

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-13/1038 of 23 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti screw anchor HUS3

Mechanical fasteners for use in concrete

Hilti Aktiengesellschaft
Feldkircherstrasse 100
9494 SCHAAN
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

31 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-13/1038 issued on 28 July 2020

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z212297.25 8.06.01-300/25

European Technical Assessment ETA-13/1038

English translation prepared by DIBt

Page 2 of 31 | 23 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

English translation prepared by DIBt

Page 3 of 31 | 23 September 2025

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS3 is an anchor made of galvanised steel (HUS3-H(F), HUS3-C, HUS3-P, HUS3-PL, HUS3-A, HUS3-I(F), HUS3-I(F) Flex) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 to C3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C3
Displacements	See Annex C10 to C11
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C4 to C6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C7 to C9

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-13/1038

English translation prepared by DIBt

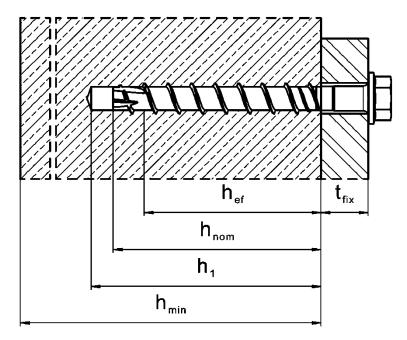
Page 4 of 31 | 23 September 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

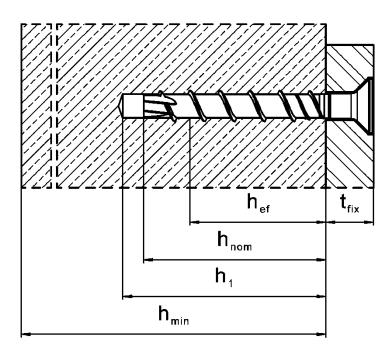
In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

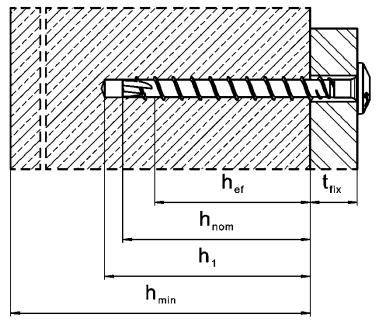

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 23 September 2025 by Deutsches Institut für Bautechnik

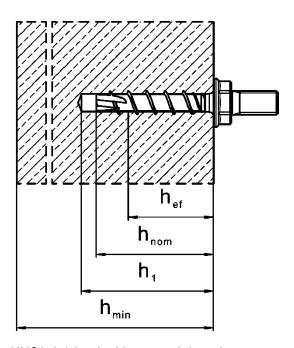

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel

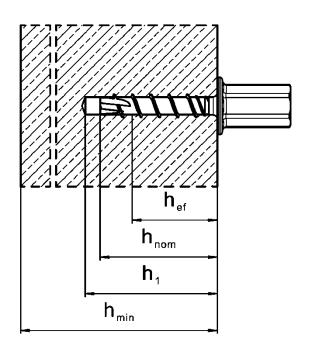
Installed condition without adjustment

HUS3-H (hexagon head configuration sizes 6, 8, 10 and 14) HUS3-HF (hexagon head configuration sizes 8, 10 and 14)



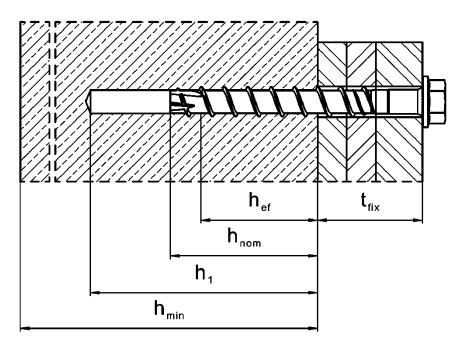
HUS3-C (countersunk head configuration sizes 6, 8 and 10)


Hilti screw anchor HUS3	- Annex A1
Product description Installed condition without adjustment	Annex A I

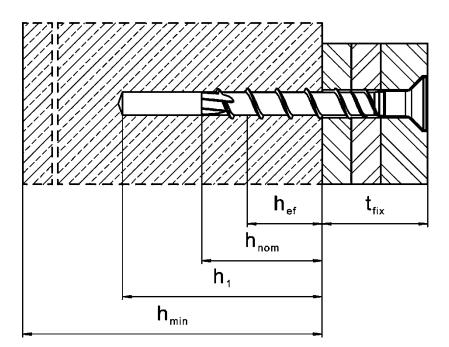

Installed condition without adjustment

HUS3-P/PS/PL (pan head configuration size 6)

HUS3-A (size 6 with external thread configuration M6, M8, M10 or M12)



HUS3-I(F) (size 6 with internal thread configuration M8/M10)


Hilti screw anchor HUS3	Ammay AQ
Product description Installed condition without adjustment	Annex A2

Installed condition with adjustment

HUS3-H (hexagon head configuration sizes 8, $10 - h_{nom2}$, h_{nom3}) HUS3-HF (hexagon head configuration sizes 8, $10 - h_{nom2}$, h_{nom3})

HUS3-C (countersunk head configuration sizes 8 and 10 – h_{nom2} , h_{nom3})

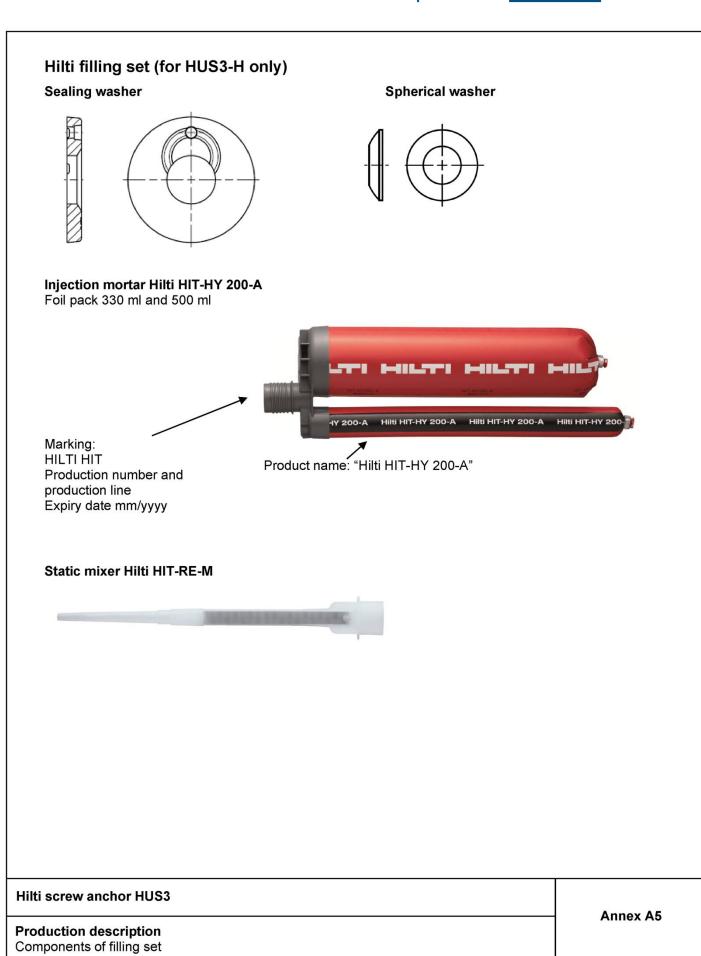
Hilti screw anchor HUS3	Annex A3
Product description Installed condition with adjustment	Aillex A3

Table A1: Screw types

(mag)	1) Hilti HUS3-H, sizes 6, 8,10 and 14, hexagonal head configuration, galvanized
	Hilti HUS3-HF, sizes 8,10 and 14, hexagonal head configuration, multilayer coating
Togeth Togeth	3) Hilti HUS3-C, sizes 6, 8 and 10, countersunk head configuration, galvanized
	4) Hilti HUS3-A, size 6, external thread M6, M8, M10 and M12, galvanized
	5) Hilti HUS3-P, size 6, pan head configuration, galvanized
	6) Hilti HUS3-PS, size 6, pan head (small) configuration, galvanized
	7) Hilti HUS3-PL, size 6, pan head (large) configuration, galvanized
	8) Hilti HUS3-I, size 6, galvanized and Hilti HUS3-IF, size 6, multilayer coating, internal thread M8 and M10
	9) Hilti HUS3-I Flex, size 6, galvanaized and Hilti HUS3-IF Flex, size 6, multilayer coating, with external thread: - M8/16 preassembled with coupler M6 or M8, - M10/21 preassembled with coupler M10 or M12

Hilti screw anchor HUS3	Annov A4
Production description Screw types	Annex A4

English translation prepared by DIBt



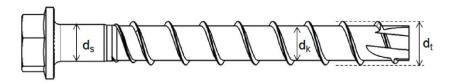


Table A2: Materials

Part	Designation	Material			
	Size 6 all lengths	f _{yk} ≥ 745 N/mm ² , f _{uk} ≥ 930 N/mm ²			
HUS3 screw anchor (all	Size 8 all lengths	f _{yk} ≥ 695 N/mm ² , f _{uk} ≥ 810 N/mm ²	Carbon steel galvanized and with multilayer coating (F)		
types in Table A1)	Size 10 all lengths	f _{yk} ≥ 690 N/mm ² , f _{uk} ≥ 805 N/mm ²	Rupture elongation A₅ ≤ 8%		
Table AT)	Size 14 all lengths	f _{yk} ≥ 630 N/mm ² , f _{uk} ≥ 730 N/mm ²			

Table A3: Fastener dimensions and marking

Fastener size	HU	S3	(3	8			10			14		
Туре			PS, I(I	A, P, PL, F), Flex	H(F), C		H(F), C		H(F)				
Nominal			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
embedment dep	th	[mm]	40	55	50	60	70	55	75	85	65	85	115
Threaded outer diameter	dt	[mm]	7	,85	10,30		12,40		16,85				
Core diameter	dk	[mm]	5	,85	7,85				9,90			12,95	
Shaft diameter	ds	[mm]	6	,15	8,45		10,55			13,80			
Stressed section	As	[mm ²]	2	6,9	48,4		77,0		131,7				

HUS3: Hilti Universal Screw 3rd generation

H: Hexagonal head

10: screw diameter

45/25/15: maximum thickness fixture t_{fix1}/t_{fix2}/t_{fix3} related to the

embedment depth hnom1/hnom2/hnom3 (see Annex B4 and B5)

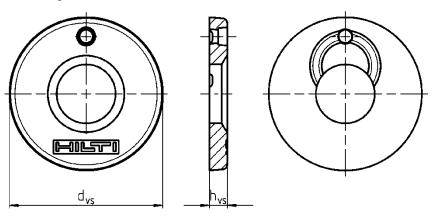

Hilti screw anchor HUS3	Annex A6
Production description Materials and fastener dimensions	Aillex Ao

Table A4: Hilti filling washer dimensions

Fastener size	Hilti filling set	Hilti filling washer			
		Diameter d _{vs} [mm]	Thickness h _{vs} [mm]		
HUS3-H 8	M10	42	5		
HUS3-H 10	M12	44	5		
HUS3-H 14	M16	52	6		

Hilti filling washer

Hilti screw anchor HUS3	Annex A7
Production description Filling washer dimensions	Ailliek A/

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loadings: all sizes and all embedment depths.
- Seismic action for performance category C1:
 - HUS3 size 6, standard and maximum embedment depth (hnom1, hnom2).
 - HUS3-H and HUS3-HF sizes 8, 10 and 14, standard and maximum embedment depth (h_{nom2}, h_{nom3}). HUS3-C sizes 8 and 10, standard and maximum embedment depth (h_{nom2}, h_{nom3}).
- Seismic action for performance category C2:
 - HUS3-H sizes 8, 10 and 14, maximum embedment depth (hnom3).
 - HUS3-C and HUS3-HF sizes 8 and 10, maximum embedment depth (hnom3).
- Fire exposure: All sizes and all embedment depths.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Uncracked or cracked concrete.

Use conditions (Environmental conditions):

Anchorages subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.
- For the HUS3-PL 6, installed as described in Table B1 (Annex B3), the characteristic resistance to shear loading of a group of two or three screws shall be limited to the characteristic value of one screw. The characteristic resistance to shear loading of a group of four or more screws shall be limited to the characteristic value of two screws.

	T
Hilti screw anchor HUS3	
Intended use	Annex B1
Specifications	

English translation prepared by DIBt

Specifications of intended use

Installation:

- Hammer drilling: all sizes and all embedment depths.
- Hollow drill bit: only size 14.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the fastener must not be possible.
- The head of the fastener must be supported on the fixture and is not damaged.
- Adjustability according to Annex B9 for:
 HUS3-H, HUS3-HF and HUS3-C size 8 (h_{nom2} = 60 mm and h_{nom3} = 70 mm)
 HUS3-H, HUS3-HF and HUS3-C size 10 (h_{nom2} = 75 mm and h_{nom3} = 85 mm)
- Installation with Hilti filling set (HUS3-H only) according to Annex B8.

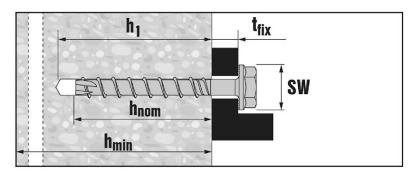
Hilti screw anchor HUS3	
Intended use Specifications	Annex B2

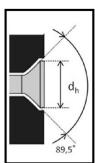
Table B1: Installation parameters HUS3 size 6

Fastener size HUS3								6	3					
Туре		Н	С	A	P- PS	I(F), I(F) Flex	PL	н	С	A	P- PS	I(F), I(F) Flex	PL	
Nominal embedmenth depth	h _{nom}	[mm]		40 55										
Nominal drill hole diameter	d ₀	[mm]						ε	6					
Cutting diameter of drill bit	d _{cut} ≤	[mm]						6,4	40					
Clearance hole diameter	df≤	[mm]			9	1		10			ç	9		10
Wrench size (H, A, I -type)	sw	[mm]	13	-	13	-	13	-	13	-	13	-	13	-
Countersunk head diameter	dh	[mm]	-	11,5	-	-	-	-	-	11,5	-	-	-	-
Torx size (C, P, PS, PL -type)	TX	-	-	30	-	30	-	30	-	30	-	30	-	30
Depth of drill hole in floor/ wall position	h₁ ≥	[mm]				50						65	•	
Depth of drill hole in ceiling position	h₁ ≥	[mm]		43 58										
Installation Torque	T_{inst}	[Nm]	20 25											
Setting tool ¹⁾							Hilti SIV SII	/ 14 A, D 2-A;			2 A,			

¹⁾ Installation with other impact screw driver of equivalent power is possible.

Table B2: Installation parameters HUS3 size 8, 10 and 14


Fastener size HUS3				8			10			14	
Туре				H(F), C			H(F), C		H(F)		
			h _{nom1} h _{nom2} h _{nom3}			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedmenth depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Nominal drill hole diameter	d _o	[mm]		8	•		10		14		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45				10,45		14,50		
Clearance hole diameter	d _f ≤	[mm]	12				14		18		
Wrench size (H, HF-type)	SW	[mm]		13			15		21		
Diameter of countersunk head	dh	[mm]		18			21		-		
Torx size (C-type)	TX	-		45		50			-		
Depth of drill hole	h₁ ≥	[mm]	60	70	80	65	85	95	75	95	125
Depth of drill hole (with adjustability setting process)	h₁ ≥	[mm]	- 80 90			- 95 105			-		
Setting tool ¹⁾			SIW 4(AT)-22 1/2" SIW 6(AT)-A22 1/2" SIW 6(AT)-22 1/2" gear 1			SIV SIW 8	6(AT)-22 V 22T-A -22 1/2" V 9-A22	1/2" gear 1	SIW 22T-A 1/2" SIW 6(AT)-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4"		


¹⁾ Installation with other impact screw driver of equivalent power is possible.

Hilti screw anchor HUS3	
Intended use Installation parameters	Annex B3

English translation prepared by DIBt

Installation parameters for HUS3-H and -C

Table B3: Minimum thickness of concrete member, minimum edge distance and spacing HUS3 size 6

Fastener size	HUS3			6				
				h _{nom1}	h _{nom2}			
Nominal embed	dmenth depth	h _{nom}	[mm]	40 1)	55			
Minumum thick member	ness of concrete	h _{min}	[mm]	80	100			
Cracked and	Minimum spacing	Smin	[mm]	35	35			
uncracked concrete	Minimum edge distance	C _{min}	[mm]	35	35			

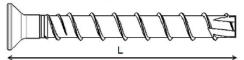
¹⁾ Only for redundant non-structural systems

Table B4: Minimum thickness of concrete member, minimum edge distance and spacing HUS3 size 8, 10 and 14

Fastener size HUS3				8			10		14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embed	dmenth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Minumum thick concrete members		h _{min}	[mm]	100	100	120	100	130	140	120	160	200
	Minimum		[mm]	50	50	50	50	50	50	60	60	60
Cracked and uncracked concrete	spacing	Smin	[mm]	40 if c ≥ 50	50	50	50	50	50	60	60	60
	Minimum edge distance	Cmin	[mm]	40	40	40	50	50	50	60	60	60

Hilti screw anchor HUS3	
Intended use Minimum concrete thickness and minimum edge distance and spacing	Annex B4

Table B5: Standard¹⁾ screw lengths and maximum thickness of fixture for HUS3 size 6


Fastener size						(3					
	Н	С	A	I(F), I(F) Flex	Р	PS PL	н	С	Α	I(F), I(F) Flex	Р	PS PL
Nominal embedment depth [mm]		h _{nom1} h _{nom2} 40 55										
Į į į į į					Thick	ness of	fixture	e [mm]				
Length of screw [mm]	t _{fix}	t _{fix}	t _{fix1}	t _{fix1}			t _{fix2}	t _{fix2}	t _{fix2}	t _{fix2}	t _{fix2}	t _{fix2}
40			0	0			ı	ı	ı		-	
45	5	5	5	5			-	-	-	_	-	-
55	-	- 0	15	15			-	-	0	0		-
60	20	20	-	-:			5	5	-	-	5	5
70	-	30	-	-	,		-	15	-	-	-	-
80	40		.=	-			25	-	-	-	25	
100	60	-	-	-			45	_	-	-	_	-
120	80	-	-	-			65	-	-	-	-	-
135	-	-	95	-			-	-	80	-	-	-
155	-		115	-			-	-	100	-	-	-
175	-	-	135	-					120	-		-
195	-	-	155	-			-	-	140	-	-	-

¹⁾ non-standard lengths, in the range 40 mm ≤ L ≤ 195 mm, are also in the scope of this ETA.

Table B6: Standard¹⁾ screw lengths and maximum thickness of fixture for HUS3-C size 8, 10

Fastener size		8		10			
Nominal embedment depth [mm]	h _{nom1} 50	h _{nom2} 60	h _{nom3} 70	h _{nom1} 55	h _{nom2} 75	h _{пот3} 85	
		Thi	ckness of	fixture [n	nm]		
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	
65	15	5	=	-	-	-	
70	:: <u></u>	-	_	15	-	-	
75	25	15	-	-		-	
85	35	25	15	-	-	-	
90	-	_	-	35	15	-	
100	-	<u>-</u>	_	45	25	15	

¹⁾ non-standard lengths, in the range 65 mm \leq L \leq 100 mm, are also in the scope of this ETA.

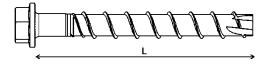
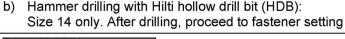
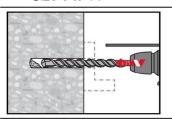

Hilti screw anchor HUS3	
Intended use Standard screw lengths and thickness of fixture	Annex B5

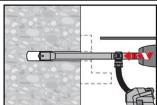
Table B7: Standard¹⁾ screw lengths and maximum thickness of fixture for HUS3-H, HUS3-HF

Fastener size		8			10			14			
Nominal embedment depth [mm]	h _{nom1} 50	h _{nom2} 60	h _{nom3} 70	h _{nom1} 55	h _{nom2} 75	h _{пот} з 85	h _{nom1} 65	h _{nom2} 85	h _{nom3} 115		
[]	Thickness of fixture [mm]										
Length of screw [mm]	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}		
55	5	-	-	-	-	ı	-	-	-		
60	-	-	-	5	-	-	-	-	-		
65	15	5	-	_	-	1	-	_	-		
70	-	-	-	15	-	-	-	-	-		
75	25	15	5	-	_	-	10	-	-		
80	-	-	-	25	5	-	-	-	-		
85	35	25	15	-	-	-	-	-	-		
90	-	-	-	35	15	5	-	-	-		
100	50	40	30	45	25	15	35	15	-		
110	-	-	-	55	35	25	-	-	-		
120	70	60	50	-	-	-	-	-	-		
130	-	-	-	75	55	45	65	45	15		
150	100	90	80	95	75	65	85	65	35		

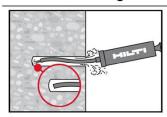
¹⁾ non-standard lengths, in the range 55 mm \leq L \leq 150 mm, are also in the scope of this ETA.


Hilti screw anchor HUS3	
Intended use Standard screw lengths and thickness of fixture	Annex B6




Installation instructions

Hole drilling


a) Hammer drilling (HD): Size 6 to 14

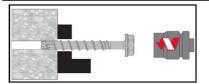
Drill hole cleaning

Clean the drill hole.

Hole cleaning is not required when 3x ventilation¹⁾ after drilling is executed and one of the following conditions is fulfilled:

- drilling is in the vertical upwards orientation; or
- drilling is in vertical downwards direction; or
- -drilling is in vertical downwards direction and the drilling depth is increased²⁾ by additional3*d₀; or

For sizes 10 and 14, hole cleaning is not required when 3x ventilation¹⁾ after drilling is executed and one of the following conditions is fulfilled:


- drilling is in the vertical upwards orientation; or
- drilling is in vertical downwards or horizontal direction and the drilling depth is increased²⁾ by additional 3*do; or
- Hilti hollow drill bit TE-CD is used for drilling (available for HUS3 10 and HUS3 14 only)
- 1) moving the drill bit in and out of the drill hole 3 times after the recommended drilling depth h₁ is achieved. This procedure shall be done with both revolution and hammer functions activated in the drilling machine. For more details read the relevant instruction for use.
- ²⁾ It shall be ensured !hat the thickness of the concrete member h fulfills the following equation: $h > h_1 + \Delta h$ with $\Delta h = max (2*d_0; 30 mm)$

Δh is the minimum distance between the drilling end and the opposite end of the concrete

Fastener setting

a) Setting by impact screw driver

b) Setting by torque wrench

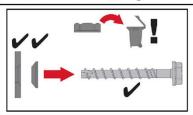
Setting parameters listed in Table B1 and B2

Setting check

Hilti screw anchor HUS3

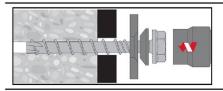
Intended use

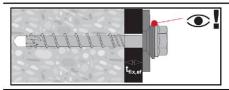
Installation instructions without adjustment


Annex B7

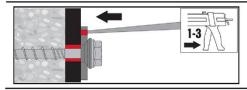
English translation prepared by DIBt

Fastener setting with Hilti filling set (HUS3-H only)


Installation of sealing washer


Size Seismic Set	Size HUS3	t _{fix, effective} (mm)
M10	8	t _{fix} – 7 mm
M12	10	t _{fix} – 8 mm
M16	14	t _{fix} – 9 mm

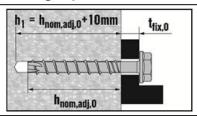
The maximum fixture thickness t_{fix} is reduced by the overall thickness of the Hilti Filling Set after installation.


Setting by impact screw driver

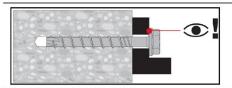
Setting check

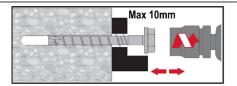
Injection of mortar

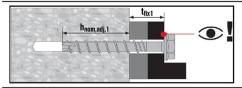
Table B8: Maximum working time and minimum curing time HY 200-A

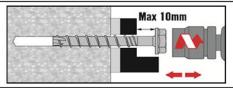

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
> 0 °C to 5 °C	25 min	2 hours
> 5 °C to 10 °C	15 min	75 min
> 10 °C to 20 °C	7 min	45 min
> 20 °C to 30 °C	4 min	30 min
> 30 °C to 40 °C	3 min	30 min

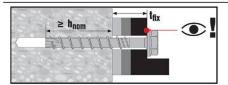
Hilti screw anchor HUS3	
Intended use Installation instructions with Hilti filling set	Annex B8


Fastener setting with adjustment


Drilling depth and fixture thickness


Adjusting process


1st step



2nd step

Setting check

A screw can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than h_{nom2} or h_{nom3} .

Hilti screw anchor HUS3

Intended use

Installation instructions with adjustment

Annex B9

Table C1: Essential characteristics under static and quasi-static load in concrete for HUS3 size 6

Fastener	size HUS3									6					
Туре				Н	С	A	I(F), I(F) Flex	P	PS PL	н	С	A	l(F), l(F) Flex	Р	PS PL
Nominal e	mbedment depth	h _{nom}	[mm]		h _{nom1} h _{nom2} 55										
Steel failu	ire for tension and	shear lo	ad							•					
Characteri	istic resistance	N _{Rk,s}	[kN]	24	24 22 24 21 24 22 24									2	
Partial fact	tor	γ _{Ms,N} 1)	[-]	1,4											
Characteri	istic resistance	V^0 Rk,s	[kN]	12,5											
Partial fact	tor	γ _{Ms,V} 1)	[-]						1	,5					
Ductility fa	ictor	k ₇	[-]						О),8					
Characteri	istic resistance	M ⁰ Rk,s	[Nm]	21											
Pull-out fa	ailure														
Characteri uncracked	[kN]				7					9		7	',5		
	istic resistance in oncrete C20/25	N Rk,p	[kN]				2,5			6					
craked ar concrete	ncreasing factor for craked and uncracked				(f _{ck} /20) ^{0,5}										
	cone and splitting	failure													
Effective e	embedment depth	h _{ef}	[mm]	30 42											
Characteri prevent sp	istic resistance to plitting	N ⁰ Rk,sp	[kN]		7						9 7,5				
Factor	Cracked	k _{cr,N}	[-]						7	',7					
for	Uncracked	K _{ucr,N}	[-]						1	1,0					
Concrete	Edge distance	C _{cr} ,N	[mm]						1,5	5 h _{ef}					
cone failure	Spacing	S _{cr,N}	[mm]						3	h _{ef}					
Splitting	Edge distance	C _{cr,sp}	[mm]				60						63		
failure	Spacing	S _{cr,sp}	[mm]				120						126		
Installatio	on factor	γinst	[-]	1,:											
Concrete	pry-out failure														
Pry-out factor k ₈ [-]				1,0 1,5							1,5				
Concrete	edge failure			•						•					
Effective le	ength of fastener	I _f = h _{ef}	[mm]	30							42				
	ameter of fastener	d _{nom}	[mm]							6					

¹⁾ In absence of other national regulations.

²⁾ Only for redundant non-structural systems

Hilti screw anchor HUS3	Annex C1
Performances Essential characteristics under static and quasi-static load in concrete	

Table C2: Essential characteristics under static and quasi-static load in concrete for HUS3 size 8, 10, 14

Fastener	size HUS3				. 8			10			14		
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal e	mbedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115	
Adjustme	nt				•	•			•	•		•	
Total max. adjustmen	thickness of t layers	t _{adj}	[mm]	-	10	10	-	10	10	-	-	-	
Max. number of adjustments n _a		na	[-]	-	2	2	-	2	2	-	-	-	
Steel failu	re for tension load												
Characteristic resistance N _{Rk,s} [kN]			[kN]		39,2			62,2			96,6		
Partial fact	or	γ _{Ms,N} 1)	[-]				1,4						
Pull-out fa	ailure												
Characteristic resistance in uncracked concrete C20/25			[kN]	9	12	16	12	20	32	20	30	44	
Characteristic resistance in cracked concrete C20/25 NRk,p [kN]			[kN]	6	9	12	9	15	19	15	19	30	
craked ar concrete	g factor for nd uncracked Rk,p(C20/25) * Ψc	Ψο	[-]	(fck/20) ^{0,5}									
•	cone and splitting	failure											
Effective e	mbedment depth	h _{ef}	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8	
Characteri prevent sp	stic resistance to litting	N ⁰ Rk,sp	[kN]	9	12	16	12	20	26	17	26	42	
Factor	Cracked	Kcr,N	[-]					7,7					
for	Uncracked	K _{ucr,N}	[-]					11,0					
Concrete cone	Edge distance	C _{cr} ,N	[mm]					1,5 h _{ef}					
failure Spacing s _{cr,N} [mm] 3 h _{ef}													
Splitting	Edge distance	C _{cr,sp}	[mm]	60	70	85	65	90	110	85	100	140	
failure Spacing		Scr,sp	[mm]	120	140	170	130	180	220	170	200	280	
Installatio	n factor	γ̃inst	[-]					1,0					

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C2
Performances Essential characteristics under static and quasi-static load in concrete	

Table C2 continued

Fastener size HUS3				. 8			10			14	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{потз}
Nominal embedment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
Adjustment											
Total max. thickness of adjustment layers	t _{adj}	[mm]	-	10	10	•	10	10	-	-	-
Max. number of adjustments	na	[-]	-	2	2	-	2	2	-	-	-
Steel failure for shear load											
Characteristic resistance	V ⁰ Rk,s	[kN]	1	9	22	30		34	55		62
Partial factor	γ _{Ms,V} 1)	[-]					1,5				
Ductility factor	k ₇	[-]					0,8				
Characteristic resistance	$M^0_{Rk,s}$	[Nm]		46			92			187	
Concrete pry-out failure											
Pry-out factor	k ₈	[-]	1,0	2	,0	1,0			2,0		
Concrete edge failure											
Effective length of fastener	I _f = h _{ef}	[mm]	40	46,4	54,9	41,6	58,6	67,1	49,3	66,3	91,8
Outside diameter of fastener	d _{nom}	[mm]		8	_		10			14	_

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C3
Performances Essential characteristics under static and quasi-static load in concrete	, .

Table C3: Essential characteristics for seismic performance category C1 in concrete for HUS3 size 6

Fastener	size HUS3			6											
Туре				Н	С	A	I(F), I(F) Flex	PS PL	н	С	A	I(F), I(F) Flex	Р	PS PL	
Nominal em	bedment depth	h _{nom}	[mm]				h _{nom1} 40 ²⁾					h _{nom2} 55			
Steel failur	e for tension and	shear load	d												
Characteris	tic resistance	N _{Rk,s,C1}	[kN]	24	22		24	21	24	22		24		21	
Partial facto	or	γ̂Ms,N ¹⁾	[-]	[-] 1,4											
Characteris	tic resistance	$V_{Rk,s,C1}$	[kN]						5						
Partial facto	or	γMs,V ¹⁾	[-]	[-]											
Pull-out fai	lure														
Characteristic resistance in cracked concrete NRk,p,c1 [kN]			[kN]				2,5		4						
Concrete c	one failure														
Effective em	nbedment depth	h _{ef}	[mm]				30	42							
Concrete	Edge distance	Ccr,N	[mm]					1	,5 h _{ef}						
cone failure	Spacing	Scr,N	[mm]						3 h _{ef}						
Installation	n factor	γinst	[-]	1,2											
Concrete p	ry-out failure														
Pry-out factor k ₈ [-]						1,0		1,5							
Concrete e	dge failure														
Effective ler	ngth of fastener	I _f = h _{ef}	[mm]	30 42											
Outside dia	meter of fastener	d _{nom}	[mm]	6											

Hilti screw anchor HUS3	Annex C4
Performances Essentials characteristics for seismic performance category C1 in concrete	

In absence of other national regulations.
 Only for redundant non-structural systems

Table C4: Essential characteristics for seismic performance category C1 in concrete for HUS3 size 8, 10, 14

Fastener size HUS3					3	1	0	14	
				h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
Nominal em	bedment depth	h _{nom}	[mm]	60	70	75	85	85	115
Steel failure	e for tension and	shear load			•			•	1
Characterist	ic resistance	NRk,s,C1	[kN]	39	9,2	62	2,2	96	5,6
Partial factor	r	γ _{Ms,N} 1)	[-]			1	,4	•	
Characterist	ic resistance	V _{Rk,s,C1}	[kN]	11	1,9	16,8	17,7	22,5	34,5
Partial factor γ _{Ms,ν¹⁾ [-]}					1	,5	1	1	
Pull-out fail	ure								
Characteristic resistance in cracked concrete		N _{Rk,p,C1}	[kN]	9	12	15	19	19	30
Concrete co	one failure								
Effective em	bedment depth	h _{ef}	[mm]	46,4	54,9	58,6	67,1	66,3	91,8
Concrete	Edge distance	C _{cr,N}	[mm]			1,	5 h _{ef}		,
cone failure	Spacing	S _{Cr,N}	[mm]	3 h _{ef}					
Installation	factor	γinst	[-]	1,0					
Concrete p	ry-out failure		,						
Pry-out factor k _B [-]			2,0						
Concrete e	dge failure								
Effective len	gth of fastener	I _f = h _{ef}	[mm]	46,4	54,9	58,6	67,1	66,3	91,8
Outside diar	neter of fastener	d _{nom}	[mm]		3	10		14	

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C5
Performances Essentials characteristics for seismic performance category C1 in concrete	

Table C5: Essential characteristics for seismic performance category C2 in concrete

Fastener siz	e HUS3			8	10	14
				h _{nom3}	h _{nom3}	h _{nom3}
Nominal embe	dment depth	h _{nom}	[mm]	70	85	115
Adjustment			-			
Total max. thic layers	kness of adjustment	t _{adj}	[mm]	10	10	-
Max. number o	of adjustments	na	[-]	2	2	-
Steel failure f	or tension load					
Characteristic	resistance	NRk,s,C2	[k N]	39,2	62,2	96,6
Partial factor		γMs,N ¹⁾	[-]		1,4	
Pull out failur	е		1			
Characteristic cracked concre		N _{Rk,p,C2}	[kN]	3,2	9,4	17,7
Concrete con	e failure					
Effective embe	edment depth	h _{ef}	[mm]	54,9	67,1	91,8
Concrete	Edge distance	Ccr,N	[mm]		1,5 h _{ef}	
cone failure	Spacing	S _{CF,N}	[mm]		3 h _{ef}	
Installation factor		γinst	[-]	1,0		
Steel failure f	or shear load					
Installation wit	h Hilti filling set (HUS	3-H only)				
Partial factor		αgap	[-]		1,0	
Characteristic	resistance	V _{Rk,s,C2}	[kN]	14,7	25,6	46,5
Partial factor		γ _{Ms,V} 1)	[-]		1,5	
Installation wit	hout Hilti filling set					
Partial factor		αgap	[-]		0,5	
Characteristic	resistance	V _{Rk,s,C2}	[kN]	10,8	17,7	34,4
Partial factor		γ̃Ms,v ¹⁾	[-]		1,5	
Concrete pry-	out failure		•			
Pry-out factor		k ₈	[-]		2,0	
Concrete edg	e failure		'			
Effective lengt	h of fastener	$I_f = h_{ef}$	[mm]	54,9	67,1	91,8
Outside diame	ter of fastener	d _{nom}	[mm]	8	10	14
					1	I

¹⁾ In absence of other national regulations.

Hilti screw anchor HUS3	Annex C6
Performances Essentials characteristics for seismic performance category C2 in concrete	

Table C6: Essential characteristics under fire exposure in concrete for HUS3 size 6

Fastener HUS3	3			6 H, C, A, I(F), I(F) Flex, P, PS, PL				
Туре								
Nominal embedment depth hnom [mm]				h _{nom1} 40	h _{nom2} 55			
Steel failure for	tension and	shear load	I (F _{Rk,s,f}	i = N _{Rk,s,fi} = V _{Rk,s,fi})				
	R30	N _{Rk,s,fi}	[kN]	0,5	1,6			
	R60	$N_{Rk,s,fi}$	[kN]	0,5	1,2			
-	R90	N _{Rk,s,fi}	[kN]	0,5	0,8			
- Characteristic	R120	N _{Rk,s,fi}	[kN]	0,4	0,7			
resistance	R30	M ⁰ Rk,s,fi	[Nm]	0,4	1,4			
-	R60	M ⁰ Rk,s,fi	[Nm]	0,4	1,1			
-	R90	M ⁰ Rk,s,fi	[Nm]	0,4	0,7			
-	R120	M ⁰ Rk,s,fi	[Nm]	0,3	0,6			
Pull-out failure								
Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	0,6	1,5			
	R120	N _{Rk,p,fi}	[kN]	0,5	1,2			
Concrete cone f	ailure		'					
Characteristic resistance	R30 R60 R90	N ⁰ Rk,c,fi	[kN]	0,8	1,8			
	R120	N ⁰ Rk,c,fi	[kN]	0,7	1,5			
Edge distance					•			
	R30 to R12	O Ccr,fi	[mm]	2	h _{ef}			
In case of fire atta	ack from more	than one	side, th	e minimum edge distance shall be	e ≥ 300 mm			
Fastener spacin	g							
	R30 to R120	S _{cr,fi}	[mm]	20	Por,fi			
The anchorage d	epth shall be	increased t	for wet	concrete by at least 30 mm compa	ared to the given value			

Hilti screw anchor HUS3	Annex C7
Performances Essential characteristics under fire exposure in concrete	

Table C7: Essential characteristics under fire exposure in concrete for HUS3-H and HUS3-HF

		Fastener HUS3-H and HUS3-HF		8			10			14	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
ment depth	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
tension and	shear loa	d (F _{Rk,s,}	fi = N _{Rk,s}	,fi = V _{Rk,s}	,fi)				•		
R30	N _{Rk,s,fi}	[kN]	3,2	3,5	3,8	6,1	6,1 6,2 10,4 10,6				
R60	N _{Rk,s,fi}	[kN]	2,4	2,6	2,8	4,6	4,	,7	7,8	8	,1
R90	N _{Rk,s,fi}	[kN]	1,6	1,6	1,9	3,1	3,	,2	5,3	5	,5
R120	N _{Rk,s,fi}	[kN]	1,2	1,2	1,5	2,4	2,	,5	4,0	4	,3
R30	M ⁰ Rk,s,fi	[Nm]	3,8	4,1	4,4	9,1	9,	,2	20,4	20),6
R60	M ⁰ Rk,s,fi	[Nm]	2,8	3,0	3,4	6,9	7,	,0	15,4	15	5,7
R90	M ⁰ Rk,s,fi	[Nm]	1,9	1,9	2,3	4,6	4,	,8	10,4	10),7
R120	M ⁰ Rk,s,fi	[Nm]	1,5	1,4	1,7	3,5	3,7		7,9	8,3	
R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	2,3	3,0	2,4	4,0	4,9	3,1	4,8	7,8
R120	N _{Rk,p,fi}	[kN]	1,2	1,8	2,4	1,9	3,2	3,9	2,5	3,8	6,3
failure				•							
R30 R60 R90	N ⁰ Rk,c,fi	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	3,0	6,4	14,4
R120	N ⁰ Rk,c,fi	[kN]	1,4	2,1	3,2	1,6	3,8	5,3	2,4	5,1	11,5
R30 to R120	C _{cr,fi}	[mm]					2 h _{ef}				
tack from more	e than one	side, th	e minim	um edge	distance	e shall be	e ≥ 300 r	nm			
ng											
R30 to R120	S _{cr,fi}	[mm]					2 Ccr,fi				
	R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120 R120 R30 R60 R90 R120 R120 R30 R60 R90 R120 R30 R60 R90 R120 R30 R60 R90 R120	R30	r tension and shear load (Frk,s,r) R30 NRk,s,fi [kN] R60 NRk,s,fi [kN] R90 NRk,s,fi [kN] R120 NRk,s,fi [kN] R30 MORk,s,fi [Nm] R60 MORk,s,fi [Nm] R90 MORk,s,fi [Nm] R120 NRk,p,fi [kN] R60 NRk,p,fi [kN] R60 NORk,c,fi [kN] Failure R30 R60 RN R60 NORk,c,fi [kN] R30 R60 NORk,c,fi [kN] R30 R60 RN [kN] R30 R60 RR [kN] R30 R60 RR [kN]	R30	r tension and shear load (FRk,s,fi = NRk,s,fi = VRk,s R30	r tension and shear load (F _{Rk,s,fi} = N _{Rk,s,fi} = V _{Rk,s,fi}) R30 N _{Rk,s,fi} [kN] 3,2 3,5 3,8 R60 N _{Rk,s,fi} [kN] 2,4 2,6 2,8 R90 N _{Rk,s,fi} [kN] 1,6 1,6 1,9 R120 N _{Rk,s,fi} [kN] 1,2 1,2 1,5 R30 M ⁰ _{Rk,s,fi} [Nm] 3,8 4,1 4,4 R60 M ⁰ _{Rk,s,fi} [Nm] 2,8 3,0 3,4 R90 M ⁰ _{Rk,s,fi} [Nm] 1,9 1,9 2,3 R120 M ⁰ _{Rk,s,fi} [Nm] 1,5 1,4 1,7 R30 R60 N _{Rk,s,fi} [Nm] 1,5 1,4 1,7 R30 R60 N _{Rk,p,fi} [kN] 1,5 2,3 3,0 R120 N _{Rk,p,fi} [kN] 1,2 1,8 2,4 failure R30 R60 N ⁰ _{Rk,c,fi} [kN] 1,8 2,6 4,0 R120 N ⁰ _{Rk,c,fi} [kN] 1,4 2,1 3,2 R30 to R120 C _{cr,fi} [mm] rtack from more than one side, the minimum edge distance ng	r tension and shear load (F _{Rk,s,fi} = N _{Rk,s,fi}) R30	r tension and shear load (F _{Rk,s,fi} = N _{Rk,s,fi} = V _{Rk,s,fi}) R30 N _{Rk,s,fi} [kN] 3,2 3,5 3,8 6,1 6, R60 N _{Rk,s,fi} [kN] 2,4 2,6 2,8 4,6 4, R90 N _{Rk,s,fi} [kN] 1,6 1,6 1,9 3,1 3, R120 N _{Rk,s,fi} [kN] 1,2 1,2 1,5 2,4 2, R30 M ⁰ _{Rk,s,fi} [Nm] 3,8 4,1 4,4 9,1 9, R60 M ⁰ _{Rk,s,fi} [Nm] 2,8 3,0 3,4 6,9 7, R90 M ⁰ _{Rk,s,fi} [Nm] 1,9 1,9 2,3 4,6 4, R120 M ⁰ _{Rk,s,fi} [Nm] 1,5 1,4 1,7 3,5 3, R30 R60 N _{Rk,p,fi} [kN] 1,5 2,3 3,0 2,4 4,0 R120 N _{Rk,p,fi} [kN] 1,5 2,3 3,0 2,4 4,0 R120 N _{Rk,p,fi} [kN] 1,2 1,8 2,4 1,9 3,2 failure R30 R60 N _{Rk,p,fi} [kN] 1,8 2,6 4,0 2,0 4,7 R90 N ⁰ _{Rk,c,fi} [kN] 1,4 2,1 3,2 1,6 3,8 R30 to R120 C _{cr,fi} [mm] 2 her tack from more than one side, the minimum edge distance shall be ≥ 300 ring R30 to R120 S _{cr,fi} [mm] 2 c _{cr,fi}	r tension and shear load (FRk,s,fi = NRk,s,fi = VRk,s,fi) R30	r tension and shear load (F _{Rk,s,fi} = N _{Rk,s,fi} = V _{Rk,s,fi}) R30 N _{Rk,s,fi} [kN] 3,2 3,5 3,8 6,1 6,2 10,4 R60 N _{Rk,s,fi} [kN] 1,6 1,6 1,9 3,1 3,2 5,3 R120 N _{Rk,s,fi} [kN] 1,2 1,2 1,5 2,4 2,5 4,0 R30 M ⁰ _{Rk,s,fi} [Nm] 3,8 4,1 4,4 9,1 9,2 20,4 R60 M ⁰ _{Rk,s,fi} [Nm] 2,8 3,0 3,4 6,9 7,0 15,4 R90 M ⁰ _{Rk,s,fi} [Nm] 1,9 1,9 2,3 4,6 4,8 10,4 R120 M ⁰ _{Rk,s,fi} [Nm] 1,5 1,4 1,7 3,5 3,7 7,9 R30 N _{Rk,s,fi} [Nm] 1,5 1,4 1,7 3,5 3,7 7,9 R30 N _{Rk,p,fi} [kN] 1,2 1,8 2,4 1,9 3,2 3,9 2,5 failure R30 N _{Rk,p,fi} [kN] 1,8 2,6 4,0 2,0 4,7 6,6 3,0 R120 N _{Rk,p,fi} [kN] 1,4 2,1 3,2 1,6 3,8 5,3 2,4 R30 to R120 C _{cr,fi} [mm] 2 h _{ef} ttack from more than one side, the minimum edge distance shall be ≥ 300 mm ng	r tension and shear load (FR _{K,s,fi} = N _{Rk,s,fi} = V _{Rk,s,fi}) R30 N _{Rk,s,fi} [kN] 3,2 3,5 3,8 6,1 6,2 10,4 10 R60 N _{Rk,s,fi} [kN] 2,4 2,6 2,8 4,6 4,7 7,8 8 R90 N _{Rk,s,fi} [kN] 1,6 1,6 1,9 3,1 3,2 5,3 5 R120 N _{Rk,s,fi} [kN] 1,2 1,2 1,5 2,4 2,5 4,0 4 R30 M ⁰ _{Rk,s,fi} [Nm] 3,8 4,1 4,4 9,1 9,2 20,4 20 R60 M ⁰ _{Rk,s,fi} [Nm] 2,8 3,0 3,4 6,9 7,0 15,4 15 R90 M ⁰ _{Rk,s,fi} [Nm] 1,9 1,9 2,3 4,6 4,8 10,4 10 R120 M ⁰ _{Rk,s,fi} [Nm] 1,5 1,4 1,7 3,5 3,7 7,9 8 R30 N _{Rk,p,fi} [kN] 1,5 2,3 3,0 2,4 4,0 4,9 3,1 4,8 R30 N _{Rk,p,fi} [kN] 1,5 2,3 3,0 2,4 4,0 4,9 3,1 4,8 R30 N _{Rk,p,fi} [kN] 1,5 2,3 3,0 2,4 4,0 4,9 3,1 4,8 R30 N _{Rk,p,fi} [kN] 1,2 1,8 2,4 1,9 3,2 3,9 2,5 3,8 failure R30 R60 N _{Rk,p,fi} [kN] 1,8 2,6 4,0 2,0 4,7 6,6 3,0 6,4 R120 N _{Rk,p,fi} [kN] 1,4 2,1 3,2 1,6 3,8 5,3 2,4 5,1 R30 to R120 C _{er,fi} [mm] 2 h _{er} tack from more than one side, the minimum edge distance shall be ≥ 300 mm ng R30 to R120 S _{er,fi} [mm] 2 h _{er}

Hilti screw anchor HUS3	Annex C8
Performances Essential characteristics under fire exposure in concrete	

Table C8: Essential characteristics under fire exposure in concrete for HUS3-C

Fastener HUS3-C					8			10	
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	n	h _{nom}	[mm]	50	60	70	55	75	85
Steel failure for tension a	and shear load	I (F _{Rk,s,fi} =	N _{Rk,s,fi} =	V _{Rk,s,fi})					
	R30	$N_{Rk,s,fi}$	[kN]		0,5			1,2	
	R60	N _{Rk,s,fi}	[kN]		0,4			1,0	
	R90	N _{Rk,s,fi}	[kN]		0,3			0,8	
Characteristic resistance	R120	$N_{Rk,s,fi}$	[kN]		0,2			0,6	
Characteristic resistance	R30	M ⁰ Rk,s,fi	[Nm]		0,6			1,7	
	R60	M ⁰ Rk,s,fi	[Nm]		0,5			1,5	
	R90	M ⁰ Rk,s,fi	[Nm]	0,4			1,1		
	R120	M ⁰ Rk,s,fi	[Nm]	0,3			0,9		
Pull-out failure			·						
Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	1,5	2,3	3,0	2,4	4,0	5,0
	R120	$N_{Rk,p,fi}$	[kN]	1,2	1,8	2,4	1,9	3,2	4,0
Concrete cone failure									
Characteristic resistance	R30 R60 R90	N [©] Rk,c,fi	[kN]	1,8	2,6	4,0	2,0	4,7	6,6
	R120	N ⁰ Rk,c,fi	[kN]	1,5	2,1	3,2	1,6	3,8	5,3
Edge distance									
	R30 to R120	C _{cr} ,fi	[mm]			2	h _{ef}		
In case of fire attack from I	more than one	side, the r	ninimum	edge di	stance s	hall be ≥	300 mm)	
Fastener spacing									
	R30 to R120 s _{cr,fi} [mm] 2 c _{cr,fi}								
The anchorage depth shal	l be increased t	or wet cor	ncrete by	y at leas	t 30 mm	compare	ed to the	given va	lue

Hilti screw anchor HUS3	Annex C9
Performances Essential characteristics under fire exposure in concrete	

Table C9: Displacements under tension loads

Fastener size	HUS3			6				
Туре				H, C, A, I(F), P, PS, PL	H, C, A, I(F)	P, PS, PL		
Nominal embedment depth		h _{nom}	[mm]	h _{nom1} 40	h _{nc} 5			
Cracked	Tension Load	N	[kN]	1,0	2,	4		
concrete C20/25 to	Displacement	δνο	[mm]	0,1	0,	1		
C50/60		δ _{N∞}	[mm]	0,6	0,	6		
Uncracked	Tension Load	N	[kN]	2,8	3,6	3,0		
concrete C20/25 to C50/60	Displacement	δ _{N0}	[mm]	0,2	0,	2		
		δι∞	[mm]	0,3	0,	3		

Table C10: Displacements under tension loads

Fastener size HUS3			8			10			14			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{пот} з	h _{nom1}	h _{nom2}	h _{пот} з
Nominal embedment depth [mm]			50	60	70	55	75	85	65	85	115	
Cracked	Tension Load	N	[kN]	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2
concrete C20/25 to	Displacement	δνο	[mm]	0,3	0,4	0,3	0,4	0,4	0,4	0,6	0,5	0,5
C50/60		δ _{N∞}	[mm]	0,7	0,7	0,6	0,4	0,4	0,5	0,9	1,2	1,0
Uncracked	Tension Load	N	[kN]	6,6	8,9	11,8	8,7	14,8	20,5	12,9	20,1	32,8
concrete C20/25 to	Disalasament	δνο	[mm]	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,3
C50/60	Displacement	δи∞	[mm]		0,3			0,2			0,5	

Table C11: Displacements under shear loads

Fastener size HUS3			6		8		10			14				
			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth [mm]		40	55	50	60	70	55	75	85	65	85	115		
Cracked Shear Load V [kN]		6,0		8,1		13,3			21,4					
C20/25	Displacement	δνο	[mm]	1,1	1,9	2,5	3,4	2,9	3,8	3,7	3,2	3,6	3,2	2,4
to C50/60	Displacement	δ∨∞	[mm]	2,0	2,8	3,7	5,1	4,4	5,7	5,5	4,9	5,4	6,9	3,5

Hilti screw anchor HUS3	Annex C10
Performances Displacement values in case of static and quasi-static loading	

Table C12: Displacements under tension load for seismic performance category C2

Fastener size HUS	8	10	14		
			h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment d	epth		70	85	115
Displacement DLS	δ _{N,C2 (DLS)}	[mm]	0,35	0,57	1,43
Displacement ULS	δn,c2 (ULS)	[mm]	0,65	2,08	4,32

Table C13: Displacements under shear load for seismic performance category C2

Fastener size HUS3	8	10	14		
			h _{nom3}	h _{nom3}	h _{nom3}
Nominal embedment d	epth		70	85	115
Installation with Hilti fill	ing set (HUS3-H	l only)			
Displacement DLS	δv,c2 (DLS)	[mm]	1,81	1,80	2,52
Displacement ULS	δ _{V,C2 (ULS)}	[mm]	4,60	4,03	6,79
Installation without Hilt	i filling set				
Displacement DLS	δ _{V,C2 (DLS)}	[mm]	3,93	4,15	4,93
Displacement ULS	δv,c2 (ULS)	[mm]	5,55	6,15	9,14

Hilti screw anchor HUS3	Annex C11
Performances Displacement values in case of seismic performance category C2	