

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-15/0040 of 3 June 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hexstone screw anchor Thunderbolt / Ankerbolt

Mechanical fasteners for use in concrete

Hexstone Limited Opal Way Stone Business Park, Stone Staffordshire ST 15 0SW. **GROSSBRITANNIEN**

Factory 516 Taiwan

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601

ETA-15/0040 issued on 14 April 2015

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de 8.06.01-103/25

European Technical Assessment ETA-15/0040

English translation prepared by DIBt

Page 2 of 15 | 3 June 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 15 | 3 June 2025

Specific Part

1 Technical description of the product

The Hexstone screw anchor Thunderbolt / Ankerbolt is an anchor of size 8, 10, 12, 14 and 16 mm made of galvanized steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C3
Displacements (static and quasi-static loading)	See Annex C6
Characteristic resistance for seismic performance categorie C1	No performance assessed
Characteristic resistance and displacements for seismic performance categorie C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4 and C5

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-15/0040

English translation prepared by DIBt

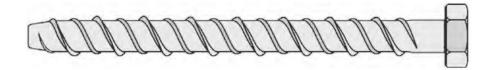
Page 4 of 15 | 3 June 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

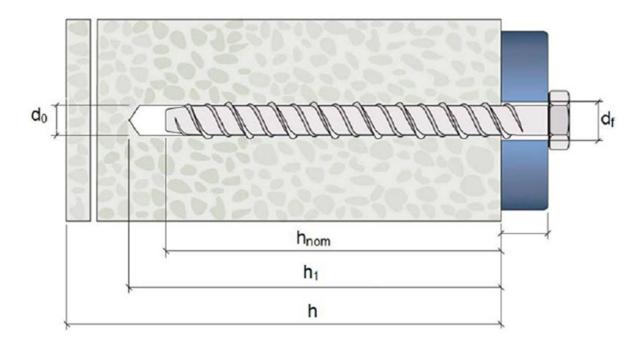
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

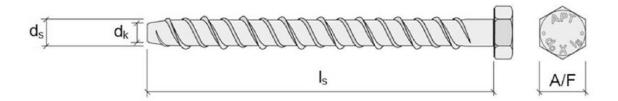

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 3 June 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Tempel



Hexstone screw anchor THUNDERBOLT/ ANKERBOLT:


Intended use

Concrete strength classes C20/25 to C50/60

Hexstone screw anchor Thunderbolt / Ankerbolt	
Product description Product and intended use	Annex A1

Marking

- · Identifying mark of producer
- Nominal drill hole diameter
- · Nominal anchor length

Table A1: Materials

Designation	Material
Concrete Screw	Carbon steel, heat treated and zinc plated

Table A2: Dimensions

Anchor size			8	10	12	14	16
Nominal anchor length	ls	[mm]	80150	100150	100200	130200	150200
Outside diameter of thread	ds	[mm]	9,8	11,9	14,1	16,3	18,7
Core diameter	d _k	[mm]	7,5	9,5	11,4	13,4	15,3
Width across flats	A/F	[mm]	15	17	19	24	27

Hexstone screw anchor Thunderbolt / Ankerbolt	
Product description Product and intended use	Annex A2

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads: all sizes.
- · Fire exposure: all sizes.

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Uncracked concrete and cracked concrete.

Use conditions (Environmental conditions:

Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages under static or quasi-static actions of fire exposure are designed in accordance with EN 1992-4:2018 in conjunction with technical report TR055, Edition February 2018.
- · It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- · Hole drilling by rotary hammer drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
 - After installation further turning of the anchor must not be possible.
- The head of the anchor must be supported on the fixture and not be damaged.

Hexstone screw anchor Thunderbolt / Ankerbolt

Intended Use
Specifications

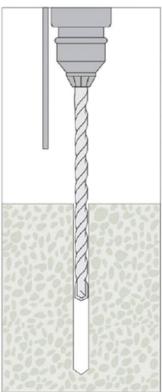
Annex B1

Table B1: Installation parameters

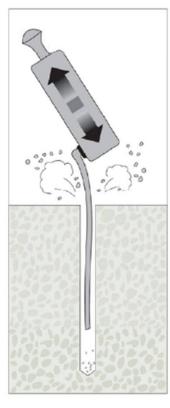
Anchor size		8	10	12	14	16	
Overall anchor embedment depth	h _{nom}	[mm]	75	85	95	110	120
Effective anchorage depth	h _{ef}	[mm]	55	62	69	79	86
Nominal drill hole diameter	d₀	[mm]	8	10	12	14	16
Drill hole depth	h ₀	[mm]	90	100	110	130	145
Outside diameter of the anchor	d _{nom}	[mm]	10	12	14	16	18
Clearance hole in the fixture	df	[mm]	12	14	16	18	20
Setting torque	T _{inst}	[Nm]	40	60	80	90	100

Table B2: Minimum thickness of concrete member, minimum spacing and edge distance

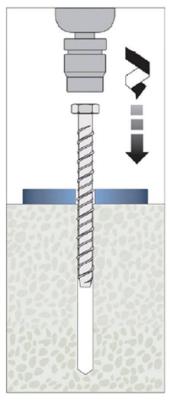
Anchor size		8	10	12	14	16	
Minimum thickness of concrete member	h _{min}	[mm]	120	125	140	170	190
Minimum spacing	S _{min}	[mm]	50	60	70	80	90
Minimum edge distance	C _{min}	[mm]	50	60	70	80	90


In case of fire attack from more than one side: c_{min}≥300 mm

Hexstone screw anchor Thunderbolt / Ankerbolt	
Intended Use Installation parameters, minimum thickness of concrete member, minimum spacing and edge distance	Annex B2



Installation instructions


1

2

3

- 1. Drill hole to correct diameter and depth using rotary hammer drilling machine
- 2. Remove dust from hole by blowing 3 times
- 3. Install anchor using electrical impact screwdriver Bosch GDS18E or Makita 6905H. Other electrical screwdrivers of equivalent force and performance may be used.

Hexstone screw anchor Thunderbolt / Ankerbolt

Intended Use

Installation instructions

Annex B3

. Table C1: Characteristic values of resistance under tension loads in uncracked concrete

Anchor size				10	12	14	16
Steel failure					•	*	
Characteristic resistance	N _{Rk,s}	[kN]	44,2	70,1	101,2	140,0	183,9
Partial safety factor	γ _{Ms} 1	[-]			1,4		
Pullout failure							
Characteristic resistance	N _{Rk,p}	[kN]	12	16	20	35	40
		C30/37		1,17		1,	22
Increasing factor for	ψc	C40/50		1,32		1,41	
$N_{Rk,p} = N_{Rk,p(C20/25)} * \psi_C$		C50/60	1,42			1,55	
Factor for uncracked concrete	Kucr,N	[-]			11,0		
Concrete cone failure		·					
Effective anchoring depth	h _{ef}	[mm]	55	62	69	79	86
Spacing	Scr,N	[mm]			3 h _{ef}		
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}				
Splitting failure							
Spacing	S _{cr,sp}	[mm]	176	190	214	250	260
Edge distance	C _{cr,sp}	[mm]	88	95	107	125	130
Installation factor	γinst	[-]			1,2		

¹ In absence of other national regulations.

Hexstone screw anchor Thunderbolt / Ankerbolt	
Performances Characteristic values of resistance under tension loads in uncracked concrete	Annex C1

. Table C2: Characteristic values of resistance under tension loads in cracked concrete

Anchor size			8	10	12	14	16	
Steel failure								
Characteristic resistance	N _{Rk,s}	[kN]	44,2	70,1	101,2	140,0	183,9	
Partial safety factor	γ _{Ms} ¹	[-]			1,4			
Pullout failure								
Characteristic resistance	N _{Rk,p}	[kN]	7,5	12	16	20	25	
		C30/37		1,17		1,22		
Increasing factor for $N_{Rk,p} = N_{Rk,p(C20/25)} * \psi c$	ψс	C40/50	1,32			1,41		
		C50/60	1,42			1,55		
Factor for cracked concrete	K _{cr,N}	[-]			7,7			
Concrete cone failure								
Effective anchoring depth	h _{ef}	[mm]	55	62	69	79	86	
Spacing	Scr,N	[mm]			3 h _{ef}			
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}					
Splitting failure								
Spacing	Scr,sp	[mm]	176	190	214	250	260	
Edge distance	C _{cr,sp}	[mm]	88	95	107	125	130	
Installation factor	γinst	[-]			1,2			

¹In absence of other national regulations.

Hexstone screw anchor Thunderbolt / Ankerbolt	
Performances Characteristic values of resistance under tension loads in cracked concrete	Annex C2

. Table C3: Characteristic values of resistance under shear loads in cracked or uncracked concrete

Anchor size				10	12	14	16
Steel failure without level arm				· · · · · · · · · · · · · · · · · · ·			
Characteristic resistance	V _{Rk,s}	[kN]	28,5	46,4	57,2	80,4	84,4
Partial safety factor	γ _{MS} ¹	[-]	1,5				
Ductility factor	k ₇	[-]	0,8				
Steel failure with level arm							
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	40	80	138	224	338
Partial safety factor	γ _{MS} ¹	[-]			1.5		
Concrete pry out failure							
K factor	k ₈	[mm]	1,0 2,0				
Concrete edge failure							
Effective length of anchor in shear loading	lf	[mm]	55	62	69	79	86
Effective external diameter of anchor	d _{nom}	[mm]	10	12	14	16	18

¹In absence of other national regulations.

Hexstone screw anchor Thunderbolt / Ankerbolt	
Performances Characteristic values of resistance under shear loads in cracked or uncracked concrete	Annex C3

. Table C4: Characteristic values for tension load under fire exposure in cracked or uncracked concrete C20/25 to C50/60

Anchor size				8	10	12	14	16
Steel failure								
	R30	N _{Rk,s,fi}	[kN]	0,4	1,1	2,0	2,8	3,7
	R60	N _{Rk,s,fi}	[kN]	0,4	0,9	1,5	2,1	2,8
Characteristic resistance	R90	N _{Rk,s,fi}	[kN]	0,3	0,7	1,3	1,8	2,4
	R120	N _{Rk,s,fi}	[kN]	0,2	0,6	1,0	1,4	1,8
Pullout failure	,							
	R30							
Characteristic resistance	R60	N Rk,p,fi	[kN]	1,9	3,0	4,0	5,0	6,3
	R90							
	R120	N Rk,p,fi	[kN]	1,5	2,4	3,2	4,0	5,0
Concrete cone failure								
Characteristic resistance	R30							
	R60	N ⁰ Rk,c,fi	[kN]	4,0	5,4	7,1	10,0	12,3
	R90							
	R120	N ⁰ Rk,c,fi	[kN]	3,2	4,4	5,7	8,0	9,9
Characteristic spacing		S _{cr,N}		4 h _{ef}				
Edge distance		C _{cr,N}		2 hef				

11		r Thunderbolt	L / A I
HEXSTONE	screw ancho	r iniinaernoii	/ Ankernoit

Performances

Characteristic values for tension load under fire exposure in cracked and uncracked concrete C20/25 to C50/60

Annex C4

. Table C5: Characteristic values for shear load under fire exposure in cracked or uncracked concrete C20/25 to C50/60

Anchor size					10	12	14	16	
Steel failure without level arm									
	R30	V _{Rk,s,fi}	[kN]	0,4	1,1	2,0	2,8	3,7	
	R60	V _{Rk,s,fi}	[kN]	0,4	0,9	1,5	2,1	2,8	
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	0,3	0,7	1,3	1,8	2,4	
	R120	V _{Rk,s,fi}	[kN]	0,2	0,6	1,0	1,4	1,8	
Steel failure with level arm	Steel failure with level arm								
	R30	M _{Rk,s,fi}	[Nm]	0,5	1,5	3,4	5,6	8,4	
200	R60	M _{Rk,s,fi}	[Nm]	0,4	1,3	2,6	4,2	6,3	
Characteristic resistance	R90	M _{Rk,s,fi}	[Nm]	0,3	1,0	2,2	3,6	5,5	
	R120	M _{Rk,s,fi}	[Nm]	0,2	0,8	1,7	2,8	4,2	
Concrete Pryout failure		,							
k-Factor		k ₈	[-]	1,0		2	2,0		
	R30			, and the second					
Characteristic resistance	R60	V _{Rk,cp,fi}	[k N]	4,0	10,9	14,2	20,0	24,7	
	R90								
	R120	$V_{Rk,cp,fi}$	[kN]	3,2	8,7	11,4	16,0	19,8	

Hexstone screw anchor Thunderbolt / Ankerbolt

Performances

Characteristic values for shear load under fire exposure in cracked and uncracked concrete C20/25 to C50/60

Annex C5

Table C6: Displacements under tension load

Anchor size			8	10	12	14	16
Tension load	N	[kN]	4,8	6,3	7,9	13,9	15,9
	δηο	[mm]	0,17	0,21	0,23	0,73	0,46
Displacement	δ _{N∞}	[mm]	1,75	1,88	1,82	1,54	0,96

. Table C7: Displacements under shear load

Anchor size			8	10	12	14	16
Shear load	V	[kN]	11,3	18,4	22,7	31,9	33,5
	δνο	[mm]	1,61	1,53	1,94	2,74	2,66
Displacement	δv∞	[mm]	2,42	2,30	2,92	4,10	3,99

Hexstone screw anchor Thunderbolt / Ankerbolt

Performances
Displacements

Annex C6