀					
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimaler Randabstand	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ Beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

Innengewindeankerstange	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Innendurchmesser der Hülse	d_2	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse ¹⁾	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d_0	[mm]	12	14	18	24	28	35
Effektive Verankerungstiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Ellektive veralikerungstiele	h _{ef,max}		200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	max T _{ins}	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]		30 mm O mm		h _{ef} +	- 2d₀	
Minimaler Achsabstand	s _{min}	[mm]	50	60	80	100	120	150
Minimaler Randabstand	c _{min}	[mm]	50	60	80	100	120	150

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Verwendungszweck Montagekennwerte	Anhang B 3

Tabelle	B4: Para	meter fü	Reinigun	ıgs- und	d Set	zzubehör				
				- Constitution of the Cons						
Gewinde- stangen	Betonstahl	Innen- gewinde- hülsen	d ₀ Bohrer - Ø HD, HDB, CD	d _b Bürste		d _{b,min} min. Bürsten - Ø	Verfüll- stutzen	An	tionsrichti wendung v erfüllstutze	von
[mm]	[mm]	[mm]	[mm]	WIT-	[mm]	[mm]	WIT-	1		1
M8	8		10	RMB10	12	10,5				
M10	8 / 10	IG-M6	12	RMB12	14	12,5	I/air	. Varfüllatı	t-on notice	andia.
M12	10 / 12	IG-M8	14	RMB14	16	14,5	Keii	i veriulisiu	tzen notwe	enaig
	12		16	RMB16	18	16,5				
M16	14	IG-M10	18	RMB18	20	18,5	VS18			
	16		20	RMB20	22	20,5	VS20			
M20		IG-M12	24	RMB24	26	24,5	VS24			
	20		25	RMB25	27	25,5	VS25	h _{ef} >	h _{ef} >	all
M24		IG-M16	28	RMB28	30	28,5	VS28	250 mm	250 mm	an
M27	25		32	RMB32	34	32,5	VS32			
M30	28	IG-M20	35	RMB35	37	35,5	VS35			
	32		40	RMB40	41,5	40,5	VS40			

Reinigungs- und Installationszubehör

Handpumpe (Volumen 750 ml, $h_0 \le 10 d_s$, $d_0 \le 20$ mm)

Bürste WIT-RMB

Druckluftpistole

(min 6 bar)

Verfüllstutzen WIT-VS

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Verwendungszweck Reinigungs-und Setzzubehör	Anhang B 4

+5°C bis +40°C

25 min

20 min

15 min

Tabelle B5: Verarbeitungs- und Aushärtezeiten WIT-VM 250							
Temperatur	im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾			
	Т		t _{gel}	t _{cure}			
- 10°C	bis	- 6°C	90 min ²)	24 h			
- 5°C	bis	- 1 °C	90 min	14 h			
0°C	bis	+ 4°C	45 min	7 h			
+ 5°C	bis	+ 9°C	25 min	2 h			
+ 10°C	bis	+ 19°C	15 min	80 min			
+ 20 °C	bis	+ 29 °C	6 min	45 min			

4 min

2 min

1,5 min

+ 34 °C

+ 39°C

bis

bis

+40°C

Kartuschentemperatur

+ 30 °C

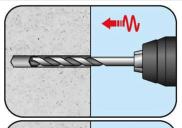
+ 35 °C

Tabelle B6: Verarbeitungs- und Aushärtezeiten WIT-NORDIC

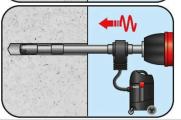
Temperatui	r im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾		
	Т		t _{gel}	t _{cure}		
- 20 °C	bis	- 16°C	75 min	24 h		
- 15°C	bis	- 11 °C	55 min	16 h		
- 10°C	bis	- 6°C	35 min	10 h		
- 5°C	bis	- 1 °C	20 min	5 h		
0°C	bis	+ 4°C	10 min	2,5 h		
+ 5°C	bis	+ 9°C	6 min	80 min		
	+ 10 °C		6 min	60 min		
Kart	uschentemp	eratur	-20°C bis	s +10°C		

¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B 5


¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

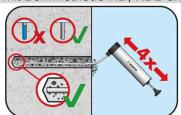
²⁾ Kartuschentemperatur muss mindestens +15°C betragen


Setzanweisung

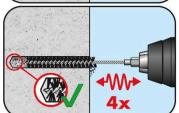
Bohrloch erstellen

Hammerbohren (HD) / Druckluftbohren (CD)

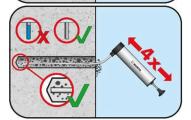
Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).


1b. Hammerbohren mit Hohlbohrer (HDB)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

Handpumpen-Reinigung (MAC)

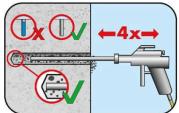

für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm nur ungerissenem Beton) mit Bohrmethode HD, HDB und CD

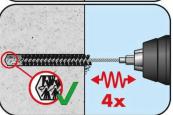
Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

Bohrloch mindestens 4x mit Bürste WIT-RMB gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung verwenden) ausbürsten.

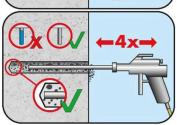
Abschließend Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton


Verwendungszweck Setzanweisung

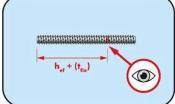

Setzanweisung (Fortsetzung)

Druckluft-Reinigung (CAC):


Alle Durchmesser mit Bohrmethode HD, HDB und CD

2a. Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

Bohrloch mindestens 4x mit Bürste WIT-RMB gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung verwenden) ausbürsten.

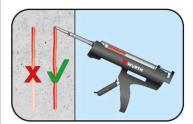

Abschließend Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

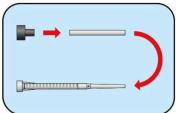
Statikmischer WIT-M 14 W / WIT-M19 W / WIT-MX / Fill & Clean aufschrauben und Kartusche in geeignetes Auspressgerät einlegen. Bei Schlauchfolienkartuschen den Schlauchfolienclip vor der Verwendung abschneiden.

Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit $t_{\rm work}$ (Anhang B 5) und bei neuen Kartuschen, neuen Statikmischer verwenden.

Verankerungstiefe auf dem Ankerstab markieren. Der Bewehrungsstab muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.


Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

Verwendungszweck


Setzanweisung (Fortsetzung)

Setzanweisung (Fortsetzung)

Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe, bei Schlauchfolienkartuschen min. 6 Hübe)

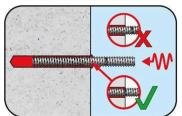
Verfüllstutzen WIT-VS und Mischerverlängerung sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:

- In horizontaler und vertikaler Richtung nach unten: Bohrer-Ø $d_0 \ge 18$ mm und Setztiefe $h_{ef} > 250$ mm
- In vertikaler Richtung nach oben: Bohrer-Ø d₀ ≥ 18 mm
 Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.

7a. Injizieren ohne Verfüllstutzen WIT-VS:

Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung verwenden) her mit Mörtel befüllen, bis Mörtel-Füllmarke $\rm I_m$ sichtbar wird.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.


Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

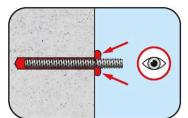
b. Injizieren mit Verfüllstutzen WIT-VS:

Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch mit Mörtel befüllen, bis Mörtel-Füllmarke I_m sichtbar wird. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt.

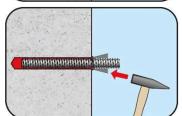
Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

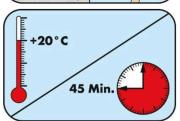
Ankerstange mit leichter Drehbewegung bis zur Markierung einführen.

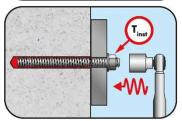
Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton


8.

Verwendungszweck


Setzanweisung (Fortsetzung)


Setzanweisung (Fortsetzung)


Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 7 wiederholen.

Bei Anwendungen in vertikaler Richtung nach oben ist der Ankerstange zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 5) muss eingehalten werden. Die Installation der Anschlussbewehrung und der Schalung, darf nach Erreichen der anfänglichen Aushärtezeit t_{cure,ini} fortgesetzt werden. Die volle Belastung darf erst nach Erreichen der vollen Aushärtezeit t_{cure} erfolgen.

Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Tabelle B1, B2 oder B3) beachten. Bei statischer Vorgabe (z.B. Erdbeben), Ringspalt im Anbauteil mit Mörtel (Anhang A 3) verfüllen. Dazu Unterlegscheibe durch Verfüllscheibe WIT-SHB ersetzen und Mischerreduzierung WIT-MR verwenden.

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

Verwendungszweck Setzanweisung (Fortsetzung)

Т	abelle C1:	Charakteristische Werte Stahlquertragfähigkeit vo			_	_	eit un	d				
Ge	windestange				M8	M10	M12	M16	M20	M24	M27	M30
Sp	annungsquersc	hnitt	A _s	[mm ²]	36,6	58	84,3	157	245	353	459	561
Ch	arakteristische	zugtragfähigkeit, Stahlversager	1 ¹⁾									
Sta	ıhl, Festigkeitsk	lasse 4.6 und 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sta	ıhl, Festigkeitsk	lasse 5.6 und 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Sta	ıhl, Festigkeitsk	lasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Nic	htrostender Sta	ahl A2, A4 und HCR, Klasse 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Nic	htrostender Sta	ahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Nic	htrostender Sta	ahl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Ch	arakteristische	e Zugtragfähigkeit, Teilsicherheit	•	rt ²⁾								
Sta	ıhl, Festigkeitsk	lasse 4.6 und 5.6	γ _{Ms,N}	[-]				2,0				
Sta	ıhl, Festigkeitsk	lasse 4.8, 5.8 und 8.8	γ _{Ms,N}	[-]				1,5				
Nichtrostender Stahl A2, A4 und HCR, Klasse 50			γ _{Ms,N}	[-]	2,86							
Nichtrostender Stahl A2, A4 und HCR, Klasse 70			γ _{Ms,N}	[-]	1,87							
Nic	htrostender Sta	ahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]	1,6							
Ch	arakteristische	e Quertragfähigkeit, Stahlversage	n 1)									
_	Stahl, Festigke	itsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Hebelarm	Stahl, Festigke	itsklasse 5.6 und 5.8	V° _{Rk,s}	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
epe	Stahl, Festigke	itsklasse 8.8	V° _{Rk.s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Η̈́e	Nichtrostender	Stahl A2, A4 und HCR, Klasse 50	V° _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Ohne	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	V° _{Rk,s}	[kN]	13	20	30	55	86	124	_3)	_3)
O	Nichtrostender	Stahl A4 und HCR, Klasse 80	V° _{Rk,s}	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigke	itsklasse 4.6 und 4.8	M⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
ırm	Stahl, Festigke	itsklasse 5.6 und 5.8	M⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigke	itsklasse 8.8	M⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
		Stahl A2, A4 und HCR, Klasse 50	M⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Mit	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	M⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
Nichtrostender Stahl A4 und HCR, Klasse 80			M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
		e Quertragfähigkeit, Teilsicherhei										
Stahl, Festigkeitsklasse 4.6 und 5.6			γ _{Ms,V}	[-]				1,67	7			
Stahl, Festigkeitsklasse 4.8, 5.8 und 8.8			γ _{Ms,V}	[-]		1,25						
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	γ _{Ms,V}	[-]				2,38	3			
Nic	htrostender Sta	ahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]				1,56	6			
Nichtrostender Stahl A4 und HCR, Klasse 80			γ _{Ms,V}	[-]				1,33	}			

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

³⁾ Dübelvariante nicht in ETA enthalten

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasistatischer Belastung

Dübel			Alle Dübelarten und -größen	
Betonausbruch				
ungerissener Bet	ton	k _{ucr,N}	[-]	11,0
gerissener Beton	1	k _{cr,N}	[-]	7,7
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}
Spalten				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Randabstand	$2.0 > h/h_{ef} > 1.3$	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Achsabstand	•	s _{cr,sp}	[mm]	2 c _{cr,sp}

Leistungen

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 2

		estange				М8	M10	M12	M16	M20	M24	M27	M30	
		sagen	roafähiakoit	No	[LAI]		Δ	• f . (nder si	ehe Ta	helle C	1)		
		eristische Zugt erheitsbeiwert	ragianigkeit	N _{Rk,s}	[kN] [-]					abelle C		')		
			en durch Herausziehen u	^γ Ms,N nd Reto		<u> </u>		5	iene ra	belle C	, 1			
			oundtragfähigkeit im ungeris											
_	I:	40°C/24°C				10	12	12	12	12	11	10	9,0	
Temperaturbereich	II:	80°C/50°C	trockener und feuchter Beton			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5	
rbe	III:	120°C/72°C	Deton			5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
əratı	I:	40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5					
mbe	II:	80°C/50°C	- wassergefülltes Bohrloch			5,5	6,5	6,5	6,5	Keine	verte			
<u>H</u>		120°C/72°C				4,0	5,0	5,0	5,0					
ha			⊥ bundtragfähigkeit im gerisse	⊥ enen Beto	n C20/25	.,0	0,0	0,0	0,0					
	1:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
reich	II:	80°C/50°C	trockener und feuchter			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
Temperaturbereich		120°C/72°C	Beton			2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
ratu	l:	40°C/24°C		^τ Rk,cr	[N/mm²]	4,0	4,0	5,5	5,5	,	,	,		
mpe		80°C/50°C	wassergefülltes Bohrloch			2,5	3,0	4,0	4,0	Keine	e Leisti	ıng bev	verte	
<u>Ф</u>		120°C/72°C				2,0	2,5	3,0	3,0					
edi			│ _s im gerissenen und ungeris	ssenen F	 Seton C20/2			0,0	0,0					
	l:	40°C/24°C			0207				0,	73				
bereich	II:	80°C/50°C	trockener und feuchter Beton, sowie	Ψ ⁰ sus	[-]				0,	65				
ğ		120°C/72°C	wassergefülltes Bohrloch			0,57								
rhö	hun	gsfaktor für Be	eton	Ψ _c	[-]	(f _{ck} / 20) ^{0,11}								
			oundtragfähigkeit in		τ _{Rk,ucr} =			Ψс	· τ _{Rk.u}	cr(C20/	25)			
			Betonfestigkeitsklasse		τ _{Rk,cr} =			Ψα	· ^τ Rk,c	cr(C20/2	25)			
		sbruch												
		e Parameter						S	iehe Ta	abelle C	2			
•	ten vant	e Parameter						-	iehe Tr	abelle C	.2			
		ebeiwert						5	iciic ic	TOGILE C	,_			
ür tr	ocke	enen und feuc		γ:	[-]	1,0				1,2				
•	1000	ergefülltes Bol	hrloch	γ _{inst}	l rı		1	,4		Keine	l eisti	ing bev	verte	

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ Rk,s	[kN]		0	,6 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)	
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	tahl, Festigkeitsklasse 8.8 [kN] 0,5 • A _s • f _{uk} (oder siehe Tabelle C1)									
Teilsicherheitsbeiwert	[-]	siehe Tabelle C1								
Duktilitätsfaktor	k ₇	[-]					1,0			
Stahlversagen mit Hebelarm										
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 · W _{el}	· f _{uk} (od	er siehe	Tabelle	C1)	
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Teilsicherheitsbeiwert	γMs,V	[-]				siehe T	abelle C	21		
Betonausbruch auf der lastabgewandt	en Seite									
Faktor	k ₈	[-]				:	2,0			
Montagebeiwert	γinst	[-]					1,0			
Betonkantenbruch										
Effektive Dübellänge	I _f	[mm]		n	nin(h _{ef} ;	12 · d _{nor}	_n)		min(h _{ef} ;	300mm
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Montagebeiwert	γ _{inst}	[-]	[-] 1,0							

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 4

Innengewindeankerstange				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen ¹⁾									
Charakteristische Zugtragfäh		N _{Rk,s}	kN]	10	17	29	42	76	123
Festigkeitsklasse	8.8	i nk,s	[,,,,]	16	27	46	67	121	196
Teilsicherheitsbeiwert 5.8 un	d 8.8	γ _{Ms,N}	[-]		1,5				
Charakteristische Zugtragfäh Nichtrostender Stahl A4 und	nigkeit, HCR, Klasse 70 ²⁾	N _{Rk,s}	[kN]	14	26	41	59	110	124
Teilsicherheitsbeiwert		γ _{Ms,N}	[-]			1,87			2,86
Kombiniertes Versagen du	rch Herausziehen			ruch		-			
Charakteristische Verbundtra									
I: 40°C/24°C				12	12	12	12	11	9,0
II: 80°C/50°C	trockener und			9,0	9,0	9,0	9,0	8,5	6,5
Hi	feuchter Beton		[FN 1/	6,5	6,5	6,5	6,5	6,5	5,0
은 등 T: 40°C/24°C	48.11.	^τ Rk,ucr	[N/mm²]	8,5	8,5	8,5	,	,	,
_ II: 80°C/50°C	wassergefülltes			6,5	6,5	6,5	Keine L	eistung b	ewertet
III: 120°C/72°C	Bohrloch			5,0	5,0	5,0		Ü	
Charakteristische Verbundtra	agfähigkeit im geriss	senen B	eton C20	/25					
I: 40°C/24°C				5,0	5,5	5,5	5,5	5,5	6,5
± _ II: 80°C/50°C	trockener und			3,5	4,0	4,0	4,0	4,0	4,5
II: 80°C/50°C	feuchter Beton	_	[FN 1 / 27]	2,5	3,0	3,0	3,0	3,0	3,5
은 등 T: 40°C/24°C	ć n. u.	^τ Rk,cr	[N/mm²]	4,0	5,5	5,5			
	wassergefülltes Bohrloch			3,0	4,0	4,0	Keine L	ewertet	
III: 120°C/72°C	BOTTTOCT			2,5	3,0	3,0			
Reduktionsfaktor ψ^0_{sus} im ge	erissenen und unge	rissene	n Beton C	20/25					
≒ I: 40°C/24°C	trockener und					0,	73		
80°C/50°C	feuchter Beton, sowie	ψ ⁰ sus	[-]			0	65		
	wassergefülltes	Ψ sus	[-]						
	Bohrloch						57		
Erhöhungsfaktor für Beton		Ψc	[-]				20) 0,11		
Charakteristische Verbundtra	agfähigkeit in	τ	Rk,ucr =			Ψ c • τ _{Rk,u}	_{cr} (C20/25)		
Abhängigkeit von der Betonf	estigkeitsklasse		τ _{Rk,cr} =			Ψ c • τ _{Rk,c}	cr(C20/25)		
Betonausbruch			,- 1			·			
Relevante Parameter					siehe Ta	belle C2			
Spalten									
Relevante Parameter					siehe Ta	belle C2			
Montagebeiwert									
für trockenen und feuchten E		7.	[_]			1	,2		
für wassergefülltes Bohrloch		γ _{inst}	[-]		1,4		Kaina I	eistung b	AWARTAT

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 5

Innengewindeankerstang	e			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen ohne Hebe	elarm ¹⁾					I			
Charakteristische	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Quertragfähigkeit, Stahl, Festigkeitsklasse	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Teilsicherheitsbeiwert 5.8 u	ınd 8.8	Y _{Ms,V}	[-]		l		1,25		1
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 ur Festigkeitsklasse 70 ²⁾	nd HCR,	V ⁰ Rk,s	[kN]	7	13	20	30	55	40
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]			1,56			2,38
Duktilitätsfaktor		k ₇	[-]				1,0		
Stahlversagen mit Hebela	arm ¹⁾								
Charakteristisches	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Biegemoment, Stahl, Festigkeitsklasse	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Teilsicherheitsbeiwert 5.8 u	ınd 8.8	γ _{Ms,V}	[-]				1,25		
Charakteristisches Biegem nicht-rostender Stahl A4 ur Festigkeitsklasse 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Teilsicherheitsbeiwert		γ _{Ms,V}	[-]			1,56			2,38
Betonausbruch auf der la	stabgew	andten S	Seite						
Faktor		k ₈	[-]				2,0		
Montagebeiwert		γ _{inst}	[-]				1,0		
Betonkantenbruch									
Effektive Dübellänge		I _f	[mm]		min	(h _{ef} ; 12 • d	nom)		min(h _{ef} ; 300mm
Außendurchmesser des Di	ibels	d _{nom}	[mm]	10	12	16	20	24	30
Montagebeiwert		γinst	[-]		•	•	1,0		•

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 6

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen												
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]				,	۹ _s •f _{uk})				
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]					1,42)					
Kombiniertes Versagen durch Heraus	sziehen und	Betonau	sbruc	h								
Charakteristische Verbundtragfähigkeit	im ungeriss	enen Beto	n C20/	25								
l: 40°C/24°C trockener und			10	12	12	12	12	12	11	10	8,5	
=	,	[N/mm²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
## 60 6/30 C feuchter Betor	τ _{Rk,ucr}		5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
l: 40°C/24°C wassergefüllte		[]	7,5	8,5	8,5	8,5	8,5					
			5,5	6,5	6,5	6,5	6,5	Keine	Keine Leistung bew			
III: 120°C/72°C	<u> </u>		4,0	5,0	5,0	5,0	5,0					
Charakteristische Verbundtragfähigkeit	ım gerissen	en Beton (
l: 40°C/24°C trockener und			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
II: 80°C/50°C feuchter Betor	ı		2,5	3,5	4,0	4,0	4,0	4,0	4,0 3,0	4,5 3,5	4,5 3,5	
## 30 G/60 Feuchter Betor	— τ _{Rk,cr}	[N/mm ²]	2,0 4,0	2,5 4,0	3,0 5,5	3,0 5,5	3,0 5,5	3,0	3,0 3,0 3,5			
$\Phi = \Pi \cdot \Omega \circ C/50 \circ C$	s		2,5	3,0	4,0	4,0	4,0	Kaina	Keine Leistung bev			
III: 120°C/72°C Bohrloch			2,0	2,5	3,0	3,0	3,0	Reme	Verte			
Reduktionsfaktor ψ^0_{sus} im gerissenen u	nd unaeriss	enen Beto			0,0	0,0	0,0					
I: 40°C/24°C trockener und feuchter Betor	ո,		0,73									
II: 40°C/24°C trockener und feuchter Betor sowie wassergefüllte	Ψ^0 sus	[-]	0,65									
III: 120°C/72°C Wassergerding							0,57					
Erhöhungsfaktor für Beton	Ψς	[-]				(f _c	k / 20) ⁽	0,11				
Charakteristische Verbundtragfähigkeit	in	τ _{Rk,ucr} =					Rk,ucr(C					
Abhängigkeit von der		τ _{Rk,cr} =					Rk,cr(C					
Betonfestigkeitsklasse Betonausbruch		TRK,CI				+0	nk,ci (-					
Relevante Parameter						siehe	e Tabel	le C2				
Spalten												
Relevante Parameter						siehe	e Tabel	le C2				
Montagebeiwert												
für trockenen und feuchten Beton	ν:	[-]	1,0				1	,2				
für wassergefülltes Bohrloch	γinst	[-]			1,4			Keine	Leist L	ıng bev	verte	
1) fuk ist den Spezifikationen des Betonst	ahls zu entn	ehmen										

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 7

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C8: Charakteri statischer			er Que	ertrag	fähigk	ceit ur	iter st	atisch	er un	d qua	si-
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V ⁰ Rk,s	[kN]				0,5	O·A _s ·	f _{uk} ²⁾			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	[-]	1,5 ²⁾									
Duktilitätsfaktor	[-]	1,0									
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾				
Betonausbruch auf der lastabge	ewandten Sei	te									
Faktor	k ₈	[-]					2,0				
Montagebeiwert	γ _{inst}	[-]					1,0				
Betonkantenbruch											
Effektive Dübellänge	I _f	[mm]		m	in(h _{ef} ; 1	12 · d _{no}	m)		min(h _{ef} ; 300	mm)
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Montagebeiwert	γ _{inst}	[-]					1,0				

 $^{^{\}rm 1)}$ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen $^{\rm 2)}$ Sofern andere nationalen Regelungen fehlen

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 8

Tabelle C9: V	/erschiebu	ıng unter Zugbea	nspru	chung	1)						
Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30	
Ungerissener Beto	n C20/25 ur	iter statischer und qu	uasi-sta	tischer	Belastu	ng					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperaturbereich II: 80°C/50°C	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Gerissener Beton	C20/25 unte	r statischer und quas	si-statis	cher Be	lastung	l					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	05	0,105						
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperaturbereich	δ_{N0} -Faktor	[mm/(N/mm²)]	0,2	219			0,1	70			
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C10: Verschiebung unter Querbeanspruchung¹⁾

Gewindestange				M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung										
Alle Temperaturbereiche	δ _{v0} -Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Gerissener Beton C20/25 unter statischer und quasi-statischer Belastung										
Alle	δ _{v0} -Faktor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
Temperaturbereiche	$\delta_{V\infty}$ -Faktor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V;$

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 9

Innengewindeanke	rstange		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Ungerissener Beto	n C20/25 unter	statischer und qua	asi-statiso	her Belas	tung					
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049		
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Gerissener Beton (220/25 unter st	atischer, quasi-sta	tischer Be	elastung						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,090			0,070				
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,105			0,105				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,219			0,170				
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,255	0,245						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,219			0,170				
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,255			0,245				

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C12: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindeankerstange)

Innengewindeankers	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20					
Gerissener und ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle	δ _{v0} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04			
Temperaturbereiche	δ _{V∞} -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor}\cdot V;$

Anhang C 10
_

Tabelle C13:Verschiebung unter Zugbeanspruchung ¹⁾											
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Bet	on C20/25 ເ	ınter statische	r und q	uasi-sta	atischer	Belastı	ung			•	
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperaturbereich II: 80°C/50°C	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Gerissener Beton	C20/25 unt	er statischer u	ınd qua	si-statis	scher B	elastun	g				
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,0	90	0,070						
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,1	105	0,105						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219				0,170			
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255	0,245						
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,2	219	0,170						
III. 10000/7000	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,2	255				0,245			

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-Faktor} \cdot \tau;$

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C14:Verschiebung unter Querbeanspruchung¹⁾

Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle Temperaturbereiche	δ _{v0} -Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	δ _{ν∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Gerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle	δ _{v0} -Faktor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 11

l	Tabelle C15:	Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung
l		(Leistungskategorie C1)

		`	5 5	,									
Gev	wind	estange				M8	M 10	M12	M16	M20	M24	M27	M30
Sta	hlve	rsagen											
Charakteristische Zugtragfähigkeit N _{Rk,s,eq,C1}					[kN]				1,0 •	$N_{Rk,s}$			
Teil	siche	erheitsbeiwert		γ _{Ms,N}	[-]			s	iehe Ta	abelle C	21		
Kombiniertes Versagen durch Herausziehen und Betonausbruc													
Cha	arakte	eristische Verb	undtragfähigkeit im ger	issenen und	ungerisser	en Bet	ton C20)/25					
ے	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
reic	II:	80°C/50°C	trockener und feuchter Beton	τ _{Rk,eq,C1}	[N/mm²] - -	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
urbe	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
erat	I:	40°C/24°C				2,5	2,5	3,7	3,7	Keine Leistung bewerte			
Temperaturbereich	II:	80°C/50°C	wassergefülltes Bohrloch			1,6	1,9	2,7	2,7				
_	III:	120°C/72°C				1,3	1,6	2,0	2,0				
Erh	öhun	ıgsfaktor für B	eton	Ψ _C	[-]				1	,0			
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse				τ	Rk,eq,C1=	Ψ _C • τ _{Rk, eq,C1} (C20/25)							
		ebeiwert											
für	trock	enen und feuc	hten Beton	2/.	[.]	1,0				1,2			
für	wass	ergefülltes Bo	hrloch	^γ inst	[-]		1	,4		Keine	Leistu	ung be	wertet

Tabelle C16: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Gewindestange		M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit	[kN]	0,70 • V ⁰ _{Rk,s}								
Teilsicherheitsbeiwert	[-]	siehe Tabelle C1								
Faktor für Ringspalt	0,5 (1,0)1)									

¹⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen der Gewindestange und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) (Gewindestange)	Anhang C 12

Tabelle C17: Charakteristische Werte der Zugtragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)											
Betonstahl		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen											
Charakteristische Zugtragfähigkeit	N _{Rk,s,eq,C1}	[kN]				1,0	• A _s •	$f_{uk}^{1)}$			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]		1,42)							
Kombiniertes Versagen durch Heraus	ziehen und	Betonaus	bruch								
Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25											
I: 40°C/24°C			2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
II: 80°C/50°C trockener und feuchter Beton III: 120°C/24°C trockener und feuchter Beton III: 80°C/50°C wassergefülltes Robringh			1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
## 120°C/72°C feuchter Beton feuchte	7.51	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
L: 40°C/24°C wassergefülltes	^τ Rk,eq,C1	[14/11111-]	2,5	2,5	3,7	3,7	3,7		Keine Leistung bewerte		
			1,6	1,9	2,7	2,7	2,7	Keine			
III: 120°C/72°C			1,3	1,6	2,0	2,0	2,0				
Erhöhungsfaktor für Beton	Ψc	[-]					1,0				
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der Betonfestigkeitsklasse	τμ	Rk,eq,C1=		Ψ _C • τ _{Rk, eq,C1} (C20/25)							
Montagebeiwert											
für trockenen und feuchten Beton	γ:	[-]	1,0				1	,2			
für wassergefülltes Bohrloch	γinst	[[-]		1,4 Keine Leistung bew							wertet

¹⁾ fuk ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C18: Charakteristische Werte der Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1)

Betonstahl	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit	V _{Rk,s,eq,C1}	[kN]	0,35 • A _s • f _{uk} ¹⁾								
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,5 ²⁾								
Faktor für Ringspalt	$\alpha_{\sf gap}$	[-]	0,5 (1,0)3)								

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter seismischer Einwirkung (Leistungskategorie C1) (Betonstahl)	Anhang C 13

²⁾ Sofern andere nationalen Regelungen fehlen

²⁾ Sofern andere nationalen Regelungen fehlen

³⁾ Wert in der Klammer ist für gefüllte Ringspalte zwischen dem Betonstahl und dem Durchgangsloch im Anbauteil gültig. Die Verwendung einer Verfüllscheibe gemäß Anhang A 3 wird empfohlen.

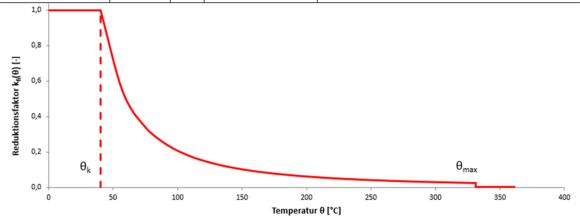


Tabelle C19: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30				
Stahlversagen												
Charakteristische Zugtrag-			Brand-	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
fähigkeit; Stahl,	N	[I/NI]	einwirk- zeit 90 0,9 1,4 2,3 4,2 6,6 20 0,7 1,0 1,6 3,0 4,7	6,6	9,5	12,4	15,1					
Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse	N _{Rk,s,fi}	[kN]		90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
5.8 bzw. 50 und höher			[min]	120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9

Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ

			θ < 21°C	1,0
Temperaturabhängiger Reduktionsfaktor	$k_{fi,p}(\theta)$	[-]	21°C ≤ θ ≤ 331°C	$589.7 \cdot \theta^{-1.726} \le 1.0$
Troughtierieranter			θ > 331°C	0,0

Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$		[N/mm²	· · · · · · · · · · · · · · · · · · ·	$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$							
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit; Stahl, Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse			Brand-	30	1,1	1,7	3,0	5,7	8,8	12,7	16,5	20,2
	\ \ \ \ 	FIZA II	einwirk-	60	0,9	1,4	2,3	4,2	6,6	9,5	12,4	15,1
	V _{Rk,s,fi}	[kN]	zeit	90	0,7	1,0	1,6	3,0	4,7	6,7	8,7	10,7
5.8 bzw. 50 und höher			[min]	120	0,5	0,8	1,2	2,2	3,4	4,9	6,4	7,9
Stahlversagen mit Hebelari	n											
Charakteristisches			Brand-	30	1,1	2,2	4,7	12,0	23,4	40,4	59,9	81,0
Biegemoment; Stahl, Nichtrostender Stahl A2, A4 und HCR, Festigkeitsklasse	NAO	[Nm]	einwirk-	60	0,9	1,8	3,5	9,0	17,5	30,3	44,9	60,7
	M ⁰ Rk,s,fi	ן נוזאוו <u>ן</u>	zeit	90	0,7	1,3	2,5	6,3	12,3	21,3	31,6	42,7
5.8 bzw. 50 und höher			[min]	120	0,5	1,0	1,8	4,7	9,1	15,7	23,3	31,5

τ_{Rk,cr,(C20/25)} charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

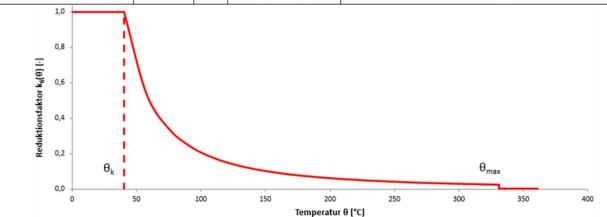

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Gewindestange)	Anhang C 14

Tabelle C20: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB)

Innengewindeankerstange	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Stahlversagen							ı			
Charakteristische Zugtrag-			Brand-	30	0,3	1,1	1,7	3,0	5,7	8,8
fähigkeit; Stahl,	N	[LAND	einwirk-	60	0,2	0,9	1,4	2,3	4,2	6,6
Nichtrostender Stahl A4 und N _{Rk,s,fi} HCR, Festigkeitsklasse 5.8	¹¶Rk,s,fi 	[kN]	zeit	90	0,2	0,7	1,0	1,6	3,0	4,7
und 8.8 bzw. 70			[min]	120	0,1	0,5	0,8	1,2	2,2	3,4

Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ

,												
Charakteristische Verbundtragfähigkeit für die Temperatur (θ)	$\tau_{Rk,fi}(\theta)$	[N/mm²]				$k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$						
Stahlversagen ohne Hebelarm												
Charakteristische Quertragfähigkeit; Stahl, Nichtrostender Stahl A4 und HCR, Festigkeitsklasse 5.8 und 8.8 bzw. 70			Brand-	30	0,3	1,1	1,7	3,0	5,7	8,8		
	V _{Rk,s,fi}	[kN]	einwirk- zeit [min]	60	0,2	0,9	1,4	2,3	4,2	6,6		
				90	0,2	0,7	1,0	1,6	3,0	4,7		
				120	0,1	0,5	0,8	1,2	2,2	3,4		
Stahlversagen mit Hebelarr	n											
Charakteristisches			Brand-	30	0,2	1,1	2,2	4,7	12,0	23,4		
Biegemoment; Stahl, Nichtrostender Stahl, A4 und HCR, Festigkeitsklasse 5.8 und 8.8 bzw. 70	N/O	[NIm]	einwirk-	60	0,2	0,9	1,8	3,5	9,0	17,5		
	M ⁰ _{Rk,s,fi}	[Nm]	zeit [min]	90	0,1	0,7	1,3	2,5	6,3	12,3		
				120	0,1	0,5	1,0	1,8	4,7	9,1		

¹⁾ $au_{Rk,cr,(C20/25)}$ charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches

Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton	
Leistungen Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung (Innengewindeankerstange)	Anhang C 15

Leistungen

(Betonstahl)

Tabelle C21: Charakteristische Werte der Zug- und Querzugtragfähigkeit unter Brandeinwirkung in hammergebohrten Löchern (HD), in druckluftgebohrten Löchern (CD) und in hammergebohrten Löchern mit Hohlbohrer (HDB) Betonstahl Ø 8 |Ø 10 |Ø 12 |Ø 14 |Ø 16 |Ø 20 |Ø 24 |Ø 25 |Ø 28 | Ø 32 Stahlversagen 30 0,5 1,2 2,3 3,1 4,0 6,3 9,0 9,8 12,3 16,1 Brand-0,5 1,7 2,3 4,7 7,4 9,2 12,1 60 1,0 3,0 6,8 Charakteristische Zugtrageinwirk- $N_{Rk,s,fi}$ [kN] fähigkeit; BSt 500 zeit 10,5 90 0,4 8,0 1,5 2,0 2,6 4,1 5,9 6,4 0,8 [min] 120 0,3 0,6 1,1 1,5 2,0 3,1 4,5 4,9 0,8 Charakteristische Verbundtragfähigkeit im gerissenen und ungerissenen Beton C20/25 bis C50/60 unter Brandbedingungen für die Temperatur θ θ < 21°C 1,0 Temperaturabhängiger $0.81 \cdot e^{-0.016 \cdot \theta} \le 1.0$ $k_{fi,p}(\theta)$ $21^{\circ}C \le \theta \le 243^{\circ}C$ Reduktionsfaktor θ > 243°C 0,0 1.0 Reduktionsfaktor k_{fi}(θ) [-] 0,6 0.2 θ_{max} 0,0 200 250 100 150 300 Temperatur θ [°C] Charakteristische Verbundtragfähigkeit für die $| au_{\mathsf{Rk},\mathsf{fi}}(heta)|$ $k_{fi,p}(\theta) \cdot \tau_{Rk,cr,(C20/25)}^{1)}$ [N/mm²] Temperatur (θ) Stahlversagen ohne Hebelarm 30 0.5 1,2 2,3 3,1 4,0 6,3 9,0 9,8 12,3 16,1 Brand-60 0,5 1,0 1,7 2,3 3,0 4,7 6,8 7,4 9,2 12,1 Charakteristische Quertrageinwirk- $V_{\mathsf{Rk},\mathsf{s},\mathsf{fi}}$ [kN] fähigkeit; BSt 500 zeit 90 0.4 2.0 10.5 8.0 1,5 2.6 4.1 5.9 6.4 8.0 [min] 120 0,3 0,6 1,1 1,5 2,0 3,1 4,5 4,9 6,2 8,0 Stahlversagen mit Hebelarm 30 0,6 1,8 4,1 6,5 9,7 18,8 32,6 36,8 51,7 77,2 Brand-7,2 27,6 60 0,5 1,5 3,1 4,8 14,1 24,4 38,8 57,9 Charakteristisches einwirk-M⁰_{Rk,s,fi} [Nm] Biegemoment; BSt 500 zeit 90 0.4 1,2 2,6 4,2 6,3 12,3 21,2 23,9 50,2 33,6 [min] 120 0,3 0,9 2,0 3,2 4,8 9,4 16,3 | 18,4 | 25,9 | 38,6 1) $au_{
m Rk,cr.(C20/25)}$ charakteristische Verbundtragfähigkeit für gerissenen Beton für die Betonfestigkeitsklasse C20/25 des jeweiligen Temperaturbereiches Würth Injektionssystem WIT-VM 250 oder WIT-NORDIC für Beton

Z194209.25 8.06.01-188/25

Charakteristische Werte der Zug- und Quertragfähigkeit unter Brandeinwirkung

Anhang C 16