

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-13/1066 vom 16. Juni 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

ELEMATIC T66

Kunststoffdübel für redundante nichttragende Systeme in Beton und Mauerwerk

ITW Construction Products Italy S.r.l.

V.le Regione Veneto, 5 35127 PADOVA (PD)

ITALIEN

ITW Construction Products Italy S.r.I.

V.le Regione Veneto, 5 35127 PADOVA (PD)

ITALIEN

17 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330284-00-0604, Edition 12/2020

ETA-13/1066 vom 28. Februar 2014

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z158537.25 | 8.06.04-112/25

Seite 2 von 17 | 16. Juni 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 17 | 16. Juni 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Elematic T66 Rahmendübel ist ein Kunststoffdübel bestehend aus einer Dübelhülse aus Polyamid und einer zugehörigen Spezialschraube aus galvanisch verzinktem Stahl oder nichtrostendem Stahl.

Die Dübelhülse wird durch das Eindrehen der Spezialschraube, die die Hülse gegen die Bohrlochwandung presst, verspreizt.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	siehe Anhang C 1

3.2 Mechanische Festigkeit und Standsicherheit (BWR 4)

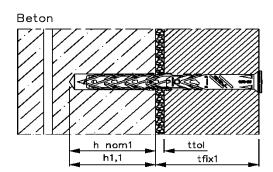
Wesentliches Merkmal	Leistung
Charakteristische Stahltragfähigkeit unter Zugbeanspruchung	siehe Anhang C 1
Charakteristische Stahltragfähigkeit unter Querbeanspruchung	siehe Anhang C 1
Charakteristische Tragfähigkeit für Dübelauszug oder Betonversagen unter Zugbeanspruchung (Verankerungsgrund Gruppe a)	siehe Anhang C 1
Charakteristische Tragfähigkeit in alle Lastrichtungen ohne Hebelarm (Verankerungsgrund Gruppe b, c, d)	siehe Anhang C 2 – C 5
Minimale Rand- und Achsabstände (Verankerungsgrund Gruppe a)	siehe Anhang B 3
Minimale Rand- und Achsabstände (Verankerungsgrund Gruppe b, c, d)	siehe Anhang B 4
Verschiebungen unter Kurzzeit- und Langzeitbeanspruchung	siehe Anhang C 1 and C 5
Dauerhaftigkeit	siehe Anhang B 1

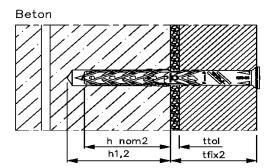
Seite 4 von 17 | 16. Juni 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

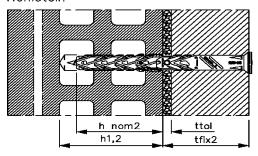
Gemäß dem Europäischen Bewertungsdokument EAD 330284-00-0604 gilt folgende Rechtsgrundlage: [97/463/EG].

Folgendes System ist anzuwenden: 2+

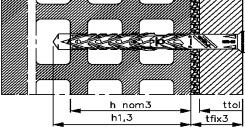

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

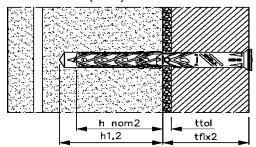

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

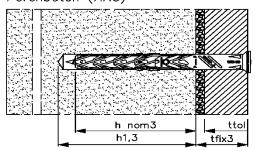
Ausgestellt in Berlin am 16. Juni 2025 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Ziegler





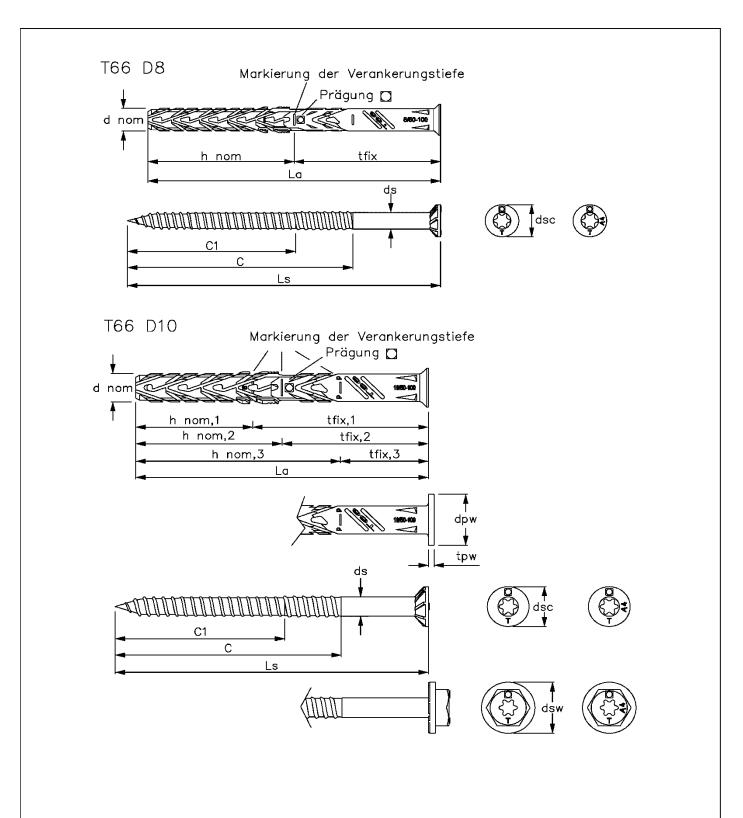

Hohlstein



Porenbeton (AAC)

Porenbeton (AAC)

Hohlstein


Legende: $h_{nom,1}$, $h_{nom,2}$, $h_{nom,3}$ = Gesamtlänge des Kunststoffdübels im Verankerungsgrund $h_{1,1}$, $h_{1,2}$, $h_{1,3}$ = Tiefe des Bohrlochs bis zum tiefsten Punkt

= t_{tol} + Dicke des Anbauteils t_{fix1} , t_{fix2} , t_{fix3}

= Dicke der Toleranzausgleichsschicht oder der nichttragenden Schicht t_{tol}

ELEMATIC T66 Anhang A 1 Produktbeschreibung Einbauzustand

ELEMATIC T66	
Produktbeschreibung Dübeltypen, Schraube, Prägung	Anhang A 2

Tabelle A1: Abmessungen [mm]

Döbal			Düb	elhülse				Spezials	chraube	
Dübel	d _{nom}	h _{nom,1}	h _{nom,2}	h _{nom,3}	min L _a	max L _a	d _s	C ₁	С	Ls
T66 8	8	-	50	-	60	150	6	57	77 1)	67-157
T66 10	10	40	50	70	60	300	7	57	77 1)	67-307

¹⁾ gilt nicht für Ls = 67 mm

Tabelle A2: Werkstoffe

Beschreibung	Werkstoff
Dübelhülse	Polyamid, Farbe: grau
Spezial- schraube	galvanisch verzinkter Stahl ≥ 5 µm gemäß EN ISO 4042:2022 $f_{yk} \ge 480 \text{N/mm}^2 ; f_{uk} \ge 600 \text{N/mm}^2$
	nichtrostender Stahl "A4" nach ISO 3506-1:2020 (Werkstoffnummer 1.4401 / 1.4404 / 1.4571 / 1.4578 nach EN 10088-3:2014) Korrosionsbeständigkeitsklasse CRC III gemäß EN 1993-1-4: 2006+A1:2015 $f_{yk} \geq 600 \text{N/mm}^2 \; ; \; f_{uk} \geq 800 \text{N/mm}^2$

ELEMATIC T66	
Produktbeschreibung Abmessungen und Werkstoffe	Anhang A 3

Angaben zum Verwendungszweck

Beanspruchung der Verankerung:

- statische oder quasi-statische Belastung.
- Mehrfachbefestigung von nichttragenden Systemen.

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklasse ≥ C12/15 (Verankerungsgrund Gruppe a) gemäß EN 206:2013 + A1:2016. Siehe Anhang C 1.
- Vollstein Mauerwerk (Verankerungsgrund Gruppe b) gemäß Anhang C 2.
 Anmerkung: Die charakteristische Tragfähigkeit des Dübels kann auch für Vollstein Mauerwerk mit größeren Abmessungen und größeren Druckfestigkeiten angewendet werden.
- Hohl- oder Lochsteine (Verankerungsgrund Gruppe c) gemäß Anhang B 2, C 3, C 4 und C 5.
- Porenbeton (Verankerungsgrund Gruppe d) gemäß Anhang C 6.
- Festigkeitsklasse des Mauermörtels mindestens M2,5 gemäß EN 998-2:2016.
- Bei anderen Steinen der Verankerungsgrund Gruppe a, b, c oder d (ausschließlich T66 Ø10) darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche gemäß EOTA TR 051:2018-04 ermittelt werden.

Temperaturbereich:

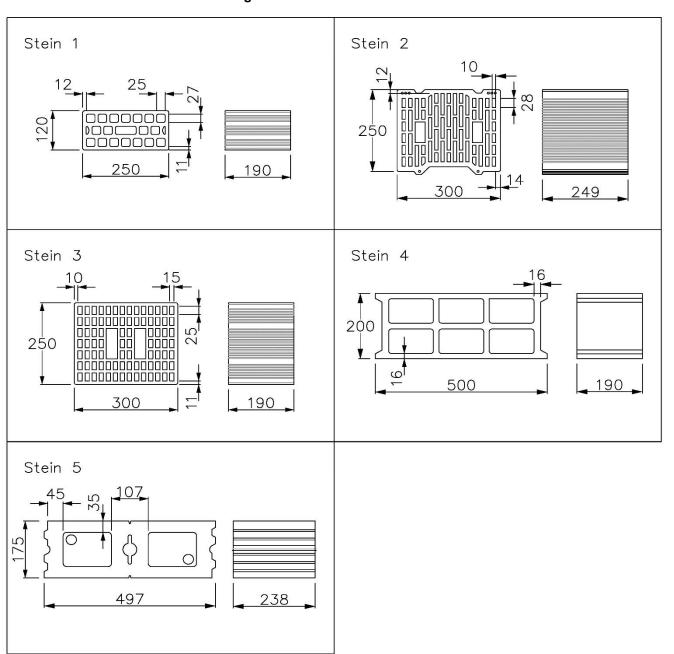
- c: -40°C bis +50°C (max. Kurzzeit-Temperatur +50°C und max. Langzeit-Temperatur +30°C).
- b: -40°C bis +80°C (max. Kurzzeit-Temperatur +80°C und max. Langzeit-Temperatur +50°C).

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume: Schraube aus verzinktem Stahl / nichtrostendem Stahl
- Die Spezialschraube aus galvanisch verzinktem Stahl darf auch im Freien verwendet werden, wenn nach sorgfältigem Einbau der Befestigungseinheit der Bereich des Schraubenkopfes gegen Feuchtigkeit und Schlagregen so geschützt wird, dass ein Eindringen von Feuchtigkeit in den Dübelschaft nicht möglich ist. Dafür ist vor dem Schraubenkopf eine Fassadenbekleidung oder eine vorgehängte hinterlüftete Fassade zu befestigen und der Schraubenkopf selbst mit einer weichplastischen dauerelastischen Bitumen-Öl-Kombinationsbeschichtung (z. B. Kfz-Unterboden- bzw. Hohlraumschutz) zu versehen.
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (Schraube aus nichtrostendem Stahl der Korrosionsbeständigkeitsklasse CRC III).
 - Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit EOTA TR 064:2018-05 unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.


Einbau

- Beachtung des Bohrlochverfahrens nach Anhang C1 C8 für die Verankerungsgrund Gruppen a, b, c und d
- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Temperatur beim Setzen des Dübels von -5°C bis +40°C.
- UV-Belastung durch Sonneneinstrahlung des ungeschützten, d. h. unverputzten Dübels ≤ 6 Wochen.
- Kein Wassereintritt im Bohrloch bei Temperaturen < 0°C.

ELEMATIC T66	
Verwendungszweck Spezifikationen	Anhang B 1

Tabelle B1: Geometrie und Abmessungen der Hohl- oder Lochsteine

ELEMATIC T66	
Verwendungszweck Geometrie und Abmessung der Hohl- oder Lochsteine	Anhang B 2

Tabelle B2: Montagekennwerte

Dübel				T66 8		T66 10	
Verankerungsgrund Gruppe				a,b,c	а	b	c ¹⁾ ,d
Bohrlochdurchmesser	d_0	[mm]	=	8		10	
Bohrerschneidendurchmesser	d _{cut}	[mm]	≤	8,45		10,45	
Tiefe des Bohrlochs zum tiefsten Punkt h _{1,1}	h _{1,1}	[mm]	2	_	50	-	-
Gesamtlänge des Kunststoffdübels im							
Verankerungsgrund h _{nom,1}	h _{nom,1}	[mm]	≥	-	40	-	-
Tiefe des Bohrlochs zum tiefsten Punkt h _{1,2}	h _{1,2}	[mm]	≥	60	60	60	60
Gesamtlänge des Kunststoffdübels im Verankerungsgrund h _{nom,2}	h _{nom,2}	[mm]	≥	50	50	50	50
Tiefe des Bohrlochs zum tiefsten Punkt h _{1,3}	h _{1.3}	[mm]	≥	_	-	_	80
Gesamtlänge des Kunststoffdübels im							
Verankerungsgrund h _{nom,3}	h _{nom,3}	[mm]	≥	-	-	_	70
Bohrlochdurchmesser im Anbauteil	d _f	[mm]	≤	8,5		10,5	

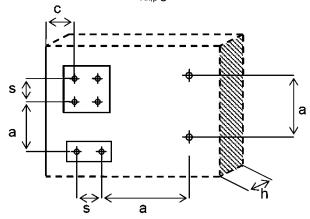

¹⁾ Im Mauerwerk aus Hohlblöcken oder Lochsteinen ist der Einfluss h_{nom} > 50 mm durch Versuche am Bauwerk gemäß EOTA TR 051:2018-04 zu ermitteln.

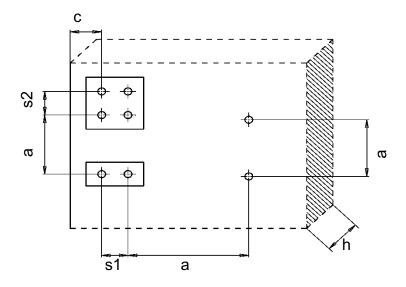
Tabelle B3: Minimale Bauteildicke, Randabstand, und Achsabstand in Beton

Dübel		Minimale Bauteildicke	Charakteris- tischer Randabstand	Charakteris- tischer Achsabstand	Minimale Rand- und Achsabstände
		h _{min} [mm]	c _{cr,N} [mm]	s _{cr,N} [mm]	[mm]
T66 8	concrete ≥C16/20		50	60	s_{min} = 50 for c_{min} = 50
(h _{nom} =50 mm)	concrete C12/15		70	55	s_{min} = 70 for c_{min} = 70
T66 10	concrete ≥C16/20	100	80	65	s_{min} = 60 for c_{min} = 50
(h _{nom} =40 mm)	concrete C12/15	100	110	60	s_{min} = 85 for c_{min} = 70
T66 10	concrete ≥C16/20		100	90	s _{min} = 70 for c _{min} = 60
(h _{nom} =50 mm)	concrete C12/15		140	85	s _{min} = 100 for c _{min} = 85

Befestigungspunkte mit einem Abstand a $\leq s_{cr,N}$ werden als Gruppe betrachtet, mit einer maximalen charakteristischen Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle C3. Für einen Achsabstand a $> s_{cr,N}$ werden die Dübel als Einzeldübel betrachtet, jeweils mit einem charakteristischen Widerstand $N_{Rk,p}$ gemäß Tabelle C3.

Schema der Dübelabstände in Beton

ELEMATIC T66	
Verwendungszweck Montagekennwerte, Rand- und Achsabstände in Beton	Anhang B 3

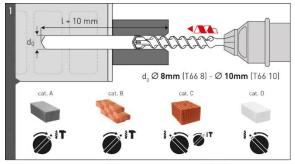

Tabelle B4: Minimale Bauteildicke, Randabstand und Achsabstand in Mauerwerk

Dübel			T66 8	T66 10
Mindestdicke des Bauteils	h_{min}	[mm]	110	110
Einzeldübel				
Minimaler Achsabstand	a _{min}	[mm]	250	250
Minimaler Randabstand	C _{min}	[mm]	100	100
Dübelgruppe				
Minimaler Achsabstand rechtwinklig zum Bauteilrand	S _{1,min}	[mm]	200	200
Minimaler Achsabstand parallel zum Bauteilrand	S _{2,min}	[mm]	400	400
Minimaler Randabstand	C _{min}	[mm]	100	100

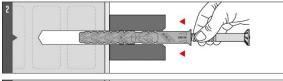
Tabelle B5: Minimale Bauteildicke, Randabstand und Achsabstand in Porenbeton

Dübel			T66 10
Mindestdicke des Bauteils	h_{min}	[mm]	100
Einzeldübel			
Minimaler Achsabstand	a _{min}	[mm]	250
Minimaler Randabstand	C _{min}	[mm]	100
Dübelgruppe			
Minimaler Achsabstand rechtwinklig zum Bauteilrand	S _{1,min}	[mm]	200
Minimaler Achsabstand parallel zum Bauteilrand	S _{2,min}	[mm]	400
Minimaler Randabstand	C _{min}	[mm]	100

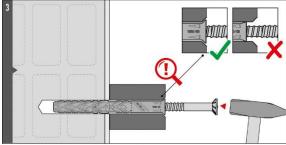
Schema der Dübelabstände in Mauerwerk und in Porenbeton

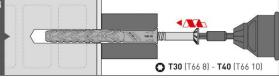


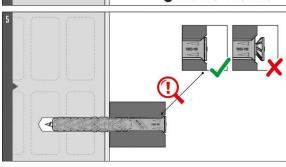
ELEMATIC T66	
Verwendungszweck Rand- und Achsabstand in Mauerwerk und Porenbeton	Anhang B 4

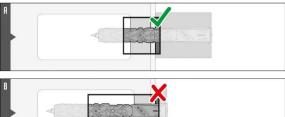

Montageanleitung

Anhand des Beispiels für T66 8 und T66 10 mit h_{nom} = 50 mm




1) Bohren des Bohrlochs unter Berücksichtigung des Bohrverfahrens.


Reinigen des Bohrlochs.



2) + 3) Durch leichte Hammerschläge wird die Dübelhülse eingesetzt.

4) + 5) Spezialschraube soweit einschrauben bis der Schraubenkopf an der Dübelhülse anliegt.

Der Dübel ist richtig montiert, wenn die Dübelhülse im Bohrloch nicht durchdreht und wenn die Schraube sich nicht verschieben lässt, nachdem sie vollständig in die Dübelhülse eingedreht wurde.

A) + B) Kontrolle der Setztiefe des Kunststoffdübels nach der Montage.

ELEMATIC T66

Verwendungszweck Montageanleitung Anhang B 5

Tabelle C1: Charakteristisches Biegemoment der Schraube

Dübel		T66	8 8	T66 10		
		galvanisch	nichtrostender	galvanisch	nichtrostender	
		verzinkter Stahl	Stahl	verzinkter Stahl	Stahl	
Charakteristisches Biegemoment	M _{Rk,s} [Nm]	11,13	14,84	16,85	22,46	

Tabelle C2: Charakteristische Tragfähigkeit der Schraube

Versagen des Spreizelements (Spezialschraube)		T66	8 8	T66 10		
		galvanisch verzinkter Stahl	nichtrostender Stahl	galvanisch verzinkter Stahl	nichtrostender Stahl	
Charakteristische Zugtragfähigkeit	N _{Rk,s} [kN]	13,74	18,32	18,11	24,15	
Charakteristische Quertragfähigkeit	V _{Rk,s} [kN]	6,87	9,16	9,06	12,08	

Tabelle C3: Charakteristische Tragfähigkeit bei Anwendung in Beton (Hammerbohrer im Drehgang)

	0 0		J	`		U	Ο,
Versagen durch Herausziehen		T6	6 8	T66	3 10	T66	3 10
(Kunststoffdübelhülse)		h _{nom} =	50 mm	h _{nom,1} =	40 mm	h _{nom,2} =	50 mm
Temperaturbereich		30/50°C	50/80°C	30/50°C	50/80°C	30/50°C	50/80°C
Beton C12/15							
Charakteristische Zugtragfähigkeit	N _{Rk,p} [kN]	2,0	2,0	2,5	2,0	4,0	3,0
Beton ≥ C20/25							
Charakteristische Zugtragfähigkeit	N _{Rk,p} [kN]	3,0	2,5	3,5	3,0	5,5	4,0

Tabelle C4: Werte unter Brandbeanspruchung in Beton C20/25 bis C50/60 in jede Lastrichtung (keine dauerhafte zentrische Zuglast, Querkraft ohne Hebelarm), Befestigung von Fassadensystemen

Dübel	Feuerwiderstandsklasse	F _{Rk,fi,90}	γ _{M,fi} 1)
T66 10 mit h _{nom,2} = 50 mm	R 90	0,8 kN	1,0

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle C5: Verschiebung unter Zugbelastung und Querbelastung in Beton und Mauerwerk

Dübel		Zugbelastung			Q	uerbelastun	g
	h _{nom}	F	δ_{N0}	δ_{N^∞}	F	δ_{V0}	δ_{V^∞}
	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Beton							
T66 8	50	1,0	0,14	0,14	1,7	0,94	1,41
T66 10	40	1,2	0,21	0,07	2,0	0,55	0,83
T66 10	50	2,2	0,12	0,19	3,1	1,08	1,62
Vollstein							
T66 8	50	1,0	0,12	0,24	1,0	0,83	1,25
T66 10	50	1,0	0,39	0,77	1,0	0,83	1,25
Hohl-oder Lochsteine							
T66 8	50	0,26	0,57	1,14	0,34	0,29	0,43
T66 10	50	0,34	0,55	1,10	0,34	0,29	0,43
T66 10	70	0,26	0,09	0,18	0,34	0,29	0,43

Leistungen Charakteristische Tragfähigkeit der Schraube, Charakteristische Tragfähigkeit in Beton, Werte unter Brandbeanspruchung, Verschiebungen in Beton und Mauerwerk Anhang C 1

$Tabelle~C6:~T66~8~-~Charakteristische~Tragf\"{a}higkeit~F_{Rk}~in~[kN]~in~Vollstein~(Verankerungsgrund~Gruppe~"b")$

Verankerungsgrund [Hersteller / Name]	Min. Format (L x W x H)	Roh- dichte	Mittlere Druckfestig- keit gemäß EN 771	Bohr- verfahren	Mindest- bauteil- dicke	Charakteristische Tragfähigkeit F _{Rk} [kN] h _{nom} = 50 mm	
		ρ			h		
	[mm]	[kg/dm ³]	[N/mm ²]		[mm]	30/50°C	50/80°C
Mayorziagal			20		110	3,0	3,0
Mauerziegel EN 771-1:2011+A1:2015	237x110x54	> 1.6	20	Hammer-	240	3,5	3,5
e.g. Danesi	237 X 1 10 X 54	≥ 1,6	10	bohren	110	2,0	2,0
HD Mauerziegel			10		240	2,5	2,5
Mauarziagal			20		110	3,0	3,0
Mauerziegel EN 771-1:2011+A1:2015	240-445-74	> 1.0	20	Hammer-	240	3,5	3,5
z.B. Wienerberger	240x115x71	≥ 1,8	40	bohren	110	2,0	2,0
Poroton MZ-NF			10		240	2,5	2,5

Tabelle C7: T66 10 - Charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollstein (Verankerungsgrund Gruppe "b")

Verankerungsgrund [Hersteller / Name]	Min. Format	Roh- dichte	Mittlere Bohr- Druckfestig- keit gemäß EN 771		Mindest- bauteil- dicke	Tragfähi	eristische gkeit F _{Rk} N] 50 mm
		ρ			h		
	[mm]	[kg/dm ³]	[N/mm ²]		[mm]	30/50°C	50/80°C
Mauerziegel			20		110	3,0	3,0
EN 771-1:2011+A1:2015	237x110x54	1,6		Hammer-	240	3,5	3,5
z.B. Danesi HD Mauerziegel	2012110204	1,0	10	bohren	110	2,0	2,0
TID Maderzieger	ciegei 10		240	2,5	2,5		
Mauerziegel			20		110	3,0	3,0
EN 771-1:2011+A1:2015	240x115x71	≥ 1,8	20	Hammer-	240	3,5	3,5
z.B. Wienerberger Poroton MZ-NF	2403110371	<u> </u>	10	bohren	110	2,0	2,0
F OIOLOII IVIZ-INF			10		240	2,5	2,5

ELEMATIC T66	
Leistungen Charakteristische Tragfähigkeit in Vollsteinen	Anhang C 2

Tabelle C8: T66 8 - charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Verankerungsgrund Gruppe "c") mit $h_{nom,2}$ = 50 mm

Verankerungsgrund	Min. Format	Roh-	Mittlere	Bohr-	Charakte	ristische
[Hersteller / Name]	(L x W x H)	dichte	Druckfestigkeit gemäß	verfahren	Tragfähigke	eit F _{Rk} [kN]
			EN 771		h _{nom,2} =	50 mm
		ρ				
	[mm]	[kg/dm³]	[N/mm ²]		30/50°C	50/80°C
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Dosson Doppio Uni	250x120x190	≥ 0,9	20	Drehbohren	1,5	0,9
siehe Anhang B 2; Stein 1						
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Wienerberger Porotherm Bioplan	300x250x249	≥ 0,8	12	Drehbohren	2,0	1,5
siehe Anhang B 2, Stein 2						
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Dosson Alveolater siehe Anhang B 2, Stein 3	300x250x190	≥ 0,8	12	Drehbohren	1,2	0,9
Hohlblock aus Beton EN 771-3:2011+A1:2015 z.B. Fabemi Creux B40 siehe Anhang B 2, Stein 4	500x200x190	≥ 0,9	4	Drehbohren	1,5	0,9
Hohlblock aus Beton EN 771-3:2011+A1:2015 z.B. KLB Plan Hohlblock siehe Anhang B 2, Stein 5	497x238x175	≥ 1,0	5	Drehbohren	1,5	1,2

ELEMATIC T66	
Leistungen Charakteristische Tragfähigkeit in Hohl- oder Lochsteinen	Anhang C 3

Tabelle C9: T66 10 - charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Verankerungsgrund Gruppe "c") mit $h_{nom,2}$ = 50 mm

		,,-				
Verankerungsgrund [Hersteller / Name]	Min. Format	Roh- dichte	Mittlere Druckfestigkeit	Bohr-	Charakteristische Tragfähigkeit F _{Rk} [kN	
	(L x W x H)	diorito	gemäß EN 771	verfahren	$h_{\text{nom},2} = 50 \text{ mm}$	
		ρ				
	[mm]	[kg/dm³]	[N/mm ²]		30/50°C	50/80°C
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Dosson Doppio Uni siehe Anhang B 2; Stein 1	250x120x190	≥ 0,9	20	Drehbohren	1,5	1,2
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Wienerberger Porotherm Bioplan siehe Anhang B 2, Stein 2	300x250x249	≥ 0,8	12	Drehbohren	2,0	1,5
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Dosson Alveolater siehe Anhang B 2, Stein 3	300x250x190	≥ 0,8	12	Drehbohren	1,2	0,9
Hohlblock aus Beton EN 771-3:2011+A1:2015 z.B. Fabemi Creux B40 siehe Anhang B 2, Stein 4	500x200x190	≥ 0,9	4	Drehbohren	1,2	0,9
Hohlblock aus Beton EN 771-3:2011+A1:2015 z.B. KLB Plan Hohlblock siehe Anhang B 2, Stein 5	497x238x175	≥ 1,0	5	Drehbohren	1,5	1,2

Tabelle C10: T66 10 - charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Verankerungsgrund Gruppe "c") mit $h_{nom,3}$ = 70 mm

Verankerungsgrund [Hersteller / Name]	Min. Format (L x W x H)	Roh- dichte ρ	Mittlere Druckfestigkeit gemäß EN 771	Bohr- verfahren		
	[mm]	[kg/dm³]	[N/mm ²]		30/50°C	50/80°C
Hochlochziegel EN 771-1:2011+A1:2015 z.B. Dosson Alveolater siehe Anhang B 2, Stein 3	300x250x190	≥ 0,8	12	Drehbohren	1,2	0,9

ELEMATIC T66	
Leistungen Charakteristische Tragfähigkeit in Hohl- oder Lochsteinen	Anhang C 4

Tabelle C11: T66 10 charakteristische Tragfähigkeit F_{Rk} in [kN] in unbewehrtem Porenbeton (Verankerungsgrund Gruppe "d")

Verankerungsgrund	Roh- dichte	Mittlere Druckfestigkeit nach EN 771-4:2011	Bohr- verfahren	Charakteristische Tragfähigkeit F _{Rk} [kN]		Charakteristische Tragfähigkeit F _{Rk} [kN]	
	ρ	+A1:2015 f _{cm,decl}		T66 10 h _{nom,2} = 50 mm		T66 10 h _{nom,3} = 70 mm	
	[kg/m³]	[N/mm²]		30/50°C		30/50°C	50/80°C
Porenbeton mit geringer Festigkeit z.B. YTONG "clima" block EN 771-4:2011+A1:2015 Minimales Format [cm] 62,5x25x24	≥ 350	2	Drehbohren	0,6	0,3	0,6	0,5
Porenbeton mit hoher Festigkeit z.B. YTONG "sismico" block EN 771-4:2011+A1:2015 Minimales Format [cm] 62,5x25x24	≥ 500	4	Drehbohren	1,5	1,2	2,0	1,5

Tabelle C12: Verschiebungen unter Zuglast und Querlast in unbewehrtem Porenbeton

Dübel	Zugbelastung			Querbelastung		
T66 10	F	δ_{N0}	δ _{N∞}	F	δ_{V0}	δ _{V∞}
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
Porenbeton mit geringer Festigkeit z.B. YTONG "clima" block EN 771-4:2011+A1:2015 Minimales Format [cm] 62,5x25x24	0,2	0,08	0,16	0,2	0,43	0,64
Porenbeton mit hoher Festigkeit z.B. YTONG "sismico" block EN 771-4:2011+A1:2015 Minimales Format [cm] 62,5x25x24	0,5	0,46	0,92	0,5	1,43	2,14

ELEMATIC T66	
Leistungen Charakteristische Tragfähigkeit in Porenbeton, Verschiebungen unter Zug – und Querlast in Porenbeton	Anhang C 5