

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-15/0163 vom 8. September 2025

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Novatech Injektionssystem Novatio Q-Fix für Beton

Verbunddübel und Verbundspreizdübel zur Verankerung in Beton

Novatech International nv Industrielaan 5b 2250 OLEN BELGIEN

Novatech Plant 1

28 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-15/0163 vom 10. April 2015

Seite 2 von 28 | 8. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z192868.25 8.06.01-343/25

Seite 3 von 28 | 8. September 2025

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Novatech Injektionssystem Novatio Q-Fix für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Novatio Q-Fix und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder ein Betonstahl in den Größen \emptyset 8 bis \emptyset 32 mm oder eine Innengewindestange IG-M6 bis IG-M20.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 2, C 1, C 2, C 3, C 5 und C 7
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1, C 4, C 6 und C 8
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9 bis C 11
Charakteristischer Widerstand für seismische Leitungskategorie C1	Leistung nicht bewertet
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C2	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z192868.25 8.06.01-343/25

Seite 4 von 28 | 8. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

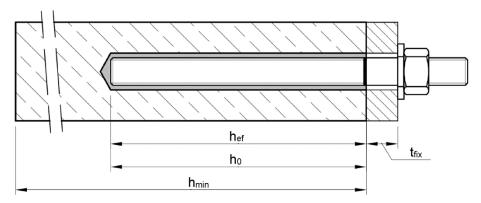
Folgendes System ist anzuwenden: 1

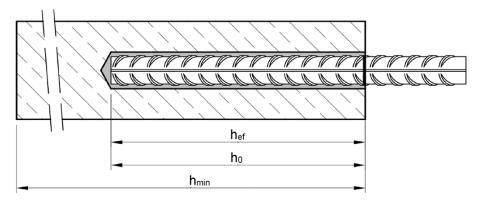
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

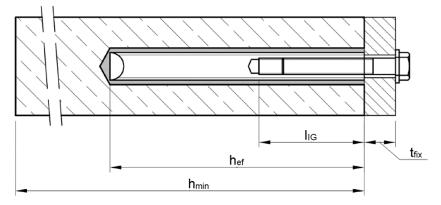
Ausgestellt in Berlin am 8. September 2025 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Andreas Kummerow Abteilungsleiter Beglaubigt Baderschneider


Z192868.25 8.06.01-343/25


Einbauzustand Gewindestange M8 bis M30

Vorsteckmontage oder


Durchsteckmontage (Ringspalt gefüllt mit Mörtel)

Einbauzustand Betonstahl Ø8 bis Ø32

Einbauzustand Innengewindeankerstange IG-M6 bis IG-M20

 t_{fix} = Dicke des Anbauteils

h₀

Bohrlochtiefe

h_{ef}

Effektive Verankerungstiefe

 I_IG

= Einschraublänge

h_{min} = Mindestbauteildicke

Novatech Injektionssystem Novatio Q-Fix für Beton

Produktbeschreibung

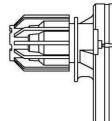
Einbauzustand

Anhang A 1

Kartuschensystem

Koaxial Kartusche:

150 ml, 280 ml, 300 ml bis 333 ml und 380 ml bis 420 ml

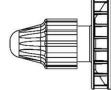

Aufdruck:

Novatio Q-Fix

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Side-by-Side Kartusche:

235 ml, 345 ml bis 360 ml und 825 ml


Aufdruck:

Novatio Q-Fix

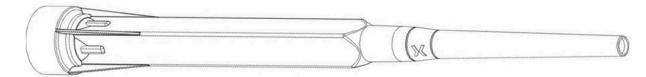
Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

Schlauchfolien Kartusche:

165 ml und 300 ml



Aufdruck:


Novatio Q-Fix

Verarbeitungs- und Sicherheitshinweise, Haltbarkeit, Chargennummer, Herstellerangaben, Mengenangabe

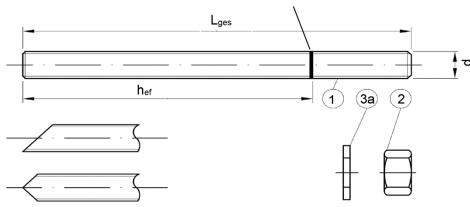

Statikmischer SM-14W

Statikmischer PM-19E

Verfüllstutzen VS und Mischerverlängerung VL

Novatech Injektionssystem Novatio Q-Fix für Beton

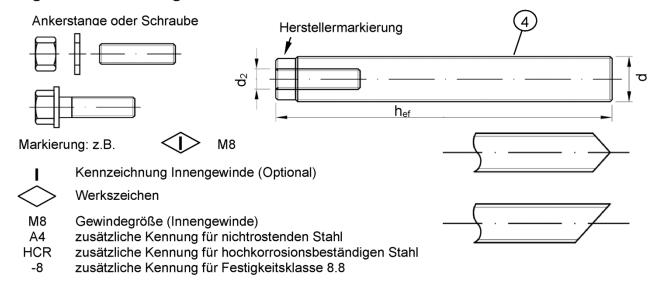
Produktbeschreibung


Injektionssystem

Anhang A 2

Gewindestange M8 bis M30 mit Unterlegscheibe und Sechskantmutter

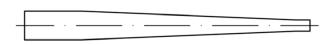
Markierung der Verankerungstiefe



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004. Dokument sollte aufbewahrt werden.
- Markierung der Setztiefe

Für feuerverzinkte Elemente sind die Anforderungen an die Kombination von Muttern und Gewindestangen gemäß EN ISO 10684:2004+AC:2009 Anhang F zu berücksichtigen.


Innengewindeankerstange IG-M6 bis IG-M20

Verfüllscheibe VFS

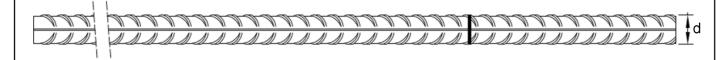
Mischerreduzierung MR

Novatech Injektionssystem Novatio Q-Fix für Beton

Produktbeschreibung

Gewindestange; Innengewindeankerstange;

Verfüllscheibe; Mischerreduzierung


Anhang A 3

	Benennung	Werkstoff					
	hlteile aus verzinktem Stahl (Stah			oder EN 10263:20	17)		
		iäß EN ISO 4042:2022		N ICO 40604-2004		مامم	
		iäß EN ISO 1461:2022 (iäß EN ISO 17668:2016		IN 150 10684.2004	+AC:2009 00	aer	
	The pin goin	Festigkeitsklasse	,	Charakteristische Zugfestigkeit	Charakterist Streckgrenz		Bruchdehnung
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/r		A ₅ > 8%
1	Gewindestange		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/r	mm²	A ₅ > 8%
'	Gewindestange	gemäß			f _{vk} = 300 N/r		A ₅ > 8%
		EN ISO 898-1:2013			f _{vk} = 400 N/r		A ₅ > 8%
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/r		A ₅ ≥ 8%
			4	für Gewindestange	,		
2	Sechskantmutter	gemäß	5	für Gewindestange			
		EN ISO 898-2:2022	8	für Gewindestange			
3a	Unterlegscheibe	Stahl, galvanisch verz (z.B.: EN ISO 887:20 EN ISO 7094:2000)					0 oder
3b	Verfüllscheibe	Stahl, galvanisch verz	inkt,	feuerverzinkt oder o	diffusionsverz	zinkt	
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakterist Streckgrenz		Bruchdehnun
4	Innengewindeankerstange	gemäß	5.8	f_{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/r}$	mm²	A ₅ > 8%
		EN ISO 898-1:2013	8.8	f _{uk} = 800 N/mm ²	f _{vk} = 640 N/r	mm²	A ₅ > 8%
		Festigkeitsklasse		Charakteristische Zugfestigkeit	Charakterist Streckgrenz		Bruchdehnun
	0 1 1 1 1)2)				$f_{vk} = 210 \text{ N/r}$		A ₅ ≥ 8%
1	Gewindestange ¹⁾³⁾	gemäß	70		f _{vk} = 450 N/r		A ₅ ≥ 8%
		EN ISO 3506-1:2020	80		f _{vk} = 600 N/r		
			00				A₅ ≥ 8%
			50	4111	,		A ₅ ≥ 8%
2	Sechskantmutter ¹⁾³⁾	gemäß	50 70	für Gewindestange	en der Klasse	e 50	A ₅ ≥ 8%
2	Sechskantmutter ¹⁾³⁾	gemäß EN ISO 3506-1:2020		4111	en der Klasse en der Klasse	e 50 e 70	A ₅ ≥ 8%
2 3a	Sechskantmutter ¹⁾³⁾ Unterlegscheibe	gemäß EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000)	70 80 / 1.43 / 1.44 29 ode	für Gewindestange für Gewindestange für Gewindestange 607 / 1.4311 / 1.456 604 / 1.4571 / 1.436 er 1.4565, EN 1008	en der Klasse en der Klasse en der Klasse en der Klasse 7 oder 1.454 2 oder 1.457 8-1:2023	e 50 e 70 e 80 l1, EN '8, EN	10088-1:2023 10088-1:2023
3a		A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20	70 80 / 1.43 / 1.44 9 ode	für Gewindestange für Gewindestange für Gewindestange für J. 4311 / 1.456 004 / 1.4571 / 1.436 er 1.4565, EN 1008 N ISO 7089:2000,	en der Klasse en der Klasse en der Klasse 7 oder 1.454 22 oder 1.457 8-1:2023 EN ISO 709	e 50 e 70 e 80 l1, EN '8, EN	10088-1:2023 10088-1:2023
3a 3b	Unterlegscheibe Verfüllscheibe	EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000)	70 80 / 1.43 / 1.44 29 ode 06, E	für Gewindestange für Gewindestange für Gewindestange für Gewindestange für J. 4311 / 1.456 04 / 1.4571 / 1.436 er 1.4565, EN 1008 N ISO 7089:2000, ochkorrosionsbestä Charakteristische Zugfestigkeit	en der Klasse en der Klasse en der Klasse 7 oder 1.454 2 oder 1.457 8-1:2023 EN ISO 709 indiger Stahl Charakterist Streckgrenz	e 50 e 70 e 80 l1, EN 78, EN 93:200	10088-1:2023 10088-1:2023 0 oder Bruchdehnun
3а	Unterlegscheibe	EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000) Nichtrostender Stahl A Festigkeitsklasse gemäß	70 80 / 1.43 / 1.44 29 ode 06, E	für Gewindestange für Gewindestange für Gewindestange für Gewindestange für J. 4311 / 1.456 004 / 1.4571 / 1.436 er 1.4565, EN 1008 N ISO 7089:2000, ochkorrosionsbestä Charakteristische Zugfestigkeit f _{uk} = 500 N/mm²	en der Klasse en der Klasse en der Klasse 7 oder 1.454 2 oder 1.457 8-1:2023 EN ISO 709 indiger Stahl Charakterist Streckgrenz	e 50 e 70 e 80 11, EN 78, EN 93:200 tische e mm²	10088-1:2023 10088-1:2023 0 oder Bruchdehnun A ₅ > 8%
3a 3b	Unterlegscheibe Verfüllscheibe Innengewindeankerstange ¹⁾²⁾	EN ISO 3506-1:2020 A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000) Nichtrostender Stahl A Festigkeitsklasse gemäß EN ISO 3506-1:2020	70 80 / 1.43 / 1.44 29 ode 06, E A4, H	für Gewindestange für 1.4565, EN 1008 N ISO 7089:2000, Dichkorrosionsbestä Charakteristische Zugfestigkeit fük = 500 N/mm² fük = 700 N/mm²	en der Klasse en der Klasse en der Klasse 7 oder 1.454 2 oder 1.457 8-1:2023 EN ISO 709 indiger Stahl Charakterist Streckgrenz f _{yk} = 210 N/r	e 50 e 70 e 80 l1, EN 78, EN 93:200 tische e mm²	10088-1:2023 10088-1:2023 0 oder Bruchdehnun
3a 3b 4	Unterlegscheibe Verfüllscheibe	A2: Werkstoff 1.4301 A4: Werkstoff 1.4401 HCR: Werkstoff 1.452 (z.B.: EN ISO 887:20 EN ISO 7094:2000) Nichtrostender Stahl A Festigkeitsklasse gemäß EN ISO 3506-1:2020	70 80 / 1.43 / 1.44 29 ode 06, E A4, H	für Gewindestange für 1.4565, EN 1008 N ISO 7089:2000, Dichkorrosionsbestä Charakteristische Zugfestigkeit fük = 500 N/mm² fük = 700 N/mm² Innengewindeankerst	en der Klasse en der Klasse en der Klasse 7 oder 1.454 2 oder 1.457 8-1:2023 EN ISO 709 indiger Stahl Charakterist Streckgrenz f _{yk} = 210 N/r	e 50 e 70 e 80 l1, EN 78, EN 93:200 tische e mm²	10088-1:2023 10088-1:2023 0 oder Bruchdehnun A ₅ > 8%

Betonstahl Ø8 bis Ø32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05 φ ≤ h_{rib} ≤ 0,07 φ betragen
 (d: Nenndurchmesser des Stabes; h_{rib}: Rippenhöhe des Stabes)

Tabelle A2: Werkstoffe Betonstahl

Teil	Benennung	Werkstoff
Beto	onstahl	
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse B oder C f_{yk} und k gemäß NDP oder NCI gemäß EN 1992-1-1/NA f_{uk} = f_{tk} = $k \cdot f_{yk}$

Novatech Injektionssystem Novatio Q-Fix für Beton	
Produktbeschreibung Werkstoffe Betonstahl	Anhang A 5

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung (Statische und quasi-statische Lasten)

	Nutzungsdaue	er 50 Jahre	Nutzungsdauer 100 Jahre			
Verankerungsgrund	ungerissener Beton	gerissener Beton	ungerissener Beton	gerissener Beton		
HD: Hammerbohren HDB: Hammerbohren mit Hohlbohrer CD: Pressluftbohren	M8 bis M30, ∅8 bis ∅32, IG-M6 bis IG-M20	Keine Leistung bewertet	Keine Leistun	g bewertet		
Temperaturbereich:	II: - 40°C	bis +40°C¹) bis +80°C²) bis +120°C³)	Keine Leistun	g bewertet		

^{1) (}max. Langzeit-Temperatur +24°C und max. Kurzzeit-Temperatur +40°C)

Verankerungsgrund:

- Verdichteter, bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß EN 206:2013 + A2:2021.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206:2013 + A2:2021.

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Materialien).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionsbeständigkeitsklassen:
 - Nichtrostender Stahl A2 nach Anhang A 4, Tabelle A1: CRC II
 - Nichtrostender Stahl A4 nach Anhang A 4, Tabelle A1: CRC III
 - Hochkorrosionsbeständiger Stahl HCR nach Anhang A 4, Tabelle A1: CRC V

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und Technical Report TR 055, Fassung Februar 2018.

Einbau:

- Trockener, nasser Beton oder Wassergefüllte Bohrlöcher (nicht Seewasser).
- Bohrlochherstellung durch Hammer- (HD), Hohl- (HDB), Pressluftbohren (CD).
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbautemperatur im Beton:

Novatio Q-Fix: -10°C bis +40°C für die üblichen Temperaturveränderungen nach dem Einbau.

Novatech Injektionssystem Novatio Q-Fix für Beton	
Verwendungszweck Spezifikationen	Anhang B 1

^{2) (}max. Langzeit-Temperatur +50°C und max. Kurzzeit-Temperatur +80°C)

^{3) (}max. Langzeit-Temperatur +72°C und max. Kurzzeit-Temperatur +120°C

Tabelle B1: Montagekennwerte für Gewindestangen											
Gewindestange M8 M10 M12 M16 M20 M24 M27 M30										M30	
Durchmesser Gewind	lestange	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Bohrernenndurchmes	ser	d ₀	[mm]	10	12	14	18	24	28	32	35
Effektive Verenkerung	actiofo	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effektive Verankerung	gstiere	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Durchgangsloch im	Vorstec	kmontage d _f ≤	[mm]	9	12	14	18	22	26	30	33
anzuschließenden Bauteil	Durchste	eckmontage d _f	[mm]	12	14	16	20	24	30	33	40
Maximales Montagedrehmoment	max 1:not		[Nm]	10	20	40	60	100	170	250	300
Mindestbauteildicke h _{min} [r			[mm]	h _{ef} + 30	0 mm ≥ 1	00 mm			$h_{ef} + 2d_0$		
		[mm]	40	50	60	80	100	120	135	150	
Minimaler Randabsta	nd	c _{min}	[mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montagekennwerte für Betonstahl

Betonstahl			Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12¹)	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Durchmesser Betonstahl	d = d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Bohrernenndurchmesser	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
h _{ef,mir}		[mm]	60	60	70	75	80	90	100	112	128
Effektive Verankerungstiefe	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀					
Minimaler Achsabstand	s _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimaler Randabstand	c _{min}	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ Beide Bohrernenndurchmesser können verwendet werden

Tabelle B3: Montagekennwerte für Innengewindeankerstangen

Innengewindeankerstange		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Innendurchmesser der Hülse	d_2	[mm]	6	8	10	12	16	20
Außendurchmesser der Hülse ¹⁾	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Bohrernenndurchmesser	d_0	[mm]	12	14	18	24	28	35
Effektive Verenkerungetiefe	h _{ef,min}	[mm]	60	70	80	90	96	120
Effektive Verankerungstiefe	h _{ef,max}		200	240	320	400	480	600
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	12	14	18	22
Maximales Montagedrehmoment	max T _{ins}	[Nm]	10	10	20	40	60	100
Einschraublänge min/max	I _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Mindestbauteildicke	h _{min}	[mm]		30 mm 0 mm				
Minimaler Achsabstand	s _{min}	[mm]	50	60	80	100	120	150
Minimaler Randabstand	c _{min}	[mm]	50	60	80	100	120	150

¹⁾ Mit metrischem Gewinde gemäß EN 1993-1-8:2005+AC:2009

Novatech Injektionssystem Novatio Q-Fix für Beton	
Verwendungszweck Montagekennwerte	Anhang B 2

Tabelle	B4: Para	ameter fü	r Reinigun	ıgs- und	d Setz	zzubehör				
					and a superior	Hallichite				
Gewinde- stangen	Betonstahl	Innen- gewinde- hülsen	d ₀ Bohrer - Ø HD, HDB, CD		d _b d _{b,min} Verfüll- Bürsten - Ø Bürsten - Ø		stutzen Anwen		tionsrichtu wendung v erfüllstutze	on .
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1
M8	8		10	RBT10	12	10,5				
M10	8 / 10	IG-M6	12	RBT12	14	12,5	Kair	. \/orfüllotu	tan notw	ndia
M12	10 / 12	IG-M8	14	RBT14	16	14,5	Keli	i veriulistu	itzen notwe	enaig
	12		16	RBT16	18	16,5				
M16	14	IG-M10	18	RBT18	20	18,5	VS18			
	16		20	RBT20	22	20,5	VS20			
M20		IG-M12	24	RBT24	26	24,5	VS24			
	20		25	RBT25	27	25,5	VS25	h _{ef} >	h _{ef} >	all
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	dII
M27	25		32	RBT32	34	32,5	VS32			
M30	28	IG-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

Reinigungs- und Installationszubehör

Handpumpe

(Volumen 750 ml, h₀ ≤ 10 d_s, d₀ ≤ 20mm)

Druckluftpistole

(min 6 bar)

Bürste RBT

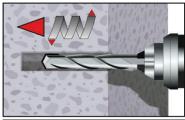
Verfüllstutzen VS

Bürstenverlängerung RBL

Novatech Injektionssystem Novatio Q-Fix für Beton	
Verwendungszweck Reinigungs-und Setzzubehör	Anhang B 3

Tabelle B5:	Verarl	peitungs- und	Aushärtezeiten Novatio Q-Fix	ζ
Temperatur	im Verank	Minimale Aushärtezeit ¹⁾		
	Т		t _{gel}	t _{cure}
- 10 °C	bis	- 6°C	90 min ²)	24 h
- 5°C	bis	- 1°C	90 min	14 h
0°C	bis	+ 4 °C	45 min	7 h
+ 5°C	bis	+ 9°C	25 min	2 h
+ 10 °C	bis	+ 19°C	15 min	80 min
+ 20 °C	bis	+ 29°C	6 min	45 min
+ 30 °C	bis	+ 34 °C	4 min	25 min
+ 35 °C	bis	+ 39°C	2 min	20 min
	+40°C		1,5 min	15 min
Kartı	uschentemp	eratur	+5°C bis	+40°C

Die minimalen Aushärtezeiten gelten für trockenen Verankerungsgrund.
 In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.


Novatech Injektionssystem Novatio Q-Fix für Beton	
Verwendungszweck Verarbeitungs- und Aushärtezeiten	Anhang B 4

²⁾ Kartuschentemperatur <u>muss</u> mindestens +15°C betragen

Setzanweisung

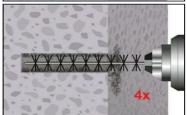
Bohrloch erstellen

Hammerbohren (HD) / Druckluftbohren (CD)

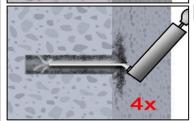
Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).

1b. Hammerbohren mit Hohlbohrer (HDB)

Bohrloch für die erforderliche Verankerungstiefe erstellen. Bohrerdurchmesser gemäß Tabelle B1, B2 oder B3. Fehlbohrungen sind zu vermörteln. Weiter mit Schritt 2 (MAC oder CAC).


Achtung! Vor der Reinigung im Bohrloch stehendes Wasser entfernen.

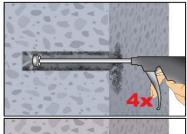
Handpumpen-Reinigung (MAC)

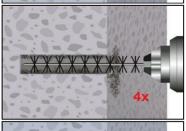

für Bohrerdurchmesser $d_0 \le 20$ mm und Bohrlochtiefe $h_0 \le 10d_{nom}$ ($d_0 < 14$ mm nur ungerissenem Beton) mit Bohrmethode HD, HDB und CD

Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

Bohrloch mindestens 4x mit Bürste RBT gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.

Abschließend Bohrloch vom Bohrlochgrund her mindestens 4x mit einer Handpumpe (Anhang B 4) ausblasen.

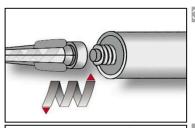

Novatech Injektionssystem Novatio Q-Fix für Beton Verwendungszweck Setzanweisung Anhang B 5


Setzanweisung (Fortsetzung)

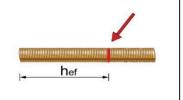
Druckluft-Reinigung (CAC):

Alle Durchmesser mit Bohrmethode HD, HDB und CD

2a. Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.



Bohrloch mindestens 4x mit Bürste RBT gemäß Tabelle B4 drehend über die gesamte Verankerungstiefe (ggf. Bürstenverlängerung RBL verwenden) ausbürsten.

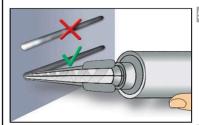

Abschließend Bohrloch mindestens 4x mit Druckluft (min. 6 bar) (Anhang B 4) über die gesamte Verankerungstiefe (ggf. Verlängerung verwenden) ausblasen, bis die ausströmende Luft staubfrei ist.

Gereinigtes Bohrloch vor erneuter Verschmutzung schützen. Ggf. vor dem Injizieren des Mörtels die Reinigung wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

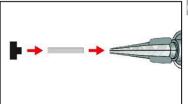
Statikmischer SM-14W / PM-19E aufschrauben und Kartusche in geeignetes Auspressgerät einlegen. Bei Schlauchfolienkartuschen den Schlauchfolienclip vor der Verwendung abschneiden.

Bei Arbeitsunterbrechungen, länger als die maximale Verarbeitungszeit t_{work} (Anhang B 5) und bei neuen Kartuschen, neuen Statikmischer verwenden.

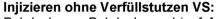
Verankerungstiefe auf dem Ankerstab markieren. Der Bewehrungsstab muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.

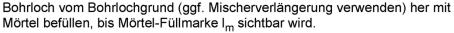

Novatech Injektionssystem Novatio Q-Fix für Beton

Verwendungszweck
Setzanweisung (Fortsetzung)

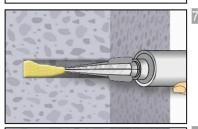

Anhang B 6

Setzanweisung (Fortsetzung)

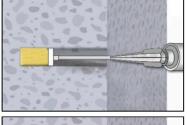



Nicht vollständig gemischter Mörtel ist nicht zur Befestigung geeignet. Mörtel verwerfen, bis sich gleichmäßig graue Mischfarbe eingestellt hat (mindestens 3 volle Hübe, bei Schlauchfolienkartuschen min. 6 Hübe)

Verfüllstutzen VS und Mischerverlängerung VL sind gem. Tabelle B4 für die folgenden Anwendungen zu verwenden:


- In horizontaler und vertikaler Richtung nach unten: Bohrer-Ø $d_0 \ge 18$ mm und Setztiefe $h_{ef} > 250$ mm
- In vertikaler Richtung nach oben: Bohrer-Ø d₀ ≥ 18 mm
 Mischer, Mischerverlängerung und Verfüllstutzen vor dem Injizieren zusammenstecken.

Langsames Zurückziehen des Statikmischers vermindert die Bildung von Lufteinschlüssen.


Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

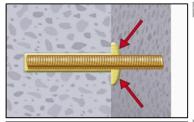
Injizieren mit Verfüllstutzen VS:

Verfüllstutzen bis zum Bohrlochgrund (ggf. Mischerverlängerung verwenden) einführen. Bohrloch mit Mörtel befüllen, bis Mörtel-Füllmarke I_m sichtbar wird. Während des Initiierens wird der Verfüllstutzen durch den Staudruck des Mörtels aus dem Bohrloch gedrückt.

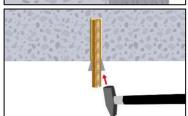
Temperaturabhängige Verarbeitungszeiten t_{work} (Anhang B 5) beachten.

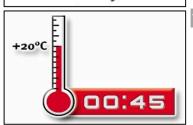
Ankerstange mit leichter Drehbewegung bis zur Markierung einführen.

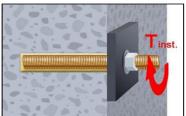
Novatech Injektionssystem Novatio Q-Fix für Beton


Verwendungszweck

Setzanweisung (Fortsetzung)


Anhang B 7


Setzanweisung (Fortsetzung)


Ringspalt zwischen Ankerstange und Verankerungsgrund muss vollständig mit Mörtel gefüllt sein. Bei Durchsteckmontage muss auch der Ringspalt im Anbauteil mit Mörtel verfüllt sein. Andernfalls Anwendung vor Erreichen der maximalen Verarbeitungszeit t_{work} ab Schritt 8 wiederholen.

Bei Anwendungen in vertikaler Richtung nach oben ist der Ankerstange zu fixieren (z.B. mit Holzkeilen).

Temperaturabhängige Aushärtezeit t_{cure} (Anhang B 5) muss eingehalten werden. Die Installation der Anschlussbewehrung und der Schalung, darf nach Erreichen der anfänglichen Aushärtezeit t_{cure,ini} fortgesetzt werden. Die volle Belastung darf erst nach Erreichen der vollen Aushärtezeit t_{cure} erfolgen.

Anbauteil mit kalibriertem Drehmomentschlüssel montieren. Maximales Montagedrehmoment (Tabelle B1, B2 oder B3) beachten. Bei statischer Vorgabe (z.B. Erdbeben), Ringspalt im Anbauteil mit Mörtel (Anhang A 3) verfüllen. Dazu Unterlegscheibe durch Verfüllscheibe VFS ersetzen und Mischerreduzierung MR verwenden.

Novatech Injektionssystem Novatio Q-Fix für Beton

Verwendungszweck Setzanweisung (Fortsetzung) Anhang B 8

Т	abelle C1:	Charakteristische Werte Stahlquertragfähigkeit vo				•	eit un	d				
Ge	windestange				М8	M10	M12	M16	M20	M24	M27	M30
Sp	annungsquersc	hnitt	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Ch	arakteristische	zugtragfähigkeit, Stahlversager	1 ¹⁾									
Sta	ahl, Festigkeitsk	lasse 4.6 und 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sta	ahl, Festigkeitsk	lasse 5.6 und 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Sta	ahl, Festigkeitsk	lasse 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Nic	chtrostender Sta	hl A4 und HCR, Klasse 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Ch	arakteristische	zugtragfähigkeit, Teilsicherheit	sbeiwe	rt ²⁾								
Sta	ahl, Festigkeitsk	lasse 4.6 und 5.6	$\gamma_{Ms,N}$	[-]				2,0				
Sta	ahl, Festigkeitsk	lasse 4.8, 5.8 und 8.8	$\gamma_{Ms,N}$	[-]	1,5							
Nichtrostender Stahl A2, A4 und HCR, Klasse 50				[-]	2,86							
Nichtrostender Stahl A2, A4 und HCR, Klasse 70				[-]	1,87							
Nic	chtrostender Sta	ahl A4 und HCR, Klasse 80	γ _{Ms,N}	[-]	1,6							
Ch	arakteristische	e Quertragfähigkeit, Stahlversage	n 1)									
٦	Stahl, Festigke	itsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
larn	Stahl, Festigke	itsklasse 5.6 und 5.8	$ V^{0}_{Rk,s} $	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
Ohne Hebelarm	Stahl, Festigke	itsklasse 8.8	$ V^0_{Rk,s} $	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Ήe	Nichtrostender	Stahl A2, A4 und HCR, Klasse 50	$ V^{0}_{Rk,s} $	[kN]	9	15	21	39	61	88	115	140
) L	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	$ V^{0}_{Rk,s} $	[kN]	13	20	30	55	86	124	_3)	_3)
	Nichtrostender	Stahl A4 und HCR, Klasse 80	$ V^{0}_{Rk,s} $	[kN]	15	23	34	63	98	141	_3)	_3)
	Stahl, Festigke	itsklasse 4.6 und 4.8	M⁰ _{Rk,s}	[Nm]	15 (13)	30 (27)	52	133	260	44 9	666	900
II.	Stahl, Festigke	itsklasse 5.6 und 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
Hebelarm	Stahl, Festigke	itsklasse 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
		Stahl A2, A4 und HCR, Klasse 50	M⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Mit	Nichtrostender	Stahl A2, A4 und HCR, Klasse 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Nichtrostender	Stahl A4 und HCR, Klasse 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
		e Quertragfähigkeit, Teilsicherhei										
Sta	ahl, Festigkeitsk	lasse 4.6 und 5.6	γ _{Ms,V}	[-]		1,67						
Sta	ahl, Festigkeitsk	lasse 4.8, 5.8 und 8.8	γ _{Ms,V}	[-]				1,25	5			
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 50	γ _{Ms,V}	[-]				2,38	3			
Nic	chtrostender Sta	ahl A2, A4 und HCR, Klasse 70	γ _{Ms,V}	[-]				1,56	6			
Nichtrostender Stahl A4 und HCR, Klasse 80				[-]				1,33				

¹⁾ Werte sind nur gültig für den hier angegebenen Spannungsquerschnitt A_s. Die Werte in Klammern gelten für unterdimensionierte Gewindestange mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß. EN ISO 10684:2004+AC:2009.

³⁾ Dübelvariante nicht in ETA enthalten

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Stahlzugtragfähigkeit und Stahlquertragfähigkeit von Gewindestangen	Anhang C 1

²⁾ Sofern andere nationalen Regelungen fehlen

Tabelle C2: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasistatischer Belastung

Dübel				Alle Dübelarten und -größen			
Betonausbruch							
ungerissener Be	ton	k _{ucr,N}	[-]	11,0			
Randabstand		c _{cr,N}	[mm]	1,5 h _{ef}			
Achsabstand		s _{cr,N}	[mm]	2 c _{cr,N}			
Spalten		•					
	h/h _{ef} ≥ 2,0			1,0 h _{ef}			
Randabstand	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$			
	h/h _{ef} ≤ 1,3			2,4 h _{ef}			
Achsabstand		s _{cr,sp}	[mm]	2 c _{cr,sp}			

Leistungen

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 2

Gev	vinde	estange				M8	M10	M12	M16	M20	M24	M27	M30
		rsagen											
Cha	rakte	eristische Zugt	ragfähigkeit	N _{Rk,s}	[kN]		Α	s • f _{uk} (oder si	ehe Ta	belle C	1)	
Teil	siche	erheitsbeiwert		γ _{Ms,N}	[-]			s	iehe Ta	abelle C	21		
			en durch Herausziehen u										
Cha	rakte	eristische Verb	undtragfähigkeit im ungeris	senen B	eton C20/2	25							
_	l:	40°C/24°C				10	12	12	12	12	11	10	9,0
reic	II:	80°C/50°C	trockener und feuchter Beton			7,5	9,0	9,0	9,0	9,0	8,5	7,5	6,5
ırbe	III:	120°C/72°C				5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
eratı	<u> </u>	40°C/24°C		^τ Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5				
Temperaturbereich	II:	80°C/50°C	wassergefülltes Bohrloch			5,5	6,5	6,5	6,5	Keine Leistung bewe			wertet
Ψ	III:	120°C/72°C	_			4,0	5,0	5,0	5,0	_			
Red	luktic	nsfaktor ψ ⁰ sus	im ungerissenen Beton C	20/25						l			
占	l:	40°C/24°C				0,73							
Temperatur- hereich	II:	80°C/50°C	trockener und feuchter Beton, sowie	Ψ ⁰ sus	[-]	0,65							
Ten		120°C/72°C	wassergefülltes Bohrloch			0,57							
Frh	öhun	gsfaktor für Be	eton	Ψς	[-]	(f _{ck} / 20) ^{0,11}							
				1 + C	τ _{Rk,ucr} =	Ψ _C • τ _{Rk,ucr} (C20/25)							
			oundtragfähigkeit in Betonfestigkeitsklasse		τ _{Rk,cr} =	Ψ _C • τ _{Rk,cr} (C20/25)							
		usbruch			*RK,CI			*(YKK,C	3/(0-07)			
Rel	evant	te Parameter						s	iehe Ta	abelle (22		
Spa	lten					l							
Rel	evant	te Parameter						s	iehe Ta	abelle (22		
Мо	ntage	ebeiwert											
		enen und feuc ergefülltes Bol		$-\gamma_{inst}$	[-]	1,0		,4		1,2		ung be	

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 3

Gewindestange			M8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 4.6, 4.8, 5.6 und 5.8	V ⁰ Rk,s	[kN]		0	,6 • A _s •	f _{uk} (ode	er siehe	Tabelle	C1)		
Charakteristische Quertragfähigkeit Stahl, Festigkeitsklasse 8.8 Nichtrostender Stahl A2, A4 und HCR, alle Festigkeitsklassen	V ⁰ Rk,s	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (oder siehe Tabelle C1)								
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	siehe Tabelle C1								
Duktilitätsfaktor	k ₇	[-]	1,0								
Stahlversagen mit Hebelarm											
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]		1,	2 · W _{el}	· f _{uk} (od	er siehe	Tabelle	C1)		
Elastisches Widerstandsmoment	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874	
Teilsicherheitsbeiwert	γMs,V	[-]	siehe Tabelle C1								
Betonausbruch auf der lastabgewandt	en Seite										
Faktor	k ₈	[-]				:	2,0				
Montagebeiwert γ_{inst} [-] 1,0											
Betonkantenbruch											
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300r				300mm				
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Montagebeiwert γ_{inst} [-]			1,0								

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 4

Tabelle C5: Charakteristise statischer Bela		rte de	er Zugt	ragfähi	gkeit ur	nter stat	ischer	und qua	asi-
Innengewindeankerstange				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Stahlversagen ¹⁾									
Charakteristische Zugtragfähigkeit, Sta		$N_{Rk,s}$	kN]	10	17	29	42	76	123
Festigkeitsklasse	8.8	· · · · · · · · · · · · · · · · · · ·	[[(,1)]	16	27	46	67	121	196
Teilsicherheitsbeiwert 5.8 und 8.8		$\gamma_{Ms,N}$	[-]			1	,5		
Charakteristische Zugtragfähigkeit, Nichtrostender Stahl A4 und HCR, Klas	sse 70 ²⁾	$N_{Rk,s}$	[kN]	14	26	41	59	110	124
Teilsicherheitsbeiwert		$\gamma_{Ms,N}$	[-]			1,87			2,86
Kombiniertes Versagen durch Herau	sziehen i	ınd Be	tonausb	ruch					
Charakteristische Verbundtragfähigkeit	im ungeri	ssenen	Beton C	20/25					
l: 40°C/24°C trockene	orund			12	12	12	12	11	9,0
II: 80°C/50°C feuchter				9,0	9,0	9,0	9,0	8,5	6,5
을 등 III: 120°C/72°C		τ _{Rk,ucr}	[N/mm²]	6,5	6,5	6,5	6,5	6,5	5,0
l: 40°C/24°C wasserg			[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8,5	8,5	8,5	Keine Leistung bewert		
II: 80°C/50°C Wassel				6,5	6,5	6,5			
III: 120°C/72°C				5,0	5,0	5,0			
Reduktionsfaktor $\psi^0_{ extstyle exts$	n Beton C	20/25							
ਸ਼ੁਲ ਹੈ: 40°C/24°C trockene			[-]	0,73					
II: 40°C/24°C trockend feuchter sowie wasserg		Ψ^0_{sus}		0,65					
H III: 120°C/72°C Bohrloc				0,57					
Erhöhungsfaktor für Beton		Ψ_{C}	[-]			(f _{ck} / 2	20) ^{0,11}		
Charakteristische Verbundtragfähigkeit		τ	Rk,ucr =			Ψc • τ _{Rk,u}			
Abhängigkeit von der Betonfestigkeitsk	lasse		τ _{Rk,cr} =			Ψ c • τ _{Rk,c}	_r (C20/25)		
Betonausbruch									
Relevante Parameter						siehe Ta	belle C2		
Spalten									
Relevante Parameter						siehe Ta	belle C2		
Montagebeiwert									
für trockenen und feuchten Beton		γ inst	[-]			1	,2		
für wassergefülltes Bohrloch		rinst	[_]	1,4 Keine Leistung bewertet					ewertet

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 5

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Innengewindeankerstange			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
			IG-IVIO	IG-IVIO	IG-IVI IO	IG-IVI 12	IG-IVI IO	IG-IVIZO	
Stahlversagen ohne Hebelarm ¹⁾									
Charakteristische 5.8 Quertragfähigkeit,	V ⁰ Rk,s	[kN]	5	9	15	21	38	61	
Stahl, Festigkeitsklasse 8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98	
Teilsicherheitsbeiwert 5.8 und 8.8	Y _{Ms,V}	[-]				1,25			
Charakteristische Quertragfähigkeit, nicht-rostender Stahl A4 und HCR, Festigkeitsklasse 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40	
Teilsicherheitsbeiwert	$\gamma_{Ms,V}$	[-]			1,56			2,38	
Duktilitätsfaktor	k ₇	[-]				1,0			
Stahlversagen mit Hebelarm ¹⁾									
Charakteristisches 5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325	
Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519	
Teilsicherheitsbeiwert 5.8 und 8.8	γ _{Ms,V}	[-]	1,25						
Charakteristisches Biegemoment, nicht-rostender Stahl A4 und HCR, Festigkeitsklasse 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456	
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]			1,56			2,38	
Betonausbruch auf der lastabgev	vandten S	Seite							
Faktor	k ₈	[-]				2,0			
Montagebeiwert	γinst	[-]				1,0			
Betonkantenbruch									
Effektive Dübellänge	I _f	[mm]		min	(h _{ef} ; 12 • d	nom)		min(h _{ef} ; 300mm	
Außendurchmesser des Dübels d _{nom} [mm]			10	12	16	20	24	30	
Montagebeiwert	1,0								

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen der angegebenen Festigkeitsklasse gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel.

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 6

²⁾ für IG-M20 Festigkeitsklasse 50 gültig

Tabelle C7: Charakteristisc statischer Belas		e der Zu	ıgtrag	gfähig	jkeit ι	unter	statis	scher	und	quasi	-	
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Stahlversagen												
Charakteristische Zugtragfähigkeit	[kN]				,	۹ _s • f _{uk}	1)					
Stahlspannungsquerschnitt	N _{Rk,s}	[mm²]	50	79	113	154	201	314	491	616	804	
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]					1, 4 ²⁾					
Kombiniertes Versagen durch Heraus			sbruc	h								
Charakteristische Verbundtragfähigkeit ir	n ungerisse	enen Beto	n C20/	25								
l: 40°C/24°C trockener und			10	12	12	12	12	12	11	10	8,5	
= `80°G/50°C			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0	
iii: 120°C/72°C feuchter Beton		[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
후 등 I: 40°C/24°C	TRk,ucr	[13/11111]	7,5	8,5	8,5	8,5	8,5					
II: 80°C/50°C wassergefülltes	·		5,5	6,5	6,5	6,5	6,5	Keine Leistung bewer				
III: 120°C/72°C			4,0	5,0	5,0	5,0	5,0					
Reduktionsfaktor ${\psi^0}_{sus}$ im ungerissenen	Beton C20	/25										
I: 40°C/24°C trockener und feuchter Beton,			0,73									
II: 40°C/24°C trockener und feuchter Beton, sowie wassergefülltes	Ψ^0 sus	[-]	0,65									
III: 120°C/72°C Bohrloch	'		0,57									
Erhöhungsfaktor für Beton	Ψς	[-]				(f_c)	_k / 20)	0,11				
Charakteristische Verbundtragfähigkeit in Abhängigkeit von der	1	τ _{Rk,ucr} =					_{Rk,ucr} (C					
Betonfestigkeitsklasse		τ _{Rk,cr} =				Ψ c •τ	Rk,cr(C	20/25)				
Betonausbruch												
Relevante Parameter						siehe	e Tabel	le C2				
Spalten Relevante Parameter siehe Tabelle C2												
Relevante Parameter					siehe	e rabel	ie C2					
Montagebeiwert			4.0				4	2				
für trockenen und feuchten Beton	$-\gamma_{inst}$	[-]	1,0		1 1		1	,2	l oict	ına hə		
für wassergefülltes Bohrloch				1,4				Keine Leistung bewertet				

¹⁾ f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen 2) Sofern andere nationalen Regelungen fehlen

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 7

Tabelle C8: Charakteri statischer			er Que	ertrag	fähigk	eit ur	nter st	atisch	ner un	d qua	si-
Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm							•				
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s}	[kN]				0,5	0 · A _s ·	f _{uk} ²⁾			
Stahlspannungsquerschnitt	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]	1,52)								
Duktilitätsfaktor	k ₇	[-]	1,0								
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ^o _{Rk,s}	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastisches Widerstandsmoment	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]					1,5 ²⁾				
Betonausbruch auf der lastabge	ewandten Sei	te									
Faktor	k ₈	[-]					2,0				
Montagebeiwert	γinst	[-]					1,0				
Betonkantenbruch											
Effektive Dübellänge	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm)					mm)			
Außendurchmesser des Dübels	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Montagebeiwert	γinst	[-]	1,0								

f_{uk} ist den Spezifikationen des Betonstahls zu entnehmen
 Sofern andere nationalen Regelungen fehlen

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 8

Tabelle C9: Verschiebung unter Zugbeanspruchung¹)												
Gewindestange	М8	M10	M12	M16	M20	M24	M27	M30				
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung												
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperaturbereich III: 120°C/72°C	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor · τ ;

Tabelle C10: Verschiebung unter Querbeanspruchung¹⁾

Gewindestange			М8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Beton C20/25 unter statischer und qua				tischer	Belastu	ıng				
Alle	δ _{v0} -Faktor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · **V**;

V: einwirkende Querlast

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-Faktor} \cdot \text{\textbf{V}};$

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Gewindestange)	Anhang C 9

Tabelle C11: Verschiebung unter Zugbeanspruchung ¹⁾										
Innengewindeankerstange			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung										
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049		
I: 40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119		
III: 120°C/72°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172		

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 τ : einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor} \cdot \tau;$

Tabelle C12: Verschiebung unter Querbeanspruchung¹⁾ (Innengewindeankerstange)

Innengewindeankers	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung									
Alle	δ _{vo} -Faktor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04	
Temperaturbereiche	δ _{ν∞} -Faktor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06	

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty}\text{-Faktor} \cdot \text{\textbf{V}};$

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Innengewindeankerstange)	Anhang C 10

Tabelle C13:Verschiebung unter Zugbeanspruchung ¹⁾											
Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Temperaturbereich I: 40°C/24°C	δ _{N0} -Faktor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperaturbereich	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
II: 80°C/50°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperaturbereich III: 120°C/72°C	δ _{N0} -Faktor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

τ: einwirkende Verbundspannung unter Zugbelastung

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor · τ ;

Tabelle C14:Verschiebung unter Querbeanspruchung¹⁾

Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Ungerissener Beton C20/25 unter statischer und quasi-statischer Belastung											
Alle	δ _{vo} -Faktor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Temperaturbereiche	δν∞-Faktor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

V: einwirkende Querlast

 $\delta_{V\infty} = \delta_{V\infty}\text{-Faktor} \cdot V;$

Novatech Injektionssystem Novatio Q-Fix für Beton	
Leistungen Verschiebungen unter statischer und quasi-statischer Belastung (Betonstahl)	Anhang C 11