

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-13/0149 of 31 March 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	TILCA Highload Anchor SZ
Product family to which the construction product belongs	Mechanical anchor for use in concrete
Manufacturer	EFCO Befestigungstechnik AG Grabenstraße 1 8606 NÄNIKON SCHWEIZ
Manufacturing plant	Werk 1, Deutschland
This European Technical Assessment contains	22 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601, Edition 05/2021
This version replaces	ETA-13/0149 issued on 27 March 2018

Page 2 of 22 | 31 March 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The TILCA Highload Anchor SZ is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type SZ-B with threaded bolt,
- Anchor type SZ-S with hexagon head screw,
- Anchor type SZ-SK with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B3, B4, C1 to C4
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C5 to C6
Characteristic resistance for seismic performance category C1 and C2	See Annex C7 to C8
Displacements	See Annex C10 to C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C9

3.3 Aspects of durability

Essential characteristic		Performance				
	Durability	See Annex B1				

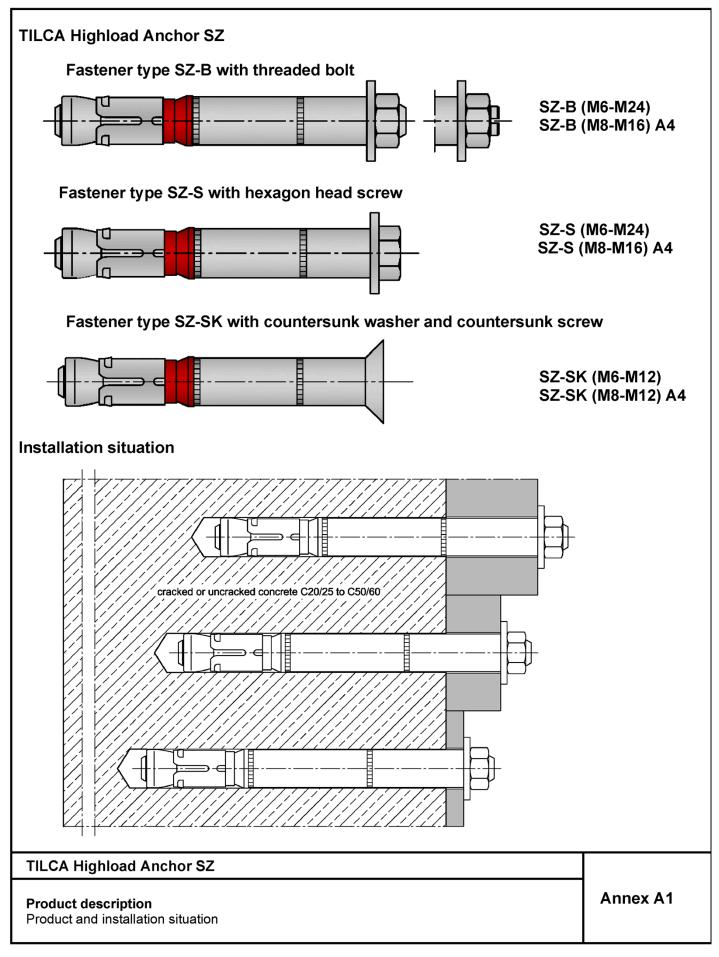
Page 4 of 22 | 31 March 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 31 March 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-13/0149 of 31 March 2025

English translation prepared by DIBt

Page 6 of European Technical Assessment ETA-13/0149 of 31 March 2025

English translation prepared by DIBt

SZ-B		Marking:
		 expansion sleeve: Identifying mark of manufacturing plant additional marking of stainless steel A4 A4 Anchor identity (alternatively on distance sleeve) SZ
SZ-S	8	 size of thread (alternatively M10 on distance sleeve)
		Distance sleeve: - Diameter 15 - max. thickness of fixture t _{fix,max} for h _{ef,min} 25 - additional marking for
SZ-SK	10 	countersunk version SK
	t _{fix}	marking on the washer of L anchor size SZ 24/M16L

Table A1: Designation of fastener parts and materials

Part	Designation	Steel galvanized ≥ 5 μm, acc. to EN ISO 4042:2018	Stainless steel A4 CRC III
1	Threaded bolt	Steel, Strength class 8.8	Stainless steel, 1.4401, 1.4404 or 1.4571
2	Washer	Steel	Stainless steel
3	Distance sleeve	Steel tube	Steel tube stainless steel, 1.4401, 1.4404 or 1.4571
4	Ring	Polyethylene	Polyethylene
5	Expansion sleeve	Steel	Stainless steel, 1.4401, 1.4404 or 1.4571
6	Threaded cone	Steel	Stainless steel, 1.4401, 1.4404 or 1.4571
7	Hexagon nut	Steel, Strength class 8	Stainless steel, Strength class 70
8	Hexagon head screw	Steel, Strength class 8.8	Stainless steel, Strength class 70
9	Countersunk screw	Steel, Strength class 8.8	Stainless steel, Strength class 70
10	Countersunk washer	Steel	Stainless steel, 1.4401, 1.4404 or 1.4571, zinc plated

TILCA Highload Anchor SZ

Product description Marking and materials Annex A2

Specification of intended use								
TILCA Highload Anchor SZ, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Static or quasi-static action					1			
Seismic action (SZ-B and SZ-S)	_1)				C1 + C2			
Seismic action (SZ-SK)	- ¹⁾ C1 + C2				_1)			
Fire exposure				R 30	. R 120			
TILCA Highload Anchor SZ, stainless steel A4		12/M8	15/M10	18/M12	24/M16			
Static or quasi-static action			```	(
Seismic action (SZ-B and SZ-S)		C1 -	+ C2					
Seismic action (SZ-SK)			C1 + C2					
Fire exposure			R30	. R120				

¹⁾ No performance assessed

Base materials:

- Cracked and uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

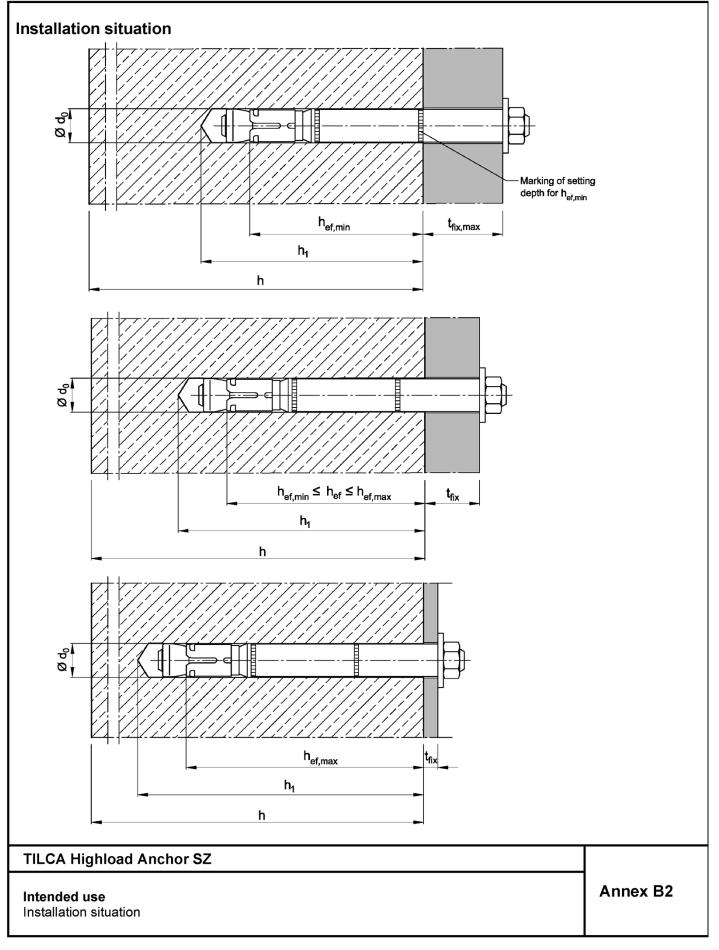
- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- For all other conditions according to EN 1993-1-2006+A1:2015, corresponding to corrosion resistance classes CRC according to Annex A2, Table A1

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to
 reinforcement or to supports, etc.).
- Design according to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the obligation of the person responsible for technical matters on site.
- Compliance with the effective anchorage depth. For fastenings with anchorage depths h_{ef} > h_{ef,min} the usable thickness of fixture is reduced by h_{ef} h_{ef,min}.
- Use as supplied by the manufacturer without replacing individual parts.
- Drilling of hole only by hammer drilling (use of vacuum drill bits is admissible)


TILCA Highload Anchor SZ

Intended use Specification of intended use

Page 8 of European Technical Assessment ETA-13/0149 of 31 March 2025

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Table B1: Installation	paramet	ers, s	steel zir	nc plate	ed			24/		
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20	M24
Minimum effective anchorage depth	h ef,min	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	$h_{\text{ef,max}}$	[mm]	76	100	110	130	114	150	185	210
Nominal diameter of drill bit	d ₀ =	[mm]	10	12	15	18	24	24	28	32
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Depth of drill hole	$h_1 \geq$	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	12	14	17	20	26	26	31	35
Thickness of countersunk washer SZ-SK	t _{sk}	[mm]	4	5	6	7	_4)	_4)	_4)	_4)
Minimum thickness of fixture SZ-SK	t fix min ²⁾	[mm]	8	10	14	18	_4)	_4)	_4)	_4)
Installation T _{inst} (S2	Z-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
torque T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	_4)	_4)	_4)	_4)
Minimum thickness of member	\mathbf{h}_{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimum spacing 1) 3)	S _{min}	[mm]	50	50	60	70	100	100	125	150
cracked concrete	for c \geq	[mm]	50	80	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	55	60	70	100	100	200	150
cracked concrete	for s \geq	[mm]	50	100	120	160	220	220	350	300
Minimum spacing ^{1) 3)}	Smin	[mm]	50	60	60	70	100	100	125	150
uncracked concrete	for c \geq	[mm]	80	100	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	60	60	70	100	100	200	150
uncracked concrete	for s \geq	[mm]	100	120	120	160	220	220	350	300

¹⁾ Intermediate values by linear interpolation

 $^{2)}$ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see

Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

⁴⁾ No performance assessed

TILCA Highload Anchor SZ

Intended use Installation parameters, steel zinc plated

Table B2: Installation parameters, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Minimum effective anchorage depth	h ef,min	[mm]	60	71	80	100
Maximum effective anchorage depth	h ef,max	[mm]	100	110	130	150
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	$h_1 \geq$	[mm]	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30
Diameter of clearance hole in the fixtu	re d _f ≤	[mm]	14	17	20	26
Thickness of countersunk washer SZ-	SK t _{sk}	[mm]	5	6	7	_4)
Minimum thickness of fixture SZ-SK	t _{fix min} 2)	[mm]	10	14	18	_4)
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Installation torque	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	_4)
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
cracked concrete	for c \geq	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	60	70	80
cracked concrete	for s \geq	[mm]	80	120	160	200
Minimum spacing ^{1) 3)}	Smin	[mm]	50	60	70	80
uncracked concrete	for c \geq	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	85	70	180
uncracked concrete	for s ≥	[mm]	80	185	160	80

¹⁾ Intermediate values by linear interpolation

 $^{2)}$ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk}

(see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

⁴⁾ No performance assessed

TILCA Highload Anchor SZ

Intended use Installation parameters, stainless steel A4

1	90°	Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Drive in fastener.
4	Tinst	Apply installation torque T _{inst} .

TILCA Highload Anchor SZ

Intended use Installation instructions

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation factor	γinst	[-]				1	,0			
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	126	126	196	282
Partial factor	γMs	[-]	1,5							
Pull-out failure										
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	5	12	16	25	36	44	50	65
Increasing factor for $N_{Rk,p} = \psi_{C} \bullet N_{Rk,p} (C20/25)$	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$							
Concrete cone failure										
Minimum effective anchorage depth	h ef,min	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h ef,max	[mm]	76	100	110	130	114	150	185	210
Factor for cracked concrete	k cr,N	[-]	7,7							

TILCA Highload Anchor SZ

Performance

Characteristic values for **tension load**, **cracked concrete,** static or quasi-static action, **steel zinc plated**

Table C2: Characteristic values for tension load, cracked concrete, static or quasi-static action, stainless steel A4 **Fastener size** 12/M8 15/M10 18/M12 24/M16 Installation factor [-] 1,0 γinst **Steel failure** SZ-B Characteristic resistance [kN] 26 41 60 110 N_{Rk,s} Partial factor [-] 1,5 γMs SZ-S and SZ-SK Characteristic resistance N_{Rk,s} [kN] 26 41 60 110 Partial factor 1,87 [-] γMs **Pull-out failure** Characteristic resistance in [kN] 9 16 25 36 N_{Rk,p} cracked concrete C20/25 $\left(\frac{f_{ck}}{20}\right)^{0,5}$ Increasing factor for [-] Ψc $N_{Rk,p} = \psi_{C} \cdot N_{Rk,p} (C20/25)$ Concrete cone failure Minimum effective [mm] 60 71 80 100 $\mathbf{h}_{\text{ef,min}}$ anchorage depth Maximum effective 100 [mm] 110 130 150 h_{ef,max} anchorage depth Factor for cracked concrete [-] 7,7 **k**cr,N

TILCA Highload Anchor SZ

Performance

Characteristic values for **tension load**, **cracked concrete**, static or quasi-static action, **stainless steel A4**

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M2	
nstallation factor	γinst	[-]				1	,0				
Steel failure											
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	126	126	196	282	
Partial factor	γMs	[-]		1,5							
Pull-out failure											
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	17	20	30	36	50	1)	70	1)	
ncreasing factor for N _{Rk,p} = ψc • N _{Rk,p} (C20/25)	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,5}$			_2)	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	_2)	
Splitting failure (The higher rea	sistance	of case	1 and cas	se 2 may l)					
Case 1											
Characteristic resistance in uncracked concrete C20/25	N^0 Rk,sp	[kN]	12	16	25	30	40	70	50	70	
Edge distance	C cr,sp	[mm]	1,5 h _{ef}								
ncreasing factor for N ⁰ _{Rk,sp} = ψ _C • N ⁰ _{Rk,sp} (C20/25)	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$								
Case 2							-				
Characteristic resistance in uncracked concrete	N^0 Rk,sp	[kN]				min (N _{Rk}	,p; N ⁰ Rk,c)				
Edge distance	C cr,sp	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}	2 h _{ef}	
Concrete cone failure											
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150	
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210	
Edge distance	C cr,N	[mm]				1,5	h _{ef}				
Factor for uncracked	k ucr,N	[-]					,0				
N _{Rk,p} = N ⁰ _{Rk,c} calculated with h _{ef,r} No performance assessed	nin										

Performance

Characteristic values for **tension load**, **uncracked concrete**, static or quasi-static action, **steel zinc plated**

Table C4: Characteristic values for tension load, uncracked concrete, static or quasi-static action, stainless steel A4

Fastener size	12/M8	15/M10	18/M12	24/M16				
Installation factor		1	,0					
Steel failure								
SZ-B								
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110		
Partial factor	γMs	[-]		1	,5			
SZ-S and SZ-SK								
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110		
Partial factor	γMs	[-]	1,87					
Pull-out failure								
Characteristic resistance in uncracked concrete C20/25	N Rk,p	[kN]	16	25	35	50		
Increasing factor for N _{Rk,p} = ψ _C • N _{Rk,p} (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$					
Splitting failure								
Edge distance	C cr,sp	[mm]	180	235	265	300		
Concrete cone failure								
Minimum effective anchorage depth	$\mathbf{h}_{ef,min}$	[mm]	60	71	80	100		
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150		
Edge distance	C _{cr,N}	[mm]		1,5	h _{ef}			
Factor for uncracked concrete	k ucr,N	[-]	11,0					

TILCA Highload Anchor SZ

Performance

Characteristic values for **tension loads**, **uncracked concrete**, static or quasi-static action, **stainless steel A4**

Table C5: Charact steel zi	inc plate		t shear	ioad, st	atic or q	uası-sta	atic actio	n,						
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24				
Steel failure without	lever arn	า												
SZ-B														
Characteristic resistance	V ⁰ Rk,s	[kN]	16	25	36	63	91	91	122	200				
Ductility factor	k 7	[-]	[-] 1,0											
Partial factor	γMs	[-]	[-] 1,25											
SZ-S and SZ-SK														
Characteristic resistance	V ⁰ Rk,s	[kN]	18	30	48	73	126	126	150	200				
Ductility factor	k 7	[-]	[-] 1,0											
Partial factor γ_{Ms} [-]1,25														
Steel failure with lev	/er arm													
SZ-B, SZ-S and SZ-S	SK													
Anchorage depth	h _{ef,min} ≥	[mm]	50	60	71	80	100	115	125	150				
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	12	30	60	105	266	266	519	898				
Partial factor	γMs	[-]				1,	25							
Anchorage depth	h _{ef} ≥	[mm]	64	73	90	106	138	138	158	188				
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	40	58	119	234	529	529	847	1343				
Partial factor	γMs	[-]				1,2	25							
Concrete pry-out fai	ilure													
Pry-out factor	kଃ	[-]	1,8 ¹⁾				2,0							
Concrete edge failu	re													
Effective length of fastener in shear loading	lf	[mm]				h	lef							
Outside diameter of fastener	d _{nom}	[mm]	10	12	15	18	24	24	28	32				
¹⁾ k ₈ = 2,0 for h _{ef} ≥ 60 mm	<u>ו</u>					1								
TILCA Highload A	nchor SZ	2												
Performance Characteristic values steel zinc plated	for shear	load, st	tatic or qu	asi-static	action,				Annex	(C5				

Fastener size			12/M8	15/M10	18/M12	24/M16
Steel failure without lever arm						
Characteristic resistance	V ⁰ Rk,s	[kN]	24	37	62	92
SZ-B						
Ductility factor	k 7	[-]		1	,0	
Partial factor	γмs	[-]		1,	25	
SZ-S						
Ductility factor	k 7	[-]		1,	0	
Partial factor	γMs	[-]		1,	36	
SZ-SK						
Ductility factor	k ₇ [-] 0,8					_1)
Partial factor	үмs	[-]			_1)	
Steel failure with lever arm						
Anchorage depth	h _{ef,min} ≥	[mm]	60	71	80	100
Characteristic bending resistance	M^0 Rk,s	[Nm]	26	52	92	232
SZ-B						
Partial factor	γмs	[-]		1,	25	
SZ-S and SZ-SK						
Partial factor	γмs	[-]		1,	56	
SZ-B, SZ-S and SZ-SK						
Anchorage depth	h _{ef} ≥	[mm]	73	90	106	138
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	103	211	374	847
Partial factor	γMs	[-]		1,	25	
Concrete pry-out failure		I				
Pry-out factor	k ₈	[-]		2	,0	
Concrete edge failure						
Effective length of fastener in shear loading	lf	[mm]		h	lef	
Outside diameter of fastener	d _{nom}	[mm]	12	15	18	24

TILCA Highload Anchor SZ	
Performance Characteristic values for shear load, static or quasi-static action, stainless steel A4	Annex C6

Fastener size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24
Tension load							· · · ·		
Installation factor	γinst	[-]				1,0			
Steel failure									
Characteristic resistance category C1	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	126	196	282
Characteristic resistance category C2	N _{Rk,s,eq,C2}	[kN]	29	46	67	126	126	196	282
Partial factor	γмs	[-]				1,5			
Pull-out failure									
Characteristic resistance category C1	N Rk,p,eq,C1	[kN]	12,0	16,0	25,0	36,0	44,0	50,0	63,3
Characteristic resistance category C2	N _{Rk,p,eq,C2}	[kN]	5,4	16,0	22,6	29,0	41,2	43,6	63,3
Shear load	•								
Steel failure without lever	arm								
SZ-B									
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1
SZ-S									
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1
SZ-SK									
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	25,2	36,5	50,4	_1)	_1)	_1)	_1)
Characteristic resistance category C2	VRk,s,eq,C2	[kN]	19,2	29,3	39,4	_1)	_1)	_1)	_1)
Factor for annular gap	αgap	[-]				0,5	· · · · · · · · ·		
Partial factor	γMs	[-]				1,25			

TILCA Highload Anchor SZ

Performance

Characteristic values for seismic action, steel zinc plated

Deutsches Institut für Bautechnik

Fastener size			12/M8	15/M10	18/M12	24/M16
Tension load						
Installation factor	γinst	[-]		1,	,0	
Steel failure						
Characteristic resistance, category C1	$N_{Rk,s,eq,C1}$	[kN]	26	41	60	110
Characteristic resistance, category C2	N _{Rk,s,eq,C2}	[kN]	26	41	60	110
Partial factor SZ-B	γMs	[-]		1,	5	
Partial factor SZ-S and SZ-SK	γms	[-]		1,	87	
Pull-out failure						
Characteristic resistance, category C1	$N_{Rk,p,eq,C1}$	[kN]	9,0	16,0	25,0	36,0
Characteristic resistance, category C2	$N_{Rk,p,eq,C2}$	[kN]	4,8	16,0	24,8	36,0
Shear load						
Steel failure without lever arm						
SZ-B						
Characteristic resistance, category C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	9,7	14,0	18,0	32,2
Partial factor	γMs	[-]		1,	25	
SZ-S						
Characteristic resistance, category C1	V _{Rk,s,eq,C1}	[kN]	9,6	13,3	25,4	75,4
Characteristic resistance, category C2	VRk,s,eq,C2	[kN]	9,7	14,0	18,0	32,2
Partial factor	γms	[-]		1,	36	
SZ-SK						
Characteristic resistance, category C1	VRk,s,eq,C1	[kN]	11,5	23,3	31,6	_1)
Characteristic resistance, category C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	_1)
Partial factor	γms	[-]		1,36		_1)
Factor for annular gap	$lpha_{gap}$	[-]		0,	5	

TILCA Highload Anchor SZ

Performance

Characteristic values for seismic action, stainless steel A4

Fastener size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Tension load									WITEL		
Steel failure											
Steel zinc plate	4										
Steel Zinc plate	R30			1,0	1,9	4,3	6,3	11	6	18,3	26,3
Characteristic	R60	-		0,8	1,5	3,2	4,6	8,		13,5	19,5
resistance	R90	- N _{Rk,s,fi}	[kN]	0,6	1,0	2,1	3,0	5,		7,7	12,6
	R120	_		0,0	0,8	1,5	2,0	3,		4,9	9,2
Stainless steel				0,4	0,0	1,0	2,0	0,		<u> </u> - ,5	5,2
Stanness Steel	R30			_1)	6,1	10,2	15,7	29,2	_1)	_1)	_1)
Characteristic	R60	-		1)	4,4	7,3	11,1	29,2	_1)	1)	_1)
resistance	R90	- N _{Rk,s,fi}	[kN]	1)	2,6	4,3	6,4	12,0	_1)	1)	1)
roolotanoo	R120			_1)	1,8	2,8	4,1	7,7	_1)	_1)	1)
Shear load	1(120			- /	1,0	2,0	7,1	7,7	- /	_ /	
Steel failure wit	houtlove										
		er arm									
Steel zinc plate				1.0	10	10	0.0			10.0	00.0
	R30	-	[kN]	1,0	1,9	4,3	6,3	11		18,3	26,3
Characteristic	R60	- V _{Rk,s,fi}		0,8	1,5	3,2	4,6	8,		13,5	19,5
resistance	R90	_		0,6	1,0	2,1	3,0	5,0		7,7	12,6
	R120			0,4	0,8	1,5	2,0	3,	1	4,9	9,2
Stainless steel											
	R30	_		_1)	14,3	22,7	32,8	61,0	_1)	_1)	_1)
Characteristic	R60	- V _{Rk,s,fi}	[kN]	_1)	11,1	17,6	25,5	47,5	_1)	_1)	_1)
resistance	R90	_		_1)	7,9	12,6	18,3	34,0	_1)	_1)	_1)
	R120			_1)	6,3	10,0	14,6	27,2	_1)	_1)	_1)
Steel failure wit		rm									
Steel zinc plate	d										
	R30	_		0,8	2,0	5,6	9,7	24	,8	42,4	83,6
Characteristic bending	R60	− M ⁰ Rk,s,fi	[Nm]	0,6	1,5	4,1	7,2	18	,3	29,8	61,9
resistance	R90	- IVI KK,S,TI		0,4	1,0	2,7	4,7	11	,9	17,1	40,1
	R120			0,3	0,8	1,9	3,1	6,	6	10,7	29,2
Stainless steel	A4										
	R30	_		_1)	6,2	13,2	24,4	61,8	_1)	_1)	_1)
Characteristic	R60		[NIm]	_1)	4,5	9,4	17,2	43,6	_1)	_1)	_1)
bending resistance	R90	− M ⁰ Rk,s,fi	[Nm]	_1)	2,7	5,6	10,0	25,3	_1)	_1)	_1)
	R120	-		_1)	1,8	3,6	6,4	16,2	_1)	_1)	_1)

TILCA Highload Anchor SZ

Performance

Characteristic values under fire exposure

Fastener size			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24 /M16L	28/ M20	32/ M24
Tension load										
Tension load in cracked concrete	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
Displacement	δ _{Ν0} δ _{Ν∞}	[mm] [mm]	0,5 2,0	0,5 2,0	0,5 1,3	0,7 1,3	0,8 1,3	0,7 1,3	0,9 1,4	1,4 1,9
Tension load in	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
uncracked concrete Displacement	δνο	[mm]	0,8	1,0		1,1		1,3	0,3	0,7
Seismic action C2	δ _{N∞}	[mm]	3	,4		1,7		2,3	1,4	0,7
Displacement for DLS	$\delta_{\text{N,eq}(\text{DLS})}$	[mm]	_1)	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Displacement for ULS	$\delta_{\text{N,eq}}$ (ULS)	[mm]	_1)	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Shear load										
SZ-B										
Shear load in cracked and uncracked concrete	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Displacement	<u>δνο</u> δν∞	[mm] [mm]	2,5 3,8	2,1 3,1	2,7 4,1	3,0 4,5	5,1 7,6	5,1 7,6	4,3 6,5	10,5 15,8
Seismic action C2	OV∞	[]	5,0	5,1	- 1 ,1	4,5	7,0	7,0	0,5	15,6
Displacement for DLS	S	[mm]	_1)	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Displacement for ULS	δ V,eq (DLS) δ V,eq (ULS)	[mm]	_1)	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S	Ov,eq (ULS)	[]	- /	4,0	0,4	0,1	0,0	0,0	+,0	3,5
Shear load in cracked and uncracked concrete	v	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
Displacement	<u>δνο</u> δν∞	[mm] [mm]	2,9 4,4	2,5 3,8	3,6 5,4	3,5 5,3	7,0 10,5	7,0 10,5	4,3 6,5	10,5 15,8
Seismic action C2	Uv∞	[]	-т,-т	0,0	0,4	0,0	10,0	10,0	0,0	10,0
Displacement for DLS	$\delta_{V,eq}$ (DLS)	[mm]	_1)	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Displacement for ULS	$\delta V, eq (DLS)$	[mm]	_1)	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK	0v,eq (0L3)	[]		1,0	0,1	0,1	0,2	0,2	1,0	0,0
Shear load in cracked a uncracked concrete	ind V	[kN]	10,1	17,1	27,5	41,5	_1)	_1)	_1)	_1)
	δνο	[mm]	2,9	2,5	3,6	3,5	_1)	_1)	_1)	_1)
Displacement	δv∞	[mm]	4,4	3,8	5,4	5,3	_1)	_1)	_1)	_1)
Seismic action C2			,		,					1
Displacement for DLS	$\delta_{V,eq}$ (DLS)	[mm]	_1)	3,1	3,9	3,9	_1)	_1)	_1)	_1)
Displacement for ULS	δV,eq (ULS)	[mm]	_1)	10,2	11,8	13,0	_1)	_1)	_1)	_1)

TILCA Highload Anchor SZ

Performance

Displacements under tension and shear load, steel zinc plated

Fastener size			12/M8	15/M10	18/M12	24/M16
Tension load						
Tension load in cracked concrete	Ν	[kN]	4,3	7,6	12,1	17,0
Displacement	δνο	[mm]	0,5	0,5	1,3	0,5
Displacement	δΝ∞	[mm]	1,2	1,6	1,8	1,6
Tension load in uncracked concrete	N	[kN]	7,6	11,9	16,7	24,1
Displacement	δνο	[mm]	0,2	0,3	1,2	1,5
Displacement	δ _{N∞}	[mm]	1,1	1,1	1,1	1,1
Seismic action C2						
Displacement for DLS	$\delta_{\text{N,eq}}(\text{DLS})$	[mm]	4,7	4,5	4,3	4,9
Displacement for ULS	$\delta_{\text{N,eq}}(\text{ULS})$	[mm]	13,3	12,7	9,7	10,1
Shear load						
Shear load in cracked concrete	V	[kN]	13,9	21,1	34,7	50,8
Displacement	δνο	[mm]	3,4	4,9	4,8	6,7
Displacement	δv∞	[mm]	5,1	7,4	7,1	10,1
Seismic action C2						
SZ-B and SZ-S	1			1		
Displacement for DLS	δ V,eq (DLS)	[mm]	2,8	3,1	2,6	3,3
Displacement for ULS	$\delta_{V,eq}(ULS)$	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Displacement for DLS	δ V,eq (DLS)	[mm]	2,5	2,8	2,9	_1)
Displacement for ULS	δ V,eq (ULS)	[mm]	5,8	5,9	6,9	_1)

¹⁾ No performance assessed

TILCA Highload Anchor SZ

Performance Displacements under tension and shear load, stainless steel A4