

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-12/0215 of 2 April 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

TILCA Wedge Anchor BZ plus and BZ-IG

Mechanical fastener for use in concrete

EFCO Befestigungstechnik AG Grabenstraße 1 8606 NÄNIKON **SCHWEIZ**

Werk 1, Deutschland

36 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-12/0215 issued on 9 June 2015

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de 8.06.01-27/25

European Technical Assessment ETA-12/0215

English translation prepared by DIBt

Page 2 of 36 | 2 April 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 36 | 2 April 2025

Specific Part

1 Technical description of the product

The TILCA Wedge Anchor BZ plus and BZ-IG is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Anchor type Wedge Anchor BZ plus with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type Wedge Anchor BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type Wedge Anchor BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type Wedge Anchor BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	Wedge Anchor BZ plus see Annex B4, B5, C1 to C4 Wedge Anchor BZ-IG see Annex B8, C11 and C12
Characteristic resistance to shear load (static and quasi-static loading)	Wedge Anchor BZ plus see Annex C5 Wedge Anchor BZ-IG see Annex C13
Displacements (static and quasistatic loading)	Wedge Anchor BZ plus see Annex C9 and C10 Wedge Anchor BZ-IG see Annex C15
Characteristic resistance and displacements for seismic performance categories C1 and C2	Wedge Anchor BZ plus see Annex C6, C9 and C10 Wedge Anchor BZ-IG No performance assessed

European Technical Assessment ETA-12/0215

English translation prepared by DIBt

Page 4 of 36 | 2 April 2025

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	Wedge Anchor BZ plus see Annex C7 and C8 Wedge Anchor BZ-IG see Annex C14

3.3 Aspects of durability

Essential characteristic	Performance
Durability	See Annex B1

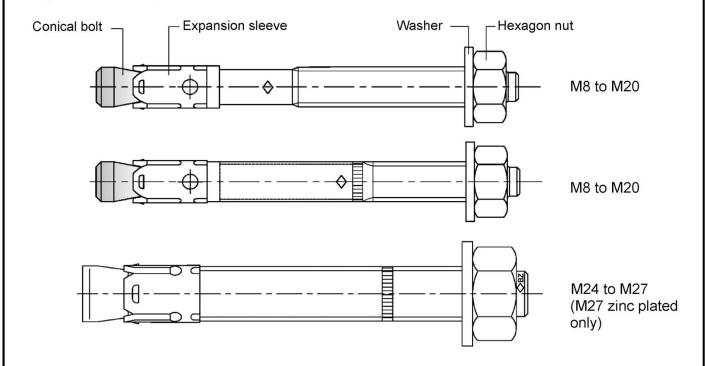
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

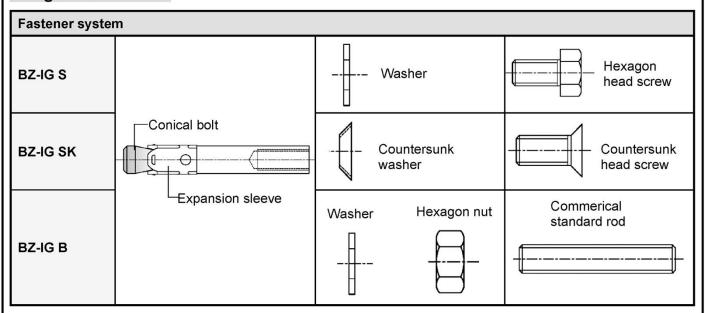
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 2. April 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Baderschneider



Fastener version	Product description	Intended use	Performance		
BZ plus	Annex A1 - Annex A4	Annex B1 – Annex B7	Annex C1 – Annex C10		
BZ-IG	Annex A1 Annex A5 – Annex A7	Annex B1 – Annex B2 Annex B8 – Annex B10	Annex C11 – Annex C15		

Wedge Anchor BZ plus

Wedge Anchor BZ-IG M6 to M12

TILCA Wedge Anchor BZ plus and BZ-IG

Product description

Fastener types

Annex A1

Intended use Wedge Anchor BZ plus $h \ge h_{min,1}$ bzw. $h_{min,2}$ h1 hef tfix df hef,red tfix h_{1,red} h ≥ h_{min,3} TILCA Wedge Anchor BZ plus and BZ-IG Annex A2 **Product description** Installation situation BZ plus

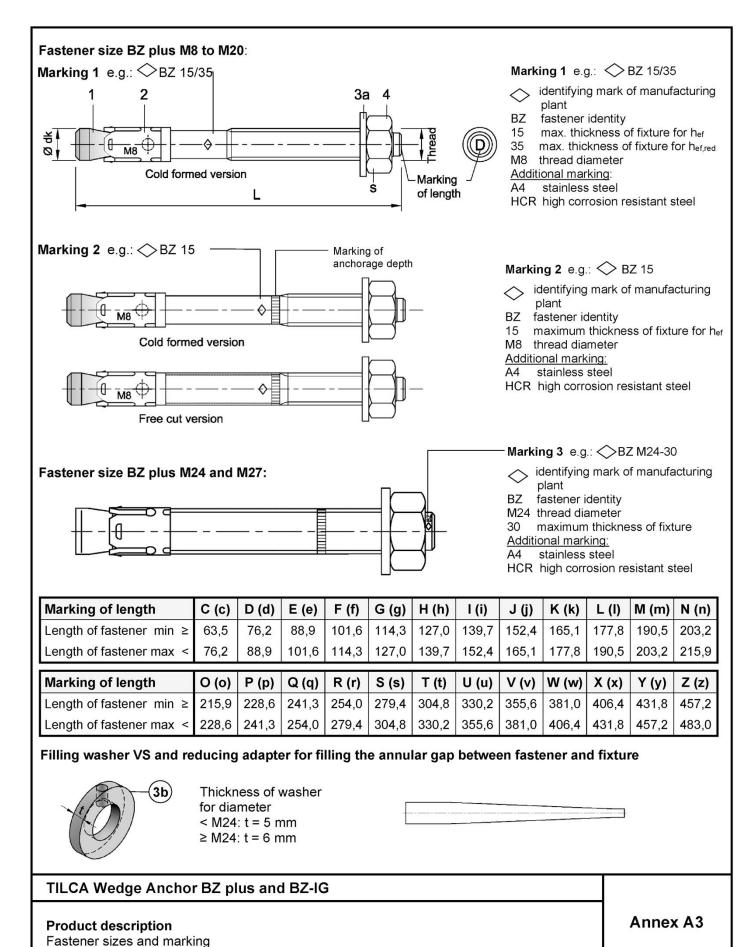


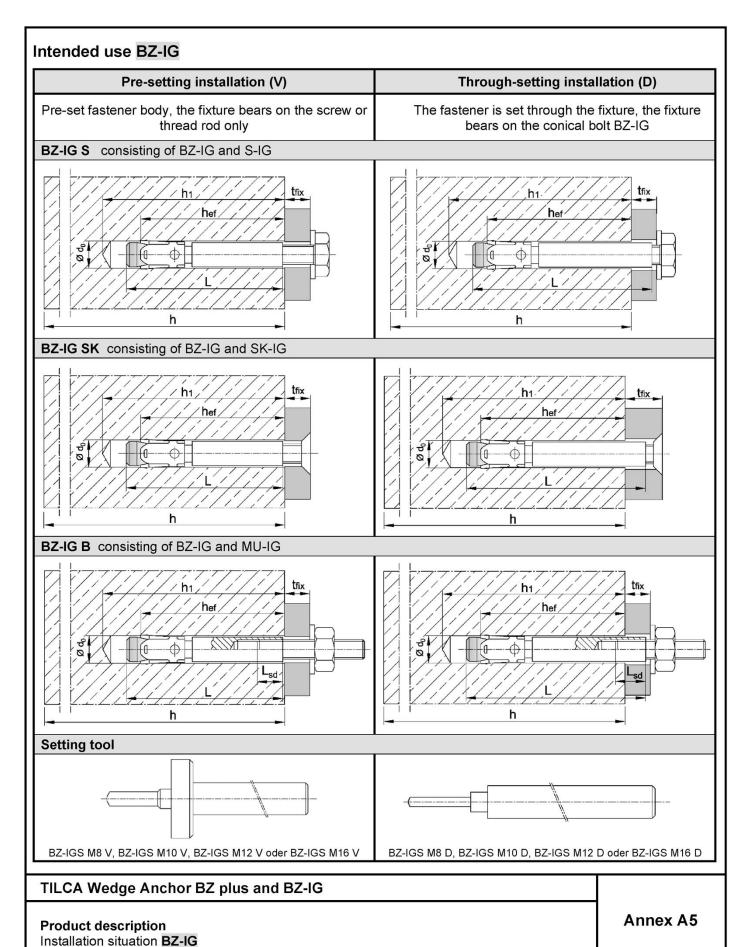
Table A1: Fastener dimensions BZ plus

Fastener size			M8	M10	M12	M16	M20	M24	M27
Conical bolt		Thread	M8	M10	M12	M16	M20	M24	M27
Cornical boil		\emptyset d _k =	7,9	9,8	12,0	15,7	19,7	24	28
	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
Length of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
fastener ¹⁾	reduced anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	į	ï	ı
Thickness of fi	illing washer	t [mm]	5	5	5	5	5	6	6
Hexagon nut		s	13	17	19	24	30	36	41

¹⁾ With additional use of filling washer 3b the usable thickness of fixture is reduced by the thickness of filling washer t [mm]

Dimensions in mm

Table A2: Materials BZ plus


		BZ	plus	BZ plus A4	BZ plus HCR		
No.	Part	Steel, z	inc plated	Stainless steel A4	High corrosion		
H.	galvanized ≥ 5μm sherardized ≥ 45μm		(CRC III)	resistant steel HCR (CRC V)			
1	Conical bolt	M8 to M20: Cold formed or machined steel, galvanized, cone plastic coated	M8 to M20: Cold formed or machined steel, sherardized, cone plastic coated	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated		
	Threaded bolt	M24 and M27:	M24 and M27: steel, sherardized	M24: Stainless steel	M24: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014		
	Threaded cone	Steel, galvanized	M24 and M27: Steel, galvanized	(e.g. 1.4401, 1.4404) EN 10088:2014			
2	Expansion sleeve	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel, zinc plated	M8 to M20: Steel (e.g. 1.4301 or 1.4401) EN 10088:2014, M24 and M27: Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014		
3a	Washer	Steel, zinc plated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571)	High corrosion resistant steel		
3b	Filling washer	•	•	ÈN 10088:2014	1.4529 or 1.4565, EN 10088:2014		
4	Hexagon nut	Steel, galvanized, coated	Steel, zinc plated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated		

TILCA	Wedge A	Anchor BZ	plus and	BZ-IG
-------	---------	-----------	----------	-------

Product descriptionDimensions and materials

Annex A4

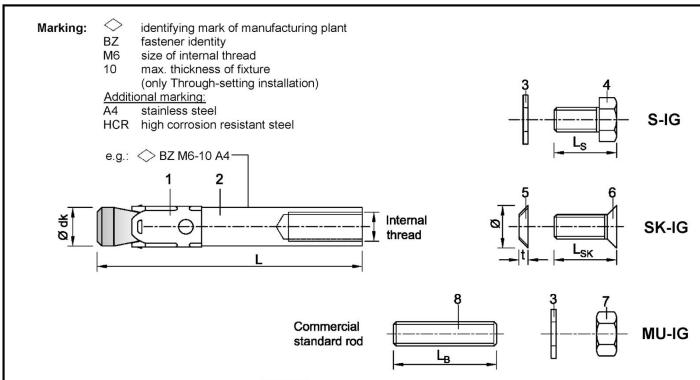


Table A3: Fastener dimensions BZ-IG

No.	Fastener size		M6	M8	M10	M12
	Conical bolt with internal thread		7,9	9,8	11,8	15,7
1	Pre-setting installation	L	50	62	70	86
	Through-setting installation	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	ible A4	
3	Washer			see ta	ible A4	
	Hexagon head screw wic	lth across flats	10	13	17	19
4	Pre-setting installation	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Through-setting installation	Ls	14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk Ø cour	ntersunk	17,3	21,5	25,9	30,9
5	washer	t	3,9	5,0	5,7	6,7
6	Countersunk head screw		Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Pre-setting installation	Lsk	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Through-setting installation L _{SK}		16 to 20	20 to 25	25	30
7	Hexagon nut width ac	ross flats	10	13	17	19
8	Commercial type V	L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
0	standard rod¹) type D L _B ≥		21	28	34	41

¹⁾ acc. to specifications (Table A4)

Dimensions in mm

TILCA	Wedge	Anchor I	BZ plus	and	BZ-IG
HLCA	weage	Anchor	o∠ pius	anu	DZ-IG

Product description

Fastener parts, marking and dimensions BZ-IG

Annex A6

Table A4: Materials BZ-IG

		BZ-IG	BZ-IG A4	BZ-IG HCR		
No.	Part	Steel, galvanized ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4 (CRC III)	High corrosion resistant steel HCR (CRC V)		
1	Conical bolt BZ-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated		
2	Expansion sleeve BZ-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014		
3	Washer S-IG / MU-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014		
4	Hexagon head screw S-IG	Steel, galvanized, coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated		
5	Countersunk washer SK-IG	Steel, galvanized	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated		
6	Countersunk head screw SK-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated		
7	Hexagon nut MU-IG	Steel, galvanized coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated		
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009		

TILCA Wedge Anchor BZ plus and BZ-IG	
Product description Materials BZ-IG	Annex A7

Specifications of intended use

Wedge Anchor BZ plus	Wedge Anchor BZ plus						
Standard anchorage depth	M8	M8 M10 M12 M16 M20 M24 M27					
Steel, galvanized	✓						
Steel, sherardized		✓					
Stainless steel A4 and high corrosion resistant steel HCR		✓ _2				_2)	
Static or quasi-static action		✓					
Fire exposure		✓					
Seismic action (C1 and C2) 1)			✓			_2)	_2)

Reduced anchorage depth 1)	M8	M10	M12	M16	
Steel, galvanized	✓				
Steel, sherardized			✓		
Stainless steel A4 and high corrosion resistant steel HCR	✓				
Static or quasi-static action	√				
Fire exposure	✓				
Seismic action (C1 and C2)			_2)		

¹⁾ Only cold formed anchors acc. to Annex A3

²⁾ No performance assessed

Wedge Anchor BZ-IG	М6	M8	M10	M12
Steel, galvanized		•	/	
Stainless steel A4 and high corrosion resistant steel HCR		,	/	
Static or quasi-static action		,		
Fire exposure		,	/	
Seismic action (C1 and C2)		-	1)	

¹⁾ No performance assessed

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions: Intended use of materials according to Annex A4, Table A2 or Annex A7, Table A4 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

TILCA Wedge Anchor BZ plus and BZ-IG	
Intended use Specifications	Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to
 reinforcement or to supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to EN 1992-4:2018 in conjunction with Technical Report TR 055, Edition February 2018

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the BZ plus can be filled to reduce the hole. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 40 N/mm² (e.g. VMZ, VMU plus or VMH).
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

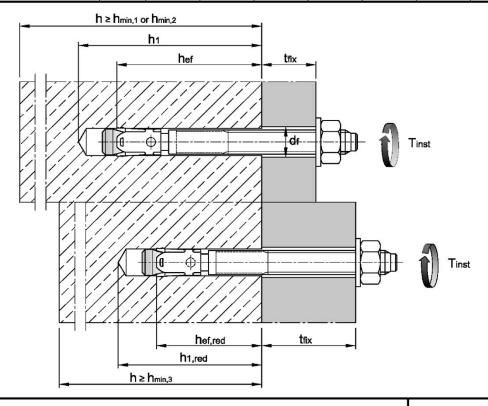

TILCA Wedge Anchor BZ plus and BZ-IG	
Intended use Specifications	Annex B2

Table B1: Installation parameters, BZ plus

Fastener size	Э			M8	M10	M12	M16	M20	M24	M27
Nominal drill l	nole diameter	d ₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanized	T _{inst}	[Nm]	20	25	45	90	160	200	300
Installation	Steel, sherardized	T _{inst}	[Nm]	16	10 12 10,45 12,5	40	90	160	260	300
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	_1)
Diameter of c		$d_f \leq$	[mm]	9	12	14	18	22	26	30
Standard and	Standard anchorage depth									
Depth of	Steel, zinc plated	$h_1\geq$	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	h ₁ ≥	[mm]	60	75	90	110	125	155	_1)
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	_1)
Reduced anchorage depth										
Depth of drill	hole	$h_{1,\text{red}} \geq$	[mm]	49	55	70	90	9/05	6000	300
Reduced effe depth	ctive anchorage	h _{ef,red}	[mm]	35	40	50	65	_1)	_1)	_1)

1) No performance assessed

TILCA Wedge Anchor BZ plus and BZ-IG

Intended use Installation parameters Annex B3

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120 45 70 45 90 45 70 50 100 120 50 75 55 90	140 60 100 60 140 60 120 75 150 140 60 100 60 140	60 100 60 180 65 120 80 150 160 60 100 60 180	95 150 95 200 90 180 130 240 200	230 100 180 100 220 100 180 100 220 250 250 125 125 125	250 125 300 180 540 125 300 180 540 -1)
$ \begin{array}{c c} Standard thickness of member \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum edge distance} \\ \hline \textbf{Minimum edge distance} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum edge distance} \\ \hline \textbf{Minimum edge distance} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum edge distance} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum bedge distance} \\ \hline \textbf{Minimum bedge distance} \\ \hline \textbf{Minimum thickness of concrete member} \\ \hline \textbf{Minimum thickness of concrete member} \\ \hline \textbf{Steel zinc plated, stainless steel A4, HCR} \\ \hline \textbf{Minimum thickness of member} \\ \hline \textbf{Minimum thickness of member} \\ \hline \textbf{Minimum thickness of member} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum thickness of member} \\ \hline \textbf{Minimum thickness of member} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum spacing} \\ \hline \textbf{Minimum edge distance} \\ \hline \textbf{Minimum spacing} \\ \hline Mini$	45 70 45 90 45 70 50 100 120 50 75 55 90	60 100 60 140 60 120 75 150 140 60 100 60	60 100 60 180 65 120 80 150 160 60 100 60	95 150 95 200 90 180 130 240 200 95 150 95	100 180 100 220 100 180 100 220 250	125 300 180 540 125 300 180 540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 70 45 90 45 70 50 100 120 50 75 55 90	60 100 60 140 60 120 75 150 140 60 100 60	60 100 60 180 65 120 80 150 160 60 100 60	95 150 95 200 90 180 130 240 200 95 150 95	100 180 100 220 100 180 100 220 250	125 300 180 540 125 300 180 540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 45 90 45 70 50 100 120 50 75 55 90	100 60 140 60 120 75 150 140 60 100 60	100 60 180 65 120 80 150 160	95 200 90 180 130 240 200 95 150 95	180 100 220 100 180 100 220 250 250	300 180 540 125 300 180 540
$\begin{array}{c cccc} \text{Minimum spacing} & \hline \text{für c} \geq & [mm] & 70 \\ \hline \text{Cmin} & [mm] & 40 \\ \hline \text{für s} \geq & [mm] & 80 \\ \hline \\ \textbf{Uncracked concrete} \\ \hline \\ \textbf{Minimum spacing} & \hline \\ \hline \text{Minimum spacing} & \hline \\ \hline \text{Minimum spacing} & \hline \\ \hline \text{Minimum edge distance} & \hline \\ \hline \text{Stainless steel A4, HCR} \\ \hline \\ \textbf{Stainless steel A4, HCR} \\ \hline \\ \textbf{Standard thickness of member} & \hline \\ \hline \text{Minimum spacing} & \hline \\ \hline \text{Smin} & [mm] & 40 \\ \hline \hline \text{für c} \geq & [mm] & 100 \\ \hline \hline \textbf{Stainless steel A4, HCR} \\ \hline \\ \textbf{Stainless steel A4, HCR} \\ \hline \\ \textbf{Minimum spacing} & \hline \\ \hline \text{Minimum spacing} & \hline \\ \hline \text{Minimum edge distance} & \hline \\ \hline \\ \hline \textbf{Minimum spacing} & \hline \\ \hline \\ \hline \textbf{Minimum spacing} & \hline \\ \hline \\ \hline \textbf{Minimum spacing} & \hline \\ \hline \\ \hline \\ \hline \textbf{Minimum edge distance} & \hline \\ \hline$	70 45 90 45 70 50 100 120 50 75 55 90	100 60 140 60 120 75 150 140 60 100 60	100 60 180 65 120 80 150 160	95 200 90 180 130 240 200 95 150 95	180 100 220 100 180 100 220 250 250	300 180 540 125 300 180 540
$\begin{array}{c ccccc} \text{Minimum edge distance} & \begin{array}{c ccccc} \text{Tur } c \geq & [mm] & 70 \\ \hline \text{Cmin} & [mm] & 40 \\ \hline \text{für } s \geq & [mm] & 80 \\ \hline \\ \text{Uncracked concrete} \\ \hline \\ \text{Minimum spacing} & \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 90 45 70 50 100 120 50 75 55 90	60 140 60 120 75 150 140 60 100 60	60 180 65 120 80 150 160 60 100 60	95 200 90 180 130 240 200 95 150 95	100 220 100 180 100 220 250 250	180 540 125 300 180 540
$\begin{array}{c cccc} \text{Minimum edge distance} & \hline \text{für s} \geq & [\text{mm}] & 80 \\ \hline \text{Uncracked concrete} \\ \hline \text{Minimum spacing} & \hline \frac{\text{s}_{\text{min}}}{\text{für c}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \text{Minimum edge distance} & \hline \frac{\text{c}_{\text{min}}}{\text{für s}} & [\text{mm}] & 50 \\ \hline \text{für s} \geq & [\text{mm}] & 50 \\ \hline \text{für s} \geq & [\text{mm}] & 50 \\ \hline \text{für s} \geq & [\text{mm}] & 100 \\ \hline \textbf{Stainless steel A4, HCR} \\ \hline \textbf{Standard thickness of member} & h_{\text{min,1}} & [\text{mm}] & 100 \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{für c}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{für s}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Minimum thickness of concrete member} \\ \hline \textbf{Steel zinc plated, stainless steel A4, HCR} \\ \hline \textbf{Minimum thickness of member} & h_{\text{min,2}} & [\text{mm}] & 80 \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{für c}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{für s}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{für m}} & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{fir m}} & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{fir m}} & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{fir m}} & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{fir m}} & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{fir m}} & 40 \\ \hline \textbf{min} & & \frac{\text{s}_{\text{min}}}{\text{m}} & \frac{\text{s}_{\text{min}}}{\text{s}_{\text{m}}} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{min}}}{\text{s}_{\text{m}}} & \frac{\text{s}_{\text{m}}}{\text{s}_{\text{m}}} \\ \hline \textbf{Minimum spacing} & & \frac{\text{s}_{\text{m}}}{\text{s}_{\text{m}}}$	90 45 70 50 100 120 50 75 55 90	140 60 120 75 150 140 60 100 60	180 65 120 80 150 160 60 100 60	200 90 180 130 240 200 95 150 95	220 100 180 100 220 250 125 125	540 125 300 180 540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 70 50 100 120 50 75 55 90	60 120 75 150 140 60 100 60	65 120 80 150 160 60 100 60	90 180 130 240 200 95 150 95	100 180 100 220 250 250	125 300 180 540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 50 100 120 50 75 55 90	120 75 150 140 60 100 60	120 80 150 160 60 100 60	180 130 240 200 95 150 95	180 100 220 250 250 125 125	300 180 540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 50 100 120 50 75 55 90	120 75 150 140 60 100 60	120 80 150 160 60 100 60	180 130 240 200 95 150 95	180 100 220 250 250 125 125	300 180 540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 100 120 50 75 55 90	75 150 140 60 100 60	80 150 160 60 100 60	130 240 200 95 150 95	100 220 250 125 125	180 540
$ \begin{array}{ c c c c }\hline \text{Minimum edge distance} & \hline \text{für s} & \geq & [mm] & 100 \\ \hline \textbf{Stainless steel A4, HCR} \\ \hline \textbf{Standard thickness of member} & h_{min,1} & [mm] & 100 \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 70 \\ \hline \textbf{Minimum edge distance} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für s} & \geq & [mm] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \textbf{Minimum edge distance} & \hline & s_{min} & [mm] & 50 \\ \hline & \hline \text{für s} & \geq & [mm] & 100 \\ \hline \textbf{Minimum thickness of concrete member} \\ \hline \textbf{Steel zinc plated, stainless steel A4, HCR} \\ \hline \textbf{Minimum thickness of member} & h_{min,2} & [mm] & 80 \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 70 \\ \hline \textbf{Minimum edge distance} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für s} & \geq & [mm] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline \hline & \hline \text{für c} & \geq & [mm] & 80 \\ \hline \hline \textbf{Minimum spacing} & \hline & s_{min} & [mm] & 40 \\ \hline \hline & \hline \text{für c} & \geq & [mm] & 50 \\ \hline \hline the space in the space is a space in th$	100 120 50 75 55 90	150 140 60 100 60	150 160 60 100 60	240 200 95 150 95	250 250 125 125	_1)
Tur s ≥ [mm] 100 Stainless steel A4, HCR Standard thickness of member $h_{min,1}$ [mm] 100 Cracked concrete Minimum edge distance $\frac{S_{min}}{für c ≥ [mm]}$ 80 Uncracked concrete Minimum spacing $\frac{S_{min}}{für c ≥ [mm]}$ 80 Minimum edge distance $\frac{S_{min}}{für c ≥ [mm]}$ 100 Minimum thickness of concrete member Steel zinc plated, stainless steel A4, HCR Minimum thickness of member $h_{min,2}$ [mm] 80 Cracked concrete Minimum spacing $\frac{S_{min}}{für c ≥ [mm]}$ 70 $\frac{S_{min}}{für c ≥ [mm]}$ 80 Uncracked concrete Minimum spacing $\frac{S_{min}}{für c ≥ [mm]}$ 80 Uncracked concrete Minimum spacing $\frac{S_{min}}{für c ≥ [mm]}$ 80 Uncracked concrete Minimum spacing $\frac{S_{min}}{für c ≥ [mm]}$ 80 Uncracked concrete Minimum spacing $\frac{S_{min}}{für c ≥ [mm]}$ 80	50 75 55 90	60 100 60	60 100 60	95 150 95	250 125 125	_1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 75 55 90	60 100 60	60 100 60	95 150 95	125 125	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 75 55 90	60 100 60	60 100 60	95 150 95	125 125	
	75 55 90	100 60	100 60	150 95	125	_1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75 55 90	100 60	100 60	150 95	125	_1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55 90	60	60	95		_1)
$\begin{array}{c cccc} \text{Minimum edge distance} & \begin{array}{c cccc} c_{min} & [mm] & 40 \\ \hline f\ddot{u}r s \geq & [mm] & 80 \\ \hline \end{array}$	90			_	125	1 -''
$ \begin{array}{ c c c c }\hline \text{Minimum edge distance} & \hline \text{für s} \geq & [\text{mm}] & 80 \\ \hline \textbf{Uncracked concrete} \\ \hline \text{Minimum spacing} & \hline \frac{\text{Smin}}{\text{für c}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \hline \text{Minimum edge distance} & \hline \frac{\text{Cmin}}{\text{für s}} & [\text{mm}] & 50 \\ \hline \text{für s} \geq & [\text{mm}] & 100 \\ \hline \hline \text{Minimum thickness of concrete member} \\ \hline \textbf{Steel zinc plated, stainless steel A4, HCR} \\ \hline \hline \text{Minimum thickness of member} & h_{\text{min,2}} & [\text{mm}] & 80 \\ \hline \textbf{Cracked concrete} \\ \hline \hline \text{Minimum spacing} & \hline \frac{\text{S}_{\text{min}}}{\text{für c}} & [\text{mm}] & 40 \\ \hline \text{für c} \geq & [\text{mm}] & 40 \\ \hline \hline \text{für s} \geq & [\text{mm}] & 80 \\ \hline \hline \textbf{Uncracked concrete} \\ \hline \hline \text{Minimum spacing} & \hline \frac{\text{S}_{\text{min}}}{\text{für s}} & [\text{mm}] & 40 \\ \hline \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \hline \hline \text{Crain} & [\text{mm}] & 40 \\ \hline \hline \text{für c} \geq & [\text{mm}] & 80 \\ \hline \hline \end{array}$	**************************************	140	180	000		125
$ \frac{s_{min}}{f \ddot{u} \ c \geq [mm]} = \frac{40}{80} $ $ \frac{c_{min}}{f \ddot{u} \ c \geq [mm]} = \frac{80}{80} $ $ \frac{c_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{50}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{100}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{100}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{40}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{40}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $ $ \frac{s_{min}}{f \ddot{u} \ r \geq [mm]} = \frac{80}{100} $	50			200	125	1
Minimum spacing $\frac{\text{für c} \geq \text{[mm]}}{\text{für c} \geq \text{[mm]}} = 80$ Minimum edge distance $\frac{\text{C}_{\text{min}}}{\text{für s} \geq \text{[mm]}} = 100$ Minimum thickness of concrete member $\frac{\text{Steel zinc plated, stainless steel A4, HCR}}{\text{Minimum thickness of member}} = \frac{\text{Minimum thickness of member}}{\text{Minimum spacing}} = \frac{\text{S}_{\text{min}}}{\text{für c} \geq \text{[mm]}} = 80$ $\frac{\text{C}_{\text{min}}}{\text{für c} \geq \text{[mm]}} = 40$ $\frac{\text{C}_{\text{min}}}{\text{für s} \geq \text{[mm]}} = 40$ $\frac{\text{C}_{\text{min}}}{\text{für c} \geq \text{[mm]}} = 80$	50					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		60	65	90	125	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	120	120	180	125	_1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	60	75	80	130	125	
Minimum thickness of concrete member Steel zinc plated, stainless steel A4, HCR Minimum thickness of member $h_{min,2}$ [mm] 80 Cracked concrete Minimum spacing	120	150	150	240	125	
		,,,,	1			
$\begin{array}{c cccc} \mbox{Minimum thickness of member} & \mbox{$h_{min,2}$} & [mm] & 80 \\ \mbox{Cracked concrete} & & & \\ \mbox{Minimum spacing} & & & & \\ \mbox{min} & [mm] & 40 \\ \mbox{$f\"{u}$r $c \ge [mm]$} & 70 \\ \mbox{min} & [mm] & 40 \\ \mbox{$f\"{u}$r $s \ge [mm]$} & 80 \\ \mbox{$uncracked concrete} & & \\ \mbox{min} & [mm] & 40 \\ \mbox{$f\"{u}$r $c \ge [mm]$} & 80 \\ \mbox{$cmin$} & [mm] & 50 \\ \mbox{$cmin$} & [mm] & [mm] & [mm] \\ \mbox{$cmin$} & [mm] & [mm] & [mm] \\ \mbox{$cmin$} & [mm] & [mm] & [mm] \\ \mbox{$cmin$} & [mm] \\ \mbox{$cmin$} & [mm] & [mm] \\ \mbox{$cmin$} & [mm] \\ \mbox{$cmin$} & [mm] & [mm] \\ \mbox{$cmin$} & [mm] \\ cm						
Cracked concreteMinimum spacing $\frac{s_{min}}{für c \ge [mm]}$ $\frac{s_{min}}{für c \ge [mm]}$ $\frac{s_{min}}{fur c \ge [mm]}$ $\frac{s_{min}}{fur c \ge [mm]}$ Minimum edge distance $\frac{s_{min}}{fur c \ge [mm]}$ $\frac{s_{min}}{fur c \ge [mm]}$ $\frac{s_{min}}{fur c \ge [mm]}$ $\frac{s_{min}}{s_{min}}$	100	120	140	_1)	_1)	_1)
Minimum spacing $ \begin{array}{c c} s_{min} & [mm] & 40 \\ \hline f \ddot{u} \ c \geq [mm] & 70 \\ \hline Minimum edge distance & c_{min} & [mm] & 40 \\ \hline f \ddot{u} \ s \geq [mm] & 80 \\ \hline \\ \textbf{Uncracked concrete} \\ \hline Minimum spacing & s_{min} & [mm] & 40 \\ \hline f \ddot{u} \ c \geq [mm] & 80 \\ \hline \\ \hline c_{min} & [mm] & 50 \\ \hline \end{array} $	100	120	140	1 12.		
Minimum spacing	45	60	70			
Minimum edge distance	90	100	160			
Minimum edge distance	50	60	80	_1)	_1)	_1)
Uncracked concrete Minimum spacing	115	140	180	-		
Minimum spacing $ \frac{s_{min}}{\text{für c} \geq [mm]} = \frac{40}{80} $ $ \frac{s_{min}}{s_{min}} = \frac{s_{min}}{s_{min}} = \frac{50}{80} $	110	140	100			
Minimum spacing für c ≥ [mm] 80	60	60	80			
C _{min} [mm] 50	140	120	180	1		
Minimum adda distance Cmin [MIII] 50	-			_1)	_1)	_1)
will influence constance con the control of the con	90	75	90	-		
für s ≥ [mm] 100	140	150	200	<u> </u>		
Fire exposure from one side						
Minimum spacing s _{min,fi} [mm]		See norma	al ambient	temperatu	re	
Minimum edge distance c _{min,fi} [mm] See normal ambient temperature						

Intermediate values by linear interpolation.

TILCA Wedge Anchor BZ plus and BZ-IG

Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B4

¹⁾ No performance assessed

Table B3: Minimum spacings and edge distances, reduced anchorage depth, BZ plus

Fastener size			M8	M10	M12	M16		
Minimum thickness of concrete member	h _{min,3}	[mm]	80	80	100	140		
Cracked concrete								
Minimum spacing	Smin	[mm]	50	50	50	65		
willing spacing	für c≥	[mm]	60	100	160	170		
Minimum edge distance	C _{min}	[mm]	40	65	65	100		
williman edge distance	für s ≥	[mm]	185	180	250	250		
Uncracked concrete								
Minimum angaing	Smin	[mm]	50	50	50	65		
Minimum spacing	für c≥	[mm]	60	100	160	170		
Minimum edge distance	C _{min}	[mm]	40	65	100	170		
williman edge distance	für s ≥	[mm]	185	180	185	65		
Fire exposure from one side								
Minimum spacing	S _{min,fi}	[mm]	Se	ee normal amb	ient temperatu	ire		
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature					
Fire exposure from more than one	side							
Minimum spacing	S _{min,fi}	[mm]	Se	ee normal amb	ient temperatu	ire		
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm			

Intermediate values by linear interpolation.

TILCA Wedge Anchor BZ plus and BZ-IG

Intended use

Minimum spacings and edge distances for reduced anchorage depth

Annex B5

Installation instructions BZ plus 90 Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3. Blow out dust. Alternatively vacuum clean down to the bottom of the 2 hole. 3 Check position of nut. Drive in fastener, such that hef or hef,red depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the fastener in accordance with Annex A3. $\mathsf{T}_{\mathsf{inst}}$ Installation torque T_{inst} shall be applied by using calibrated torque 5 wrench.

TILCA Wedge Anchor BZ plus and BZ-IG	
Intended Use Installation instructions	Annex B6

Installation instructions BZ plus with filling of annular gap Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3a. 2 Blow out dust. Alternatively vacuum clean down to the bottom of the hole. Check position of nut. 3a Fit the filling washer to the fastener. 3b The thickness of the filling washer must be taken into account with t_{fix}. Drive in fastener with filling washer, such that hef or hef,red depth is met. This compliance is ensured, if the thickness of fixture is 5mm smaller (or 6mm when ≥ M24) than the maximum thickness of fixture marked on the fastener in accordance with Annex A3. Installation torque Tinst shall be applied by using calibrated torque 5 wrench. Fill the annular gap between stud and fixture with high stregth mortar with compressive strength ≥ 40 N/mm². Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar seeps out.

TILCA Wedge Anchor BZ plus and BZ-IG	
Intended Use Installation instructions with filling washer	Annex B7

Table B4: Installation parameters BZ-IG

Fastener size				M6	M8	M10	M12	
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80	
Drill hole diameter		d₀	[mm]	8	10	12	16	
Cutting diameter of drill bit		$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	16,5	
Depth of drill hole		$h_1 \geq$	[mm]	60	75	90	105	
Screwing depth of threaded rod		$L_{sd}^{2)}\geq$	[mm]	9	12	15	18	
Installation town	93	S	[Nm]	10	30	30	55	
Installation torque, steel zinc plated	T _{inst}	SK	[Nm]	10	25	40	50	
steel zille plated		В	[Nm]	8	25	30	45	
Landa Hadina da unu		S	[Nm]	15	40	50	100	
Installation torque, stainless steel A4, HCR	T _{inst}	SK	[Nm]	12	25	45	60	
stanness steel A4, HCK	·-	В	[Nm]	8	25	40	80	
Pre-setting installation								
Diameter of clearance hole in the fi	xture	$d_f \! \leq \!$	[mm]	7	9	12	14	
		S	[mm]	1	1	1	1	
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9	
		В	[mm]	1	1	1	1	
Through-setting installation								
Diameter of clearance hole in the fi	xture	$d_f \leq$	[mm]	9	12	14	18	
	400	S	[mm	5	7	8	9	
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16	
		В	[mm]	5	7	8	9	

¹⁾ The minimum thickness of fixture can be reduced to the value of pre-setting installation, if the shear load at steel failure is designed with lever arm.

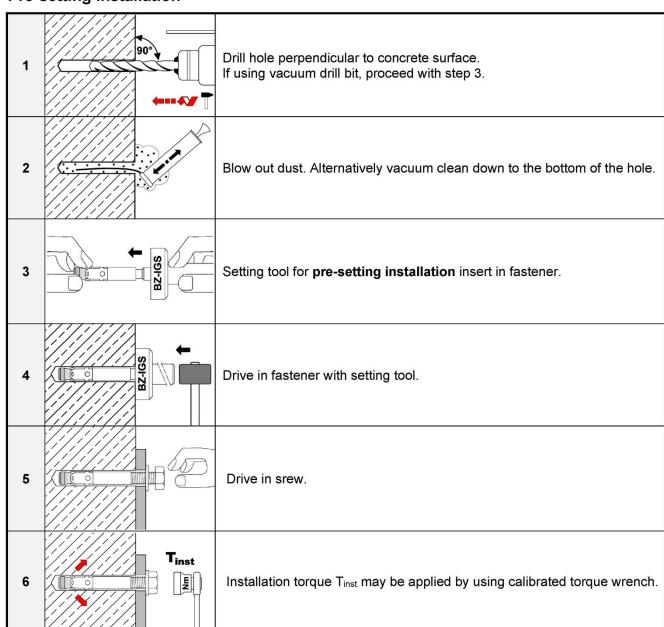
Table B5: Minimum spacings and edge distances BZ-IG

Fastener size			M6	M8	M10	M12		
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160		
Cracked concrete	,							
Minimum angoing	Smin	[mm]	50	60	70	80		
Minimum spacing	für c ≥	[mm]	60	80	100	120		
Minimum edge distance	Cmin	[mm]	50	60	70	80		
Willimidili edge distance	für s ≥	[mm]	75	100	100	120		
Uncracked concrete								
Minimum spacing	Smin	[mm]	50	60	65	80		
	für c ≥	[mm]	80	100	120	160		
Minimum edge distance	C _{min}	[mm]	50	60	70	100		
Willimum edge distance	für s ≥	[mm]	115	155	170	210		
Fire exposure from one side	95		2					
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature			
Minimum edge distance	C _{min,fi}	[mm]		See normal temperature				
Fire exposure from more than one side		-						
Minimum spacing	S _{min,fi}	[mm]	See normal temperature					
Minimum edge distance	C _{min,fi}	[mm]						
Intermediate values by linear interpolation.			_	_	_			

TILCA Wedge Anchor BZ plus and BZ-IG

Intended use

Installation parameters, minimum spacings and edge distances BZ-IG


Annex B8

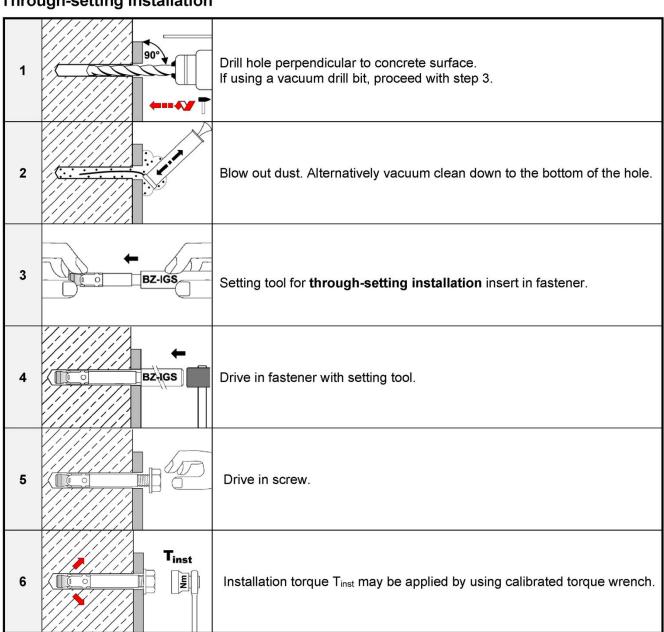
²⁾ see Annex A5

Installation instructions BZ-IG

Pre-setting installation

TILCA Wedge	Anchor BZ	plus and	BZ-IG
-------------	-----------	----------	-------

Intended Use


Installation instructions for pre-setting installation BZ-IG

Annex B9

Installation instructions BZ-IG

Through-setting installation

TILCA Wedge Anchor BZ plus and BZ-IG	Z plus and BZ-IG
--------------------------------------	------------------

Intended Use

Installation instructions for through-setting installation BZ-IG

Annex B10

Table C1: Characteristic values for **tension loads**, BZ plus **(zinc plated)**, **cracked concrete**, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor	γinst	[-]				1,0			
Steel failure								AV.	
Characteristic resistance	$N_{\text{Rk,s}}$	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out									
Standard anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	36	44,4	50,3
Reduced anchorage depth									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	12,7	18,9	_1)	_1)	_1)
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψс	[-]				$\left(\!\frac{f_{\rm ck}}{20}\!\right)^{0,5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_1)	_1)	_1)
Factor for cracked concrete	$\mathbf{k}_1 = \mathbf{k}_{cr,N}$	[-]				7,7			

¹⁾ No performance asessed

TILCA Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **(zinc plated)**, **cracked concrete**, static and quasi-static action

Annex C1

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

Table C2: Characteristic values for **tension loads**, BZ plus **(A4 / HCR)**, **cracked concrete**, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24
Installation factor	γinst	[-]			1	,0		
Steel failure								
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial factor	γMs	[-]		1	,5		1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	36	40
Reduced anchorage depth								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	12,7	18,9	_1)	_1)
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψс	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0,5}$					
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	_1)	_1)
Factor for cracked concrete	k cr,N	[-]			7	,7		

¹⁾ No performance assessed.

TILCA	Wedge	Anchor	ΒZ	plus	and	BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus (A4 / HCR), **cracked concrete**, static and quasi-static action

Annex C2

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

Table C3:	Characteristic values for tension loads, BZ plus (zinc plated),
	uncracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	M27
Installation factor γ_{inst} [-]						1,0			
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out	•		50-51		1000	• *****	300 V PO 431		*******
Standard anchorage depth									
Characteristic resistance in	NI.	F1-N17	40	40	0.5	25	54	00.0	74.0
uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	51	62,9	71,3
Reduced anchorage depth								J.	
Characteristic resistance in	$N_{Rk,p}$	[kN]	7,5	9	18	26,7	_1)	_1)	_1)
uncracked concrete C20/25	1 4IXK,p	[IXI 4]	7,0	Ů	10	20,7	3,550		
Splitting									
Standard anchorage depth		-							
Splitting for standard thickness o							se 2 may b	e applied;	
c _{cr,sp} may be linearly interpolated for the			85 es es	2503868		10000000	000	000	050
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1				Ť	i		1	ī	
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	62,3	50
Edge distance	C _{cr,sp}	[mm]				1,5 h _{ef}			
Case 2	C cr,sp	[mmi]				1,5 Her			
Characteristic resistance									
in uncracked concrete C20/25	N^0 Rk,sp	[kN]	12	16	25	35	50,5	62,3	70,6
Edge distance	C _{cr,sp}	[mm]		21	l η _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 h _{ef}
Splitting for minimum thickness of	100000000000000000000000000000000000000		er				,		
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance	V		10	10	25	25	_1)	_1)	_1)
in uncracked concrete C20/25	N ⁰ Rk,sp	[kN]	12	16	25	35	/	7	,
Edge distance	C _{cr,sp}	[mm]		2,5	h _{ef}				
Reduced anchorage depth									
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance	N ⁰ _{Rk,sp}	[kN]	7,5	9	17,9	26,5	_1)	_1)	_1)
in uncracked concrete C20/25			**			7//			
Edge distance	Ccr,sp	[mm]	100	100	125	150			
Increasing factor	1	r 1				$(f_{ck})^{0,5}$			
$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$ $N^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp} (C20/25)$	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	- 12	100	35 ²⁾	40		65	_1)	_1)	_1)
The second secon	h _{ef,red}		33-7	40	50		/	/	,
Factor for uncracked concrete 1) No performance asessed.	$\mathbf{k}_1 = \mathbf{k}_{\text{ucr},N}$	[-]				11,0			

¹⁾ No performance asessed.

TILCA Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **(zinc plated)**, **uncracked concrete**, static and quasi-static action

Annex C3

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

Table C4: Characteristic values for tension loads, BZ plus (A4 / HCR),
uncracked concrete, static and quasi-static action

Fastener size			M8	M10	M12	M16	M20	M24	
Installation factor γ_{inst} [-]			1,0						
Steel failure									
Characteristic resistance	N _{Rk,s}	[kN]	16	27	40	64	108	110	
Partial factor	γMs	[-]		1	,5		1,68	1,5	
Pull-out	, • (management)				10 100				
Standard anchorage depth									
Characteristic resistance in	$N_{Rk,p}$	[kN]	12	16	25	35	51	71,3	
uncracked concrete C20/25	3.50	. ,							
Reduced anchorage depth Characteristic resistance in							Ī	1	
uncracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	9	18	26,7	_1)	_1)	
Splitting									
Standard anchorage depth									
Splitting for standard thickness of o	concrete mer	nber (T	he higher	resistance	of case 1	and case 2	may be a	pplied;	
c _{cr,sp} may be linearly interpolated for							8 (1879) 7 (1879) 199		
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	160	200	250	
Case 1									
Characteristic resistance in	$N^0_{Rk,sp}$	[kN]	9	12	20	30	40	_1)	
uncracked concrete C20/25	5-6 to 100-00-00-00			12	81001554-4	00	10	11-10-1	
Edge distance	C _{cr,sp}	[mm]		1,5 h _{ef}				_1)	
Case 2				1	1	1	1	T	
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	12	16	25	35	50,5	70,6	
Edge distance	C _{cr,sp}	[mm]	115	125	140	200	220	250	
Splitting for minimum thickness of	2012012		110	120	110	200			
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance in				5000000	90,000	200			
uncracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	_1)	_1)	
Edge distance	C _{cr,sp}	[mm]		2,5	5h _{ef}				
Reduced anchorage depth									
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7,5	9	17,9	26,5	_1)	_1)	
Edge distance	C _{cr,sp}	[mm]	100	100	125	150	1		
Increasing factor						0,5			
$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	(-)			
$N^{0}_{Rk,sp} = \psi_{c} \cdot N^{0}_{Rk,sp} (C20/25)$	***				\2(17			
Concrete cone failure		-	·			,	T.	i	
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125	
Reduced anchorage depth	$h_{\text{ef,red}}$	[mm]	35 ²⁾	40	50	65	_1)	_1)	
the active experience of the active and active or active									

No performance asessed.

TILCA Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **tension loads**, BZ plus **(A4 / HCR)**, **uncracked concrete**, static and quasi-static action

Annex C4

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

Table C5: Characteristic values for shear loads, BZ plus, cracked and uncracked concrete, static or quasi static action

				3.70						
Fastener size				M8	M10	M12	M16	M20	M24	M27
Installation factor	Installation factor γ_{inst} [-						1,0			
Steel failure witho	ut lever arm, Stee	el zinc p	olated							
Characteristic resis	tance	$V^0_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Ductility factor		k ₇	[-]				1,0			
Partial factor		γMs	[-]		1,	25		1,33	1,25	1,25
Steel failure witho	ut lever arm, Stai	nless s	teel A4	, HCR						
Characteristic resis	tance	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	123,6	
Ductility factor		k ₇	[-]						1,0	_1)
Partial factor γ _{Ms}			[-]		1,	25		1,4	1,25	
Steel failure with I	ever arm, Steel zi	nc plat	ed							
Characteristic bend	ling resistance	$M^0_{\text{Rk,s}}$	[Nm]	23	47	82	216	363	898	1331,5
Partial factor		γMs	[-]	1,25			1,33	1,25	1,25	
Steel failure with I	ever arm, Stainle	ss stee	I A4, H	CR						
Characteristic bend	ling resistance	$M^0_{\text{Rk,s}}$	[Nm]	26	52	92	200	454	785,4	_1)
Partial factor		γMs	[-]	1,25				1,4 1,25		
Concrete pry-out	failure									
Pry-out factor		k ₈	[-]		2	,4			2,8	
Concrete edge fai	lure									
Effective length of	Steel zinc plated	lf	[mm]	46	60	70	85	100	115	125
fastener in shear loading with h ef	Stainless steel A4, HCR	lf	[mm]	46	60	70	85	100	125	_1)
Effective length of	Steel zinc plated	I _{f,red}	[mm]	35 ²⁾	40	50	65	25	100	224
fastener in shear loading with h ef,red	Stainless steel A4, HCR	$I_{f,red}$	[mm]	35 ²⁾	40	50	65	_1)	_1)	_1)
Outside diameter o	f fastener	d_{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ No performance assessed.

TILCA Wedge Anchor BZ plus and BZ-IG Performance Characteristic values for shear loads, BZ plus, cracked and uncracked concrete, static or quasi static action Annex C5

²⁾ Restricted to the use of structural components with h_{ef} < 40mm which are statically indeterminate and subject to internal exposure conditions only

Table C6: Characteristic resistance for seismic loading, BZ plus, standard anchorage depth, performance category C1 and C2

				140	3540	1740	2440	1400
Fastener s				M8	M10	M12	M16	M20
Tension lo	ads							
Installation factor γ_{inst} [-]			[-]			1,0		
Steel failur	e, Steel zinc plated							
Characteris	tic resistance C1 N _F	Rk,s,eq,C1	[kN]	16	27	40	60	86
Characteris	tic resistance C2 N _F	Rk,s,eq,C2	[kN]	16	27	40	60	86
Partial facto	or	γMs	[-]	1,	53	1	,5	1,6
Steel failur	e, Stainless steel A4, I	HCR						
Characteris	tic resistance C1 N _F	Rk,s,eq,C1	[kN]	16	27	40	64	108
Characteris	tic resistance C2 N _F	Rk,s,eq,C2	[kN]	16	27	40	64	108
Partial factor γ _{Ms}					1,68			
Pull-out (st	eel zinc plated, stainles	s steel ,	A4 and	HCR)				
Characteris	tic resistance C1 N _R	Rk,p,eq,C1	[kN]	5	9	16	25	36
Characteristic resistance C2 N _{Rk,p,eq,C2}		[kN]	2,3	3,6	10,2	13,8	24,4	
Shear load	s							•
Steel failur	e without lever arm, S	teel zin	c plate	ed				
Characteris	tic resistance C1 V _F	Rk,s,eq,C1	[kN]	9,3	20	27	44	69
Characteris	tic resistance C2 V _F	Rk,s,eq,C2	[kN]	6,7	14	16,2	35,7	55,2
Partial facto	or	γMs	[-]		1,	25		1,33
Steel failur	e without lever arm, S	tainles	s stee	A4, HCR				•
Characteris	tic resistance C1 V _F	Rk,s,eq,C1	[kN]	9,3	20	27	44	69
Characteris	tic resistance C2 V _F	Rk,s,eq,C2	[kN]	6,7	14	16,2	35,7	55,2
Partial facto	or	γMs	[-]	1,25				1,4
Factor for	without filling of annular gap	αgap	[-]			0,5		
annular gap	with filling of annular gap	αgap	[-]			1,0		

TILCA	Wedge A	Anchor	BZ p	lus	and	BZ-IG
-------	---------	--------	------	-----	-----	-------

Performance

Characteristic resistance for **seismic loading**, BZ plus, **standard anchorage depth**, performance category **C1** and **C2**

Annex C6

Table C7: Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16	M20	M24	M27																		
Tension load																												
Steel failure																												
Steel, zinc plat	ed																											
	R30			1,5	2,6	4,1	7,7	9,4	13,6	17,6																		
Characteristic	R60	N _{Rk,s,fi}	[kN]	1,1	1,9	3,0	5,6	8,2	11,8	15,3																		
resistance	R90	INKK,S,TI	[KIN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0																		
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8																		
Stainless steel	A4, HCR																											
	R30	- N _{Rk,s,fi}		3,8	6,9	12,7	23,7	33,5	48,2																			
Characteristic	R60		[FNI]	2,9	5,3	9,4	17,6	25,0	35,9	_1)																		
resistance	R90		[kN]	2,0	3,6	6,1	11,5	16,4	23,6	/																		
	R120			1,6	2,8	4,5	8,4	12,1	17,4																			
Shear load																												
Steel failure wi	thout lever a	ırm																										
Steel, zinc plat	ed																											
	R30	V _{Rk,s,fi}		1,6	2,6	4,1	7,7	11	16	20,6																		
Characteristic	R60		[LNI]	1,5	2,5	3,6	6,8	11	15	19,8																		
resistance	R90	VRk,s,fi	[kN]	1,2	2,1	3,5	6,5	10	15	19,0																		
	R120			1,0	2,0	3,4	6,4	10	14	18,6																		
Stainless steel	A4, HCR																											
	R30																					3,8	6,9	12,7	23,7	33,5	48,2	*
Characteristic	R60	.,	FIANI3	2,9	5,3	9,4	17,6	25,0	35,9	_1)																		
resistance	R90	$V_{Rk,s,fi}$	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	/																		
	R120			1,6	2,8	4,5	8,4	12,1	17,4																			
Steel failure wi	th lever arm			**																								
Steel, zinc plat	ed																											
	R30			1,7	3,3	6,4	16,3	29	50	75																		
Characteristic	R60	N40	rn.	1,6	3,2	5,6	14	28	48	72																		
resistance	R90	M ⁰ Rk,s,fi	[Nm]	1,2	2,7	5,4	14	27	47	69																		
	R120			1,1	2,5	5,3	13	26	46	68																		
Stainless steel	A4, HCR		,	"																								
	R30			3,8	9,0	19,7	50,1	88,8	153,5																			
Characteristic	R60	N 40		2,9	6,8	14,6	37,2	66,1	114,3	1)																		
resistance	R90	M ⁰ Rk,s,fi	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	_1)																		
	R120		1	1,6	3,6	7,0	17,8	32,1	55,5																			

¹⁾ No performance assessed

TILCA Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C7

Table C8: Characteristic values **for tension and shear load** under **fire exposure,** BZ plus, **reduced anchorage depth,** cracked and uncracked concrete C20/25 to C50/60

Fastener size				M8	M10	M12	M16
Tension load							
Steel failure							
Steel, zinc plated							
	R30		[kN]	1,5	2,6	4,1	7,7
Characteristic	R60	− N _{Rk,s,fi}		1,1	1,9	3,0	5,6
resistance	R90	INRK,S,fi	[KIN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4	, HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60	N	[LNI]	2,5	5,3	9,4	17,6
resistance	R90	─ N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Shear load							
Steel failure witho	ut lever arm						
Steel, zinc plated							
	R30	-		1,5	2,6	4,1	7,7
Characteristic	R60		FI-NIT	1,1	1,9	3,0	5,6
resistance	R90	− V _{Rk,s,fi}	[kN]	0,8	1,3	1,9	3,5
	R120	_		0,6	1,0	1,3	2,5
Stainless steel A4	, HCR	•			1/		
	R30			3,2	6,9	12,7	23,7
Characteristic	R60		FIANT.	2,5	5,3	9,4	17,6
resistance	R90	$ V_{Rk,s,fi}$	[kN]	1,9	3,6	6,1	11,5
	R120			1,6	2,8	4,5	8,4
Steel failure with I	ever arm						
Steel, zinc plated							
-	R30			1,5	3,3	6,4	16,3
Characteristic	R60	NAO	rni1	1,2	2,5	4,7	11,9
resistance	R90	− M ⁰ _{Rk,s,fi}	[Nm]	0,8	1,7	3,0	7,5
	R120			0,6	1,2	2,1	5,3
Stainless steel A4	, HCR						
	R30			3,2	8,9	19,7	50,1
Characteristic	R60	— NAO	[NI]	2,6	6,8	14,6	37,2
resistance	R90	− M ⁰ _{Rk,s,fi}	[Nm]	2,0	4,7	9,5	24,2
	R120	_		1,6	3,6	7,0	17,8

TILCA Wedge Anchor BZ plu	is and BZ-IG
---------------------------	--------------

Performance

Characteristic values for tension and shear load under fire exposure, BZ plus, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60

Annex C8

Table C9: Displacements under tension load, BZ plus

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage depth		<i>Y</i>						10	
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δηο	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
Displacement	$\delta_{N\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in uncracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Diaglacament	δηο	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
Displacement	δ _{N∞}	[mm]	0	8	1,4		0,8		1,4
Displacements under seismic tension	oads C2								
Displacements for DLS	$\delta_{\text{N,eq,(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1	_1)	_1)
Displacements for ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	1 -'' -	_''
Stainless steel A4, HCR						~~			
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
Displacement	δηο	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	_1)
	 δ _{N∞}	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in uncracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
	δηο	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	_1)
Displacement	 δ _{N∞}	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	-
Displacements under seismic tension	oads C2								I
Displacements for DLS	$\delta_{\text{N,eq(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	δN,eq(ULS)	[mm]	8,2	13,8	15,7	9,5	15,2	_1)	_1)
Reduced anchorage depth			7.0.0		Accession Manager	(2011)	77	2	-
Steel zinc plated, stainless steel A4	HCR								
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
	δηο	[mm]	0,8	0,7	0,5	1,0	_1)	_1)	_1)
Displacement		[mm]	1,2	1,0	0,8	1,1			
Tension load in uncracked concrete	N	[kN]	3,7	4,3	8,5	12,6			
	δηο	[mm]	0,1	0,2	0,2	0,2	_1)	_1)	_1)
Displacement	- δnu δn∞	[mm]	0,7	0,2	0,2	0,2		(m) ti	0=10f

¹⁾ No performance assessed

HLCA	Wedge	Anchor BZ	plus and	BZ-IG

Performance

Displacements under tension load, BZ plus

Annex C9

Table C10: Dis	placements	under shear	load, BZ plus
----------------	------------	-------------	---------------

Fastener size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dept	h								
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
Displacement	$\delta_{\text{V}\infty}$	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seism	nic shear l	oads C2							
Displacements for DLS	$\delta \text{V,eq(DLS)}$	[mm]	3,0	2,7	3,5	4,3	4,7	_1)	_1)
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	,	
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	1,
Displacement	δνο	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	_1)
	δν∞	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seism	nic shear I	oads C2		FO.					
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7	_1)	_1)
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	- ',	- 32
Reduced anchorage dept	h								
Steel zinc plated									
Shear load in cracked and uncracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Dianlacement	δνο	[mm]	2,0	3,2	3,6	3,5	_1)	_1)	_1)
Displacement	δν∞	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and uncracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Dianlacement	δνο	[mm]	1,9	2,4	4,0	4,3	_1) _1)	_1)	_1)
Displacement	δν∞	[mm]	2,9	3,6	5,9	6,4			

¹⁾ No performance assessed

TILCA Wedge Anchor BZ plus and BZ-IG	
Performance Displacements under shear load, BZ plus	Annex C10

Table C11: Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12	
Installation factor	γinst	[-]	1,2				
Steel failure							
Characteristic resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6	
Partial factor	γMs	[-]		1	,5		
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0	
	γMs	[-]		1,	87		
Pull-out failure							
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20	
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$				
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80	
Factor for cracked concrete	$\mathbf{k}_1 = \mathbf{k}_{cr,N}$	[-]		7	,7		

TILCA Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, cracked concrete, static and quasi-static action

Annex C11

Table C12: Characteristic values for tension loads, BZ-IG, uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	γinst	[-]		1	,2	
Steel failure						
Characteristic resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Partial factor	γMs	[-]		1	,5	
Characteristic resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial factor	γMs	[-]		1,	87	7
Pull-out						
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30
Splitting (the higher resistance of Ca	ase 1 and Cas	e 2 may	be applied)			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Case 1						
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	9	12	16	25
Edge distance	C cr,sp	[mm]		1,5	h _{ef}	
Case 2						
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	20	30
Edge distance	C _{cr,sp}	[mm]		2,5	h _{ef}	
Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25) $N^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp}$ (C20/25)	ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$	0,5	
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor for uncracked concrete	$\mathbf{k}_1 = \mathbf{k}_{\text{ucr},N}$	[-]		11	1,0	

TILCA	Wedge	Anchor	BZ	plus	and	BZ-IG

Performance

Characteristic values for tension loads, BZ-IG, uncracked concrete, static and quasi-static action

Annex C12

Table C13: Characteristic values for shear loads, BZ-IG, cracked and uncracked concrete, static and quasi-static action

Fastener size			M6	M8	M10	M12
Installation factor	γinst	[-]		1	,0	
BZ-IG, steel zinc plated						
Steel failure without lever arm, pre-se	etting install	ation				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, throug	gh-setting ir	stallati	on			
Characteristic resistance	V^0 Rk,s	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, pre-setting	ng installatio	n				
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, through-s	setting insta	llation				100
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	36,0	53,2	76,0	207
Partial factor for $V_{Rk,s}$ and $M^0_{Rk,s}$	γMs	[-]		1,	25	
Ductility factor	k ₇	[-]		1	,0	
BZ-IG, stainless steel A4, HCR						
Steel failure without lever arm, pre-se	etting install	ation				
Characteristic resistance	$V^0_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial factor	γMs	[-]	1,25			
Steel failure without lever arm, throug	gh-setting ir	stallati	on			
Characteristic resistance	V^0 Rk,s	[kN]	7,3	7,6	9,7	29,6
Partial factor	γMs	[-]		1,	25	
Steel failure with lever arm, pre-setting	ng installatio	n				
Characteristic bending resistance	M^0 _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6
Partial factor	γMs	[-]		1,	56	7
Steel failure with lever arm, through-s	setting insta	llation				
Characteristic bending resistance	$M^0_{\text{Rk,s}}$	[Nm]	28,2	44,3	69,9	191,2
Partial factor	γMs	[-]		1,	25	
Ductility factor	k ₇	[-]		1	,0	
Concrete pry-out failure						
Pry-out factor	k 8	[-]	1,5	1,5	2,0	2,0
Concrete edge failure						
Effective length of fastener in shear loading	l _f	[mm]	45	58	65	80
Effective diameter of fastener	d _{nom}	[mm]	8	10	12	16

TILCA Wedge Anchor BZ plus and BZ-IG

Performance

Characteristic values for **shear loads**, **BZ-IG**, **cracked and uncracked concrete**, static and quasi-static action

Annex C13

Table C14: Characteristic values for tension and shear load under fire exposure, BZ-IG, cracked and uncracked concrete C20/25 to C50/60

Fastener size			M6	M8	M10	M12
Tension load				,		
Steel failure						
Steel zinc plated	d					
	R30		0,7	1,4	2,5	3,7
Characteristic resistance	R60	Rk,s,fi [kN]	0,6	1,2	2,0	2,9
	R90	Rk,s,fi [kN]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel	A4, HCR					
	R30		2,9	5,4	8,7	12,6
Characteristic	R60		1,9	3,8	6,3	9,2
resistance	R90	Rk,s,fi [kN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Shear load						
Steel failure wit	hout lever arm					
Steel zinc plated	d					
Characteristic resistance	R30		0,7	1,4	2,5	3,7
	R60	Rk,s,fi [kN]	0,6	1,2	2,0	2,9
	R90	KK,S,TI [KIV]	0,5	0,9	1,5	2,2
	R120		0,4	0,8	1,3	1,8
Stainless steel	A4, HCR					
Characteristic resistance	R30		2,9	5,4	8,7	12,6
	R60	Rk,s,fi [kN]	1,9	3,8	6,3	9,2
	R90	Rk,s,fi [kN]	1,0	2,1	3,9	5,7
	R120		0,5	1,3	2,7	4,0
Steel failure wit	h lever arm					
Steel zinc plated	d			-		7
	R30		0,5	1,4	3,3	5,7
Characteristic	R60 M0	Rk,s,fi [Nm]	0,4	1,2	2,6	4,6
resistance	R90	KK,S,TI [INIII]	0,4	0,9	2,0	3,4
	R120		0,3	0,8	1,6	2,8
Stainless steel /	A4, HCR					
	R30		2,2	5,5	11,2	19,6
Characteristic	R60	n f [Nim1	1,5	3,9	8,1	14,3
resistance	R90	Rk,s,fi [Nm]	0,7	2,2	5,1	8,9
	R120		0,4	1,3	3,5	6,2

TILCA	Wedge A	Anchor	BZ p	lus	and	BZ-IG
-------	---------	--------	------	-----	-----	-------

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **BZ-IG**, cracked and uncracked concrete C20/25 to C50/60

Annex C14

Table C15: Displacements under tension load, BZ-IG

Fastener size			M6	M8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacements	δηο	[mm]	0,6	0,6	0,8	1,0
Displacements	δN∞	[mm]	0,8	0,8	1,2	1,4
Tension load in uncracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacements	δηο	[mm]	0,4	0,5	0,7	0,8
Displacements	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, BZ-IG

Fastener size			M6	M8	M10	M12
Shear load in cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Dianlacements	δνο	[mm]	2,8	2,9	2,5	3,6
Displacements	δv∞	[mm]	4,2	4,4	3,8	5,3

TILCA Wedge Anchor BZ plus and BZ-IG

Performance
Displacements under tension load and under shear load, BZ-IG

Annex C15