

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-13/0050 vom 29. August 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

Stanley Black & Decker Deutschland GmbH Richard-Klinger-Straße 11 65510 Idstein DEUTSCHLAND

Plant 1

77 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604, Edition 10/2022

ETA-13/0050 vom 5. Mai 2017

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z198390.25 8.06.04-385/25

Seite 2 von 77 | 29. August 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 77 | 29. August 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk" ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel AC100-PRO oder AC100-PRO Nordic oder AC100-PRO Ice, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe oder einer Innengewindeankerstange besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen	Siehe Anhang B 5, B 6 C 1 bis C 56
Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände	Siehe Anhang C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 und C52

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 77 | 29. August 2025

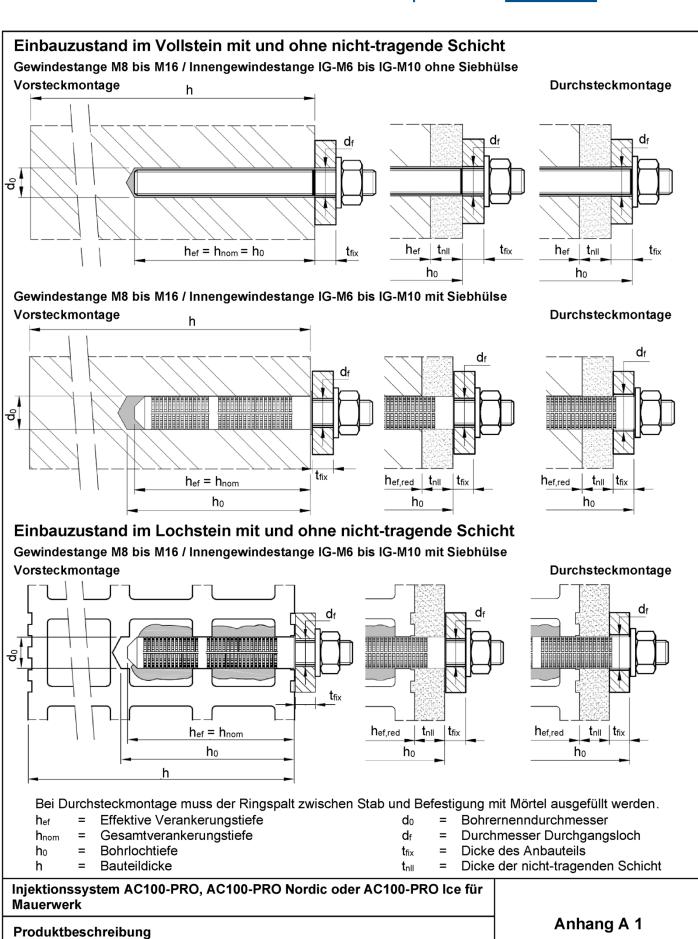
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

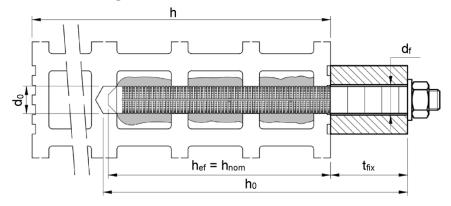
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

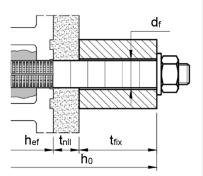

Ausgestellt in Berlin am 29. August 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt Baderschneider

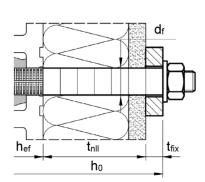
Einbauzustand





Einbauzustand im Lochstein mit und ohne nicht-tragende Schicht und / oder Wärmeisolierung

Gewindestange M8 bis M10 / Innengewindestange IG-M6 mit Siebhülse SH 16x130/330 Durchsteckmontage



Vorsteckmontage

h $h_{ef} = h_{nom}$ h_{0} t_{fix}

Durchsteckmontage

h_{ef} = Effektive Verankerungstiefe h_{nom} = Gesamtverankerungstiefe

h₀ = Bohrlochtiefe h = Bauteildicke

h = Bauteildicke

d₀ = Bohrernenndurchmesserd_f = Durchmesser Durchgangsloch

t_{fix} = Dicke des Anbauteils

t_{nll} = Dicke der nicht-tragenden Schicht

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Produktbeschreibung

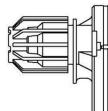
Einbauzustand

Anhang A 2

Kartuschensystem

Koaxial Kartusche:

150 ml, 160ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml


Aufdruck:

AC100-PRO oder AC100-PRO Nordic oder AC100-PRO

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:

235 ml, 345 ml bis 360 ml und 825 ml

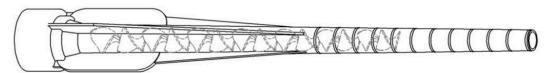
Aufdruck:

AC100-PRO oder AC100-PRO Nordic oder AC100-PRO Ice

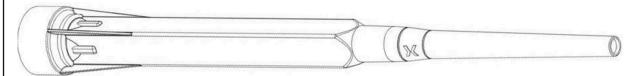
Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Schlauchfolien Kartusche:

165 ml und 300 ml



Aufdruck:


AC100-PRO oder AC100-PRO Nordic oder AC100-PRO

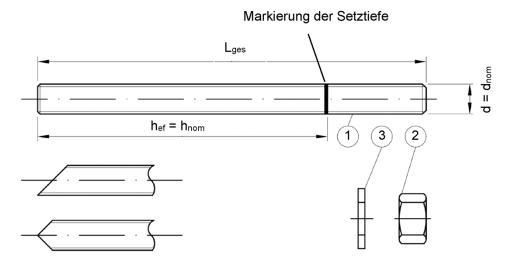
Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Statikmischer SM-14W

Statikmischer PM-19E

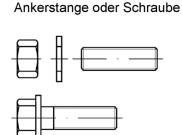
Mischerverlängerung VL

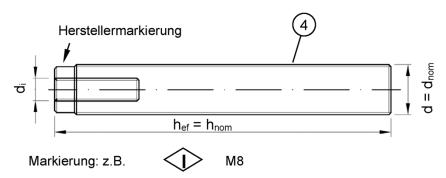
Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk


Produktbeschreibung

Injektionssystem

Anhang A 3


Gewindestange M8 bis M16 mit Unterlegscheibe und Sechskantmutter



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Das Dokument ist zu speichern.
- Markierung der Setztiefe

Innengewindeankerstange IG-M6 bis IG-M10

Kennzeichnung Innengewinde (Optional)Werkszeichen

M8 Gewindegröße (Innengewinde)A4 zusätzliche Kennung für nichtrostenden Stahl

HCR zusätzliche Kennung für hochkorrosionsbeständigen Stahl

-8 zusätzliche Kennung für Festigkeitsklasse 8.8

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Produktbeschreibung

Gewindestange und Innengewindestange

Anhang A 4

	Benennung	Werkstoff				
	hlteile aus verzinktem Stahl (3:2017)	
		gemäß EN ISO 4042:20: gemäß EN ISO 1461:20:			004+AC:2009 oder	
	' '	gemäß EN ISO 17668:20				
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%
1	Gewindestange			f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
'	Gewindestange	gemäß EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{VK} = 300 N/mm ²	A ₅ > 8%
		EN 150 696-1:2013		f _{uk} = 500 N/mm ²	f _{VK} = 400 N/mm ²	A ₅ > 8%
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%
			4	für Gewindestange	en der Klasse 4.6 ode	er 4 .8
2	Sechskantmutter	gemäß EN ISO 898-2:2022	5		en der Klasse 5.6 ode	
		LIN 130 080-2.2022	8	für Gewindestange	en der Klasse 8.8	
3	Unterlegscheibe	Stahl, galvanisch verzi (z.B.: EN ISO 887:200 EN ISO 7094:2000)		I ISO 7089:2000, EN	N ISO 7093:2000 od	er
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakteristische Streckgrenze	Bruchdehnung
4	Innengewindeankerstange ²⁾	gemäß	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%
Ni	chtrostender Stahl A2 (Werks chtrostender Stahl A4 (Werks chkorrosionsbeständiger Sta	toff 1.4401 / 1.4404 / 1.4 ahl (Werkstoff 1.4529 od	1571 <i>i</i>	1.4362 oder 1.4578	8, gemäß EN 10088	-1:2023)
		Festigkeitsklasse		Zugfestigkeit	Streckgrenze	Bruchdehnung
1 00						
1	Gewindestange ¹⁾		50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ > 8%
1	Gewindestange ¹⁾	gemäß		f _{uk} = 500 N/mm ² f _{uk} = 700 N/mm ²	f _{yk} = 210 N/mm ² f _{yk} = 450 N/mm ²	A ₅ > 8% A ₅ > 8%
1	Gewindestange ¹⁾	gemäß EN ISO 3506-1:2020		f _{uk} = 700 N/mm ²	<u> </u>	
1	, and the second	EN ISO 3506-1:2020	70 80 50	f_{uk} = 700 N/mm ² f_{uk} = 800 N/mm ² für Gewindestange	f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50	A ₅ > 8%
2	Gewindestange ¹⁾ Sechskantmutter ¹⁾		70 80 50 70	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Gewindestange	f_{yk} = 450 N/mm ² f_{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70	A ₅ > 8%
	, and the second	EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020	70 80 50 70 80	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Gewindestange für Gewindestange	f_{yk} = 450 N/mm ² f_{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70	A ₅ > 8%
	, and the second	EN ISO 3506-1:2020	70 80 50 70 80 42, A4	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange	f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80	A ₅ > 8% A ₅ > 8%
2	Sechskantmutter ¹⁾ Unterlegscheibe	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200	70 80 50 70 80 42, A4	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Gewindestange für Gewindestange For HCR	f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80	A ₅ > 8% A ₅ > 8%
2	Sechskantmutter ¹⁾	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200 EN ISO 7094:2000)	70 80 50 70 80 A2, A4 96, EN	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange Für Gewi	f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 N ISO 7093:2000 od Charakteristische	A ₅ > 8% A ₅ > 8%
2	Sechskantmutter ¹⁾ Unterlegscheibe	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200 EN ISO 7094:2000) Festigkeitsklasse	70 80 50 70 80 A2, A4 96, EN	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Gewindestange für Gewindestange für Gewindestange für Gewindestange For HCR FISO 7089:2000, E Charakteristische Zugfestigkeit	f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 N ISO 7093:2000 od Charakteristische Streckgrenze	$A_5 > 8\%$ $A_5 > 8\%$ der Bruchdehnung
2 3 4	Sechskantmutter ¹⁾ Unterlegscheibe Innengewindeankerstange ²⁾ Festigkeitsklasse 80 nur für nich Bei Verwendung von Innengewindestens dem Werkstoff und	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200 EN ISO 7094:2000) Festigkeitsklasse gemäß EN ISO 3506-1:2020 htrostenden Stahl A4 und ndestangen müssen Schi	70 80 50 70 80 A2, A4 6, EN 50 70 hochlaraube	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Ge	fyk = 450 N/mm² fyk = 600 N/mm² en der Klasse 50 en der Klasse 70 en der Klasse 80 N ISO 7093:2000 od Charakteristische Streckgrenze fyk = 210 N/mm² fyk = 450 N/mm² en Stahl HCR ten (inkl. Mutter und L	$A_5 > 8\%$ $A_5 > 8\%$ Her Bruchdehnung $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ Unterlegscheibe)
2 3 4 1) 2)	Sechskantmutter ¹⁾ Unterlegscheibe Innengewindeankerstange ²⁾ Festigkeitsklasse 80 nur für nich Bei Verwendung von Innengewindestens dem Werkstoff und Inststoffsiebhülse	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200 EN ISO 7094:2000) Festigkeitsklasse gemäß EN ISO 3506-1:2020 htrostenden Stahl A4 und ndestangen müssen Schi	70 80 50 70 80 A2, A4 6, EN 50 70 hochlaraube	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Gewindestange für Gewindestange für Gewindestange für Gewindestange For HCR FOR STORY FOR STORY Charakteristische Zugfestigkeit fuk = 500 N/mm ² Korrosionsbeständige n und Gewindestange gendeten Innengewind	fyk = 450 N/mm² fyk = 600 N/mm² en der Klasse 50 en der Klasse 70 en der Klasse 80 N ISO 7093:2000 od Charakteristische Streckgrenze fyk = 210 N/mm² en Stahl HCR ten (inkl. Mutter und Letestangen entspreche	$A_5 > 8\%$ $A_5 > 8\%$ Her Bruchdehnung $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ Unterlegscheibe)
2 3 4 1) 2)	Sechskantmutter ¹⁾ Unterlegscheibe Innengewindeankerstange ²⁾ Festigkeitsklasse 80 nur für nich Bei Verwendung von Innengewindestens dem Werkstoff und	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200 EN ISO 7094:2000) Festigkeitsklasse gemäß EN ISO 3506-1:2020 htrostenden Stahl A4 und ndestangen müssen Schi	70 80 50 70 80 A2, A4 6, EN 50 70 hochlaraube	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Ge	fyk = 450 N/mm² fyk = 600 N/mm² en der Klasse 50 en der Klasse 70 en der Klasse 80 N ISO 7093:2000 od Charakteristische Streckgrenze fyk = 210 N/mm² en Stahl HCR ten (inkl. Mutter und Letestangen entspreche	$A_5 > 8\%$ $A_5 > 8\%$ Her Bruchdehnung $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ Unterlegscheibe)
2 3 4 1) 2) Ku Si	Sechskantmutter ¹⁾ Unterlegscheibe Innengewindeankerstange ²⁾ Festigkeitsklasse 80 nur für nich Bei Verwendung von Innengewindestens dem Werkstoff und Inststoffsiebhülse	gemäß EN ISO 3506-1:2020 gemäß EN ISO 3506-1:2020 Nichtrostender Stahl A (z.B.: EN ISO 887:200 EN ISO 7094:2000) Festigkeitsklasse gemäß EN ISO 3506-1:2020 htrostenden Stahl A4 und indestangen müssen Schi der Festigkeitsklasse der	70 80 70 80 A2, A4 66, EN 70 hochiraube	f _{uk} = 700 N/mm ² f _{uk} = 800 N/mm ² für Gewindestange für Gewindestange für Gewindestange für Gewindestange For HCR FOR STORM	f _{yk} = 450 N/mm ² f _{yk} = 600 N/mm ² en der Klasse 50 en der Klasse 70 en der Klasse 80 N ISO 7093:2000 od Charakteristische Streckgrenze f _{yk} = 210 N/mm ² en Stahl HCR len (inkl. Mutter und Lestangen entspreche	$A_5 > 8\%$ $A_5 > 8\%$ Her Bruchdehnung $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 8\%$ Unterlegscheibe)

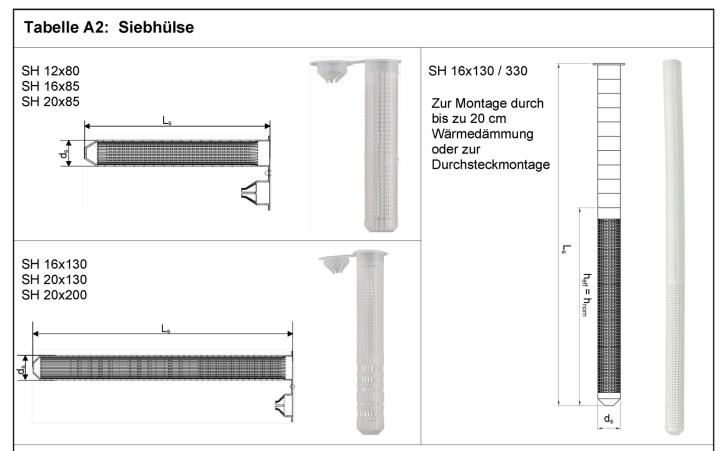


Tabelle A3: Abmessungen Siebhülse

Siebhülse				
Größe	ds	Ls	$h_{ef} = h_{nom}$	
[mm]	[mm]	[mm]	[mm]	
SH 12x80	12	80	80	
SH 16x85	16	85	85	
SH 16x130	16	130	130	
SH 16x130 / 330 ¹⁾	16	330	130	
SH 20x85	20	85	85	
SH 20x130	20	130	130	
SH 20x200	20	200	200	

¹⁾ In den Anhängen C 4 – C 56 ist diese Siebhülse mit der SH 16x130 abgedeckt

Tabelle A4: Stahlteile

	Anke	rstange	
Größe	d= d _{nom}	di	Iges
[mm]	[mm]	[mm]	[mm]
IG-M6 ¹⁾	10	6	NAME OF A LANGE AND A STATE OF A
IG-M8 ¹⁾	12	8	Mit Siebhülse: h _{ef} - 5mm Ohne Siebhülse: h _{ef}
IG-M10 ¹⁾	16	10	Office Stephnise. Her
M8	8	-	h _{ef} + t _{fix} + 9,5
M10	10	-	h _{ef} + t _{fix} + 11,5
M12	12	-	$h_{ef} + t_{fix} + 17,5$
M16	16	-	$h_{ef} + t_{fix} + 20,0$

¹⁾ Innengewindestange mit metrischem Außengewinde

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Produktbeschreibung Siebhülse und Stahlteile	Anhang A 6

Spezifizierung des Verv	vendungszwecks				
Beanspruchung der Verankerung	Statische und quasi-statische Lasten, Brandeinwirkung unter Zug- und Querbeanspruchung M8 bis M16, IG-M6 bis IG-M10 (mit und ohne Siebhülse)				
Verankerungsgrund	Gruppe Mauerwerk b: Vollsteine Gruppe Mauerwerk c: Loch- und Hohlsteine Gruppe Mauerwerk d: Porenbeton	Anhang B 2 Anhang B 2 bis B 4 Anhang B 2			
	Mörtelfestigkeitsklasse des Mauerwerks mindestens M2 Bei anderen Steinen im Vollsteinmauerwerk, Lochsteinn darf die charakteristische Tragfähigkeit des Dübels durc entsprechend EOTA TR 053, Fassung Juli 2022 unter E Faktors von Anhang C1, Tabelle C1 ermittelt werden.	nauerwerk oder Porenbeton h Test auf der Baustelle			
Bohrlocherstellung	Siehe Anlage C 4 – C 56				
Nutzungsbedingungen	Bedingung d/d: Installation und Verwendung in trockenem Mauerwerk Bedingung w/w: Installation und Verwendung in trockenem oder nassem Mauerwer (inkl. w/d Installation im nassem Mauerwerk und Verwendung im trockenem Mauerwerk)				
Temperaturbereich	T _a : - 40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur +24°C) T _b : - 40°C bis +80°C				
	(max. Kurzzeittemperatur +80°C und max. Langzeittemperatur +50°C) T _a : - 40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeittemperatur +72°C)				
Damaria na Dar abaraktaria aba	Midderstand für Vollsteine und Perenheten gilt auch für größere	<u> </u>			

Bemerkung: Der charakterische Widerstand für Vollsteine und Porenbeton gilt auch für größere Steindurchmesser und höhere Steindruckfestigkeiten.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend den Korrosionsbeständigkeitsklassen nach Tabelle A1 (nichtrostende und hochkorrosionsbeständige Stähle)

Bemessung:

- Unter Berücksichtigung des Mauerwerks im Verankerungsbereich, der zu verankernden Lasten und der Weiterleitung der Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben.
- Die Bemessung der Verankerungen erfolgt, gemäß EOTA TR 054, Fassung Juli 2022, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs.
- Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:
 - $N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$
 - $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$
- Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung N_{Rk,pb} oder das Herausdrücken eines Steines unter Querbeanspruchung V_{Rk,pb} siehe EOTA Technical Report TR 054, Fassung Juli 2022.
- N_{Rk,s}, V_{Rk,s} und M⁰_{Rk,s} siehe Anhang C 1 C 2.
- Bei Anwendungen mit Siebhülse mit Bohrlochdurchmessern ≤15mm, installiert in nichtgefüllte Fugen:
 - $N_{Rk,p,i} = 0.18 * N_{Rk,p}$ und $N_{Rk,b,i} = 0.18 * N_{Rk,b}$

 $(N_{Rk,p} = N_{Rk,b} \text{ siehe Anhang C 4 bis C 56})$

• $V_{Rk,c,j} = 0.15 * V_{Rk,c}$ und $V_{Rk,b,j} = 0.15 * V_{Rk,b}$

(V_{Rk,b} siehe Anhang C 4 bis C 56; V_{Rk,c} siehe Anhang C 3)

- Anwendung ohne Siebhülse installiert in nichtgefüllte Fugen, sind nicht erlaubt.

Einbau:

- Der Einbau der Verankerung muss von entsprechend qualifiziertem Personal und unter der Aufsicht der für die technischen Belange der Baustelle zuständigen Person durchgeführt werden.

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Verwendungszweck Spezifikationen	Anhang B 1

Bezeichnung Rohdichte [kg/dm³] Abmessungen LxBxH [mm] Anhang	Foto	Ankerstange	Siebhülse	Bezeichnung Rohdichte [kg/dm³] Abmessungen LxBxH [mm] Anhang	Foto	Ankerstange	Siebhülse
Porenbeton gemä EN 771-4:2011+A1				Leichtbetonvollste EN 771-3:2011+A1			
AAC $\rho = 0.35 - 0.60$ ≥ 499x240x249 Tabelle C4 - C10	1	M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	VBL ρ≥ 0,6 ≥ 240x300x113 Tabelle C 187- C193		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x13 20x85 20x13 20x20
	Leichtb	etonlochst	eine gen	näß EN 771-3:2011	+A1:2015		
HBL 16DF ρ ≥ 1,0 500x250x240 Tabelle C172– C179		M8 - M16 IG-M6 - IG-M10	16x85 16x130 20x85 20x130 20x200	Bloc creux B40 ρ≥ 0,8 495x195x190 Tabelle C180 – C186	EFE	M8 - M16 IG-M6 - IG-M10	16x130 20x130
	Kalksan	dsteine ge	mäß EN	771-2:2011+A1:201	5		
KS ρ ≥ 2,0 ≥ 240x115x71 Tabelle C11 – C18		M8 – M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	KSL-3DF ρ≥ 1,4 240x175x113 Tabelle C19 – C25		M8 - M16 IG-M6 - IG-M10	16x85 16x13 20x85 20x13
KSL-8DF ρ≥ 1,4 248x240x238 Tabelle C26 – C32	88	M8-M16 IG-M6 - IG-M10	16x130 20x130 20x200	KSL-12DF ρ≥ 1,4 498x175x238 Tabelle C33 – C40	3333	M8 - M16 IG-M6 - IG-M10	16x13/ 20x13/
	V	/ollziegel g	emäß EN	 771-1:2011+A1:20)15		
Mz-1DF ρ ≥ 2,0 ≥ 240x115x55 Tabelle C41 – C47		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	Mz – 2 DF ρ ≥ 2,0 ≥ 240x115x113 Tabelle C48 – C55		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x13 20x85 20x13 20x20
	ı	1	1		1		ı
	10400 000 104			er AC100-PRO Ice f	n		

Bezeichnung Rohdichte [kg/dm³] Abmessungen LxBxH [mm] Anhang	Foto	Ankerstange	Siebhülse	Bezeichnung Rohdichte [kg/dm³] Abmessungen LxBxH [mm] Anhang	Foto	Ankerstange	Siebhülse
	Lo	chziegel g	emäß EN	771-1:2011+A1:20	15		
Hlz-10DF ρ≥ 1,25 300x240x249 Tabelle C56 - C63		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	Porotherm Homebric ρ≥ 0,7 500x200x299 Tabelle C64 – C70		M8 - M16 IG-M6 - IG-M10	12x8 16x8 16x1 20x8 20x1
BGV Thermo ρ ≥ 0,6 500x200x314 Tabelle C71 – C77		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	Brique creuse C40		M8 - M16 IG-M6 - IG-M10	12x 16x 16x1 20x 20x1
Calibric R+ ρ ≥ 0,6 500x200x314 Tabelle C78 – C84		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	Blocchi Leggeri ρ≥ 0,6 250x120x250 Tabelle C99 – C105		M8 - M16 IG-M6 - IG-M10	12x 16x 16x 20x 20x
Urbanbric ρ ≥ 0,7 560x200x274 Tabelle C85 – C91		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130	Doppio Uni ρ ≥ 0,9 250x120x120 Tabelle C106 – C112		M8 - M16 IG-M6 - IG-M10	12x 16x 16x 20x 20x
	Lochziegel n	nit Wärmed	lämmun	g gemäß EN 771-1:	2011+A1:2015		
Coriso WS07 ρ≥ 0,55 248x365x249 Mineralwolle Tabelle C113 – C119		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	T8P ρ ≥ 0,56 248x365x249 Perlite Tabelle C128 – C134		M8 - M16 IG-M6 - IG-M10	12x 16x 16x 20x 20x 20x
T7MW ρ≥ 0,59 248x365x249 Mineralwolle Tabelle C120 – C127		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	MZ90-G ρ ≥ 0,68 248x365x249 Mineralwolle Tabelle C135 – C141		M8 - M16 IG-M6 - IG-M10	12x 16x 16x1 20x 20x1 20x2

Tabelle B1: Übersicht der Mauersteine und Eigenschaften mit den entsprechenden
Befestigungselementen (Gewindestange und Siebhülse) (Fortsetzung)

Berestigungs	elementen (Gev	windestai	nge un	d Siebhulse) (Fo	ortsetzung)		
Bezeichnung Rohdichte [kg/dm³] Abmessungen LxBxH [mm] Anhang	Foto	Ankerstange	Siebhülse	Bezeichnung Rohdichte [kg/dm³] Abmessungen LxBxH [mm] Anhang	Foto	Ankerstange	Siebhülse
	Lochziegel n	nit Wärmed	dämmun	g gemäß EN 771-1:	2011+A1:2015		
Poroton FZ7,5 ρ≥ 0,90 248x365x249 Mineralwolle Tabelle C142 – C149		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	Poroton FZ9 ρ ≥ 0,90 248x365x249 Mineralwolle Tabelle C150 – C157		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200
Poroton S9 ρ ≥ 0,85 248x365x249 Perlite Tabelle C158 – C164		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200	Thermopor TV8+ ρ ≥ 0,70 248x365x249 Mineralwolle Tabelle C165 – C171		M8 - M16 IG-M6 - IG-M10	12x80 16x85 16x130 20x85 20x130 20x200

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für
Mauerwerk

Verwendungszweck

Steintypen und Eigenschaften mit den entsprechenden Befestigungselementen

Anhang B 4

Tabelle B2: Montagekennwerte für Porenbeton AAC und Vollstein (ohne Siebhülse) bei Vor- und Durchsteckmontage

Ankergröße				M8	M10	IG-M6	M12	IG-M8	M16	IG-M10
Bohrernenndurchme	sser	d ₀	[mm]	10	12 14 18			18		
Bohrlochtiefe im Mau	uerwerk	h ₀	[mm]				h _{ef} + t _{fix} 1)		
Effektive Verankerun	gstiefe	h _{ef}	[mm]	80	≥	≥90 ≥100 ≥100			100	
Durchgangsloch im anzuschließenden	Vorsteck- montage	d _f ≤	[mm]	9	12	7	14	9	18	12
Bauteil	Durchsteck- montage	d _f ≤	[mm]	12	14	14	16	16	20	20
Maximales Montageo	Irehmoment	T _{inst}	[Nm]	Siehe Anlagen C 4 – C 56						
Mindestdicke des Ba	uteils	h _{min}	[mm]	h _{ef} + 30						
Minimaler Achsabstand		s _{min}	[mm]	Siehe Anlagen C 4 – C 56						
Minimaler Randabsta	and	c _{min}	[mm]			Sielle A	illagell C	4 - 0 50		

¹⁾ Bei der Duchsteckmontage t_{fix} berücksichtigen.

Tabelle B3: Montagekennwerte im Voll- und Lochstein (mit Siebhülse) bei Vorsteckmontage

Ankergröße			M8	M8 / M10 / M12 / M16 / IG-M8 / IG-M10					
Siebhülse SH			12x80	16x85	16×130	16×130/330	20x85	20×130	20×200
Bohrernenndurchmesser	d ₀	[mm]	12	16	16	16	20	20	20
Bohrlochtiefe im Mauerwerk	h ₀	[mm]	85	90	135	330	90	135	205
Effektive Verankerungstiefe	h _{ef}	[mm]	80	85	130	130	85	130	200
Durchgangsloch im anzuschließenden Bauteil d _f ≤ [[mm]	9 7 (IG-M6) / 9 (IG-M8) / 1 9 (M8) / 12 (M10) 14 (M12) /		18) / 12 (10 112) / 18	,			
Maximales Montagedrehmoment	T _{inst}	[Nm]	Siehe Anlagen C 4 – C 56						
Mindestdicke des Bauteils	h _{min}	[mm]	115	115	195	195	115	195	240
Minimaler Achsabstand s _{min} [mm]				Ciobo A	nlagan C	4 C 56			
Minimaler Randabstand c _{min} [mm]		[mm]	Siehe Anlagen C 4 – C 56						

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Verwendungszweck Montagekennwerte	Anhang B 5

Tabelle B4: Montagekennwerte im Voll- und Lochstein (mit Siebhülse) bei Vorsteckmontage durch nichttragende Schichten und/oder Durchsteckmontage

Ankergröße			M10 / ·M6	M12 / M16 / IG-M8 / IG-M10			
		Siebh	ülse SH	16x130	16x130/330	20×130	20×200
Bohrernenndurchme	sser	d ₀	[mm]	16	16	20	20
Bohrlochtiefe im Mau	Bohrlochtiefe im Mauerwerk				h _{ef} + 5mm	+ t _{nll} + t _{fix} 1)	
Effektive	Vorsteck- montage	h _{ef}	[mm]	130	130	130	200
Verankerungstiefe	Durchsteck- montage	h _{ef}	[mm]	85	130	85	85
Maximale Dicke der tragenden Schicht	nicht-	max t _{nll}	[mm]	45	200	45	115
Durchgangsloch im anzuschließenden	Vorsteck- montage	d _f ≤	[mm]		-M6) / 12 (M10)	9 (IG-M8) / 12 (IG-M10) / 14 (M12) / 18 (M16)	
Bauteil	Durchsteck- montage	d _f ≤	[mm]	18		22	
Maximales Montagedrehmoment		T _{inst}	[Nm]		Siehe Anlage	en C 4 – C 56	
Mindestdicke des Bauteils		h _{min}	[mm]	195 (115)	195	195 (115)	240 (115)
Minimaler Achsabsta	and	s _{min}	[mm]		Siobo Anlago	n C 4 C 56	
Minimaler Randabsta	and	c _{min}	[mm]		Sierie Arilage	en C 4 – C 56	

¹⁾ Bei nichttragenden Schichten und/oder Durchsteckmontage t_{fix} und/oder t_{nll} berücksichtigen.

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk		
Verwendungszweck Montagekennwerte	Anhang B 6	

Tabelle B5: Parameter für Reinigungs- und Setzzubehör annenne. d_0 d_b $d_{b,min}$ Gewindestange Siebhülse Bohrer - Ø min. Bürsten - Ø Bürsten - Ø HD, CA [mm] [mm] [mm] [mm] Porenbeton und Vollstein (ohne Siebhülse) M8 RBT10 12 10,5 10 M10 12 RBT12 14 12,5 M12 14 RBT14 16 14,5 M16 18 RBT18 20 18,5 Vollstein und Lochstein (mit Siebhülse) M8 SH 12x80 12 RBT12 14 12,5 SH 16x85 M8 / M10 / IG-M6 SH 16x130 16 RBT16 18 16,5 SH 16x130/330 SH 20x85 M12/M16/ SH 20x130 20 RBT20 22 20,5 IG-M8 / IG-M10 SH 20x200

Reinigungs- und Installationszubehör

Handpumpe

(Volumen ≥ 750 ml)

Druckluftpistole

(min 6 bar)

Bürste RBT

Bürstenverlängerung RBL

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für
Mauerwerk

Verwendungszweck

Reinigungs- und Installationszubehör

Anhang B 7

Tabelle B6: V	/erarbeitungs- und Au	ıshärtezeiten -	AC100-PRO
---------------	-----------------------	-----------------	-----------

Temperatur	r im Verank	erungsgrund	Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
	Т		t _{work}	t _{cure}
- 10 °C	bis	- 6°C	90 min ²⁾	24 h
- 5°C	bis	- 1°C	90 min	14 h
0°C	bis	+ 4 °C	45 min	7 h
+ 5°C	bis	+ 9 °C	25 min	2 h
+ 10 °C	bis	+ 19°C	15 min	80 min
+ 20 °C	bis	+ 24 °C	6 min	45 min
+ 25 °C	bis	+ 29 °C	4 min	25 min
+ 30 °C	bis	+ 39 °C	2 min	20 min
	+ 40 °C		1,5 min	15 min
Kartuschentemperatur			+5°C bis	+40°C

¹⁾ Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Tabelle B7: Verarbeitungs- und Aushärtezeiten - AC100-PRO Nordic or AC100-PRO Ice

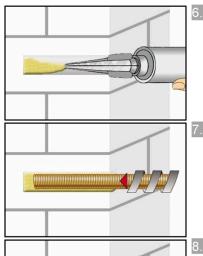
Temperatur im Verankerungsgrund			Maximale Verarbeitungszeit	Minimale Aushärtezeit ¹⁾
	Т		t _{work}	t _{cure}
- 20 °C	bis	- 16 °C	75 min	24 h
- 15°C	bis	- 11 °C	55 min	16 h
- 10°C	bis	- 6°C	35 min	10 h
- 5°C	bis	- 1°C	20 min	5 h
0°C	bis	+ 4 °C	10 min	2,5 h
+ 5°C	bis	+ 9°C	6 min	80 min
	+ 10 °C		6 min	60 min
Kartuschentemperatur			-20°C bis	+10°C

Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund.
 In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Verwendungszweck Verarbeitungs- und Aushärtezeit	Anhang B 8

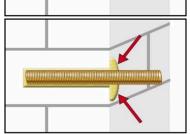
²⁾ Kartuschentemperatur muss mindestens +15°C betragen

Verwendungszweck Setzanweisung

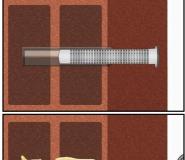


Setzanweisung Bohrloch bis zur erforderlichen Verankerungstiefe mit Bohrverfahren gemäß Anhang C 4 - C 56 erstellen. Bohrlochdruchmesser gemäß Tabellen B5. Bohrloch vom Bohrlochgrund her mindestens 2x mit einer Handpumpe oder Druckluft (Anhang B 7) ausblasen. Bei Anwendungen in Vollstein mit einer Bohlochtiefe h₀ > 100mm ist die Reinigung mit Druckluft notwendig. Bürste RBT gemäß Tabelle B5 an eine Bohrmaschine oder einen Akku-2xSchraubendreher anschließen. Bohrloch mindestens 2x drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten. Abschließend Bohrloch vom Bohrlochgrund her mindestens 2x mit einer Handpumpe oder Druckluft (Anhang B 7) ausblasen. Bei Anwendungen in Vollstein mit einer Bohlochtiefe ho > 100mm ist die Reinigung mit Druckluft notwendig. Statikmischer SM-14W / PM-19E aufschrauben und Kartusche in geeignetes Auspressgerät einlegen. Ggf. Schlauchfolienclip vor Verwendung abschneiden. Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit twork (Anhang B 8) und bei neuen Kartuschen, neuen Statikmischer verwenden. Verankerungstiefe auf der Ankerstange markieren. Bei nichttragenden Schichten und/oder Durchsteckmontage t_{fix} und/oder t_{nll} berücksichtigen. Die Ankerstange muss frei von Schmutz-, Fett. Öl und anderen Fremdmaterialien sein. $h_{ef} + (t_{nll}) + (t_{fix})$ Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe, bei Schlauchfolienkartuschen min. 6 Hübe) Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk Anhang B 9

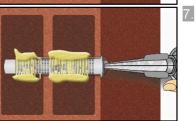
Setzanweisung (Fortsetzung)


Installation ohneSiebhülse

Bohrloch vom Bohrlochgrund (ggf. Mischerverlängerung VL verwenden) her ca. zu 2/3 mit Mörtel befüllen. Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.


Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 8) beachten.

Ankerstange mit leichten Drehbewegungen bis zur Markierung einführen.


Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 6 wiederholen.

Installation mit Siebhülse

Siebhülse bündig mit der Oberfläche des Verankerungsgrundes in das Bohrloch einstecken. Siebhülse im Verankerungsbereich $(h_{\rm ef})$ niemals verändern

Bei Durchsteckmontage mit Siebhülse SH 16x130/330 durch eine nichttragende Schicht und/oder Anbauteil, darf der Klemmbereich auf die Dicke der nicht-tragenden Schicht und/oder Anbauteil gekürzt werden.

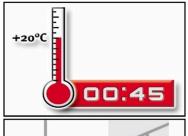
Siebhülse vom Grund (ggf. Mischerverlängerung VL verwenden) her mit Mörtel füllen.

Exakte Mörtelmenge dem Kartuschenetikett oder der Montageanleitung entnehmen. Bei Durchsteckmontage durch das Anbauteil muss die Siebhülse zusätzlich bis ins Anbauteil komplett mit Mörtel verfüllt sein.

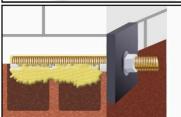
Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 8) beachten.

Ankerstange mit leichten Drehbewegungen bis zur Markierung einführen.

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk


Verwendungszweck

Setzanweisung (Fortsetzung)


Anhang B 10

Setzanweisung (Fortsetzung)

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 8) muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten.

Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Anhang C 4 bis C 56) beachten.

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Verwendungszweck

Setzanweisung (Fortsetzung)

Anhang B 11

									β-Fa	aktor		
Untergrundmaterial	Δnker	größe	Siehhül	H2 as	Setz	tiefe	T _a : 40°C	/ 24°C	T _b : 80°C / 50°C			20°C / 2°C
	Alikei	grosc	Olebilai	30 311	h	ef	d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w
Porenbeton	alle G	rößen	mit SH ohne SI ohne SI mit und ohn ne Werte d Stahlversa 4.8 N N N N Teilsichert 5.6 V und 8.8 V Y t, Stahlvers 4.8 V V V V	hne SH	а	lle	0,95	0,86	0,81	0,73	0,81	0,73
	d ₀ ≤ 1	4 mm			_		0,93	0,80	0,87	0,74	0,65	0,56
	d ₀ ≥ 1	6 mm	mit S	БН	a	lle	0,93	0,93	0,87	0,87	0,65	0,65
Kalksandsteine	d ₀ ≤ 1	4 mm		CLI	- 10	0	0,93	0,80	0,87	0,74	0,65	0,56
	d ₀ ≥ 1	6 mm	onne	5Н	≤ 100	0 mm	0,93	0,93	0,87	0,87	0,65	0,65
	alle G	rößen	ohne SH		> 100	0 mm	0,93	0,56	0,87	0,52	0,65	0,40
			mit S	SH	а	lle	0,86	0,86	0,86	0,86	0,73	0,73
Ziegelsteine	alle G	rößen	ohne SH		≤ 100	0 mm	0,86	0,86	0,86	0,86	0,73	0,73
			ohne	SH	> 100	0 mm	0,86	0,43	0,86	0,43	0,73	0,37
Detenataine	d₀ ≤ 1	2 mm	mitnd o	has CII		lla .	0,93	0,80	0,87	0,74	0,65	0,56
Betonsteine	d ₀ ≥ 1	6 mm	mit und o	nne SH	а	lle	0,93	0,93	0,87	0,87	0,65	0,65
Tabelle C2: Cha	arakte	ristiscl	ne Werte	der St	ahltra	afähia	keit					
Ankergröße	ar arreo	10000	10 110110	40. 00	4111114	M8	M10	M12	M16	IG-M6	IG-M8	IG-M1
Spannungsquerschnit				A _s	[mm²]	36,6	58	84,3	157	_	-	-
Charakteristische Zu		ihigkeit	, Stahlver		<u>. </u>	, ,				1		
		4.6 und		N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	_3)	_3)	_3)
tahl, Festigkeitsklasse		5.6 und	5.6 und 5.8		[kN]	18 (17)	29 (27)	42	78	10	17	29
	8.			$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	16	27	46
Nichtrostender Stahl A	9.8 ander Stabl A2 A4 50			N _{Rk,s}	[kN]	18	29	42	79	_3)	_3)	_3)
und HCR, Festigkeitsk		70		$N_{Rk,s}$	[kN]	26	41	59	110	14	26	41
(A2 nur Klasse 50 und	l 70)	80	N _{Rk,s}		[kN]	29	46	67	126	_3)	_3)	_3)
Charakteristische Zu	gtragfä	higkeit	, Teilsiche		eiwert	2)			1			
Otabl Fastinlaitaldasa	_	4.6 und	1 5.6	$\gamma_{Ms,N}$	[-]		2,	0			_3)	
Stahl, Festigkeitsklass	se	4.8, 5.8	3 und 8.8	γ _{Ms,N}	[-]				1,5	•		
Nichtrostender Stahl A	2 Δ4	50		γ _{Ms,N}	[-]					_3)		
und HCR, Festigkeitsk	dasse	70		γMs,N	[-]				1,87	•		
(A2 nur Klasse 50 und	l 70)	80		γ _{Ms,N}	[-]		1,	6			_3)	
Charakteristische Qu	ıertragi	fähigke	it, Stahlve	rsagen	ohne F	lebelarn	n ¹⁾					
		4.6 und		V ⁰ _{Rk,s}	[kN]	7 (6)	12 (10)	17	31	_3)	_3)	_3)
Stahl, Festigkeitsklass	e	5.6 und	1 5.8	V ⁰ _{Rk,s}	[kN]	9 (8)	15 (13)	21	39	5	9	15
-		8.8		$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	8	14	23
Nichtrostender Stahl A		50		$V^0_{Rk,s}$	[kN]	9	15	21	39	_3)	_3)	_3)
und HCR, Festigkeitsk	dasse	70		V ⁰ Rk,s	[kN]	13	20	30	55	7	13	20
(A2 nur Klasse 50 und	1 70)	80		$V^0_{Rk,s}$	[kN]	15	23	34	63	_3)	_3)	_3)
Injektionssystem <i>F</i>	AC100-	PRO, A	C100-PR	O Nordi	c odei	r AC100	-PRO Ico	e für				
Mauerwerk										Anhar	0 4	

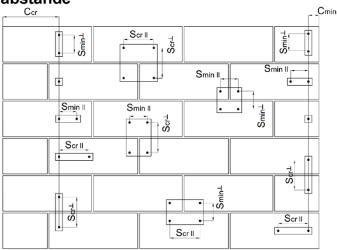
Ankergröße				M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Spannungsquerschnitt		A _s	[mm²]	36,6	58	84,3	157	-	-	-	
Charakteristische Quertrag	nit He	belarm ¹)			•					
	4.6 und 4.8	M ⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	_3)	_3)	_3)	
Stahl, Festigkeitsklasse	5.6 und 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	8	19	37	
	8.8	М ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	12	30	60	
Nichtrostender Stahl A2, A4	50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	_3)	_3)	_3)	
und HCR, Festigkeitsklasse	70	М ⁰ _{Rk,s}	[Nm]	26	52	92	232	11	26	52	
(A2 nur Klasse 50 und 70)	80	M ⁰ _{Rk,s}		30	59	105	266	_3)	_3)	_3)	
Charakteristische Zugtragf	ähigkeit, Teilsiche	erheitsbe	eiwert	2)							
Stabl. Factickaitaklassa	4.6 und 5.6	γ _{Ms,V}	[-]		1,6	67			_3)		
Stahl, Festigkeitsklasse	4.8, 5.8 und 8.8	γMs,V	[-]				1,25				
Nichtrostender Stahl A2, A4	50	γ _{Ms,V}	[-]		2,3	88			_3)		
und HCR, Festigkeitsklasse	70	$\gamma_{Ms,V}$	[-]				1,56				
(A2 nur Klasse 50 und 70)	80	γ _{Ms,V}	[-]		1,3	33			_3)		

Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

Tabelle C3: Charakteristische Werte der Stahltragfähigkeit unter Brandeinwirkung 1)

				9				9		
Ankergröße				М8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Charakteristische Zugtragfähigkeit,	Stahlvers	agen						•		
Stahl, Festigkeitsklasse 5.8, und	R30	$N_{Rk,s,fi}$	[kN]	1,1	1,7	3,0	5,7	0,3	1,1	1,7
höher;	R60	$N_{Rk,s,fi}$	[kN]	0,9	1,4	2,3	4,2	0,2	0,9	1,4
Nichtrostender Stahl A2, A4 und		$N_{Rk,s,fi}$		0,7	1,0	1,6	3,0	0,2	0,7	1,0
HCR, Festigkeitsklasse 50 und höher	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,8	1,2	2,2	0,1	0,5	0,8
Charakteristische Quertragfähigkei	hne H	ebelarm								
Stahl, Festigkeitsklasse 5.8, und	R30	$V_{Rk,s,fi}$	[kN]	1,1	1,7	3,0	5,7	0,3	1,1	1,7
höher;	R60	$V_{Rk,s,fi}$	[kN]	0,9	1,4	2,3	4,2	0,2	0,9	1,4
Nichtrostender Stahl A2, A4 und				0,7	1,0	1,6	3,0	0,2	0,7	1,0
HCR, Festigkeitsklasse 50 und höher				0,5	0,8	1,2	2,2	0,1	0,5	0,8
Charakteristische Quertragfähigkei				belarm						
Stahl, Festigkeitsklasse 5.8, und	R30	$M_{Rk,s,fi}$	[Nm]	1,1	2,2	4,7	12,0	0,2	1,1	2,2
höher;	R60	M _{Rk,s,fi}	[Nm]	0,9	1,8	3,5	9,0	0,2	0,9	1,8
Nichtrostender Stahl A2, A4 und		M _{Rk,s,fi}		0,7	1,3	2,5	6,3	0,1	0,7	1,3
HCR, Festigkeitsklasse 50 und höher	R120	M _{Rk,s,fi}	[Nm]	0,5	1,0	1,8	4,7	0,1	0,5	1,0

¹⁾ Teilsicherheitsbeiwert für den Brandfall ist 1,0 für alle Stahlsorten und Lastrichtungen.


Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Charakteristische Stahltragfähigkeit unter Zuglast und Querlast unter Brandeinwirkung	Anhang C 2

²⁾ Sofern andere nationalen Regelungen fehlen

³⁾ Dübelvariante nicht in ETA enthalten

c_{cr} = Charakteristischer Randabstand

C_{min} = Minimaler Randabstand

 $s_{cr,ll}$; $(s_{min,ll})$ = Charakteristischer (minimaler) Achsabstand für Anker parallel zur Lagerfuge angeordnet $s_{cr,\perp}$; $(s_{min,\perp})$ = Charakteristischer (minimaler) Achsabstand für Anker senkrecht zur Lagerfuge angeordnet

Lastrichtung Anker- anordnung	Zugl	ast		arallel zum Rand V ⊩	Querlast senkrecht zum freien Rand V ⊥		
Anker parallel zur Lagerfuge s _{cr,ll} ; (s _{min,ll})		$\alpha_{g \; \text{II},N}$	V	α _g II,∨ II	V	α _{g II,} ∨⊥	
Anker senkrecht zur Lagerfuge s _{cr,⊥;} (s _{min,⊥})		$\alpha_{\text{g}\perp,\text{N}}$	V	$\alpha_{g\perp,\vee\parallel}$	V	$\alpha_{g\perp,\vee\perp}$	

 $\alpha_{\text{edge},N}$ = Reduktionsfaktor bei Zuglast am freien Rand mit $c_{\text{min}} \le c < c_{\text{cr}}$ (Einzelanker)

 $\alpha_{\text{edge,V}}$ = Reduktionsfaktor bei Querlast senkrecht zum freien Rand mit $c_{\text{min}} \leq c < c_{\text{cr}}$ (Einzelanker) = Reduktionsfaktor bei Querlast parallel zum freien Rand mit $c_{\text{min}} \leq c < c_{\text{cr}}$ (Einzelanker)

 $\alpha_{g \mid I,N}$ = Gruppenfaktor für Anker parallel zur Lagerfuge unter Zuglast $\alpha_{g \perp,N}$ = Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Zuglast

 $\alpha_{g \parallel, \vee \parallel}$ = Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast parallel zum freien Rand $\alpha_{g \perp, \vee \parallel}$ = Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast parallel zum freien Rand $\alpha_{g \parallel, \vee \perp}$ = Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast senkrecht zum freien Rand $\alpha_{g \perp, \vee \perp}$ = Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast senkrecht zum freien Rand

Einzelanker am Rand: $N_{Rk,b,c} = \alpha_{edge,N} * N_{Rk,b}$ bzw. $N_{Rk,p,c} = \alpha_{edge,N} * N_{Rk,p}$

 $V_{Rk,c II} = \alpha_{edge,V II} * V_{Rk,b}$

 $V_{Rk,c} \perp = \alpha_{edge,V} \perp * V_{Rk,b}$

Gruppe aus 2 Anker: $N^{g}_{Rk} = \alpha_{g,N} * N_{RK,b}$

 $V^{g}_{Rk \parallel} = \alpha_{g,V \parallel} * V_{Rk,b} \qquad \qquad \text{bzw. } V^{g}_{Rk \perp} = \alpha_{g,V \perp} * V_{Rk,b} \qquad \qquad \text{(für } c \geq c_{cr}\text{)}$

 $V^{g}_{Rk,c \parallel} = \alpha_{g,V \parallel} * V_{Rk,b}$ bzw. $V^{g}_{Rk,c \perp} = \alpha_{g,V \perp} * V_{Rk,b}$ (für $c \ge c_{min}$)

Gruppe aus 4 Anker: $N^{g}_{Rk} = \alpha_{g \parallel, N} * \alpha_{g \perp, N} * N_{RK,b}$

 $V^{g}_{Rk|I} = \alpha_{g|I,V|I} * \alpha_{g\perp,V|I} * V_{Rk,b} \quad bzw. \quad V^{g}_{Rk\perp} = \alpha_{g|I,V\perp} * \alpha_{g\perp,V\perp} * V_{Rk,b} \quad (f\ddot{u}r \ c \ge c_{cr})$

 $V^g_{Rk,c \, II} \ = \alpha_g \, _{II,V \, II} \, ^* \, \alpha_g \, _{\bot,V \, II} \, ^* \, V_{Rk,b} \quad \text{bzw.} \quad V^g_{Rk,c \, \bot} \quad = \alpha_g \, _{II,V \, \bot} \, ^* \, \alpha_g \, _{\bot,V \, \bot} \, ^* \, V_{Rk,b} \quad \text{(für } c \geq c_{min)}$

Formeln abhängig von Ankeranordnung und Lastrichtung (siehe Tabelle oben). Reduktionsfaktoren, Gruppenfaktoren und Widerstände siehe Anhang C 4 – C 56. Abminderung für Installation in Fugen siehe Anhang B 1.

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen

Definition der Reduktions- und Gruppenfaktoren

Anhang C 3

Steintyp: Porenbeton – AAC

Tabelle C4: Beschreibung des Steins

Steintyp		Porenbeton AAC
Dichte	ρ [kg/dm³]	0,35 - 0,6
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 2, ≥ 4 oder ≥ 6
Norm		EN 771-4:2011+A1:2015
Hersteller (Land)		z.B. Porit (DE)
Steinabmessungen	[mm]	≥ 499 x 240 x 249
Bohrverfahren		Drehbohren

Tabelle C5: Installationsparameter

	•									
Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5 ≤ 5 ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤ 10						
Randabstand	Ccr	[mm]	n] 150 (für Querlasten senkrecht zum freien Rand: c _{cr} = 210)						10)	
Minimaler Randabstand	Cmin	[mm]	50							
Achsabstand	Scr, II	[mm]	m] 300							
Acrisabstatiu	Scr, ⊥	[mm]	250							
Minimaler Achsabstand	Smin, II;	[mm]	nm] 50							
	S _{min, ⊥}	- -								

Tabelle C6: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast			Querlast							
	Zugiast		Senkrech	nt zum freier	n Rand	Parallel zum freien Rand					
1	mit c ≥	αedge, N	1	mit c ≥	αedge, V⊥	·	mit c ≥	αedge, VII			
	• 50	0,85		50	0,12		50	0,70			
	30	0,83		125	0,50	Ţ	125	0,85			
150 1,00		· i · · · · · · · · · · · · · · · · · ·	210	1,00		150	1,00				

Tabelle C7: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	arallel zur Lage	rfuge	Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
• •	50	50	1,10	•	50	50	0,75	
	150	50	1,25		150	50	0,90	
	150	300	2,00	-	150	250	2,00	

Tabelle C8: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankerand	ordnung senk	recht zur La	gerfuge
Querlast		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht	•••	50	50	0,20		50	50	0,25
zum freien		210	50	1,60		210	50	1,80
Rand		210	300	2,00	1	210	250	2,00
Overleet		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
Querlast parallel zum		50	50	1,15	•	50	50	0,80
freien Rand		150	50	1,60	•	150	50	1,10
l cicii i tana		150	300	2,00		150	250	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Porenbeton - AAC

Beschreibung des Steins, Installationsparameter, Reduktions- und Gruppenfaktoren

Anhang C 4

				Charakt	eristischer \	Viderstand	beic≥c.	und s≥s _{cr}		
		ς,				ungsbedin		· ····································		
Ankergröße	Siebhülse	Effektive Verankerungs- tiefe		d/d		J. 1900 Cum.	w/d w/w		d/d w/d w/w	
, till to light of the	Sieb	Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur bereiche	
		h _{ef}	١	$I_{Rk,b} = N_{Rk,p}$,1)		$N_{Rk,b} = N_{Rk,b}$	p ¹⁾	$V_{Rk,b}^{1)}$	
N		[mm]	<u> </u>							
M8	erte mitti		ckfestigkeit $f_b \ge 2 \text{ N/mm}^2$; Rohdichte $\rho \ge 0.35 \text{ kg/dm}$							
NI8 M10 /	-	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5	
IG-M6	-	90	1,2	0,9	0,9	0,9	0,9	0,9	2,5	
M12 / M16 / IG-M8 / IG-M10	-	100	2,0	1,5	1,5	1,5	1,5	1,5	2,5	
M8	SH 12	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5	
M8 / M10/ IG-M6	SH 16	≥ 85	1,2	0,9	0,9	0,9	0,9	0,9	2,5	
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	2,0	1,5	1,5	1,5	1,5	1,5	2,5	
$N_{Rk,b,c} = N_{Rk,p,c}$ so	wie V _{Rk,c} ı	$_{\rm I} = V_{\rm Rk,c} \perp g$	jemäß Anha	ng C 3						
				Charakt	eristischer \		bei c≥ c _c	r und s≥s _{cr}		
		γ̈́				ungsbeding		CI		
A.a.l.a.a.a.a.ä.Q.a.	ülse	Siebnuise Effektive Verankerungs-		d/d			w/d w/w		d/d w/d w/w	
Ankergröße	Siebh		Verar	E Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C
		h _{ef}	١	$J_{Rk,b} = N_{Rk,p}$,1)	1	$\mathbf{I}_{Rk,b} = \mathbf{N}_{Rk,b}$	p ¹⁾	$V_{Rk,b}$ 1)	
		[mm]				[kN]				
	rte mitt		kfestigkeit				lichte ρ≥	0,50 kg/dm		
M8	-	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5	
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	2,0	7,5	
M12 / M16 / IG-M8 / IG-M10	-	100	5,0	4,5	4,0	4,5	4,0	4,0	7,5	
M8	SH 12	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5	
M8 / M10/ IG-M6	SH 16	≥ 85	3,0	2,5	2,0	2,5	2,0	2,0	7,5	
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	5,0	4,5	4,0	4,5	4,0	4,0	7,5	
$N_{Rk,b,c} = N_{Rk,p,c}$ so	wie V _{Rk,c} ı	_I = V _{Rk,c} ⊥g	jemäß Anha	ng C 3						
njektionssystem Mauerwerk	AC100-	PRO, AC	100-PRO N	ordic ode	r AC100-PR	O Ice für				

steintyp: Poren	beton -	- AAC											
· · · · · · · · · · · · · · · · · · ·				Charakt	eristischer \	Widerstand	bei c≥ c _{ci}	und s≥s _{cr}					
		Siebhülse Effektive Verankerungs- tiefe		Nutzungsbedingungen									
Ankergröße	Siebhülse			d/d			d/d w/d w/w						
Alikergroße		Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur bereiche				
		h _{ef}	N	$J_{Rk,b} = N_{Rk,p}$,1)	$N_{Rk,b} = N_{Rk,b}$	p ¹⁾	$V_{Rk,b}$ 1)					
		[mm]				[kN]							
Normie	rte mitt	lere Druc	kfestigkeit	f _b ≥ 6 N/m	m²;	Roho	lichte ρ≥	0,60 kg/dm	3				
M8	-	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0				
M10 / IG-M6	-	90	4,0	3,5	3,0	3,5	3,0	3,0	10,0				
M12 / M16 / IG-M8 / IG-M10	-	100	7,0	6,0	5,5	6,5	5,5	5,5	10,0				
M8	SH 12	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0				
M8 / M10/ IG-M6	SH 16	≥ 85	4,0	3,5	3,0	3,5	3,0	3,0	10,0				
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	7,0	6,0	5,5	6,5	5,5	5,5	10,0				

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c \mid I} = V_{Rk,c \perp}$ gemäß Anhang C 3

Tabelle C10: Verschiebungen

	h-r	SN / NI	2112	SM	δv / V	2) (2	\$14
Ankergröße	Her	ON / IN	ONU	δN∞	0 V / V	δνο	δ∨∞
/ tincigross	$ \begin{array}{c cccc} & hef & \delta_N / N & \delta_{N0} \\ \hline [mm] & [mm/kN] & [mm] \\ \hline & alle & 0,1 & 0,1*N_{Rk} / 2 \\ \hline & alle & & \end{array} $	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 /	allo				0,3	0,3*V _{Rk} /2,8	1 5*5 (0
IG-M6 – M10	alle	0,1	0,1*N _{Rk} / 2,8	2*δΝο	0,3	0,5 VRK1 2,6	1,5*δ∨0
M16	alle	,	,	_ = = = = = = = = = = = = = = = = = = =	0,1	0,1*V _{Rk} / 2,8	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Porenbeton – AAC
Charakteristische Tragfähigkeiten und Verschiebungen

Anhang C 6

Steintyp: Kalksandvollstein KS-NF

Tabelle C11: Beschreibung des Steins

Steintyp		Kalksandvollstein KS-NF
Dichte	ρ [kg/dm³]	≥ 2,0
Normierte mittlere Druckfestigkeit	f _b [N/mm²]	≥ 28
Umrechnungsfaktor für Druckfestigkeiten	geringere	$(f_b / 28)^{0.5} \le 1.0$
Norm		EN 771-2:2011+A1:2015
Hersteller (Land)		z.B. Wemding (DE)
Steinabmessungen	[mm]	≥ 240 x 115 x 71
Bohrverfahren		Hammerbohren

Tabelle C12: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 15	≤ 15	≤ 10	≤ 10	≤ 10		
Randabstand (unter	0 (0 5)	[mm]	150 (2 h _{ef})								
Brandbeanspruchung)	C _{cr;} (C _{cr,fi})	[111111]	(für Querlasten senkrecht zum freien Rand: c _{cr} = 240)								
Minimaler Randabstand	C _{min}	[mm]	60								
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]				240 (4 h _{ef})				
Brandbeanspruchung)	$S_{cr, \perp; (S_{cr,fi, \perp})}$	[mm]	m] 150 (4 h _{ef})								
Minimaler Achsabstand	Smin, Ⅱ; Smin, ⊥	[mm]	75								

Tabelle C13: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast		Querlast senkrecht zum freien Rand			Querlast parallel zum freien Rand			
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII	
	60 ¹⁾	0,50		60	0,30		60	0,60	
•	100 ¹⁾	0,50		100	0,50	 	100	1,00	
	150 ¹⁾	1,00		240	1.00		150	1.00	
	180	1,00		240	1,00		150	1,00	

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C14: Faktoren für Ankergruppen unter Zuglast

Ank	eranordnung pa	anordnung parallel zur Lagerfuge			Ankeranordnung senkrecht zur Lagerfuge					
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N			
	60 ¹⁾	75	0,70		60 ¹⁾	75	1,15			
	150 ¹⁾	75	1,40		150 ¹⁾	75	2,00			
• •	150 ¹⁾	240	2,00		150 ¹⁾	150	2,00			
	180 ²⁾	75	1,00		180 ²⁾	75	1,15			
	180 ²⁾	240	1,70		4002)	450	2.00			
	240 ²⁾	240	2,00		180 ²⁾	150	2,00			

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C15: Faktoren für Ankergruppen unter Querlast

	Ankeran	ordnung par	allel zur Lag	erfuge	Ankeranordnung senkrecht zur Lagerfuge			
Quarlant		mit c ≥	mit s ≥	αg II,V ⊥		mit c ≥	mit s ≥	$lpha_{g\perp,V\perp}$
Querlast senkrecht zum	• • •	60	75	0,75		60	75	0,90
freien Rand		150	75	2,00		150	75	2,00
l irelen Kand		150	240	2,00		150	150	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum		60	75	2,00	•	60	75	2,00
		150	75	2,00	•	150	75	2,00
freien Rand		150	240	2,00		150	150	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Kalksandvollstein KS-NF

Beschreibung des Steins, Installationsparameter, Reduktions- und Gruppenfaktoren

Anhang C 7

²⁾ Nur für Anwendungen mit hef = 200mm und ohne Siebhülse

Steintyp: Kalksandvollstein KS-NF

Tabelle C16: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Tabelle C16. Cil	arakter	ISUSCITE	werte de	i ilayiai	ngken und	er Zug- u	nu Quen	aSi				
				Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$								
		-8		Nutzungsbedingungen								
Ankeraräße	ıülse	Siebhülse Effektive Verankerungs- tiefe	d/d				d/d w/d w/w					
Ankergröße	Siebhülse	E Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h_{ef}	1	$N_{Rk,b} = N_{Rk,}$	2) p	1	$N_{Rk,b} = N_{Rk,b}$	2) p	$V_{Rk,b}^{2)}$			
		[mm]				[kN]						
		Normi	erte mittle	re Druckfe	estigkeit f _b	= 28 N/mn	1 ^{2 1)}					
M8	-	80										
M10 / IG-M6	-	≥ 90	7,0	6,5	5,0	6,0	5,5	4,0				
M12 / IG-M8	-	≥ 100										
M16 / IG-M10	-	≥ 100	7,0	6,5	5,0	7,0	6,5	5,0				
M10 / M12 / M16 / IG-M6 / IG-M8 / IG-M10	-	200	9,0	8,5	6,5	5,5	5,0	4,0	7,0			
M8	SH 12	80	7,0	6,5	5,0	6,0	5,5	4,0				
M8 / M10/ IG-M6	SH 16	≥ 85										
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0				

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C11 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C17: Verschiebungen

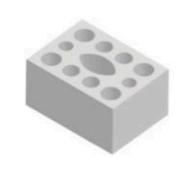
Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δΝο	0,3	0,3*V _{Rk} /3,5	1,5*δ∨0
M16	alle	,	.,,.		0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

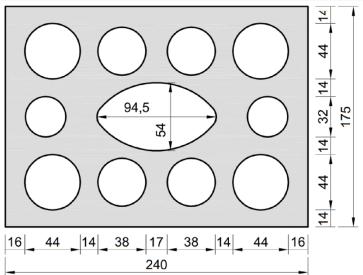
Tabelle C18: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

		Effektive	Charakteristischer Widerstand						
Ankorarë (Siebhülse		Verankerungstiefe	$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$						
Ankergröße		h _{ef}	R30	R60	R90	R120			
		[mm]	[kN]						
M8	-	80							
M10 / IG-M6	-	≥ 90	0,48	0,41	0,34	0,30			
M12 / IG-M8	-	≥ 100	0,40	0,41		0,30			
M16 / IG-M10	-	≥ 100	-						
M8	SH 12	80							
M8 / M10 /IG-M6	SH 16	≥ 85	0,47	0,26	_1)	_1)			
M12 / M16 / IG-M8 /IG-M10	SH 20	≥ 85	0,47	0,20	-1)	-1)			

¹⁾ Keine Leistung bewertet

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Kalksandvollstein KS-NF Charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 8


²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c|l|} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Kalksandlochstein KSL-3DF

Tabelle C19: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-3DF
Dichte	ρ [kg/dm ³]	≥ 1,4
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 14
Umrechnungsfaktor für Druckfestigkeiten	geringere	$(f_b / 14)^{0.75} \le 1.0$
Norm		EN 771-2:2011+A1:2015
Hersteller (Land)		z.B. KS-Wemding (DE)
Steinabmessungen	[mm]	≥ 240 x 175 x 113
Bohrverfahren		Drehbohren

Tabelle C20: Installationsparameter

-													
	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10					
T _{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8					
Ccr	[mm]	12	120 (für Querlasten senkrecht zum freien Rand: c_{cr} = 240)										
C _{min}	[mm]	60											
Scr, II	[mm]	240											
Scr, ⊥	[mm]				120	8 ≤ 5 ≤ 8 ≤ 8 nt zum freien Rand: c _{cr} = 240) 60 40							
S _{min, II} ; S _{min, ⊥}	[mm]		120										
	C _{cr} C _{min} S _{cr, II} S _{cr, ⊥} S _{min, II;}	Tinst [Nm] Ccr [mm] Cmin [mm] Scr, II [mm] Scr, ⊥ [mm] Smin, II; [mm]	T _{inst} [Nm] ≤ 5 C _{cr} [mm] 12 C _{min} [mm] S _{cr, II} [mm] S _{cr, ⊥} [mm]	$ \begin{array}{c cccc} T_{inst} & [Nm] & \leq 5 & \leq 5 \\ \hline c_{cr} & [mm] & 120 \text{ (für Que} \\ \hline c_{min} & [mm] & \\ \hline s_{cr, \; II} & [mm] & \\ \hline s_{cr, \; \bot} & [mm] & \\ \hline s_{min, \; II;} & [mm] & \\ \hline \end{array} $	Tinst [Nm] ≤ 5 ≤ 8 Ccr [mm] 120 (für Querlasten sen Cmin [mm] Scr, II [mm] Scr, ⊥ [mm] Smin, II; [mm]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T_{inst} [Nm] ≤ 5 ≤ 8 ≤ 8 ≤ 5 C_{cr} [mm] 120 (für Querlasten senkrecht zum freien Ramenten gehören ge	[Nm] ≤ 5 ≤ 8 ≤ 8 ≤ 5 ≤ 8 [mm] 120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 240) [mm] 60 [mm] 240 [mm] 120					

Tabelle C21: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast						
	Zuglasi		Senkrech	nt zum freier	Rand	Parallel zum freien Rand			
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII	
•	60	1,00	→	60	0,30	1	60	1,00	
	120	1,00		240	1,00		120	1,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Kalksandlochstein KSL-3DF Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 9

Steintyp: Kalksandlochstein KSL-3DF

Tabelle C22: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	arallel zur Lage	fuge	Anker	anordnung sen	krecht zur Lag	erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
	60	120	1,50	•	60	120	1.00
	120	120	2,00		00	120	1,00
· į	120	240	2,00		120	120	2,00

Tabelle C23: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht	•••	60	120	0,30		60	120	0,30
zum freien		120	120	1,00	80	120	0,30	
Rand		120	240	2,00		240	120	2,00
Querlast	-	mit c ≥	mit s ≥	αg II,V II	+	mit c ≥	mit s ≥	α _{g ⊥,} ∨ II
parallel zum freien Rand		60	120	1,00	•	60	120	1,00
		120	120	1,60	•	00 120	120	1,00
		120	240	2,00		120	120	2,00

Tabelle C24: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Tubono CI II CI	iai aitto				ignoit and	o. —ug u					
	ülse ffektive		Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$								
		<u>%</u>	Nutzungsbedingungen								
Ankergröße Ge		Effektive Verankerungs- tiefe		d/d			w/d w/w				
	Siebł		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{2)}$			1	$N_{Rk,b} = N_{Rk,}$	2) p	$V_{Rk,b}^{(2)}$		
		[mm]									
	_	Norm	ierte mittle	re Druckfe	estigkeit f _b	≥ 14 N/mm	1 ^{2 1)}				
M8 / M10/	CLIAC	≥ 85	2,5	2,5	1,5	2,5	2,5	1,5	6,0		
IG-M6	SH 16	130	2,5	2,5	2,0	2,5	2,5	2,0	6,0		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	6,5	6,0	4,5	6,5	6,0	4,5	6,0		

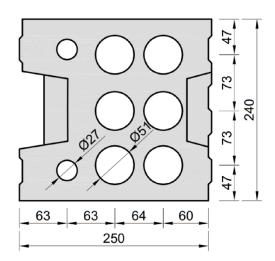
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C19 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C25: Verschiebungen

	_						
Ankoraräßo	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨0
M16	alle		,		0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Kalksandlochstein KSL-3DF Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 10

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | I} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Kalksandlochstein KSL-8DF

Tabelle C26: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-8DF
Dichte	ρ [kg/dm³]	≥ 1,4
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12
Umrechnungsfaktor für ç Druckfestigkeiten	geringere	$(f_b / 12)^{0.75} \le 1.0$
Norm		EN 771-2:2011+A1:2015
Hersteller (Land)		z.B. KS-Wemding (DE)
Steinabmessungen	[mm]	≥ 248 x 240 x 238
Bohrverfahren		Drehbohren

Tabelle C27: Installationsparameter

	•									
Ankergröße	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8	
Randabstand	Ccr	[mm]	12	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						
Minimaler Randabstand	C _{min}	[mm]	50							
Achsabstand	Scr, II	[mm]	250							
Acrisabstand	Scr, ⊥	[mm]	120							
Minimaler Achsabstand S _{min, II}		[mm]	50							
	,	1								

Tabelle C28: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast				Querlast						
	Zugiasi		Senkrech	nt zum freier	n Rand	Paralle	el zum freien	Rand		
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00	→	50	0,30] <u>†</u>	50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Kalksandlochstein KSL-8DF Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 11

Steintyp: Kalksandlochstein KSL-8DF

Tabelle C29: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	ırallel zur Lageı	fuge	Anker	anordnung sen	krecht zur Lage	erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,00		50	50	1,00
	120	250	2,00		120	120	2,00

Tabelle C30: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast	1	mit c ≥	mit s ≥	αg II,V⊥	†	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht	•••	50	50	0,45		50	50	0,45
zum freien		250	50	1,15		250	50	1,20
Rand	·	250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum	•	50	50	1,30		50	50	1,00
freien Rand		120	250	2,00		120	250	2,00

Tabelle C31: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
		Effektive Verankerungs- tiefe		Nutzungsbedingungen								
Ankergröße	Siebhülse		d/d				d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h_{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$			1	$N_{Rk,b} = N_{Rk,}$	2) p	$V_{Rk,b}^{(2)}$			
		[mm]	[kN]									
		Norm	ierte mittle	re Druckfe	estigkeit f _b	≥ 12 N/mm	1 ^{2 1)}					
M8 / M10/ IG-M6	SH 16	130	5,0	4,5	3,5	5,0	4,5	3,5	3,5			
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 130	5,0	4,5	3,5	5,0	4,5	3,5	6,0			

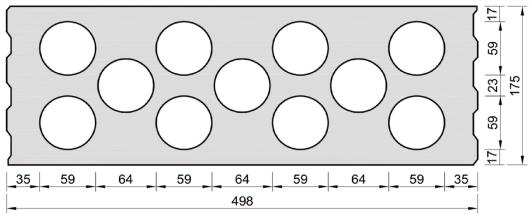
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C26 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C32: Verschiebungen

A nkorarä@o	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨ο
M16	alle	,	,		0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Kalksandlochstein KSL-8DF Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 12

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c|I} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Kalksandlochstein KSL-12DF

Tabelle C33: Beschreibung des Steins

Steintyp		Kalksandlochstein KSL-12DF		
Dichte	ρ [kg/dm ³]	≥ 1,4		
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12		
Umrechnungsfaktor für Druckfestigkeiten	geringere	$(f_b / 12)^{0.75} \le 1.0$		
Norm		EN 771-2:2011+A1:2015		
Hersteller (Land)		z.B. KS-Wemding (DE)		
Steinabmessungen	[mm]	≥ 498 x 175 x 238		
Bohrverfahren		Drehbohren		

Tabelle C34: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 5	≤ 5	≤ 4	≤ 5	≤ 5	
Randabstand (unter	Ccr; (Ccr,fi)	[mm]			,	120 (2 h _e	f)			
Brandbeanspruchung)	Ccr; (Ccr,fi)	[111111]	(für Querlasten senkrecht zum freien Rand: c _{cr} = 500)							
Minimaler Randabstand	Cmin	[mm]	50							
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]	500 (4 h _{ef})							
Brandbeanspruchung)	$\mathbf{S}_{cr,} \perp ; (\mathbf{S}_{cr,fi,} \perp)$	[mm]	120 (4 h _{ef})							
Minimaler Achsabstand	S _{min, II} ; S _{min, ⊥}	[mm]	50							

Tabelle C35: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast								
	Zugiasi		Senkrech	nt zum freien	Rand	Parallel zum freien Rand					
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII			
•	50	1,00	→	50	0,45	<u> </u>	50	1,00			
	120	1,00		500	1,00		120	1,00			

Tabelle C36: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	ırallel zur Lageı	fuge	Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
• •	50	50	1,50		50	50	1,00	
	120	500	2,00		120	240	2,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Kalksandlochstein KSL-12DF

Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 13

Steintyp: Kalksandlochstein KSL-12DF

Tabelle C37: Faktoren für Ankergruppen unter Querlast

	- and the state of											
	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge							
Querlast	+	mit c ≥	mit s ≥	αg II,V⊥	†	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$				
senkrecht		50	50	0,55		50	50	0,50				
zum freien		500	50	1,00		500	50	1,00				
Rand		500	500	2,00	1	500	250	2,00				
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II				
parallel zum	•	50	50	2,00		50	50	1,30				
freien Rand		120	500	2,00		120	250	2,00				

Tabelle C38: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
		Effektive Verankerungs- tiefe		Nutzungsbedingungen								
Ankergröße	ıülse			d/d			w/d w/w					
	Siebhülse		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h_{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,b}$	2) p	$V_{Rk,b}^{(2)}$			
		[mm]		[kN]								
		Norm	ierte mittle	re Druckfe	estigkeit fb	≥ 12 N/mm	1 ^{2 1)}					
M8 / M10/ IG-M6	SH 16	130	3,5	3,5	2,5	3,5	3,5	2,5	3,5			
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 130	3,5	3,5	2,5	3,5	3,5	2,5	7,0			

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C33 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C39: Verschiebungen

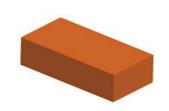
Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2 *δΝο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨ο
M16	alle	,		_ = 0,10	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Tabelle C40: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

		Effektive	Charakteristischer Widerstand						
Ankergröße	Siebhülse	Verankerungstiefe	$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$						
Ankergroise	Siebiluise	h _{ef}	R30	R60	R90	h _{ef}			
		[mm]	[kN]						
M8 / M10 /IG-M6	SH 16	130				_1)			
M12 / IG-M8	SH 20	≥ 130	0,37	0,27	0,17	-1)			
M16 / IG-M10	SH 20	≥ 130				0,12			

¹⁾ keine Leistung bewertet

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Kalksandlochstein KSL-12DF Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 14


²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c} \perp$ gemäß Anhang C 3

Steintyp: Mauerziegel 1DF

Tabelle C41: Beschreibung des Steins

Steintyp		Mauerziegel Mz-1DF	
Dichte	ρ [kg/dm³]	≥ 2,0	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 20	
Umrechnungsfaktor für ge Druckfestigkeiten	$(f_b / 20)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Wienerberger (DE)	
Steinabmessungen	[mm]	≥ 240 x 115 x 55	
Bohrverfahren		Hammerbohren	

Tabelle C42: Installationsparameter

Ankergröße	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Randabstand	Ccr	[mm]	150 (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)						10)
Minimaler Randabstand	Cmin	[mm]	60						
Scr, II		[mm]	240						
Achsabstand s _{cr, ⊥} [mm] 130									
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]	65						

Tabelle C43: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast					
	Zugiasi		Senkrecht zum freien Rand Parallel zum fre			l zum freien	en Rand	
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII
•	60	0,75		60	0,10] 	60	0,30
	150	1,00		100	0,50		100	0,65

Tabelle C44: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge				Anker	anordnung sen	krecht zur Lage	erfuge
1	mit c ≥	mit s ≥	αg II, N	1	mit c ≥	mit s ≥	αg⊥, N
	60	65	0,85	•	60	65	1,00
	150	65	1,15		150	65	1,20
	150	240	2,00		150	130	2,00

Tabelle C45: Faktoren für Ankergruppen unter Querlast

	Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge			
Querlast	1	mit c ≥	mit s ≥	αg II,∨⊥	1	mit c ≥	mit s ≥	α g \perp , V \perp
senkrecht	• • •	60	65	0,40		60	65	0,30
zum freien		240	65	2,00		240	65	2,00
Rand		240	240	2,00		240	130	2,00
Querlast	1	mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum	• •	60	65	1,75	•	60	65	1,10
freien Rand		150	65	2,00		150	65	2,00
I leien Nand		150	240	2,00	+	150	130	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Mauerziegel 1DF Beschreibung des Steins, Installationsparameter, Reduktions- und Gruppenfaktoren	Anhang C 15

Steintyp: Mauerziegel 1DF

Tabelle C46: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Tabelle C46: Ch	iaraktei	ristische	vverte de	r i ragtan	iigkeit unte	er ∠ug- u	na Queria	ast			
			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$								
		Effektive Verankerungs- tiefe		Nutzungsbedingungen							
Ankergröße	ıülse		d/d				d/d w/d w/w				
Alikeigioise	Siebhülse	Vers	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
			$N_{Rk,b} = N_{Rk,p}^{2}$			1	$V_{Rk,b}^{(2)}$				
		[mm]				[kN]					
		Norm	ierte mittlere Druckfestigkeit f _b ≥ 20 N/mm² ¹⁾								
M8	-	80									
M10 / IG-M6	-	≥ 90	7,0	6,0	6,0	7,0	6,0	6,0	8,0		
M12 / IG-M8	-	≥ 100									
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,0	6,5	6,5	12,0		
M8	SH 12	80									
M8 / M10/ IG-M6	SH 16	> 0.5	7,0	6,0	6,0	7,0	6,0	6,0	8,0		
M12 / IG-M8	SH 20	≥ 85									
M16 / IG-M10	SH 20	≥ 85	8,0	6,5	6,5	8,0	6,5	6,5	12,0		

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C41 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C47: Verschiebungen

Ankoraräßo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δΝο	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle		,	,,,,	0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Mauerziegel 1DF

Charakteristische Tragfähigkeiten und Verschiebungen

Anhang C 16

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c} \perp$ gemäß Anhang C 3

Steintyp: Mauerziegel 2DF

Tabelle C48: Beschreibung des Steins

Steintyp		Mauerzeigel 2DF
Dichte	ρ [kg/dm ³]	≥ 2,0
Normierte mittlere	f _b [N/mm ²]	≥ 28
Druckfestigkeit		= 20
Umrechnungsfaktor für g	geringere	$(f_b / 28)^{0.5} \le 1.0$
Druckfestigkeiten		(Ib / 20) ** \(\) 1,0
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Wienerberger (DE)
Steinabmessungen	[mm]	≥ 240 x 115 x 113
Bohrverfahren		Hammerbohren

Tabelle C49: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	st $[Nm]$ ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10						≤ 10	≤ 10		
Randabstand (unter	0 (0 5)	[mm]	150 (2 h _{ef})								
Brandbeanspruchung)	C _{cr;} (C _{cr,fi})) [mm] (für Querlasten senkrecht zum freien Rand: c						ind: c _{cr} =	240)		
Minimaler Randabstand	Cmin	[mm]				50					
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]			2	240 (4 h _{et}	:)				
Brandbeanspruchung)	Scr, ⊥; (Scr,fi, ⊥)	[mm]	240 (4 h _{ef})								
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]				50					

Tabelle C50: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast		Querlast sen	krecht zum f	reien Rand	Querlast parallel zum freien Rand			
+	mit c ≥	αedge, N	1	mit c ≥	αedge, V⊥	+	mit c ≥	αedge, VII	
	50 ¹⁾	1,00		50	0,20		50	1 00	
	150 ¹⁾	1,00		125	0,50	Ţ	50	1,00	
	180	1,00	+	240	1,00		150	1,00	

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C51: Faktoren für Ankergruppen unter Zuglast

Anke	ranordnung pa	ırallel zur Lageı	fuge	Ankera	anordnung sen	krecht zur Lage	erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	$lpha_{ extsf{g}\perp, extsf{N}}$
	50 ¹⁾	50	1,50	·	50 ¹⁾	50	0,80
	150 ¹⁾	240	2,00	•	150 ¹⁾	240	2,00
	180 ²⁾	60	1,00		180 ²⁾	60	1,00
	180 ²⁾	240	1,55		180 ²⁾	120	2,00
	240 ²⁾	240	2,00		100-7	120	2,00

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C52: Faktoren für Ankergruppen unter Querlast

		- 3							
	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge				
Querlast	h 1000000000000000000000000000000000000	mit c ≥	mit s ≥	αg II,∨⊥		mit c ≥	mit s ≥	αg⊥, V⊥	
senkrecht		50	50	0,40		50	50	0,20	
zum freien	•	240	50	1,20]	240	50	0,60	
Rand		240	240	2,00		240	125	1,00	
		240	240	2,00		240	240	2,00	
Querlast	1	mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II	
parallel zum	••	50	50	1,20	•	50	50	1,00	
freien Rand			240	2,00	•	50	125	1,00	
II GIGII I \aliu		150 240		2,00		150	240	2,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Mauerziegel 2DF

Beschreibung des Steins, Installationsparameter, Reduktions- und Gruppenfaktoren

Anhang C 17

²⁾ Nur für Anwendungen mit hef = 200mm und ohne Siebhülse

Steintyp: Mauerziegel 2DF

Tabelle C53: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

1450110 0001 01	Tabolic 900. Thatakteriotisone Werte der Tragianigkeit anter Eag and Queriast											
			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
		e SDL		Nutzungsbedingungen								
	φ.	Effektive Verankerungs- tiefe		d/d			w/d		d/d			
		를 들는 글					w/w		w/w (w/d)			
Ankergröße	Ϋ́	ற த							Alle			
	Siebhülse	\	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperatur-			
	S S								bereiche			
		h _{ef}	N	$N_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,b}$	2) p	$V_{Rk,b}^{(2)}$			
		[mm]		[kN]								
Normierte mittlere Druckfestigkeit f _b ≥ 28 N/mm ^{2 1)}												
M8	-	80	0.0	0.0	7.5	0.0	0.0	7.5	0.5			
M10 / IG-M6	-	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M12 / IG-M8	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12			
M16 / IG-M10	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾			
M10 / M12 /	-	200	11,5	11,5	10,0	6,0	6,0	5,0	8,0			
IG-M6 / IG-M8					·			·				
M16 / IG-M10	-	200	11,5	11,5	10,0	6,0	6,0	5,0	12,0			
M8	SH 12	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5			
M8 / M10/ IG-M6	SH 16	≥ 85	3,0	3,0	7,5	3,0	3,0	7,5	9,5			
M12 / IG-M8	SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0			
M16 / IG-M10	SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0 ³⁾			

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C48 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C54: Verschiebungen

Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 IG-M6 – M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δνο	0,3	0,3*V _{Rk} /3,5	1,5*δ∨ο
M16	alle		, , , , ,	_ = =,,,	0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

Tabelle C55: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

		Effektive	Charakteristischer Widerstand							
Ankorarößo	Siebhülse	Verankerungstiefe	$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$							
Ankergröße		h_{ef}	R30	R60	R90	R120				
		[mm]		[k	N]					
M8	-	80								
M10 / IG-M6	-	≥ 90	0,51	0,44	0,36	0,33				
M12 / IG-M8	-	≥ 100	0,51	0,44	0,36	0,33				
M16 / IG-M10	-	≥ 100								
M8	SH 12	80	0,36	0,26	0,15	0,10				
M8 / M10 /IG-M6	SH 16	≥ 85	0,36	0,26	0,15	0,10				
IVIO / IVI TO /IG-IVIO	SH 10	130	0,92	0,74	0,57	0,49				
M12 / M16 /	SH 20	≥ 85	0,36	0,26	0,15	0,10				
IG-M8 /IG-M10	31120	≥ 130	0,92	0,74	0,57	0,49				

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

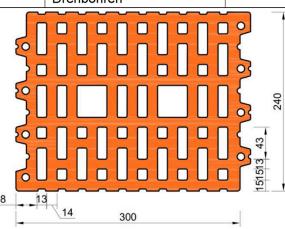
Leistungen Mauerziegel 2DF

Charakteristische Tragfähigkeiten und Verschiebungen

Anhang C 18

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3

³⁾ Gültig für alle Steinfestigkeiten bis min. 10 N/mm²



Steintyp: Hochlochziegel 10 DF

Tabelle C56: Beschreibung des Steins

Steintyp		Hochlochziegel HLZ 10DF
Dichte	ρ [kg/dm³]	≥ 1,25
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 20
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 20)^{0.5} \le 1.0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Wienerberger (DE)
Steinabmessungen	[mm]	300 x 240 x 249
Bohrverfahren		Drehbohren

Tabelle C57: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	[Nm]	≤ 5	≤ 10	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10		
Randabstand (unter	0 (0 5)	[mm]			•	120 (2 h _e	f)				
Brandbeanspruchung)	Ccr; (Ccr,fi)	נוווווון	(für Querlasten senkrecht zum freien Rand: ccr = 300)								
Minimaler Randabstand	C _{min}	[mm]	50								
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]	300 (4 h _{ef})								
Brandbeanspruchung)	$\mathbf{S}_{cr,\; \perp;\; \left(\mathbf{S}_{cr,fi,\; \perp}\right)}$	[mm]	250 (4 h _{ef})								
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]				50					

Tabelle C58: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zugloot		Querlast							
	Zuglast		Senkrecl	nt zum freier	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00	 	50	0,20	•	50	1,00		
	120	1,00		300	1,00		120	1,00		

Tabelle C59: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge			
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,55		50	50	1,00
	120	300	2,00		120	250	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für
Mauerwerk

Leistungen Hochlochziegel HLZ 10DF

Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 19

Steintyp: Hochlochziegel 10 DF

Tabelle C60: Faktoren für Ankergruppen unter Querlast

Tabolic Cool Tallotter Tallotter Cachinet										
	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankerand	nordnung senkrecht zur Lagerfuge				
Querlast		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$		
senkrecht		50	50	0,30		50	50	0,20		
zum freien		300	50	1,40		300	50	1,00		
Rand		300	300	2,00		300	250	2,00		
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II		
parallel zum	•	50	50	1,85		50	50	1,00		
freien Rand		120	300	2,00		120	250	2,00		

Tabelle C61: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$										
		Effektive Verankerungs- tiefe	Nutzungsbedingungen									
Ankergröße							w/d		d/d			
	Siebhülse	Effektive ankerun tiefe	d/d				w/w		w/d w/w			
	hü	∃ffe anl ti										
	ep	er			120°C/72°C				Alle			
	S	5 -	40°C/24°C	80°C/50°C		40°C/24°C	80°C/50°C	120°C/72°C				
									bereiche V _{Rk,b} ²⁾			
		h_{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$			1	$N_{Rk,b} = N_{Rk,p}^{2}$					
		[mm]		[kN]								
		Norm	ierte mittle	re Druckfe	estigkeit f _b	≥ 20 N/mn	1 ^{2 1)}					
M8	SH 12	80	2.5	2.5	20	2.5	2.5	2.0	0.0			
M8 / M10/ IG-M6	SH 16	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	8,0			
M12 / IG-M8	SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	8,0			
M16 / IG-M10	SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	11,5			

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C56 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

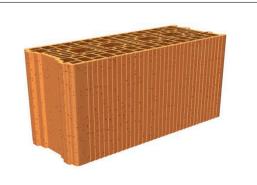
Tabelle C62: Verschiebungen

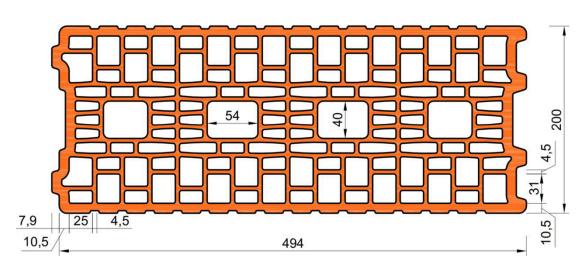
<u>-</u>											
Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞				
Alikergioise	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]				
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0				
M16	alle		, , , , , , , , , , , , , , , , , , , ,	_ 0,10	0,31	0,31*V _{Rk} /3,5	1,5*δ∨ο				

Tabelle C63: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

	Siebhülse	Effektive	Charakteristischer Widerstand					
Ankergröße		Verankerungstiefe	$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
		h _{ef}	R30	R60	R90	R120		
		[mm]	[kN]					
M8 / M10 /IG-M6	SH 16	130						
M12 / M16 / IG-M8 IG-M10	SH 20	≥ 130	0,57	0,39	0,21	0,12		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel HLZ 10DF Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 20


²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel Porotherm Homebric

Tabelle C64: Beschreibung des Steins

Steintyp		Hochlochziegel Porotherm Homebric	
Dichte	ρ [kg/dm³]	≥ 0,70	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 10	
Umrechnungsfaktor für g Druckfestigkeiten	$(f_b / 10)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Wienerberger (FR)	
Steinabmessungen	[mm]	500 x 200 x 299	
Bohrverfahren		Drehbohren	

Tabelle C65: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)							
Minimaler Randabstand	C _{min}	[mm]	120							
A alaa alaatan d	Scr, II	[mm]	500							
Achsabstand	Scr, ⊥	[mm]	300							
Minimaler Achsabstand	Smin, II;	[mm]	n] 120							
Willimale: Achsabstand	S _{min, ⊥}	[111111]								

Tabelle C66: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
	Zugiasi		Senkrech	nt zum freier	Rand	Parallel zum freien Rand				
+	mit c ≥	αedge, N	11	mit c ≥	αedge, V⊥	-	mit c ≥	αedge, V II		
•	120	1,00		120	0,30	‡	120	0,60		
				250	0,60					
1	120	1,00		500	1,00		200	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Hochlochziegel Porotherm Homebric

Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 21

Steintyp: Hochlochziegel Porotherm Homebric

Tabelle C67: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	ırallel zur Lageı	fuge	Ankeranordnung senkrecht zur Lagerfuge			
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	120	100	1,00	•	120	100	1,00
	200	100	2,00		200	100	1,20
	120	500	2,00	· · · · · · · · · · · · · · · · · ·	120	300	2,00

Tabelle C68: Faktoren für Ankergruppen unter Querlast

Ankerand	ordnung par	allel zur Lag	jerfuge	Ankeranordnung senkrecht zur Lagerfuge			
	mit c ≥	mit s ≥	αg II,V ⊥		mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
Querlast senkrecht	120	100	0,30		120	100	0,30
•••	250	100	0,60		250	100	0,60
	500	100	1,00		120	300	2,00
	120	500	2,00		120	300	2,00
	mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum freien Rand	120	100	1,00		120	100	1,00
	120	500	2,00		120	300	2,00
		mit c ≥ 120 250 500 120 mit c ≥ 120	mit c ≥ mit s ≥ 120 100 250 100 500 100 120 500 mit c ≥ mit s ≥ 120 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tabelle C69: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Tabelle Cos. Cit	iaiante	13ti3CiiC	Werte de	i ilagiali	igkeit uiit	er Zug- u	ila Quella	131	
				Charakt	eristischer \	Viderstand	bei c≥c _{ci}	und s≥s _{cr}	
		-8	<u>ν</u> Nutzungsbedingungen						
A ml. a mm ii G a	ülse	Effektive Verankerungs- tiefe	Tektive nkerung p/p p/p				d/d w/d w/w		
Ankergröße	Siebhülse	E Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche
		\mathbf{h}_{ef}	N	$N_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,}$	2) p	$V_{Rk,b}^{(2)}$
		[mm]				[kN]			
		Norm	ierte mittle	re Druckfe	estigkeit fb	≥ 10 N/mm	1 ^{2 1)}		
M8	SH 12	80			1,	2			3,0
M8 / M10/	SH 16	≥ 85		1,2					3,0
IG-M6	311 16	130		1,5				3,5	
M12 / M16/	SH 20	≥ 85		1,2				4,0	
IG-M8 / IG-M10	3H 20	≥ 130			1,	5			4,0

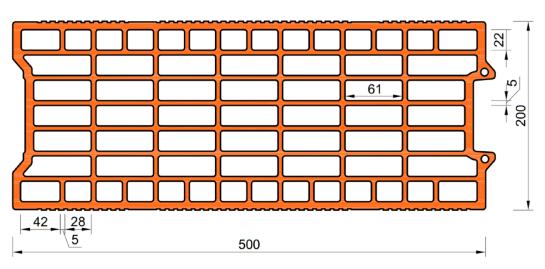
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C64 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C70: Verschiebungen

Ankorarößo	hef	δη / Ν	δηο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δΝ0	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	alle	,	, , , ,	_ = 0.10	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Porotherm Homebric Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 22

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel BGV Thermo

Tabelle C71: Beschreibung des Steins

Steintyp		Hochlochziegel BGV Thermo	
Dichte	ρ [kg/dm³]	≥ 0,60	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 10	
Umrechnungsfaktor für Druckfestigkeiten	$(f_b / 10)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Leroux (FR)	
Steinabmessungen	[mm]	500 x 200 x 314	
Bohrverfahren		Drehbohren	
		·	

Tabelle C72: Installationsparameter

Ankergröße				M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)						
Minimaler Randabstand	C _{min}	[mm]	120						
Achsabstand	Scr, II	[mm]	500						
Achsabstand	Scr, ⊥	[mm]	315						
Minimaler Achsabstand	[mm]	120							
	S _{min, ⊥}								

Tabelle C73: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast		Querlast						
Zuglast			Senkrecht zum freien Rand			Parallel zum freien Rand			
1	mit c ≥	αedge, N	11	mit c ≥	αedge, V⊥	-	mit c ≥	αedge, V II	
	120	1.00	-	120	0,30	1	120	0.60	
	120	1,00		250	0,60	Ţ	120	0,00	
	120	1,00		500	1,00		250	1,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Hochlochziegel BGV Thermo

Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 23

Steintyp: Hochlochziegel BGV Thermo

Tabelle C74: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge				
·	mit c ≥	mit s ≥	αg II, N	· · · · · · · · · · · · · · · · · · ·	mit c ≥	mit s ≥	αg⊥, N	
	120	100	1,00		120	100	1,00	
	200	100	1,70		200	100	1,10	
- in the second	120	500	2,00		120	315	2,00	

Tabelle C75: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	jerfuge	Ankerand	ordnung senkrecht zur Lagerfuge			
Querlast	1	mit c ≥	mit s ≥	αg II,V ⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}}\bot, \text{V}\bot$	
senkrecht zum freien	•••	120	100	1,00	•	120	100	1,00	
Rand		120	500	2,00		120	315	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II	
parallel zum	• •	120	100	1,00		120	100	1,00	
freien Rand		120	500	2,00		120	315	2,00	

Tabelle C76: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

					_					
			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$							
		-8			Nutz	ungsbedin	gungen			
Ankoraräßo	Siebhülse	Effektive Verankerungs- tiefe	d/d			w/d w/w			d/d w/d w/w	
Ankergröße	Siebl	Ver	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,i}$	2) p	$V_{Rk,b}^{2)}$	
		[mm]				[kN]				
		Norm	ierte mittle	re Druckfe	estigkeit fb	≥ 10 N/mm	1 ^{2 1)}			
M8	SH 12	80			0,	9			3,5	
M8 / M10/	SH 16	≥ 85		0,9					3,5	
IG-M6	31110	130	2	,0	1,5	2	,0	1,5	4,0	
M12 / M16	SH 20	≥ 85		0,9					4,0	
IG-M8 / IG-M10	5H 2U	≥ 130	2	,0	1,5	2	,,0	1,5	4,0	

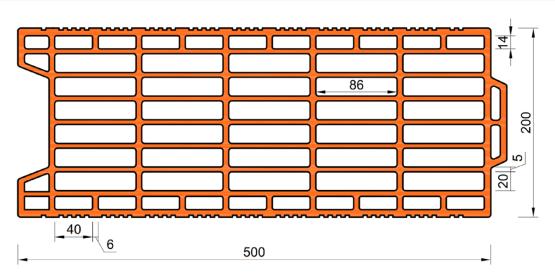
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C71 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C77: Verschiebungen

Ankergröße	hef	δη / Ν	δηο	δN∞	δv / V	δνο	δ∨∞
Allkergroße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨ο
M16	alle				0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel BGV Thermo Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 24

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel Calibric R+

Tabelle C78: Beschreibung des Steins

Steintyp		Hochlochziegel Calibric R+	
Dichte	ρ [kg/dm³]	≥ 0,60	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für g Druckfestigkeiten	$(f_b / 12)^{0,5} \le 1,0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Leroux (FR)	
Steinabmessungen	[mm]	500 x 200 x 314	
Bohrverfahren		Drehbohren	

Tabelle C79: Installationsparameter

Tabolic O' o' motaliation oparation											
Ankergröße	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Installationsdrehmoment	allationsdrehmoment T _{inst}		≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2		
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)								
Minimaler Randabstand	C _{min}	[mm]	120								
Achsabstand	Scr, II	[mm]		500							
Acrisabstatiu	Scr, ⊥	[mm]	315								
Minimaler Achsabstand	S _{min, II;}	[mm]	120								
Willimale: Acrisabstatio	S _{min, ⊥}	[[[]]]		120							

Tabelle C80: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast						
			Senkrech	nt zum freier	Rand	Parallel zum freien Rand			
+	mit c ≥	αedge, N	·	mit c ≥	αedge, V⊥	-	mit c ≥	αedge, V II	
	120	1.00		120	0,15	1	120	0.30	
	120	1,00		250	0,30	Ţ	120	0,50	
1	120	1,00	· · · · · · · · · · · · · · · · · · ·	500	1,00		250	1,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Hochlochziegel Calibric R+

Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 25

Steintyp: Hochlochziegel Calibric R+

Tabelle C81: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
	120	100	1,00	•	120	100	1,00	
	175	100	1,70		175	100	1,10	
- j	120	500	2,00		120	315	2,00	

Tabelle C82: Faktoren für Ankergruppen unter Querlast

	Ankerand	Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge		
Querlast		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht zum freien	•••	120	100	1,00	•	120	100	1,00
Rand		120	500	2,00		120	315	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum	• •	120	100	1,00		120	100	1,00
freien Rand		120	500	2,00		120	315	2,00

Tabelle C83: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Tabelle Goo. G.	iaiaitto	100100110	TTCILC G	, i i agiai	ngice and	ici Lag t	illa Quell	uot				
		Effektive Verankerungs- tiefe	Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
				Nutzungsbedingungen								
Ankergröße	ıülse			d/d			d/d w/d w/w					
	ebr	ега Л							Alle			
	iū		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperatur- bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$			1	$N_{Rk,b} = N_{Rk,p}^{2}$					
		[mm]			[kN]							
		Norm	ierte mittle	ere Druckf	estigkeit f	≥ 12 N/mı	m ² 1)					
M8	SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,0			
M8 / M10/	CH 46	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,5			
IG-M6	SH 16	130	1,5	1,5	1,2	1,5	1,5	1,2	5,5			
M12 / M16	SH 20	12 / M16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	8,5		
IG-M8 /IG-M10		≥ 130	1,5	1,5	1,2	1,5	1,5	1,2	8,5			

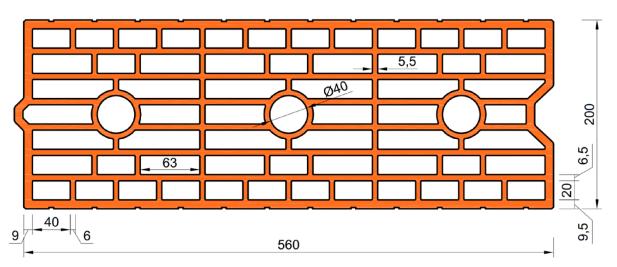
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C78 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C84: Verschiebungen

Ankergröße	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	alle		, , , , , , , , , , , , , , , , , , , ,	_ = = = = = = = = = = = = = = = = = = =	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Calibric R+ Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 26

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | I} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Hochlochziegel Urbanbric

Tabelle C85: Beschreibung des Steins

Steintyp		Hochlochziegel Urbanbric	
Dichte	ρ [kg/dm³]	≥ 0,70	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für g Druckfestigkeiten	$(f_b / 12)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Imerys (FR)	
Steinabmessungen	[mm]	560 x 200 x 274	
Bohrverfahren		Drehbohren	

Tabelle C86: Installationsparameter

	•									
Ankergröße [-]			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)							
Minimaler Randabstand	Cmin	[mm]	120							
Achsabstand	Scr, II	[mm]	560							
Acrisabstand	Scr, ⊥	[mm]	275							
Minimaler Achsabstand	Smin, II;	[mm]	100							
	Smin, ⊥									

Tabelle C87: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast		Querlast							
Zuglast			Senkrech	nt zum freier	Rand	Parallel zum freien Rand			
1	mit c ≥	αedge, N	1	mit c ≥	αedge, V⊥		mit c ≥	αedge, VII	
	120	1.00		120	0,25		120	0,50	
	120	1,00		250	0,50	Ţ.	120	0,50	
	120	1,00		500	1,00		250	1,00	

Mauerwerk	
Leistungen Hochlochziegel Urbanbric Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 27

Steintyp: Hochlochziegel Urbanbric

Tabelle C88: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge			
·	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
	120	100	1,00	•	120	100	1,00
	185	100	1,90		185	100	1,10
	120	560	2,00	·	120	275	2,00

Tabelle C89: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankerand	ordnung senkrecht zur Lagerfuge			
Querlast		mit c ≥	mit s ≥	αg II,V⊥	1	mit c ≥	mit s ≥	$\alpha_{\text{g}}\bot, \text{V}\bot$	
senkrecht zum freien	•••	120	100	1,00		120	100	1,00	
Rand		120	560	2,00		120	275	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II	
parallel zum	•	120	100	1,00		120	100	1,00	
freien Rand		120	560	2,00		120	275	2,00	

Tabelle C90: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$										
		Effektive Verankerungs- tiefe	Nutzungsbedingungen									
Ankergröße	Siebhülse			d/d			d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		\mathbf{h}_{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$			1	$V_{Rk,b}^{2)}$					
		[mm]		[kN]								
		Norm	ierte mittle	re Druckfe	estigkeit fb	≥ 12 N/mm	1 ^{2 1)}					
M8	SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,5			
M8 / M10/	SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	4,5			
IG-M6	31110	130	3,0	3,0	2,5	3,0	3,0	2,5	4,5			
M12 / M16	SH 20	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,0			
IG-M8 / IG-M10		SH 20	SH 20	5⊓ 20	≥ 130	3,0	3,0	2,5	3,0	3,0	2,5	5,0

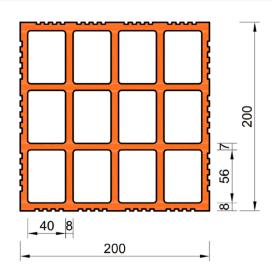
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C85 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C91: Verschiebungen

Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨0
M16	alle	,	,	_ = 5,10	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Urbanbric Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 28

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Lochziegel Brique creuse C40

Tabelle C92: Beschreibung des Steins

Steintyp		Lochziegel Brique creuse C40	
Dichte	ρ [kg/dm³]	≥ 0,70	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für g Druckfestigkeiten	$(f_b / 12)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Terreal (FR)	
Steinabmessungen	[mm]	500 x 200 x 200	
Bohrverfahren		Drehbohren	

Tabelle C93: Installationsparameter

Ankergröße	Ankergröße			M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment T _{inst}		[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)							
Minimaler Randabstand	C _{min}	[mm]	120							
Achsabstand	Scr, II	[mm]	500							
Acrisabstand	Scr, ⊥	[mm]	200							
Minimaler Achsabstand	S _{min, II} ; S _{min, ⊥}	[mm]	200							

Tabelle C94: Reduktionsfaktoren für Einzelanker unter Randeinfluss

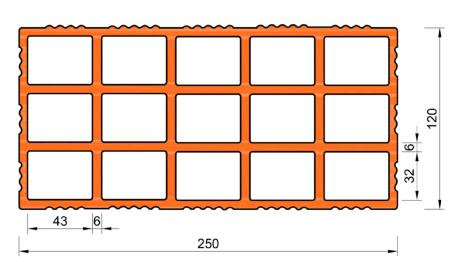
Zuglast			Querlast							
	Zugiasi		Senkrech	nt zum freien	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	120	1,00		120	0,83	<u>†</u>	120	1,00		
	120	1,00		500	1,00		250	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Lochziegel Brique Creuse C40 Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 29

Leistungen Lochziegel Brique Creuse C40

Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen

Steintyp: Lochziegel Brique creuse C40 Tabelle C95: Faktoren für Ankergruppen unter Zuglast Ankeranordnung parallel zur Lagerfuge Ankeranordnung senkrecht zur Lagerfuge mit c ≥ mit s ≥ mit c ≥ mit s ≥ αg II, N $\alpha_{\text{g}\,\perp,\,\text{N}}$ 120 500 2.00 120 200 2,00 Tabelle C96: Faktoren für Ankergruppen unter Querlast Ankeranordnung parallel zur Lagerfuge Ankeranordnung senkrecht zur Lagerfuge mit c ≥ Querlast mit s ≥ mit c ≥ mit s ≥ $\alpha_{g \; \text{II,V} \; \perp}$ $\alpha_{\text{g}\,\perp,\,\text{V}\,\perp}$ senkrecht zum freien 120 500 120 200 2,00 2,00 Rand Querlast mit c ≥ mit s ≥ mit c ≥ mit s ≥ αg II,V II αg ⊥,V II parallel zum 120 500 2,00 120 200 2,00 freien Rand Tabelle C97: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$ Nutzungsbedingungen Verankerungs-Effektive d/d w/d d/d w/d Siebhülse w/w w/w Ankergröße Alle 40°C/24°C | 80°C/50°C | 120°C/72°C | 40°C/24°C | 80°C/50°C | 120°C/72°C | Temperaturbereiche $N_{Rk,b} = N_{Rk,p}^{(2)}$ $\underline{V_{Rk,b}}^{2)}$ $N_{Rk,b} = N_{Rk,p}^{(2)}$ h_{ef} [mm] [kN] Normierte mittlere Druckfestigkeit f_b ≥ 12 N/mm² 1) SH 12 **M8** 80 M8 / M10/ **SH 16** ≥ 85 IG-M6 1,2 1,2 0,9 1,2 1,2 0,9 1,5 M12/M16/ **SH 20** ≥ 85 IG-M8 / IG-M10 1) Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C92 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig. 2) $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | I} = V_{Rk,c} \perp$ gemäß Anhang C 3 Tabelle C98: Verschiebungen $\delta N / N$ $\delta V / V$ δΝο δνο δ∨∞ hef δN∞ Ankergröße [mm] [mm/kN] [mm] [mm] [mm/kN] [mm] [mm] M8 - M12/ 0.55*V_{Rk} / 3.5 alle 0,55 1,5*δ∨0 IG-M6 - M10 0,13*N_{Rk} / 3,5 0,13 2*δΝ0 0,31*V_{Rk}/3,5 M16 0.31 alle 1.5*δ∨0 Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk Anhang C 30



Steintyp: Lochziegel Blocchi Leggeri

Tabelle C99: Beschreibung des Steins

Steintyp		Lochziegel Blocchi Leggeri
Dichte	ρ [kg/dm³]	≥ 0,60
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12
Umrechnungsfaktor für g Druckfestigkeiten	$(f_b / 12)^{0,5} \le 1,0$	
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Wienerberger (IT)
Steinabmessungen	[mm]	250 x 120 x 250
Bohrverfahren		Drehbohren

Tabelle C100: Installationsparameter

Tabelle 9 100. Illotalla	rubene 9 100. motanationoparameter										
Ankergröße					M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	[Nm]	-					≤ 2			
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)								
Minimaler Randabstand	C _{min}	[mm]	60								
Achsabstand	Scr, II	[mm]	250								
Acrisabstand	Scr, ⊥	[mm]	250								
Minimaler Achsabstand	Smin, II;	[mm]	100								
	Smin, ⊥	- -									

Tabelle C101: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast						
	Zugiasi		Senkrech	nt zum freien	Rand	Parallel zum freien Rand			
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII	
•	60	1,00	→	60	0,40	<u> </u>	60	0,40	
	120	1,00		250	1,00		120	1,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 31

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C102: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	ırallel zur Lagei	fuge	Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
• •	60 100 1,00 120 250 2,00	1,00		60	100	2,00		
			120	250	2,00			

Tabelle C103: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge				
Querlast		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
senkrecht		60	100	0,40		60	100	0,40	
zum freien		250	100	1,00		250	100	1,00	
Rand		250	250	2,00		250	250	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II	
parallel zum	••	60	100	0,40		60	100	0,40	
freien Rand		120	100	1,00		120	100	1,00	
Treien rana		120	250	2,00	į-	120	250	2,00	

Tabelle C104: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$							
		Effektive Verankerungs- tiefe	Nutzungsbedingungen								
Ankaranë () a	Siebhülse		d/d			w/d w/w			d/d w/d w/w		
Ankergröße	ebk	ers (40°C/24°C			40°C/24°C			Alle		
	S	>		80°C/50°C	120°C/72°C		80°C/50°C	120°C/72°C	Temperatur- bereiche		
		h _{ef}	١	$N_{Rk,b} = N_{Rk,p}$	2)	$N_{Rk,b} = N_{Rk,p}^{2}$			$V_{Rk,b}^{(2)}$		
		[mm]				[kN]					
		Norm	ierte mittle	re Druckfe	estigkeit f _b	≥ 12 N/mm	1 ^{2 1)}				
M8	SH 12	80									
M8 / M10/ IG-M6	SH 16	≥ 85	0,6	0,6	0,6	0,6	0,6	0,6	3,5		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85									

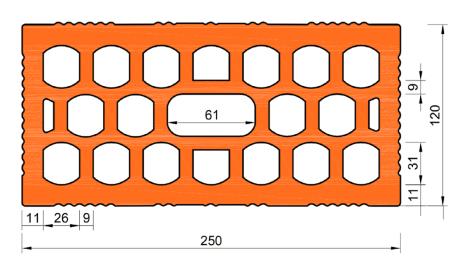
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C99 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C105: Verschiebungen

Ankorarößo	hef	δη / Ν	δηο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	alle				0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Lochziegel Blocchi Leggeri Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 32

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel Doppio Uni

Tabelle C106: Beschreibung des Steins

Steintyp		Hochlochziegel Doppio Uni	
Dichte	ρ [kg/dm ³]	≥ 0,90	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 28	
Umrechnungsfaktor für Druckfestigkeiten	$(f_b / 28)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		z.B. Wienerberger (IT)	
Steinabmessungen	[mm]	250 x 120 x 120	
Bohrverfahren		Drehbohren	

Tabelle C107: Installationsparameter

· · · · · · · · · · · · · · · · · · ·									
Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						
Minimaler Randabstand	C _{min}	[mm]	100						
Achsabstand	Scr, II	[mm]	250						
Acrisabstand	Scr, ⊥	[mm]	120						
Minimaler Achsabstand	S _{min, II} ;	[mm]	100						

Tabelle C108: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast			Querlast							
	Zugiasi		Senkrech	nt zum freier	Rand	Parallel zum freien Rand					
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII			
•	100	1,00	→	100	0,50] <u>•</u> [100	1,00			
	120	1,00		250	1,00		120	1,00			

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Doppio Uni Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 33

Steintyp: Hochlochziegel Doppio Uni

Tabelle C109: Faktoren für Ankergruppen unter Zuglast

Anke	ranordnung pa	rallel zur Lager	fuge	Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
• •	100 100 1,00		100	120	2,00			
	120	250	2,00		120	120	2,00	

Tabelle C110: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge				
Querlast		mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
senkrecht zum freien		100	100	1,00	•	100	100	1,00	
Rand		250	250	2,00		250	120	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II	1	mit c ≥	mit s ≥	αg ⊥,V II	
parallel zum		100	100	1,00		100	100	1,00	
freien Rand		120	250	2,00		120	120	2,00	

Tabelle C111: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$					und s≥s _{cr}			
		-8	Nutzungsbedingungen								
AnkoraväCo	Siebhülse	iebhülse Effektive Verankerungs-	d/d			w/d w/w			d/d w/d w/w		
Ankergröße	Siebł	Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		\mathbf{h}_{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,l}$	2)	$V_{Rk,b}^{2)}$		
		[mm]				[kN]					
		Norm	ierte mittle	re Druckfe	estigkeit fb	≥ 28 N/mm	1 ^{2 1)}				
M8	SH 12	80									
M8 / M10/ IG-M6	SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,5		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85									

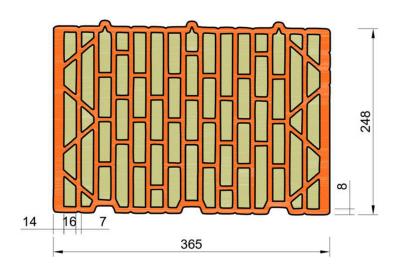
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C106 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C112: Verschiebungen

Ankoraräßo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle		,		0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Doppio Uni Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 34

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c|I} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Hochlochziegel Coriso W07 mit Wärmedämmung

Tabelle C113: Beschreibung des Steins

Steintyp		Hochlochziegel Coriso W07
Füllung		Mineralwolle
Dichte	ρ [kg/dm ³]	≥ 0,55
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 6
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 6)^{0,5} \le 1,0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Unipor (DE)
Steinabmessungen	[mm]	248 x 365 x 249
Bohrverfahren		Drehbohren

Tabelle C114: Installationsparameter

	'								
Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	Tinst	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						
Minimaler Randabstand	Cmin	[mm]	50						
Ashashatand	Scr, II	[mm]	250						
Achsabstand	Scr, ⊥	[mm]	250						
Minimaler Achsabstand	Smin, II;	[mm]	50						

Tabelle C115: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast		Querlast							
	Zugiasi		Senkrecht zum freien Rand			Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00		50	0,30	1 <u>†</u>	50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Coriso W07 mit Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 35

Steintyp: Hochlochziegel Coriso W07 mit Wärmedämmung

Tabelle C116: Faktoren für Ankergruppen unter Zuglast

Anke	Ankeranordnung parallel zur Lagerfuge			Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
• •	50	50	1,50		50	50	1,00	
	120	250	2,00		120	250	2,00	

Tabelle C117: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast	1	mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht	•••	50	50	0,40		50	50	0,40
zum freien		250	50	1,00		250	50	1,20
Rand	.,	250	250	2,00		250	250	2,00
Querlast	1	mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,VII
parallel zum	•••	50	50	1,65	•	50	50	1,00
freien Rand		120	250	0 2,00		120	250	2,00

Tabelle C118: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakt	eristischer \	Viderstand bei c≥c _{cr} und s≥s _{cr}						
		-8		Nutzungsbedingungen								
Ankergröße	siebhülse Effektive Verankerungs-		d/d			w/d w/w			d/d w/d w/w			
Alikeigioise	Siebhülse	Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
		h_{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,l}$	2) p	$V_{Rk,b}^{(2)}$			
		[mm]				[kN]						
		Norm	nierte mittle	ere Druckf	estigkeit f₀	≥ 6 N/mm	2 1)					
M8	SH 12	80										
M8 / M10/ IG-M6	SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0			
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85										

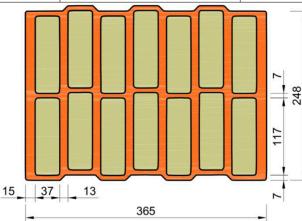
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C113 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C119: Verschiebungen

Ankorarößo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨ο
M16	alle		,	_ = :0	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Coriso W07 mit Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 36

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c|I|} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Hochlochziegel T7 MW mit integrierter Wärmedämmung

Tabelle C120: Beschreibung des Steins

Steintyp		Hochlochziegel T7 MW
Füllung		Mineralwolle
Dichte	ρ [kg/dm³]	≥ 0,59
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 8
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 8)^{0.5} \le 1.0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Wienerberger (DE)
Steinabmessungen	[mm]	248 x 365 x 249
Bohrverfahren		Drehbohren

Tabelle C121: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installationsdrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5	
Randabstand (unter	0 (0 5)	[mm]				120 (2 h _{et}	:)			
Brandbeanspruchung)	C _{cr;} (C _{cr,fi})	נוווווון	(für Querlasten senkrecht zum freien Rand: c _{cr} = 250)							
Minimaler Randabstand	C _{min}	[mm]				50				
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]			2	250 (4 h _{ef}	·)			
Brandbeanspruchung)	$S_{cr, \perp; (S_{cr,fi, \perp})}$	[mm]	250 (4 h _{ef})							
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]	50							

Tabelle C122: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast			Querlast							
	Zugiasi		Senkrecl	nt zum freier	Rand	Parallel zum freien Rand					
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII			
•	50	1,00	→	50	0,35	1 •	50	1,00			
	120	1,00		250	1,00		120	1,00			

Tabelle C123: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge			Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,40	•	50	50	1,15
	120	250	2,00		120	250	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Hochlochziegel T7 MW mit integrierter Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren Anhang C 37

Steintyp: Hochlochziegel T7 MW mit integrierter Wärmedämmung

Tabelle C124: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast		mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
senkrecht		50	50	0,60		50	50	0,40
zum freien		250	50	1,55		250	50	1,00
Rand		250	250	2,00		250	250	2,00
Querlast	1	mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum freien Rand	50	50	2,00		50	50	1,20	
		120	250	2,00		120	250	2,00

Tabelle C125: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
		gs		Nutzungsbedingungen								
Ankergröße	စ္	Effektive /erankerungs tiefe		d/d			w/d		d/d			
	<u> </u>	[호 총 호					w/w		w/w (w/d)			
	bhi	E E							Alle			
	<u>Se</u>	×	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C 80°C/50	80°C/50°C	120°C/72°C				
	0,								bereiche			
		h _{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	$N_{Rk,b} = N_{Rk,p}^{2}$			$V_{Rk,b}^{(2)}$			
		[mm]				[kN]						
		Norm	nierte mittle	ere Druckf	estigkeit f _b	≥ 8 N/mm	2 1)					
M8	SH 12	80										
M8 / M10/ IG-M6	SH 16	≥ 85	2.0	2.0	1.5	2.0	2.0	1.5	3,0			
M12 / IG-M8	SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5				

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C120 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

≥ 85

SH 20

Tabelle C126: Verschiebungen

M16 / IG-M10

Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle		,	_ = :	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

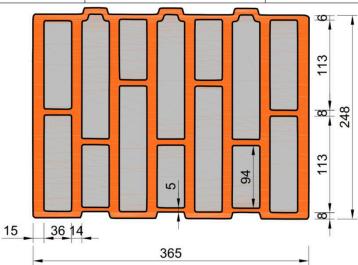
Tabelle C127: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

	Siebhülse	Effektive	Charakteristischer Widerstand					
Ankergröße		Verankerungstiefe	$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
		h _{ef}	R30	R60	R90	R120		
		[mm]	[kN]					
M8 / M10 /IG-M6	SH 16	130						
M12 / M16 / IG-M8 IG-M10	SH 20	≥ 130	0,64	0,37	0,11	_1)		

¹⁾ keine Leistung bewertet

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel T7 MW mit integrierter Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 38

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c \mid I} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel T8 P mit integrierter Wärmedämmung

Tabelle C128: Beschreibung des Steins

Steintyp		Hochlochziegel T8 P
Füllung		Perlite
Dichte	ρ [kg/dm³]	≥ 0,56
Normierte mittlere Druckfestigkeit	f_b [N/mm ²]	≥ 6
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 6)^{0,5} \le 1,0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Wienerberger (DE)
Steinabmessungen	[mm]	248 x 365 x 249
Bohrverfahren		Drehbohren

Tabelle C129: Installationsparameter

rabelle 9120. Illotaliationoparameter												
Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Installationsdrehmoment	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4			
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)									
Minimaler Randabstand	C _{min}	[mm]	50									
Achsabstand	Scr, II	[mm]	250									
Acrisabstand	Scr, ⊥	[mm]		250								
Minimaler Achsabstand	Smin, II;	[mm]	50									
Willimale: Acrisabstand	S _{min, ⊥}	[iiiiii]		50								

Tabelle C130: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
	Zugiasi		Senkrecl	nt zum freier	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00	→	50	0,25	1 •	50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für
Mauerwerk

Leistungen Lochziegel T8 P mit integrierter Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren Anhang C 39

Steintyp: Hochlochziegel T8 P mit integrierter Wärmedämmung

Tabelle C131: Faktoren für Ankergruppen unter Zuglast

Anke	Ankeranordnung parallel zur Lagerfuge Ankeranordnung senkrecht zur Lagerfuge						erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,30		50	50	1,10
	120	250	2,00		120	250	2,00

Tabelle C132: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast	1	mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
senkrecht	•••	50	50	0,40		50	50	0,30
zum freien		250	50	1,35		250	50	1,20
Rand	.,	250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum	•	50	50	1,70		50	50	1,00
freien Rand		120	250	2,00		120	250	2,00

Tabelle C133: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

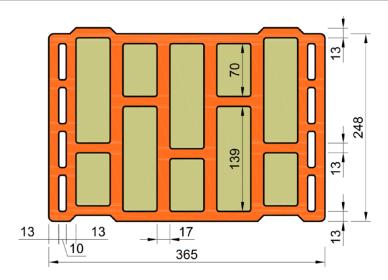
				3						
			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$							
		-8	Nutzungsbedingungen							
	ıülse	Effektive Verankerungs- tiefe	d/d				d/d w/d w/w			
Ankergröße	Siebhülse	Siebh E	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche	
		h _{ef}	N	$N_{Rk,b} = N_{Rk,p}^{2}$			$N_{Rk,b} = N_{Rk,p}^{2)}$			
		[mm]				[kN]				
		Norm	nierte mittle	ere Druckf	estigkeit f₀	≥ 6 N/mm	2 1)			
M8	SH 12	80								
M8 / M10/ IG-M6	SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	4,5	
M12 / IG-M8	SH 20	≥ 85								
M16 / IG-M10	SH 20	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	7,0	

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C128 multipliziert werden Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C134: Verschiebungen

Ankoraräßo	hef	δη / Ν	δηο	δn∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	$[mm/kN]$ $[mm]$ $[mm]$ $[mm/kN]$ $0,13*N_{Rk}/3,5$ $2*\delta_{N0}$ $0,55$	[mm/kN]	[mm]	[mm]		
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨ο
M16	alle		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Lochziegel T8 P mit integrierter Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 40


²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c|I} = V_{Rk,c} \perp$ gemäß Anhang C 3

Steintyp: Hochlochziegel Thermoplan MZ90-G mit integrierter Wärmedämmung Tabelle C135: Beschreibung des Steins

Steintyp		Hochlochziegel Thermoplan MZ90-G
Füllung		Mineralwolle
Dichte	ρ [kg/dm³]	≥ 0,68
Normierte mittlere Druckfestigkeit	f_b [N/mm ²]	≥ 12
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 12)^{0.5} \le 1.0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		z.B. Mein Ziegelhaus (DE)
Steinabmessungen	[mm]	248 x 365 x 249
Bohrverfahren		Drehbohren

Tabelle C136: Installationsparameter

Tabono o Too. motana	c.oop	u. u o cc	•						
Ankergröße [-			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4
Randabstand	Ccr	[mm]	12	0 (für Que	rlasten sen	krecht zun	n freien Ra	nd: c _{cr} = 2	50)
Minimaler Randabstand	C _{min}	[mm]				50			
Achsabstand	Scr, II	[mm]		250					
ACIISADSIAIIU	Scr, ⊥	[mm]				250			
Minimaler Achsabstand	S _{min, II;}	[mm]				50			
Willimaici Achsabstand	S _{min, ⊥}	[[[]]				30			

Tabelle C137: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast				Querlast						
	Zugiast		Senkrech	nt zum freier	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00	→	50	0,25	1 •	50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für
Mauerwerk

Leistungen Hochlochziegel MZ90-G mit integrierter Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren Anhang C 41

Steintyp: Hochlochziegel Thermoplan MZ90-G mit integrierter Wärmedämmung

Tabelle C138:	Faktoren	für Ankergruppen	unter Zuglast
---------------	----------	------------------	---------------

Anke	Ankeranordnung parallel zur Lagerfuge Ankeranordnung senkrecht zur Lagerfuge						erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,00		50	50	1,00
	120	250	2,00		120	250	2,00

Tabelle C139: Faktoren für Ankergruppen unter Querlast

	Ankerand	Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge			
Querlast		mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$	
senkrecht	•••	50	50	0,75		50	50	0,50	
zum freien		250	50	2,00		250	50	1,70	
Rand	.,	250	250	2,00		250	250	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _{g ⊥,} ν II	
parallel zum	•	50	50	1,65		50	50	1,15	
freien Rand	eien Rand	120	250	2,00		120	250	2,00	

Tabelle C140: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		Effektive Verankerungs- tiefe	Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
				Nutzungsbedingungen								
Ankergröße	ıülse		d/d				d/d w/d w/w					
	Siebhülse		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
			$N_{Rk,b} = N_{Rk,p}^{2}$			1	$N_{Rk,b} = N_{Rk,l}$	2)	V _{Rk,b} ²⁾			
		[mm]					[kN]					
		Norm	ierte mittle	re Druckfe	stigkeit f _b	≥ 12 N/mm	² 1)					
M8	SH 12	80										
M8 / M10/ IG-M6	SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	4,0			
M12 / IG-M8	SH 20	≥ 85										
M16 / IG-M10	SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,5			

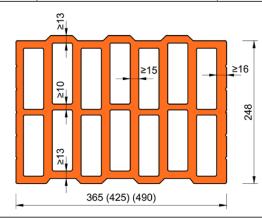
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C135 multipliziert werden Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C141: Verschiebungen

Ankoraräßo	hef	δη / Ν	δηο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle		, , , , , , , , , , , , , , , , , , , ,	_ = = = = = = = = = = = = = = = = = = =	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel MZ90-G mit integrierter Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 42

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c|I} = V_{Rk,c} \perp gemäß$ Anhang C 3



Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung

Tabelle C142: Beschreibung des Steins

Steintyp		Hochlochziegel Poroton FZ7,5
Füllung		Mineralwolle
Dichte	ρ [kg/dm³]	≥ 0,70
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 8
Umrechnungsfaktor für g Druckfestigkeiten	eringere	$(f_b / 8)^{0,5} \le 1,0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		e.g. Schlagmann (DE)
Steinabmessungen	[mm]	248 x 365 x 249
Bohrverfahren		Drehbohren

Tabelle C143: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5		
Randabstand (unter	c (c s)	[mm]	120 (2 h _{ef})								
Brandbeanspruchung)	C _{cr;} (C _{cr,fi})	נוווווון	(für Querlasten senkrecht zum freien Rand: c _{cr} = 250)								
Minimaler Randabstand	C _{min}	[mm]	50								
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]	250 (4 h _{ef})								
Brandbeanspruchung)	$\mathbf{S}_{cr,\;\perp;}\left(\mathbf{S}_{cr,fi,\;\perp}\right)$	[mm]	250 (4 h _{ef})								
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]	50								

Tabelle C144: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast		Querlast							
	Zuglast		Senkrech	nt zum freier	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00		50	0,35	<u> </u>	50	1,00		
	120	1,00		250	1,00		120	1,00		

Tabelle C145: Faktoren für Ankergruppen unter Zuglast

Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge				
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N	
• •	50	50	1,40		50	50	1,15	
	120	250	2,00		120	250	2,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für	•
Mauerwerk	

Leistungen Hochlochziegel Poroton FZ7,5 mit Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren Anhang C 43

4.5

Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung

Tabelle C146: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast	senkrecht zum freien	mit c ≥	mit s ≥	αg II,V⊥	1	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht		50	50	0,60		50	50	0,40
zum freien		250	50	1,55		250	50	1,00
Rand		250	250	2,00		250	250	2,00
Querlast parallel zum freien Rand		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,VII
		50	50	2,00	\$	50	50	1,20
		120	250	2,00		120	250	2,00

Tabelle C147: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
		Effektive /erankerungs- tiefe		Nutzungsbedingungen								
	<u>se</u>			d/d			w/d w/w					
Ankergröße	bhü	Eff ran							Alle			
	Siebhülse	> •	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Temperatur- bereiche			
		h _{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,i}$	2) p	$V_{Rk,b}^{(2)}$			
		[mm]		[kN]								
		Norn	nierte mittle	ere Druckf	estigkeit f	≥ 8 N/mm	2 1)					
M8	SH 12	80										
M8 / M10/ IG-M6	SH 16	≥ 85	2.0	2.0	1.5	2.0	2.0	1.5	3,0			
M12 / IG-M8	SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5				

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C142 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

≥ 85

SH 20

Tabelle C148: Verschiebungen

M16 / IG-M10

Ankoraräßo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle			_ = :	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

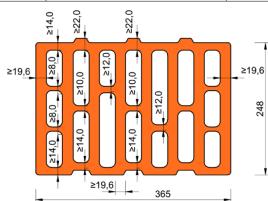
Tabelle C149: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

		Effektive	Charakteristischer Widerstand						
Ankoraröß o	Siebhülse	Verankerungstiefe		$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
Ankergröße	Siebriuise	h _{ef}	R30	R60	R90	R120			
		[mm]	[kN]						
M8 / M10 /IG-M6	SH 16	130							
M12 / M16 / IG-M8 IG-M10	SH 20	≥ 130	0,64	0,37	0,11	_1)			

¹⁾ keine Leistung bewertet

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Poroton FZ7,5 mit Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 44

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung

Tabelle C150: Beschreibung des Steins

Steintyp		Hochlochziegel Poroton FZ9
Füllung		Mineralwolle
Dichte	ρ [kg/dm³]	≥ 0,90
Normierte mittlere Druckfestigkeit	f_b [N/mm ²]	≥ 10
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 10)^{0.5} \le 1.0$
Norm		EN 771-1:2011+A1:2015
Hersteller (Land)		e.g. Schlagmann (DE)
Steinabmessungen	[mm]	248 x 365 x 249
Bohrverfahren		Drehbohren

Tabelle C151: Installationsparameter

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Randabstand (unter	0 (0 5)	[mm]			•	120 (2 he	f)		
Brandbeanspruchung)	Ccr; (Ccr,fi)	[111111]	(für Querlasten senkrecht zum freien Rand: ccr = 250)						
Minimaler Randabstand	C _{min}	[mm] 50							
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]	250 (4 h _{ef})						
Brandbeanspruchung)	$\mathbf{S}_{cr,\;\perp;}\left(\mathbf{S}_{cr,fi,\;\perp}\right)$	[mm]	250 (4 h _{ef})						
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]	mm] 50						

Tabelle C152: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zugloot				Querlast						
Zuglast			Senkrecht zum freien Rand			Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00	→	50	0,35	<u> </u>	50	1,00		
	120	1,00		250	1,00		120	1,00		

Tabelle C153: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	arallel zur Lage	rfuge	Anker	anordnung sen	krecht zur Lage	erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,40		50	50	1,15
	120	250	2,00		120	250	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für	
Mauerwerk	

Leistungen Hochlochziegel Poroton FZ9 mit Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren Anhang C 45

Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung

Tabelle C154: Faktoren für Ankergruppen unter Querlast

	Ankeranordnung parallel zur Lagerfuge					Ankeranordnung senkrecht zur Lagerfuge			
Querlast	-	mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	αg ⊥, V ⊥	
senkrecht	•••	50	50	0,60		50	50	0,40	
zum freien		250	50	1,55		250	50	1,00	
Rand		250	250	2,00		250	250	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II	
parallel zum		50	50	2,00	*	50	50	1,20	
freien Rand		120	250	2,00		120	250	2,00	

Tabelle C155: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

			Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$									
		-sg		Nutzungsbedingungen								
	ψ	Effektive /erankerungs tiefe		d/d				d/d				
	<u> </u>	[5 \ \frac{1}{2}					w/w		w/w (w/d)			
Ankergröße	Siebhülse	Eff							Alle			
	<u>e</u> .	\	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C				
									bereiche			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$			1	$V_{Rk,b}^{(2)}$					
		[mm]				[kN]						
		Norm	ierte mittle	re Druckfe	stigkeit f _b	≥ 10 N/mm	1 ^{2 1)}					
M8	SH 12	80										
M8 / M10/ IG-M6	SH 16	≥ 85	2.0	2.0	1.5	2.0	2.0	1.5	3,0			
M12 / IG-M8	SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5				
M16 / IG-M10	SH 20	≥ 85							4,5			

¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C150 multipliziert werden Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C156: Verschiebungen

Ankoraräßo	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle		,	_ = :	0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

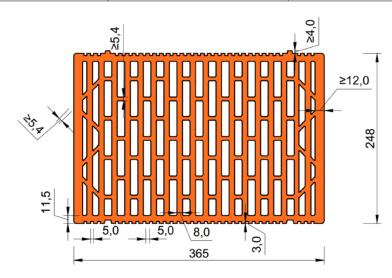
Tabelle C157: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Berandeinwirkung

		Effektive	Charakteristischer Widerstand						
Ankoraröß o	Siebhülse	Verankerungstiefe		$N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
Ankergröße	Siebriuise	h _{ef}	R30	R60	R90	R120			
		[mm]	[kN]						
M8 / M10 /IG-M6	SH 16	130							
M12 / M16 / IG-M8 IG-M10	SH 20	≥ 130	0,64	0,37	0,11	_1)			

¹⁾ keine Leistung bewertet

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Poroton FZ9 mit Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 46

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel Poroton S9 mit Wärmedämmung

Tabelle C158: Beschreibung des Steins

Steintyp		Hochlochziegel Poroton S9	
Füllung		Perlite	
Dichte	ρ [kg/dm³]	≥ 0,85	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für ge Druckfestigkeiten	$(f_b / 12)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		e.g. Schlagmann (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren		Drehbohren	

Tabelle C159: Installationsparameter

Tabono o Too. motana	Tabolio o Too. Motanationoparamotor										
Ankergröße				M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment T _{inst}		[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5		
Randabstand	Ccr	[mm]	- '								
Minimaler Randabstand	C _{min}	[mm]	50								
Achsabstand	Scr, II	[mm]		250							
ACIISADSIAIIU	Scr, ⊥	[mm]	250								
Minimaler Achsabstand	Smin, II;	[mm]	50								
William Achigabatana	S _{min, ⊥}	[[]	30								

Tabelle C160: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast								
	Zuglasi		Senkrech	ht zum freier	n Rand	Parallel zum freien Rand					
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, V II			
•	50	1,00		50	0,30	1 1	50	1,00			
	120	1,00		250	1,00		120	1,00			

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für	r
Mauerwerk	

Leistungen Hochlochziegel Poroton S9 mit Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren Anhang C 47

Steintyp: Hochlochziegel Poroton S9 mit Wärmedämmung

Tabelle C161: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	ırallel zur Lageı	fuge	Ankeranordnung senkrecht zur Lagerfuge			
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,50		50	50	1,00
	120	250	2,00		120	250	2,00

Tabelle C162: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast		mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
senkrecht		50	50	0,40		50	50	0,40
zum freien		250	50	1,00		250	50	1,20
Rand		250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,VII
parallel zum freien Rand		50	50	1,65		50	50	1,00
		120	250	2,00		120	250	2,00

Tabelle C163: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

		Effektive Verankerungs- tiefe	Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$								
			Nutzungsbedingungen								
Ankergröße	Siebhülse			d/d			d/d w/d w/w				
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h_{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$			1	$N_{Rk,b} = N_{Rk,p}^{2}$				
		[mm]				[kN]					
		Norm	nierte mittle	ere Druckf	estigkeit f _b	≥ 6 N/mm	2 1)				
M8	SH 12	80									
M8 / M10/ IG-M6	SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85							,		

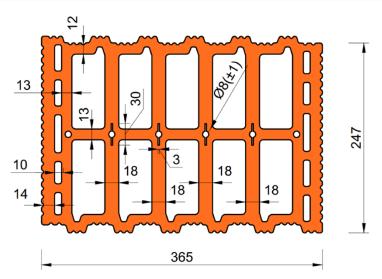
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C158 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C164: Verschiebungen

Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ∨ο
M16	alle		-,		0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Poroton S9 mit Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 48

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c \perp}$ gemäß Anhang C 3



Steintyp: Hochlochziegel Thermopor TV8+ mit Wärmedämmung

Tabelle C165: Beschreibung des Steins

Steintyp		Hochlochziegel Thermopor TV8+	
Füllung		Mineralwolle	
Dichte	ρ [kg/dm³]	≥ 0,70	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 10	
Umrechnungsfaktor für Druckfestigkeiten	$(f_b / 10)^{0.5} \le 1.0$		
Norm		EN 771-1:2011+A1:2015	
Hersteller (Land)		e.g. THERMOPOR GmbH (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren		Drehbohren	

Tabelle C166: Installationsparameter

1 440 410 410 4110 41110											
Ankergröße	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Installationsdrehmoment	Tinst					≤ 4	≤ 4				
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)								
Minimaler Randabstand	Cmin	[mm]	50								
	Scr, II	[mm]	250								
Achsabstand	Scr, ⊥	[mm]	250								
Minimaler Achsabstand	[mm]	50									

Tabelle C167: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
			Senkrecl	nt zum freier	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00		50	0,25	1	50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	

Leistungen Hochlochziegel Thermopor TV8+ mit Wärmedämmung Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 49

Steintyp: Hochlochziegel Thermopor TV8+ mit Wärmedämmung

Tabelle C168: Faktoren für Ankergruppen unter Zuglast

Anke	eranordnung pa	ırallel zur Lageı	fuge	Ankeranordnung senkrecht zur Lagerfuge			
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	1,00		50	50	1,00
	120	250	2,00		120	250	2,00

Tabelle C169: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast	-	mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
senkrecht	•••	50	50	0,75		50	50	0,50
zum freien		250	50	2,00		250	50	1,70
Rand		250	250	2,00		250	250	2,00
Querlast	1	mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II
parallel zum freien Rand	•••	50	50	1,65	\$	50	50	1,15
		120	250	2,00		120	250	2,00

Tabelle C170: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakt	eristischer \	Viderstand	bei c≥c _{cr}	und s≥s _{cr}			
	ülse	Effektive Verankerungs- tiefe	Nutzungsbedingungen								
Ankergröße			d/d				d/d w/d w/w				
	Siebhülse		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{2)}$			1	$N_{Rk,b} = N_{Rk,p}^{2}$				
		[mm]				[kN]					
		Norm	ierte mittle	re Druckfe	estigkeit fb	≥ 10 N/mm	1 ^{2 1)}				
M8	SH 12	80									
M8 / M10/ IG-M6	SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	3,5		
M12 / IG-M8	SH 20	≥ 85									
M16 / IG-M10	SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,0		

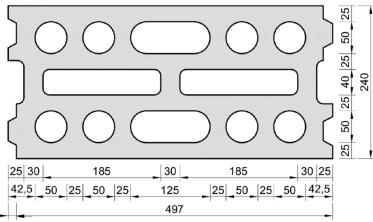
¹⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C165 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C171: Verschiebungen

Ankergröße	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨ο
M16	alle		,		0,31	0,31*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Hochlochziegel Thermopor TV8+ mit Wärmedämmung Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 50

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | II} = V_{Rk,c} \perp$ gemäß Anhang C 3



Steintyp: Leichtbetonlochstein HBL 16DF

Tabelle C172: Beschreibung des Steins

Steintyp		Leichtbetonlochstein HBL 16DF
Dichte	ρ [kg/dm³]	≥ 1,0
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 3,1
Umrechnungsfaktor fü Druckfestigkeiten	ir geringere	$(f_b/3,1)^{0,5} \le 1,0$
Norm		EN 771-3:2011+A1:2015
Hersteller (Land)		z.B. KLB Klimaleichtblock (DE)
Steinabmessungen	[mm]	500 x 250 x 240
Bohrverfahren		Drehbohren

Tabelle C173: Installationsparameter

	_								
Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 5	≤ 5	≤ 2	≤ 5	≤ 5
Randabstand (unter Brandbeanspruchung)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)					250)	
Minimaler Randabstand	C _{min}	[mm]	50						
Achsabstand (unter	Scr, II; (Scr,fi, II)	[mm]	500 (4 h _{ef})						
Brandbeanspruchung)	Scr, ⊥; (Scr,fi, ⊥)	[mm]	250 (4 h _{ef})						
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]	50						

Tabelle C174: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast			Querlast							
	Zugiasi		Senkrecl	nt zum freier	Rand	Parallel zum freien Rand					
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII			
•	50	1,00	→	50	0,30	<u> </u>	50	1,00			
	120	1,00		250	1,00		120	1,00			

Tabelle C175: Faktoren für Ankergruppen unter Zuglast

Anke	Ankeranordnung parallel zur Lagerfuge				anordnung sen	krecht zur Lag	erfuge
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	50	50	2,00		50	50	1,55
	120	500	2,00		120	250	2,00

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Leichtbetonlochstein HBL 16DF

Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren

Anhang C 51

Steintyp: Leichtbetonlochstein HBL 16DF

Tabelle C176: Faktoren für Ankergruppen unter Querlast

V 1 1												
	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge							
Querlast	-	mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$				
senkrecht	•••	50	50	0,60		50	50	0,35				
zum freien		120	50	2,00		120	50	1,15				
Rand	.;	120	500	2,00		120	250	2,00				
Querlast	+	mit c ≥	mit s ≥	αg II,V II	+	mit c ≥	mit s ≥	α _{g ⊥,} ∨ II				
parallel zum	••	50	50	1,30	•	50	50	1,00				
freien Rand		120	250	2,00	•	50	30	1,00				
	· i · · · · · · · · · · · · · · · · · ·	120	500	2,00		120	250	2,00				

Tabelle C177: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

	Siebhülse Effektive Verankerungs- tiefe	Charakteristischer Widerstand bei $c \ge c_{cr}$ und $s \ge s_{cr}$										
		Siebhülse Effektive Verankerungs-		Nutzungsbedingungen								
Ankergröße			d/d				d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche			
						h _{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$N_{Rk,b} = N_{Rk,i}$	2) p
		[mm]				[kN]						
		Norm	ierte mittle	re Druckfe	stigkeit f _b 2	≥ 3,1 N/mn	n ^{2 1)}					
M8 / M10/ IG-M6	SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,0			
M12 / IG-M8	SH 20	≥ 85	1 5	1 5	1.0	1,5	1,5	1,2	3,0			
M16 / IG-M10	SH 20	≥ 85	1,5	1,5	1,2				5,0			

Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C172 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C178: Verschiebungen

Ankorarößo	hef	δη / Ν	δηο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0.12	0.12*N / 2.5	2*2*10	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	alle	0,13	0,13*N _{Rk} / 3,5	2*δΝο	0,31	0,31*V _{Rk} / 3,5	1,5*δ∨0

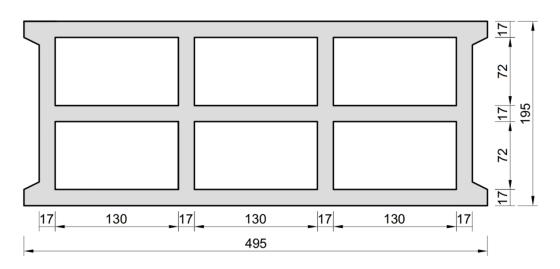
Tabelle C179: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast unter Brandeinwirkung

A ml. a mm # 0 a	Ciabb iilaa	Effektive Verankerungstiefe	Charakteristischer Widerstand fe N _{Rk,b,fi} = N _{Rk,p,fi} = V _{Rk,b,fi}					
Ankergröße	Siebhülse	h _{ef}	R30	R60	R90	R120		
		[mm]		[kN]				
M8 / M10 / IG-M6	SH 16	130	0,29	0.21	_1)	_1)		
M12 / IG-M8	SH 20	≥ 130	0,29	0,21	- 17	- 17		
M16 / IG-M10	SH 20	≥ 130	0,29	0,21	0,12	_1)		

¹⁾ keine Leistung bewertet

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Leichtbetonlochstein HBL 16DF Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 52

²⁾ N_{Rk,b,c} = N_{Rk,p,c} sowie V_{Rk,c II} = V_{Rk,c}⊥gemäß Anhang C 3



Steintyp: Betonlochstein Bloc Creux B40

Tabelle C180: Beschreibung des Steins

Steintyp		Betonlochstein Bloc Creux B40
Dichte	ρ [kg/dm³]	≥ 0,8
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 5,2
Umrechnungsfaktor für Druckfestigkeiten	geringere	$(f_b / 5,2)^{0,5} \le 1,0$
Norm		EN 771-3:2011+A1:2015
Hersteller (Land)		z.B. Leroux (FR)
Steinabmessungen	[mm]	500 x 200 x 200
Bohrverfahren		Drehbohren

Tabelle C181: Installationsparameter

Ankergröße		[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installationsdrehmoment	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 170)						
Minimaler Randabstand	C _{min}	[mm]	50						
Achsabstand	Scr, II	[mm]	170						
Achsabstand	Scr, ⊥	[mm]	200						
Minimaler Achsabstand Smin, II; [mm] 50									
Willimaler Achsabstand	S _{min, ⊥}	[111111]				30			

Tabelle C182: Reduktionsfaktoren für Einzelanker unter Randeinfluss

	Zuglast			Querlast						
	Zugiasi			Senkrecht zum freien Rand				Rand		
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	50	1,00		50	0,35	<u>†</u>	50	1,00		
	120	1,00		170	1,00		120	1,00		

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Betonlochstein Bloc Creux B40 Beschreibung des Steins, Installationsparameter, Reduktionsfaktoren	Anhang C 53

Steintyp: Betonlochstein Bloc Creux B40

Tabelle C183: Faktoren für Ankergruppen unter Zuglast

Anke	ranordnung pa	ırallel zur Lageı	fuge	Ankeranordnung senkrecht zur Lagerfuge			
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
	50	50	1,50	•	50	50	1,40
	50	170	2,00		50	200	2,00
	120	170	2,00	· i	120	200	2,00

Tabelle C184: Faktoren für Ankergruppen unter Querlast

	Ankerand	ordnung par	allel zur Lag	gerfuge	Ankeranordnung senkrecht zur Lagerfuge			
Querlast	1	mit c ≥	mit s ≥	αg II,V ⊥	1	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
senkrecht	•••	50	50	0,55		50	50	0,35
zum freien		120	50	1,30		120	50	0,85
Rand	***************************************	120	170	2,00		120	200	2,00
Querlast	1	mit c ≥	mit s ≥	αg II,V II	+	mit c ≥	mit s ≥	αg ⊥,V II
parallel zum	••	50	50	1,10	•	50	50	1,00
freien Rand	•	120	170	2,00	•	50	200	2,00
Ticicii i tana		120	170	2,00	, i	120	200	2,00

Tabelle C185: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

				Charakteristische			Widerstand bei c ≥ c _{cr} und s ≥ s _{cr}				
		δ Nutzungsbedingungen									
A alegger ä C a	ıülse	Effektive Verankerungs- tiefe	d/d			w/d w/w			d/d w/d w/w		
Ankergröße	Siebhülse	E Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche s		
		h_{ef}	N	$J_{Rk,b} = N_{Rk,p}$	2)	N	$V_{Rk,b}^{(2)}$				
		[mm]				$N_{Rk,b} = N_{Rk,p}^{(2)}$ $V_{Rk,b}^{(2)}$ [kN]					
		Normi	ierte mittle	re Druckfe	stigkeit f _b 2	≥ 5,2 N/mn	n ^{2 1)}				
M8 / M10/ IG-M6	SH 16	130	2,0	1,5	1,2	2,0	1,5	1,2	6,0		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 130	2,0	1,5	1,2	2,0	1,5	1,2	6,0		

Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C180 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C186: Verschiebungen

Ankergröße	hef	δη / Ν	δνο	δN∞	δv / V	δνο	δ∨∞
Allkeigloise	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} / 3,5	1,5*δ∨0
M16	alle		,	_ = = = = = = = = = = = = = = = = = = =	0,31	0,31*V _{Rk} /3,5	1,5*δ∨ο

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Betonlochstein Bloc Creux B40 Gruppenfaktoren, charakteristische Tragfähigkeiten und Verschiebungen	Anhang C 54

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c | I} = V_{Rk,c} \perp$ gemäß Anhang C 3

Steintyp: Leichtbetonvollstein

Tabelle C187: Beschreibung des Steins

Leichtbetonvollstein				
≥ 0,6				
≥ 2				
$(f_b / 2)^{0.5} \le 1.0$				
EN 771-3:2011+A1:2015				
z.B. Bisotherm (DE)				
≥ 240 x 300 x 113				
Drehbohren				

Tabelle C188: Installationsparameter

Ankergröße	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installationsdrehmoment	T _{inst}	[Nm]	≤2 ≤2 ≤2 ≤2 ≤2 ≤2							
Randabstand	Ccr	[mm]	150							
Minimaler Randabstand	C _{min}	[mm]	60							
Achsabstand	Scr, II	[mm]	300							
Acrisabstand	Scr, ⊥	[mm]	300							
Minimaler Achsabstand	Smin, II;	[mm]				120				
1	Smin, ⊥									

Tabelle C189: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
	Zugiasi		Senkrech	nt zum freier	Rand	Parallel zum freien Rand				
	mit c ≥	αedge, N		mit c ≥	αedge, V⊥		mit c ≥	αedge, VII		
•	60	1,00	→	60	0,25	1 <u>†</u>	60	0,40		
	150	1,00		150	1,00		100	1,00		

Tabelle C190: Faktoren für Ankergruppen unter Zuglast

Anke	Ankeranordnung parallel zur Lagerfuge Ankeranordnung senkrecht zur Lagerfuge						
	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
• •	60	120	1,00		60	120	1,00
	150	300	2,00		150	300	2,00

Tabelle C191: Faktoren für Ankergruppen unter Querlast

	Ankeranordnung parallel zur Lagerfuge				Ankeranordnung senkrecht zur Lagerfuge				
Querlast		mit c ≥	mit s ≥	α _g II,V ⊥		mit c ≥	mit s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$	
senkrecht	•••	60	120	0,25		60	120	0,25	
zum freien		150	120	1,00		150	120	1,00	
Rand	•	150	300	2,00	.;	150	300	2,00	
Querlast parallel zum freien Rand		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg ⊥,V II	
		60	120	0,40		60	120	0,40	
		100	120	1,00		100	120	1,00	
ITCICIT Nama	.,	150	300	2,00		150	300	2,00	

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk	
Leistungen Leichtbetonvollstein Beschreibung des Steins, Installationsparameter, Reduktions- und Gruppenfaktoren	Anhang C 55

Steintyp: Leichtbetonvollstein

Tabelle C192: Charakteristische Werte der Tragfähigkeit unter Zug- und Querlast

Tubelle 0 152.	Tabelle 0132. Ollafakteristische Werte der Tragianigkeit anter Zug- und Queriast																			
															Charac	cteristic Res	istances w	rith c≥c _{cr}	and s ≥ s _{cr}	
		-8				Use condit	ion													
	nülse	Effektive Verankerungs-	d/d			w/d w/w			d/d w/d w/w											
Ankergröße	Siebhülse	E Vera	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	Alle Temperatur- bereiche											
			N	$J_{Rk,b} = N_{Rk,p}$	2)	1	$V_{Rk,b}^{(2)}$													
		[mm]				[kN]]													
		Norm	nierte mittle	ere Druckf	estigkeit f _b	≥ 2 N/mm	2 1)													
M8	-	80																		
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	1,5												
M12 / M16 / IG-M8 / IG-M10	-	100							3.0											
M8	SH 12	80							3,0											
M8 / M10/ IG-M6	SH 16	≥ 85	2,5	2,5	2,0	2,5	2,0	1,5												
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85																		

Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C187 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C193: Verschiebungen

A nkorarä@o	hef	δη / Ν	δΝο	δN∞	δv / V	δνο	δ∨∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12/ IG-M6 – M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δνο	0,3	0,3*V _{Rk} / 3,5	1,5*δ∨0
M16	alle	,	-,,, -	_ 51.10	0,1	0,1*V _{Rk} /3,5	1,5*δ∨0

Injektionssystem AC100-PRO, AC100-PRO Nordic oder AC100-PRO Ice für Mauerwerk

Leistungen Leichtbetonvollstein

Charakteristische Tragfähigkeiten und Verschiebungen

Anhang C 56

²⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ sowie $V_{Rk,c \mid I} = V_{Rk,c} \perp$ gemäß Anhang C 3