



Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte



# **Europäische Technische Bewertung**

# ETA-17/0196 vom 15. September 2025

#### **Allgemeiner Teil**

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem HB-VMU plus für Mauerwerk

Metall-Injektionsdübel zur Verankerung im Mauerwerk

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Herstellwerke HB1, HB3

81 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604, Edition 10/2022

ETA-17/0196 vom 10. März 2017

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z208597.25



Seite 2 von 81 | 15. September 2025

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.



Seite 3 von 81 | 15. September 2025

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Der "Injektionssystem HB-VMU plus für Mauerwerk" ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel HB-VMU plus oder HB-VMU plus Polar, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe oder einer Innengewindeankerstange besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

# 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                        | Leistung                          |
|-----------------------------------------------------------------------------|-----------------------------------|
| Charakteristischer Widerstand für statische und quasistatische Einwirkungen | Siehe Anhang B6, B7<br>C1 bis C60 |
| Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung  | Leistung nicht bewertet           |

#### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal                                                                                    | Leistung                                                                                          |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Brandverhalten                                                                                          | Klasse A1                                                                                         |
| Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände | Siehe Anhang C4, C9, C10, C15, C16, C19, C21, C22, C23, C40, C42, C47, C48, C49, C50, C55 und C56 |

#### 3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

| Wesentliches Merkmal                                           | Leistung                |
|----------------------------------------------------------------|-------------------------|
| Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen | Leistung nicht bewertet |

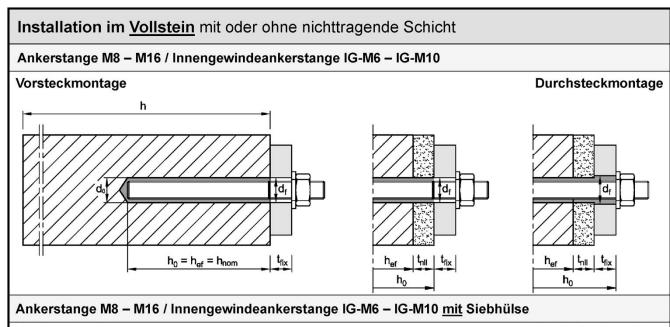


Seite 4 von 81 | 15. September 2025

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

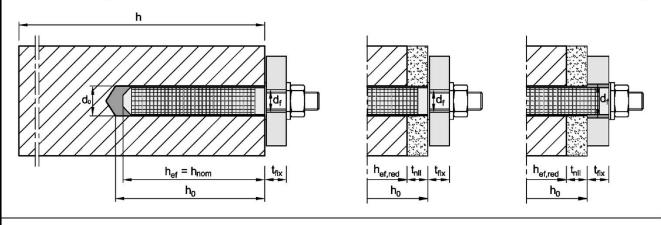
Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 15. September 2025 vom Deutschen Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider





#### Vorsteckmontage

# Durchsteckmontage



Bei Durchsteckmontage muss der Ringspalt zwischen Ankerstange und Anbauteil mit Mörtel verfüllt sein.

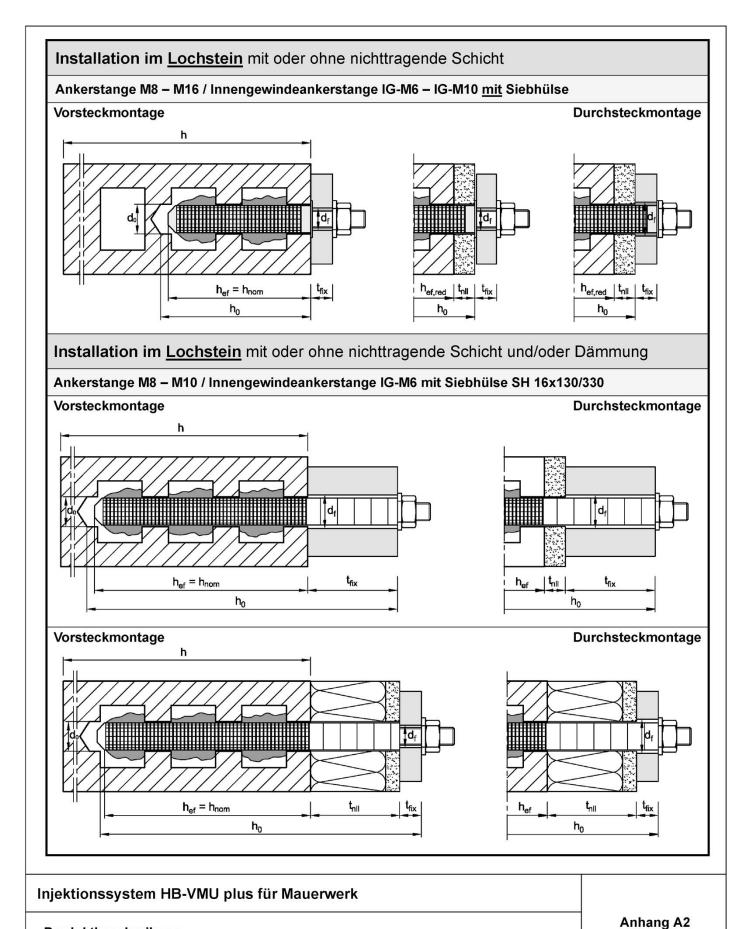
#### Legende (Anhang A1 und Anhang A2):

h<sub>ef</sub> = effektive Verankerungstiefe

h<sub>nom</sub> = nominelle Verankerungstiefe

h<sub>0</sub> = Bohrlochtiefe h = Bauteildicke

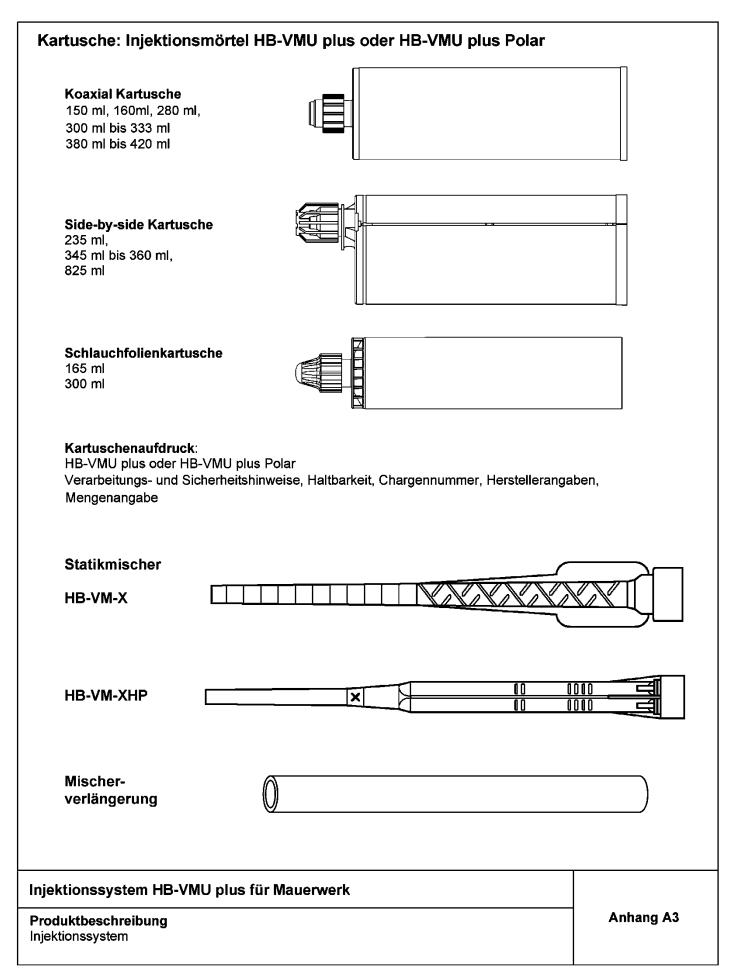
d<sub>0</sub> = Bohrlochdurchmesser


d<sub>f</sub> = Durchgangsloch im Anbauteil

t<sub>fix</sub> = Dicke des Anbauteils

 $t_{\text{nll}}$  = Dicke der nichttragenden Schicht



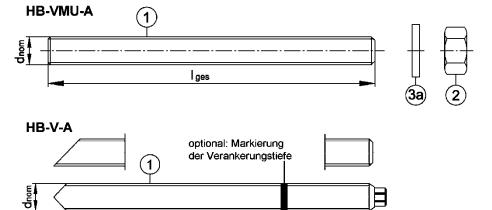





**Produktbeschreibung**Einbauzustand - Lochstein

8.06.04-163/25








#### **Ankerstangen**

#### Ankerstangen HB-VMU-A und HB-V-A

M8, M10, M12, M16 (verzinkt, A4, HCR) mit Unterlegscheibe und Sechskantmutter



Prägung z.B.: ♦ M10

Werkzeichen
M10 Gewindegröße

# zusätzliche Kennung:

-8 Festigkeitsklasse 8.8A4 nichtrostender Stahl

HC hochkorrosionsbeständiger

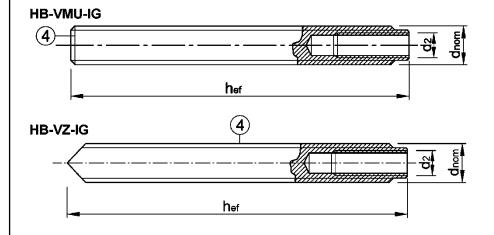
Stahl

# Ankerstange HB-VM-A (Meterware zum Ablängen)

M8, M10, M12, M16 (verzinkt, A2, A4, HCR)

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1

#### Handelsübliche Gewindestangen


M8, M10, M12, M16 (verzinkt, A2, A4, HCR)

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004 (Dokumente sind aufzubewahren)

# Innengewindeankerstange HB-VMU-IG und HB-VZ-IG

IG M6. IG M8. IG M10

(verzinkt, A4, HCR)



Prägung z.B.: ♦ M8

Werkzeichen

I Innengewinde (optional)

M8 Gewindegröße (Innengewinde)

#### zusätzliche Kennung:

-8 Festigkeitsklasse 8.8A4 nichtrostender Stahl

HCR hochkorrosionsbeständiger

Stahl

#### Injektionssystem HB-VMU plus für Mauerwerk

#### Produktbeschreibung

Ankerstangen und Innengewindeankerstangen

**Anhang A4** 



# Tabelle A1: Werkstoffe

| Teil                                  | Benennung                                                 |                                               | Werkstoffe und mechanische Eigenschaften                                       |           |                            |                            |                              |                    |  |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|-----------|----------------------------|----------------------------|------------------------------|--------------------|--|
| galva<br>feuer                        | , verzinkt<br>nisch verzinkt<br>verzinkt<br>ionsverzinkt  | ≥ 5 µm gemä<br>≥ 50 µm im Mit<br>≥ 45 µm gemä | ttel gemäß l                                                                   | EN ISO    | 1461:2022                  | , EN ISC                   | 10684:2004                   | +AC:2009 oder      |  |
|                                       |                                                           | Festigkeits-<br>klasse                        | Charakteristische Zugfestigkeit Charakteristische Streckgrenze                 |           |                            |                            | Bruch-<br>dehnung            | EN ISO 683-4:2018, |  |
|                                       |                                                           | 4.6                                           |                                                                                | 400       |                            | 240                        | A <sub>5</sub> > 8 %         | EN 10263:2017      |  |
| 1                                     | Ankerstange                                               | 4.8                                           |                                                                                | 400       |                            | 320                        | A <sub>5</sub> > 8 %         | handelsübliche     |  |
|                                       |                                                           | 5.6                                           | f <sub>uk</sub><br>[N/mm²]                                                     | 500       | f <sub>yk</sub><br>[N/mm²] | 300                        | A <sub>5</sub> > 8 %         | Gewindestangen:    |  |
|                                       |                                                           | 5.8                                           | [14/11111]                                                                     | 500       | [13/11111]                 | 400                        | A <sub>5</sub> > 8 %         | EN ISO 898-1:2013  |  |
|                                       |                                                           | 8.8                                           |                                                                                | 800       |                            | 640                        | A <sub>5</sub> > 8 %         |                    |  |
|                                       |                                                           | 4                                             | für Ankers                                                                     | tangen (  | der Klasse                 | 4.6, 4.8                   |                              |                    |  |
| 2                                     | Sechskantmutter                                           | 5                                             | für Ankers                                                                     | tangen (  | der Klasse                 | 4.6, 4.8,                  | 5.6, 5.8                     | EN ISO 898-2:2022  |  |
|                                       |                                                           | 8                                             | für Ankers                                                                     | tangen (  | der Klasse                 | 4.6, 4.8,                  | 5.6, 5.8, 8.8                |                    |  |
| 3                                     | Unterlegscheibe                                           |                                               | z.B.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000,<br>EN ISO 887:2006 |           |                            |                            |                              |                    |  |
| 4                                     | Innengewinde-<br>ankerstange <sup>3)</sup>                | 5.8<br>8.8                                    | Stahl, galv                                                                    |           | EN ISO 683-4:2018          |                            |                              |                    |  |
| Nicht                                 | rostender Stahl A<br>rostender Stahl A<br>korrosionsbestä | ۸4                                            | С                                                                              | RC III (1 |                            | 404 / 1.4                  | 311 / 1.4567<br>571 / 1.4578 |                    |  |
|                                       |                                                           | Festigkeits-<br>klasse                        | Charakteri<br>Zugfesti                                                         |           | Charakte<br>Strecks        |                            | Bruch-<br>dehnung            |                    |  |
| ١,                                    | A 1                                                       | 50                                            |                                                                                | 500       |                            | 210                        | A <sub>5</sub> > 8%          | EN 10088-1:2014    |  |
| 1                                     | Ankerstange                                               | 70                                            | f <sub>uk</sub><br>[N/mm²]                                                     | 700       | f <sub>yk</sub><br>[N/mm²] | 450<br>(560) <sup>2)</sup> | A <sub>5</sub> > 8 %         | EN ISO 3506-1:2020 |  |
|                                       |                                                           | 80                                            |                                                                                | 800       |                            | 600<br>(640) <sup>2)</sup> | A <sub>5</sub> > 8 %         |                    |  |
|                                       |                                                           | 50                                            | für Ankers                                                                     | tangen (  | der Klasse                 | 50                         |                              | EN 10088-1:2014    |  |
| 2                                     | Sechskantmutter                                           | 70                                            | für Ankers                                                                     |           | EN ISO 3506-2:2020         |                            |                              |                    |  |
|                                       |                                                           | 80                                            | für Ankerstangen der Klasse 50, 70, 80                                         |           |                            |                            |                              |                    |  |
| 3                                     | Unterlegscheibe                                           |                                               | z.B.: EN ISO 7089:2000, EN ISO 7093:2000,<br>EN ISO 7094:2000; EN ISO 887:2006 |           |                            |                            |                              | EN 10088-1:2014    |  |
| 4                                     | Innengewinde-<br>ankerstange <sup>3)</sup>                | 70                                            | nichtrostender Stahl A4;<br>hochkorrosionsbest. Stahl HCR                      |           |                            |                            |                              | EN 10088-1:2014    |  |
| Siebhülse HB-VM-SH Polyprophylen (PP) |                                                           |                                               |                                                                                |           |                            |                            |                              |                    |  |

<sup>&</sup>lt;sup>3)</sup> Bei HB-VMU-IG bzw. HB-VZ-IG müssen die verwendeten Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) mindestens dem Material und der Festigkeitsklasse der Ankerstange entsprechen.

| Injektionssystem HB-VMU plus für Mauerwerk |           |
|--------------------------------------------|-----------|
| Produktbeschreibung<br>Werkstoffe          | Anhang A5 |

<sup>1)</sup> Festigkeitsklasse 50 und 70 2) Wert in Klammern für HB-VMU-A und HB-V-A



Tabelle A2: Abmessungen der Ankerstangen und Innengewindeankerstangen

| Ankerstangen                      |                  |                            | M8                                        | M10                                                                     | M12                       | M16 |
|-----------------------------------|------------------|----------------------------|-------------------------------------------|-------------------------------------------------------------------------|---------------------------|-----|
| Durchmesser                       | $d = d_{nom}$    | [mm]                       | 8                                         | 10                                                                      | 12                        | 16  |
| Gesamtlänge I <sub>ges</sub> [mm] |                  | $h_{ef}$ + $t_{fix}$ + 9,5 | h <sub>ef</sub> + t <sub>fix</sub> + 11,5 | h <sub>ef</sub> + t <sub>fix</sub> + 17,5                               | $h_{ef} + t_{fix} + 20,0$ |     |
| Innengewindeankerstange           |                  | •                          | IG M6                                     | IG M8                                                                   | IG M10                    |     |
| Innendurchmesser                  | $d_2$            | [mm]                       | -                                         | 6                                                                       | 8                         | 10  |
| Außendurchmesser                  | $d = d_{nom}$    | [mm]                       | ī                                         | 10                                                                      | 12                        | 16  |
| min. Einschraubtiefe              | $L_{IG,min}$     | [mm]                       | Ī                                         | 8                                                                       | 10                        | 10  |
| Gesamtlänge                       | I <sub>ges</sub> | [mm]                       | -                                         | mit Siebhülse: h <sub>ef</sub> – 5mm<br>ohne Siebhülse: h <sub>ef</sub> |                           |     |

Tabelle A3: Abmessungen der Siebhülsen HB-VM-SH

| Тур                                                                                                                                    | Größe                                | d <sub>s</sub><br>[mm] | L <sub>s</sub> | $h_{ef} = h_{nom}$ [mm] |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|----------------|-------------------------|
| $L_s = h_{ef} = h_{nom}$                                                                                                               | HB-VM-SH 12x80                       | 12                     | 80             | 80                      |
| ds                                                                                                                                     | HB-VM-SH 16x85                       | 16                     | 85             | 85                      |
|                                                                                                                                        | HB-VM-SH 20x85                       | 20                     | 85             | 85                      |
| L <sub>s</sub> = h <sub>ef</sub> = h <sub>nom</sub>                                                                                    | HB-VM-SH 16x130                      | 16                     | 130            | 130                     |
| ds                                                                                                                                     | HB-VM-SH 20x130                      | 20                     | 130            | 130                     |
|                                                                                                                                        | HB-VM-SH 20x200                      | 20                     | 200            | 200                     |
| L <sub>s</sub> h <sub>ef</sub> = h <sub>nom</sub> d <sub>s</sub> zur Montage durch bis zu 20cm Wärmedämmung oder zur Durchsteckmontage | HB-VM-SH<br>16x130/330 <sup>1)</sup> | 16                     | 330            | 130                     |

<sup>1)</sup> Im Anhang C ist diese Siebhülse mit der HB-VM-SH 16x130 abgedeckt

| Injektionssystem HB-VMU plus für Mauerwerk                      |           |
|-----------------------------------------------------------------|-----------|
| Produktbeschreibung Abmessungen der Ankerstangen und Siebhülsen | Anhang A6 |



# Spezifizierung des Verwendungszwecks

| Beanspruchung der                          | Statische und quasi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | statische Lasten                                                                  | M8 – M16                                                                                                                                              |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Verankerung                                | Brandeinwirkung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   | IG M6 – IG M10                                                                                                                                        |  |  |  |
|                                            | Zug- und Querlast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | (mit und ohne Siebhülse)                                                                                                                              |  |  |  |
| Verankerungsgrund                          | Mauerwerksgruppe k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : Vollsteine                                                                      | Anhang B 3                                                                                                                                            |  |  |  |
|                                            | Mauerwerksgruppe o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : Hohl- und Lochsteine                                                            | Anhang B 3 bis B 5                                                                                                                                    |  |  |  |
|                                            | Mauerwerksgruppe o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : Porenbeton                                                                      | Anhang B 3                                                                                                                                            |  |  |  |
|                                            | Bei anderen Steinen<br>Porenbeton darf die<br>Baustellenversuche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in Vollsteinmauerwerk, Lo<br>charakteristische Tragfähi<br>entsprechend EOTA TR 0 | ns M2,5 gemäß EN 998-2:2016<br>ochsteinmauerwerk oder in<br>gkeit des Dübels durch<br>53, Fassung Juli 2022 unter<br>C1, Tabelle C1 ermittelt werden. |  |  |  |
| Temperaturbereich                          | T <sub>a</sub> : - 40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur +24°C) T <sub>b</sub> : - 40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeittemperatur +50°C) T <sub>o</sub> : - 40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeittemperatur +72°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |                                                                                                                                                       |  |  |  |
| Bohrlocherstellung                         | Siehe Anhang C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |                                                                                                                                                       |  |  |  |
| Anwendungsbedingungen (Umweltbedingungen): | Bauteile unter den Bedingungen trockener Innenräume (alle Materialien). Für alle anderen Bedingungen entsprechend EN 1993-1-4:2006+A2:2020 Korrosionsbeständigkeitsklasse Tabelle A1 (nichtrostende und hochkorrosionsbeständige Stähle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |                                                                                                                                                       |  |  |  |
| Nutzungsbedingungen                        | Bedingung d/d     Bedingung w/w     Bedingu |                                                                                   |                                                                                                                                                       |  |  |  |

Bemerkung: Der charakteristische Widerstand für Vollsteine und Porenbetonsteine gilt auch für größere Steindurchmesser und höhere Steindruckfestigkeiten.

| Injektionssystem HB-VMU plus für Mauerwerk |           |
|--------------------------------------------|-----------|
| Verwendungszweck Spezifikationen           | Anhang B1 |



# Spezifizierung des Verwendungszwecks

#### Bemessung:

- Unter Berücksichtigung des Mauerwerks im Verankerungsbereich, der zu verankernden Lasten und der Weiterleitung der Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels anzugeben
- Die Bemessung der Verankerungen erfolgt gemäß EOTA TR 054, Fassung Juli 2022, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs
- Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:
  - $N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$
  - $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$
- Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung NRK,pb oder das Herausdrücken eines Steines unter Querbeanspruchung VRk,pb siehe EOTA Technical Report TR 054, Fassung Juli 2022.
- NRk,s, VRk,s und M<sup>0</sup>Rk,s siehe Anhang C2 C4.
- Bei Anwendungen mit Siebhülse mit Bohrlochdurchmessern ≤15mm, installiert in nichtgefüllte Fugen:
  - NRk,p,j = 0,18 \* NRk,p und NRk,b,j = 0,18 \* NRk,b (NRk,p = NRk,b siehe Anhang C)
  - VRk,c,j = 0,15 \* VRk,c und VRk,b,j = 0,15 \* VRk,b (VRk,b siehe Anhang C; VRk,c siehe Anhang C5)
- Anwendungen ohne Siebhülse installiert in nichtgefüllte Fugen sind nicht erlaubt.

#### Einbau:

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Bei Verwendung von Ankerstangen mit Innengewinde (HB-VMU-IG bzw. HB-VZ-IG) müssen Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) dem Material und der Festigkeitsklasse der Ankerstange entsprechen.

Injektionssystem HB-VMU plus für Mauerwerk

Verwendungszweck
Spezifikationen

Anhang B2



| Bezeichnung<br>Rohdichte<br>[kg/dm³]<br>Maße LxBxH<br>[mm] | Foto             | Siebhülse<br>HB-VM-SH                                 | Brand-<br>widerstände | Anhang          | Bezeichnung<br>Rohdichte<br>[kg/dm³]<br>Maße LxBxH<br>[mm] | Foto             | Siebhülse<br>HB-VM-SH                                 | Brand-<br>widerstände | Anhang          |
|------------------------------------------------------------|------------------|-------------------------------------------------------|-----------------------|-----------------|------------------------------------------------------------|------------------|-------------------------------------------------------|-----------------------|-----------------|
| Porenbeto                                                  | n gemäß EN 771-4 | :2011+A1:                                             | 2015                  |                 | Leichtbetonvo                                              | Ilstein gemäß EN | 771-3:201                                             | 1+A1                  | :2015           |
| AAC<br>ρ = 0,35-0,60<br>≥ 499x240x249                      |                  | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | _                     | C6<br>-<br>C8   | VBL<br>ρ≥0,6<br>≥240x300x113                               |                  | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | _                     | C59<br>-<br>C60 |
|                                                            | Leicht           | betonloch                                             | stein                 | e gemä          | iß EN 771-3:2011                                           | +A1:2015         |                                                       |                       |                 |
| HBL 16DF<br>ρ≥1,0<br>500x250x240                           |                  | 16x85<br>16x130<br>20x85<br>20x130<br>20x200          | <b>✓</b>              | C55<br>-<br>C56 | Bloc creux B40<br>ρ ≥ 0,8<br>495x195x190                   | EE               | 16x130<br>20x130                                      | _                     | C57<br>-<br>C58 |
|                                                            | Kal              | ksandste                                              | ine ge                | emäß E          | N 771-2:2011+A                                             | 1:2015           |                                                       |                       |                 |
| KS-NF<br>ρ ≥ 2,0<br>≥ 240x115x71                           |                  | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | <b>✓</b>              | C9<br>-<br>C10  | KSL-3DF<br>ρ ≥ 1,4<br>240x175x113                          | ***              | 16x85<br>16x130<br>20x85<br>20x130                    | 1                     | C11<br>-<br>C12 |
| KSL-8DF<br>ρ≥ 1,4<br>248x240x238                           |                  | 16x130<br>20x130<br>20x200                            | _                     | C13<br>-<br>C14 | KSL-12DF<br>ρ≥1,4<br>498x175x238                           |                  | 16x130<br>20x130                                      | <b>~</b>              | C15             |
|                                                            |                  | Vollziege                                             | l gem                 | äß EN           | 771-1:2011+A1:2                                            | 2015             |                                                       |                       |                 |
| MZ-1DF<br>ρ ≥ 2,0<br>≥ 240x115x55                          |                  | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | -                     | C17<br>-<br>C18 | MZ – 2 DF<br>ρ ≥ 2,0<br>≥ 240x115x113                      |                  | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | <b>✓</b>              | C19<br>-<br>C21 |

| Injektionssystem HB-VMU plus für Mauerwerk     |           |
|------------------------------------------------|-----------|
| Verwendungszweck<br>Steintyp und Eigenschaften | Anhang B3 |



| Bezeichnung<br>Rohdichte<br>[kg/dm³]<br>Maße LxBxH<br>[mm] | Foto      | Siebhülse<br>HB-VM-SH                                 | Brand-<br>widerstände | Anhang          | Bezeichnung<br>Rohdichte<br>[kg/dm³]<br>Maße LxBxH<br>[mm] | Foto            | Siebhülse<br>HB-VM-SH                                 | Brand-<br>widerstände | Anhand        |
|------------------------------------------------------------|-----------|-------------------------------------------------------|-----------------------|-----------------|------------------------------------------------------------|-----------------|-------------------------------------------------------|-----------------------|---------------|
| * *                                                        |           | _ ~ _                                                 |                       |                 | l 771-1:2011+A1                                            | :2015           | <b>37</b> <u>T</u>                                    |                       |               |
| HIz-10DF<br>ρ≥1,25<br>300x240x249                          |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | <b>✓</b>              | C22<br>-<br>C23 | Porotherm<br>Homebric<br>ρ≥0,7<br>500x200x299              |                 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | _                     | C2<br>-<br>C2 |
| BGV Thermo<br>ρ ≥ 0,6<br>500x200x314                       |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | _7                    | C26<br>-<br>C27 | Brique creuse<br>C40<br>ρ≥0,7<br>500x200x200               |                 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | -                     | C3<br>-<br>C3 |
| Calibric R+<br>ρ ≥ 0,6<br>500x200x314                      |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | _                     | C28<br>-<br>C29 | Blocchi<br>Leggeri<br>ρ≥0,6<br>250x120x250                 |                 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | _                     | C3            |
| Urbanbric<br>ρ ≥ 0,7<br>560x200x274                        |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | _                     | C30<br>-<br>C31 | Doppio Uni<br>ρ≥0,9<br>250x120x120                         |                 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130           | _                     | C3            |
|                                                            | Lochziege | el mit Wär                                            | medä                  | mmun            | g gemäß EN 771                                             | -1:2011+A1:2015 |                                                       |                       |               |
| Coriso WS07<br>ρ ≥ 0,55<br>248x365x249<br>Mineralwolle     |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | _                     | C38<br>-<br>C39 | T8P<br>ρ ≥ 0,56<br>248x365x249<br>Perlite                  |                 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | _                     | C4<br>-<br>C4 |
| T7MW<br>ρ ≥ 0,59<br>248x365x249<br>Mineralwolle            |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | ✓                     | C40<br>-<br>C42 | MZ90-G<br>ρ ≥ 0,68<br>248x365x249<br>Mineralwolle          |                 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | I                     | C4            |

| Injektionssystem HB-VMU plus für Mauerwerk     | Anhana B4   |
|------------------------------------------------|-------------|
| Verwendungszweck<br>Steintyp und Eigenschaften | - Anhang B4 |



# Fortsetzung Tabelle B1: Übersicht der Mauersteine und Eigenschaften

| Bezeichnung<br>Rohdichte<br>[kg/dm³]<br>Maße LxBxH<br>[mm]  | Foto      | Siebhülse<br>HB-VM-SH                                 | Brand-<br>widerstände | Anhang          | Bezeichnung<br>Rohdichte<br>[kg/dm³]<br>Maße LxBxH<br>[mm]  | Foto                                    | Siebhülse<br>HB-VM-SH                                 | Brand-<br>widerstände | Anhang          |
|-------------------------------------------------------------|-----------|-------------------------------------------------------|-----------------------|-----------------|-------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------|-----------------|
|                                                             | Lochziege | l mit Wärr                                            | nedär                 | nmung           | gemäß EN 771                                                | -1:2011+A1:2015                         |                                                       |                       |                 |
| Poroton<br>FZ7,5<br>ρ ≥ 0,90<br>248x365x249<br>Mineralwolle |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | <b>✓</b>              | C47<br>-<br>C48 | Poroton<br>FZ9<br>ρ ≥ 0,90<br>248x365x249<br>Mineralwolle   | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | <b>*</b>              | C49<br>-<br>C50 |
| Poroton S9<br>ρ ≥ 0,85<br>248x365x249<br>Perlite            |           | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | _                     | C51<br>-<br>C52 | Thermopor<br>TV8+<br>ρ ≥ 0,7<br>248x365x249<br>Mineralwolle |                                         | 12x80<br>16x85<br>16x130<br>20x85<br>20x130<br>20x200 | 1                     | C53<br>-<br>C54 |

**Verwendungszweck** Steintyp und Eigenschaften **Anhang B5** 



Tabelle B2: Montagekennwerte für Porenbeton AAC und Vollstein (<u>ohne</u> Siebhülse) bei Vor- und Durchsteckmontage

| Ankerstange                               |                                 |                  |      | M8                   | M10<br>IG-M6          | M12<br>IG-M8          | M16<br>IG-M10           |  |  |
|-------------------------------------------|---------------------------------|------------------|------|----------------------|-----------------------|-----------------------|-------------------------|--|--|
| Bohrernenndur                             | chmesser                        | d₀               | [mm] | 10                   | 12                    | 14                    | 18                      |  |  |
| Bohrlochtiefe                             |                                 | h <sub>0</sub>   | [mm] |                      | h <sub>ef</sub>       | + t <sub>fix</sub> 1) |                         |  |  |
| Effektive Verar                           | nkerungstiefe                   | h <sub>ef</sub>  | [mm] | 80                   | ≥ 90                  | ≥ 100                 | ≥ 100                   |  |  |
| Durchgangs-                               | Vorsteck-<br>montage            | d <sub>f</sub> ≤ | [mm] | 9                    | 7 (IG-M6)<br>12 (M10) | 9 (IG-M8)<br>14 (M12) | 12 (IG-M10)<br>18 (M16) |  |  |
| Anbauteil                                 | Durchsteck-<br>montage          | d₁≤              | [mm] | 12                   | 14                    | 16                    | 20                      |  |  |
| Reinigungsbür                             | ste                             |                  | [-]  | HB-RB 10             | HB-RB 12              | HB-RB 14              | HB-RB 18                |  |  |
| Min. Bürstendu                            | ırchmesser                      | d♭               | [mm] | 10,5                 | 12,5                  | 14,5                  | 18,5                    |  |  |
| Max. Montageo                             | Max. Montagedrehmoment Tinst [1 |                  |      | siehe Anhang C       |                       |                       |                         |  |  |
| Minimale Bauteildicke h <sub>min</sub>    |                                 | [mm]             |      | h <sub>ef</sub> + 30 |                       |                       |                         |  |  |
| Minimaler Achsabstand s <sub>min</sub> [m |                                 |                  | [mm] | siehe Anhang C       |                       |                       |                         |  |  |
| Minimaler Ran                             | dabstand                        | Cmin             | [mm] |                      | siehe Anhang C        |                       |                         |  |  |

<sup>1)</sup> Bei der Durchsteckmontage t<sub>fix</sub> berücksichtigen

Tabelle B3: Montagekennwerte in Voll- und Lochstein (<u>mit</u> Siebhülse) bei Vorsteckmontage

| Ankerstange                    |                                                    |      | M8             | M8 / M10<br>IG-M6                                                     |        |                | M12 / M16<br>IG-M8 / IG-M10 |        |        |
|--------------------------------|----------------------------------------------------|------|----------------|-----------------------------------------------------------------------|--------|----------------|-----------------------------|--------|--------|
| Siebhülse HB-VM-SH             | Siebhülse HB-VM-SH                                 |      |                | 16x85                                                                 | 16x130 | 16x130<br>/330 | 20x85                       | 20x130 | 20x200 |
| Bohrernenndurchmesser          | <b>d</b> o                                         | [mm] | 12             |                                                                       | 16     |                |                             | 20     |        |
| Bohrlochtiefe                  | <b>h</b> o                                         | [mm] | 85             | 90                                                                    | 135    | 330            | 90                          | 135    | 205    |
| Effektive Verankerungstiefe    | h <sub>ef</sub>                                    | [mm] | 80             | 85                                                                    | 130    | 130            | 85                          | 130    | 200    |
| Durchgangsloch im<br>Anbauteil | d <sub>f</sub> ≤                                   | [mm] | 9              | 7 (IG-M6) 9 (IG-M<br>9 (M8) 12 (IG-M<br>12 (M10) 14 (M12)<br>18 (M16) |        | M10)<br>2)     |                             |        |        |
| Reinigungsbürste               | Reinigungsbürste [-                                |      | HB-RB<br>12    | HB-RB 16                                                              |        | HB-RB 20       |                             |        |        |
| Min. Bürstendurchmesser        | dь                                                 | [mm] | 12,5           |                                                                       | 16,5   |                | 20,5                        |        |        |
| Max. Montagedrehmoment         | Max. Montagedrehmoment T <sub>inst</sub> [Nm       |      |                | siehe Anhang C                                                        |        |                |                             |        |        |
| Minimale Bauteildicke          | Ninimale Bauteildicke h <sub>min</sub> [mm] 115 11 |      | 115            | 195                                                                   | 195    | 115            | 195                         | 240    |        |
| Minimaler Achsabstand          | Minimaler Achsabstand s <sub>min</sub> [mm]        |      | siehe Anhang C |                                                                       |        |                |                             |        |        |
| Minimaler Randabstand          | C <sub>min</sub>                                   | [mm] |                | siehe Anhang C                                                        |        |                |                             |        |        |

| Injektionssystem HB-VMU plus für Mauerwerk |           |
|--------------------------------------------|-----------|
| Verwendungszweck<br>Montagekennwerte       | Anhang B6 |



Tabelle B4: Montagekennwerte in Voll- und Lochstein (<u>mit</u> Siebhülse) bei Vorsteckmontage durch nichttragende Schichten und/oder Durchsteckmontage

| Ankerstange                            |                                          |                       |                | M8 / M10 M12 / M16 IG-M6 IG-M8 / IG-M1 |                          |                            |                                       |
|----------------------------------------|------------------------------------------|-----------------------|----------------|----------------------------------------|--------------------------|----------------------------|---------------------------------------|
| Siebhülse HB-VI                        | M-SH                                     |                       |                | 16x130                                 | 16x130/330               | 20x130                     | 20x200                                |
| Bohrernenndurch                        | messer                                   | <b>d</b> <sub>0</sub> | [mm]           | 1                                      | 6                        | 2                          | 0                                     |
| Bohrlochtiefe                          |                                          | <b>h</b> o            | [mm]           |                                        | h <sub>ef</sub> + 5mm    | + $t_{nll}$ + $t_{fix}$ 1) |                                       |
| Effektive<br>Verankerungs-             | Vorsteck-<br>montage                     | h <sub>ef</sub>       | [mm]           | 130                                    | 130                      | 130                        | 200                                   |
| tiefe                                  | Durchsteck-<br>montage                   | h <sub>ef</sub>       | [mm]           | 85                                     | 130                      | 85                         | 85                                    |
| Maximale Dicke on nichttragenden Se    | ma                                       | ıx. t <sub>nll</sub>  | [mm]           | 45                                     | 200                      | 45                         | 115                                   |
| Durchgangsloch<br>im Anbauteil         | Vorsteck-<br>montage                     | d <sub>f</sub> ≤      | [mm]           | 7<br>9<br>12                           | (IG-M6)<br>(M8)<br>(M10) | 9<br>12<br>14<br>18        | (IG-M8)<br>(IG-M10)<br>(M12)<br>(M16) |
|                                        | Durchsteck-<br>montage                   | d <sub>f</sub> ≤      | [mm]           | 18                                     |                          | 22                         |                                       |
| Bürste                                 |                                          |                       | [-]            | HB-RB 16                               |                          | HB-RB 20                   |                                       |
| Min. Bürstendurchmesser d <sub>b</sub> |                                          | [mm]                  | 16,5           |                                        | 20,5                     |                            |                                       |
| Max. Montagedre                        | Max. Montagedrehmoment T <sub>inst</sub> |                       | [Nm]           | siehe Ar                               |                          | nhang C                    |                                       |
| Minimale Bauteilo                      | Minimale Bauteildicke h <sub>min</sub>   |                       | [mm]           | 195 (115)                              | 195                      | 195 (115)                  | 240 (115)                             |
| Minimaler Achsabstand s <sub>min</sub> |                                          | [mm]                  | siehe Anhang C |                                        |                          |                            |                                       |
| Minimaler Randal                       | bstand                                   | C <sub>min</sub>      | [mm]           | siehe Anhang C                         |                          |                            |                                       |

<sup>1)</sup> Bei nichttragenden Schichten und/oder Durchsteckmontage t<sub>fix</sub> und/oder t<sub>nll</sub> berücksichtigen.

# Reinigungs- und Installationszubehör

#### Druckluftpistole (min 6 bar)



# Reinigungsbürste HB-RB



# Handausblaspumpe (Volumen ≥ 750 ml)



#### Bürstenverlängerung



# Injektionssystem HB-VMU plus für Mauerwerk

#### Verwendungszweck

Montagekennwerte und Reinigungs- und Installationszubehör

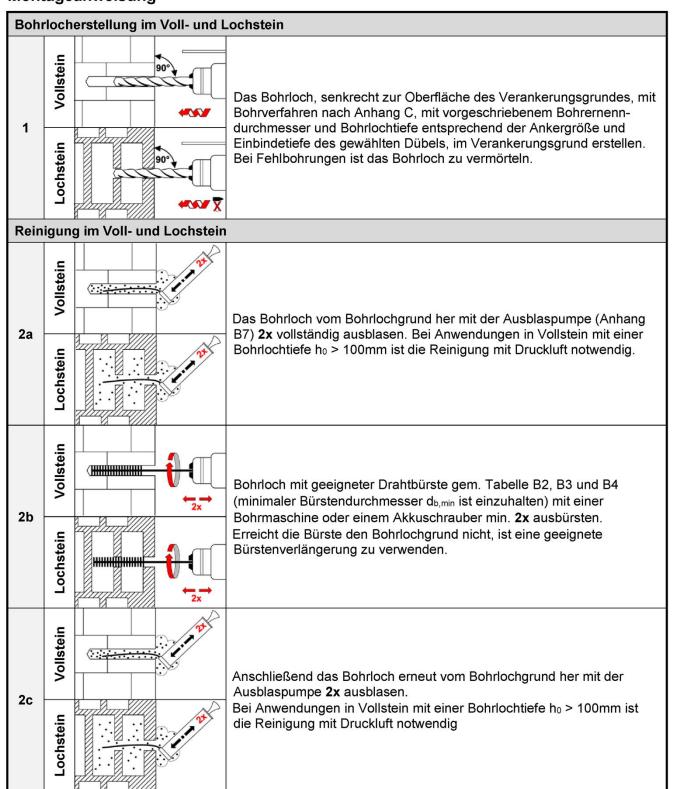
Anhang B7



Tabelle B5: Verarbeitungs- und Aushärtezeiten – HB-VMU plus

| Tom      | Temperatur im<br>Verankerungsgrund |                        | Maximale          | Minimale Aushärtezeit          |                               |  |  |
|----------|------------------------------------|------------------------|-------------------|--------------------------------|-------------------------------|--|--|
|          |                                    |                        | Verarbeitungszeit | trockener<br>Verankerungsgrund | feuchter<br>Verankerungsgrund |  |  |
| - 10°C   | bis                                | - 6°C                  | 90 min            | 24 h                           | 48 h                          |  |  |
| - 5°C    | bis                                | - 1°C                  | 90 min            | 14 h                           | 28 h                          |  |  |
| 0°C      | bis                                | + 4°C                  | 45 min            | 7 h                            | 14 h                          |  |  |
| + 5°C    | bis                                | + 9°C                  | 25 min            | 2 h                            | 4 h                           |  |  |
| + 10°C   | bis                                | + 19°C                 | 15 min            | 80 min                         | 160 min                       |  |  |
| + 20°C   | bis                                | + 29°C                 | 6 min             | 45 min                         | 90 min                        |  |  |
| + 30°C   | bis                                | + 34°C                 | 4 min             | 25 min                         | 50 min                        |  |  |
| + 35°C   | bis                                | + 39°C                 | 2 min             | 20 min                         | 40 min                        |  |  |
| -        | + 40°C                             |                        | 1,5 min           | 15 min                         | 30 min                        |  |  |
| Kartusch | entem                              | nperatur <sup>1)</sup> |                   | +5°C bis +40°C                 |                               |  |  |

<sup>&</sup>lt;sup>1)</sup> Bei Temperaturen im Verankerungsgrund von -10°C bis -6°C muss die Kartuschentemperatur mindestens +15°C betragen.


Tabelle B6: Verarbeitungs- und Aushärtezeiten - HB-VMU plus Polar

| Tomporatur im                      | Maximale          | Minimale Aushärtezeit          |                               |  |  |  |
|------------------------------------|-------------------|--------------------------------|-------------------------------|--|--|--|
| Temperatur im<br>Verankerungsgrund | Verarbeitungszeit | trockener<br>Verankerungsgrund | feuchter<br>Verankerungsgrund |  |  |  |
| - 20°C bis - 16°C                  | 75 min            | 24 h                           | 48 h                          |  |  |  |
| - 15°C bis - 11°C                  | 55 min            | 16 h                           | 32 h                          |  |  |  |
| - 10°C bis - 6°C                   | 35 min            | 10 h                           | 20 h                          |  |  |  |
| - 5°C bis - 1°C                    | 20 min            | 5 h                            | 10 h                          |  |  |  |
| 0°C bis +4°C                       | 10 min            | 2,5 h                          | 5 h                           |  |  |  |
| +5°C bis +9°C                      | 6 min             | 80 min                         | 160 min                       |  |  |  |
| + 10°C                             | 6 min             | 60 min                         | 2 h                           |  |  |  |
| Kartuschentemperatur               | -20°C bis +10°C   |                                |                               |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk |           |
|--------------------------------------------|-----------|
|                                            |           |
| Verwendungszweck                           | Anhang B8 |
| Verarbeitungs- und Aushärtezeit            |           |
| Volar beliangs- and Adshartezett           |           |



#### Montageanweisung



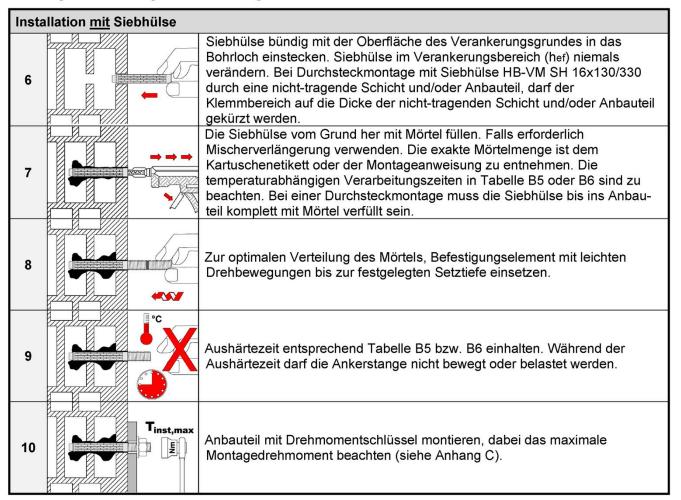
# Injektionssystem HB-VMU plus für Mauerwerk

#### Verwendungszweck

Montageanweisung: Bohrlochherstellung / Reinigung im Voll- und Lochstein

**Anhang B9** 




# Montageanweisung - Fortsetzung

| Vorb  | Vorbereitung Injektion                                   |                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3     | W III III S                                              | Den mitgelieferten Statikmischer fest auf die Kartuschen aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei Schlauchfolien den Clip vor der Verwendung abschneiden. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B5 oder B6) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern. |  |  |  |  |  |  |  |
| 4     | h <sub>ef</sub> +(t <sub>nII</sub> )+(t <sub>fix</sub> ) | Verankerungstiefe auf der Ankerstange markieren. Bei nichttragenden<br>Schichten und/oder Durchsteckmontage tfix und/oder tnll berücksichtigen.<br>Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen<br>Fremdmaterialien sein.                                                                                                                    |  |  |  |  |  |  |  |
| 5     | min.3x                                                   | Mörtelvorlauf so lange auspressen (min. 3 volle Hübe, bei Schlauchfoliengebinden 6 volle Hübe), bis der austretende Injektionsmörtel eine gleichmäßige graue Farbe aufweist.  Dieser Vorlauf darf nicht verwendet werden.                                                                                                                                    |  |  |  |  |  |  |  |
| Insta | allation <u>ohne</u> Siebhülse                           |                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 6     |                                                          | Bohrloch vom Bohrlochgrund her mindestens 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Falls erforderlich Mischerverlängerung verwenden. Die temperaturabhängigen Verarbeitungszeiten (Tabelle B5 bzw. B6) sind zu beachten.                                      |  |  |  |  |  |  |  |
| 7     |                                                          | Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einsetzen.                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 8     |                                                          | Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Mauerwerk, bei Durchsteckmontage zusätzlich auch im Anbauteil, komplett mit Mörtel ausgefüllt sein. Andernfalls Anwendung vor Beendigung der Verarbeitungszeit ab Schritt 6 wiederholen.                                                                                        |  |  |  |  |  |  |  |
| 9     | · · · · · · · · · · · · · · · · · · ·                    | Aushärtezeit entsprechend Tabelle B5 bzw. B6 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden. Nach Ablauf der Aushärtezeit ausgetretenen Mörtel entfernen.                                                                                                                                                        |  |  |  |  |  |  |  |
| 10    | T <sub>inst</sub> ,max                                   | Anbauteil mit Drehmomentschlüssel montieren, dabei das maximale<br>Montagedrehmoment beachten (siehe Anhang C).                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                              |            |
|-----------------------------------------------------------------------------------------|------------|
| Verwendungszweck Montageanweisung: Vorbereitung Injektion / Installation ohne Siebhülse | Anhang B10 |



# Montageanweisung - Fortsetzung



| Injektionssystem HB-VMU plus für Mauerwerk                       |            |
|------------------------------------------------------------------|------------|
| Verwendungszweck<br>Montageanweisung: Installation mit Siebhülse | Anhang B11 |



# Tabelle C1: β - Faktoren für Baustellenversuche unter Zugbelastung

|                     |                        |                           | ANTONIO MOS                 |                                 |            | β-Fa                            | ktor       | 4                 |            |
|---------------------|------------------------|---------------------------|-----------------------------|---------------------------------|------------|---------------------------------|------------|-------------------|------------|
| Steintyp            | Ankergröße             | Siebhülse<br>HB-VM-SH     | Veranke-<br>rungs-<br>tiefe | T <sub>a</sub> :<br>24°C / 40°C |            | Т <sub>ь</sub> :<br>50°C / 80°C |            | T₀:<br>72°C/120°C |            |
|                     |                        |                           | h <sub>ef</sub>             |                                 | w/d<br>w/w | d/d                             | w/d<br>w/w | d/d               | w/d<br>w/w |
| Porenbeton          | alle Größen            | mit oder ohne<br>HB-VM-SH | alle                        | 0,95                            | 0,86       | 0,81                            | 0,73       | 0,81              | 0,73       |
|                     | d <sub>0</sub> ≤ 14 mm | HB-VM-SH                  | alle                        | 0,93                            | 0,80       | 0,87                            | 0,74       | 0,65              | 0,56       |
|                     | d₀ ≥ 16 mm             | UP-AIAI-2U                | alle                        | 0,93                            | 0,93       | 0,87                            | 0,87       | 0,65              | 0,65       |
| Kalksand-<br>steine | d₀ ≤ 14 mm             | _                         | 400                         | 0,93                            | 0,80       | 0,87                            | 0,74       | 0,65              | 0,56       |
|                     | d₀ ≥ 16 mm             |                           | ≤ 100mm                     | 0,93                            | 0,93       | 0,87                            | 0,87       | 0,65              | 0,65       |
|                     | alle Größen            |                           | > 100mm                     | 0,93                            | 0,56       | 0,87                            | 0,52       | 0,65              | 0,40       |
|                     |                        | HB-VM-SH                  | alle                        | 0,86                            | 0,86       | 0,86                            | 0,86       | 0,73              | 0,73       |
| Ziegelsteine        | alle Größen            |                           | ≤ 100mm                     | 0,86                            | 0,86       | 0,86                            | 0,86       | 0,73              | 0,73       |
|                     |                        | _                         | > 100mm                     | 0,86                            | 0,43       | 0,86                            | 0,43       | 0,73              | 0,37       |
| Leichtbeton-        | d₀ ≤ 12 mm             | mit oder ohne             | -11-                        | 0,93                            | 0,80       | 0,87                            | 0,74       | 0,65              | 0,56       |
| steine              | d₀ ≥ 16 mm             | HB-VM-SH                  | alle                        | 0,93                            | 0,93       | 0,87                            | 0,87       | 0,65              | 0,65       |

| Injektionssystem HB-VMU plus für Mauerwerk                           |           |
|----------------------------------------------------------------------|-----------|
| <b>Leistung</b> β-Faktoren für Baustellenversuche unter Zugbelastung | Anhang C1 |



Tabelle C2: Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Ankerstangen

| Ankerstan   | Ankerstange                               |                       |         |                           | M 10                  | M 12               | M 16 |  |
|-------------|-------------------------------------------|-----------------------|---------|---------------------------|-----------------------|--------------------|------|--|
| Stahlversa  | gen                                       |                       |         |                           |                       |                    |      |  |
| Spannungs   | guerschnitt                               | As                    | [mm²]   | 36,6                      | 58,0                  | 84,3               | 157  |  |
|             | stischer Widerstand unter Zugbean         |                       |         | 100.000.00                |                       | ,,,,,,             |      |  |
|             | Festigkeitsklasse 4.6 und 4.8             | N <sub>Rk,s</sub>     | [kN]    | 15 (13) <sup>1)</sup>     | 23 (21) <sup>1)</sup> | 34                 | 63   |  |
| Stahl,      | Festigkeitsklasse 5.6 und 5.8             | N <sub>Rk,s</sub>     | [kN]    | 18 (17) <sup>1)</sup>     | 29 (27) <sup>1)</sup> | 42                 | 79   |  |
| verzinkt    | Festigkeitsklasse 8.8                     | N <sub>Rk,s</sub>     | [kN]    | 29 (27) <sup>1)</sup>     | 46 (43) <sup>1)</sup> | 67                 | 126  |  |
| Nicht-      | Festigkeitsklasse 50 (A2/A4/HCR)          | N <sub>Rk,s</sub>     | [kN]    | 18                        | 29                    | 42                 | 79   |  |
| rostender   | Festigkeitsklasse 70 (A2/A4/HCR)          | N <sub>Rk,s</sub>     | [kN]    | 26                        | 41                    | 59                 | 110  |  |
| Stahl       | Festigkeitsklasse 80 (A4/HCR)             | N <sub>Rk,s</sub>     | [kN]    | 29                        | 46                    | 67                 | 126  |  |
| Teilsicherh | neitsbeiwert <sup>2)</sup>                |                       |         |                           |                       |                    |      |  |
| Stahl,      | Festigkeitsklasse 4.6 und 5.6             | γMs,N                 | [-]     |                           | 2,                    | 0                  |      |  |
| verzinkt    | Festigkeitsklasse 4.8, 5.8 und 8.8        | γMs,N                 | [-]     |                           | 1,                    | 5                  |      |  |
| Nicht-      | Festigkeitsklasse 50 (A2/A4/HCR)          | γMs,N                 | [-]     |                           | 2,8                   | 36                 |      |  |
| rostender   | Festigkeitsklasse 70 (A2/A4/HCR)          | γMs,N                 | [-]     |                           | 1,87 (                | 1,5) <sup>3)</sup> |      |  |
| Stahl       | Festigkeitsklasse 80 (A4/HCR)             | γMs,N                 | [-]     | 1,6 (1,5) <sup>3)</sup>   |                       |                    |      |  |
| Charakteri  | stischer Widerstand unter Querbea         | nspruchu              |         |                           | 540 -                 | - 10 P             |      |  |
|             | gen ohne Hebelarm                         | •                     |         |                           |                       |                    |      |  |
|             | Festigkeitsklasse 4.6 und 4.8             | $V^0$ Rk,s            | [kN]    | 7 (6) <sup>1)</sup>       | 12 (10) <sup>1)</sup> | 17                 | 31   |  |
| Stahl,      | Festigkeitsklasse 5.6 und 5.8             | V <sup>0</sup> Rk,s   | [kN]    | 9 (8)1)                   | 15 (13) <sup>1)</sup> | 21                 | 39   |  |
| verzinkt    | Festigkeitsklasse 8.8                     | V <sup>0</sup> Rk,s   | [kN]    | 15 (13) <sup>1)</sup>     | 23 (21) <sup>1)</sup> | 34                 | 63   |  |
| Nicht-      | Festigkeitsklasse 50 (A2/A4/HCR)          | $V^0_{Rk,s}$          | [kN]    | 9                         | 15                    | 21                 | 39   |  |
| rostender   | Festigkeitsklasse 70 (A2/A4/HCR)          | $V^0_{Rk,s}$          | [kN]    | 13                        | 20                    | 30                 | 55   |  |
| Stahl       | Festigkeitsklasse 80 (A4/HCR)             | $V^0$ Rk,s            | [kN]    | 15                        | 23                    | 34                 | 63   |  |
| Stahlversa  | gen <u>mit</u> Hebelarm – Charakteristisc | her Bieg              | ewiders | tand                      |                       |                    |      |  |
| 0/ 11       | Festigkeitsklasse 4.6 und 4.8             | $M^0$ Rk,s            | [Nm]    | 15 (13) <sup>1)</sup>     | 30 (27) <sup>1)</sup> | 52                 | 133  |  |
| Stahl,      | Festigkeitsklasse 5.6 und 5.8             | $M^0$ Rk,s            | [Nm]    | 19 (16) <sup>1)</sup>     | 37 (33) <sup>1)</sup> | 65                 | 166  |  |
| verzinkt    | Festigkeitsklasse 8.8                     | $M^0$ Rk,s            | [Nm]    | 30 (26) <sup>1)</sup>     | 60 (53) <sup>1)</sup> | 105                | 266  |  |
| Nicht-      | Festigkeitsklasse 50 (A2/A4/HCR)          | $M^0$ <sub>Rk,s</sub> | [Nm]    | 19                        | 37                    | 65                 | 166  |  |
| rostender   | Festigkeitsklasse 70 (A2/A4/HCR)          | $M^0$ <sub>Rk,s</sub> | [Nm]    | 26                        | 52                    | 92                 | 233  |  |
| Stahl       | Festigkeitsklasse 80 (A4/HCR)             | $M^0$ Rk,s            | [Nm]    | 30                        | 60                    | 105                | 266  |  |
| Teilsicherh | neitsbeiwert <sup>2)</sup>                |                       |         |                           |                       |                    |      |  |
| Stahl,      | Festigkeitsklasse 4.6 und 5.6             | γMs,V                 | [-]     |                           | 1,6                   | 67                 |      |  |
| verzinkt    | Festigkeitsklasse 4.8, 5.8 und 8.8        | γMs,V                 | [-]     | 1,25                      |                       |                    |      |  |
| Nicht-      | Festigkeitsklasse 50 (A2/A4/HCR)          | γMs,V                 | [-]     |                           | 2,3                   | 38                 |      |  |
| rostender   | Festigkeitsklasse 70 (A2/A4/HCR)          | γMs,V                 | [-]     | 1,56 (1,25) <sup>3)</sup> |                       |                    |      |  |
| Stahl       | Festigkeitsklasse 80 (A4/HCR)             | γMs,V                 | [-]     | 1,33 (1,25) <sup>3)</sup> |                       |                    |      |  |

Die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt As: HB-VMU-A, HB-V-A, HB-VM-A. Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gilt der Wert in der Klammer.

<sup>3)</sup> Wert in Klammern gilt nur für Ankerstangen HB-VMU-A oder HB-V-A

| Injektionssystem HB-VMU plus für Mauerwerk                                                      |           |
|-------------------------------------------------------------------------------------------------|-----------|
| Leistung Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Ankerstangen | Anhang C2 |

<sup>2)</sup> Sofern andere nationale Regelungen fehlen



Tabelle C3: Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Innengewindeankerstangen

| Innengewindea               | nkerstange                               |                       | IG-M6   | IG-M8 | IG-M10 |    |  |
|-----------------------------|------------------------------------------|-----------------------|---------|-------|--------|----|--|
| Stahlversagen <sup>1)</sup> |                                          |                       |         |       |        |    |  |
| Charakteristisc             | her Widerstand unter Zugbeanspr          | uchung                |         |       |        |    |  |
| Stahl,                      | Festigkeitsklasse 5.8                    | $N_{Rk,s}$            | [kN]    | 10    | 17     | 29 |  |
| verzinkt                    | Festigkeitsklasse 8.8                    | $N_{Rk,s}$            | [kN]    | 16    | 27     | 46 |  |
| Nichtrostender<br>Stahl     | Festigkeitsklasse 70 (A4/HCR)            | $N_{Rk,s}$            | [kN]    | 14    | 26     | 41 |  |
| Teilsicherheitsl            | beiwert <sup>2)</sup>                    |                       |         |       |        |    |  |
| Stahl,                      | Festigkeitsklasse 5.8                    | γMs,N                 | [-]     | 1,5   |        |    |  |
| verzinkt                    | Festigkeitsklasse 8.8                    | γMs,N                 | [-]     | 1,5   |        |    |  |
| Nichtrostender<br>Stahl     | Festigkeitsklasse 70 (A4/HCR)            | γMs,N                 | [-]     | 1,87  |        |    |  |
| Charakteristisc             | her Widerstand unter Querbeansp          | ruchung               |         |       |        |    |  |
| Stahlversagen               | <u>ohne</u> Hebelarm                     |                       |         |       |        |    |  |
| Stahl,                      | Festigkeitsklasse 5.8                    | $V^0_{Rk,s}$          | [kN]    | 5     | 9      | 15 |  |
| verzinkt                    | Festigkeitsklasse 8.8                    | $V^0$ Rk,s            | [kN]    | 8     | 14     | 23 |  |
| Nichtrostender<br>Stahl     | Festigkeitsklasse 70 (A4/HCR)            | $V^0$ Rk,s            | [kN]    | 7     | 13     | 20 |  |
| Stahlversagen <u>j</u>      | <u>mit</u> Hebelarm – Charakteristischer | Biegewid              | erstand |       |        |    |  |
| Stahl,                      | Festigkeitsklasse 5.8                    | $M^0$ <sub>Rk,s</sub> | [Nm]    | 8     | 19     | 37 |  |
| verzinkt                    | Festigkeitsklasse 8.8                    | $M^0$ Rk,s            | [Nm]    | 12    | 30     | 60 |  |
| Nichtrostender<br>Stahl     | Festigkeitsklasse 70 (A4/HCR)            | M <sup>0</sup> Rk,s   | [Nm]    | 11    | 26     | 52 |  |
| Teilsicherheitsl            | peiwert <sup>2)</sup>                    |                       |         |       |        |    |  |
| Stahl,                      | Festigkeitsklasse 5.8                    | γMs,V                 | [-]     |       | 1,25   |    |  |
| verzinkt                    | Festigkeitsklasse 8.8                    | γMs,V                 | [-]     |       | 1,25   |    |  |
| Nichtrostender<br>Stahl     | Festigkeitsklasse 70 (A4/HCR)            | γMs,V                 | [-]     | 1,56  |        |    |  |

<sup>&</sup>lt;sup>1)</sup> Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel

| Injektionssystem HB-VMU plus für Mauerwerk                                                                  |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| Leistung Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Innengewindeankerstangen | Anhang C3 |

<sup>&</sup>lt;sup>2)</sup> Sofern andere nationale Regelungen fehlen



Tabelle C4: Charakteristische Stahltragfähigkeit unter Brandbeanspruchung

| Ankerstange                                                                   |            |                          |         | M 8   | M 10 | M 12 | M 16 |  |
|-------------------------------------------------------------------------------|------------|--------------------------|---------|-------|------|------|------|--|
| Charakteristischer Widerstand unter Zugbeanspruchung                          |            |                          |         |       |      |      |      |  |
| 2. 1. 5                                                                       | R30        | $N_{Rk,s,fi}$            | [kN]    | 1,1   | 1,7  | 3,0  | 5,7  |  |
| Stahl, Festigkeitsklasse 5.8 und 8.8;                                         | R60        | $N_{Rk,s,fi}$            | [kN]    | 0,9   | 1,4  | 2,3  | 4,2  |  |
| Nichtrostender Stahl (A2 / A4 / HCR)<br>Festigkeitsklasse ≥ 50                | R90        | $N_{Rk,s,fi}$            | [kN]    | 0,7   | 1,0  | 1,6  | 3,0  |  |
|                                                                               | R120       | $N_{Rk,s,fi}$            | [kN]    | 0,5   | 0,8  | 1,2  | 2,2  |  |
| Charakteristischer Widerstand unter                                           | Querbear   | nspruchu                 | ıng     |       |      |      |      |  |
| Stahlversagen <u>ohne</u> Hebelarm                                            | -30        |                          |         |       |      |      |      |  |
|                                                                               | R30        | $V^0_{Rk,s,fi}$          | [kN]    | 1,1   | 1,7  | 3,0  | 5,7  |  |
| Stahl, Festigkeitsklasse 5.8 und 8.8;<br>Nichtrostender Stahl (A2 / A4 / HCR) | R60        | $V^0$ Rk,s,fi            | [kN]    | 0,9   | 1,4  | 2,3  | 4,2  |  |
| Festigkeitsklasse ≥ 50                                                        | R90        | $V^0$ Rk,s,fi            | [kN]    | 0,7   | 1,0  | 1,6  | 3,0  |  |
|                                                                               | R120       | $V^0$ Rk,s,fi            | [kN]    | 0,5   | 0,8  | 1,2  | 2,2  |  |
| Stahlversagen <u>mit</u> Hebelarm – Chara                                     | kteristisc | her Bieg                 | ewiders | stand |      | *    |      |  |
|                                                                               | R30        | $M^0$ <sub>Rk,s,fi</sub> | [Nm]    | 1,1   | 2,2  | 4,7  | 12,0 |  |
| Stahl, Festigkeitsklasse 5.8 und 8.8;                                         | R60        | $M^0$ <sub>Rk,s,fi</sub> | [Nm]    | 0,9   | 1,8  | 3,5  | 9,0  |  |
| Nichtrostender Stahl (A2 / A4/ HCR)<br>Festigkeitsklasse ≥ 50                 | R90        | M <sup>0</sup> Rk,s,fi   | [Nm]    | 0,7   | 1,3  | 2,5  | 6,3  |  |
|                                                                               | R120       | $M^0$ <sub>Rk,s,fi</sub> | [Nm]    | 0,5   | 1,0  | 1,8  | 4,7  |  |
| Teilsicherheitsbeiwert                                                        | alle       | γMs,fi                   | [-]     | 1,0   |      |      |      |  |

Tabelle C5: Charakteristische Stahltragfähigkeit unter Brandbeanspruchung - Innengewindeankerstange

| Innengewindeankerstange                                 |          | IG-M6                    | IG-M8    | IG-M10 |     |     |  |  |
|---------------------------------------------------------|----------|--------------------------|----------|--------|-----|-----|--|--|
| Charakteristischer Widerstand unter Zugbeanspruchung    |          |                          |          |        |     |     |  |  |
| Stahl, Festigkeitsklasse 5.8 und 8.8;                   | R30      | $N_{Rk,s,fi}$            | [kN]     | 0,3    | 1,1 | 1,7 |  |  |
|                                                         | R60      | $N_{Rk,s,fi}$            | [kN]     | 0,2    | 0,9 | 1,4 |  |  |
| Nichtrostender Stahl (A4 / HCR)<br>Festigkeitsklasse 70 | R90      | $N_{Rk,s,fi}$            | [kN]     | 0,2    | 0,7 | 1,0 |  |  |
| T coughenciacos / c                                     | R120     | $N_{Rk,s,fi}$            | [kN]     | 0,1    | 0,5 | 0,8 |  |  |
| Charakteristischer Widerstand unter Q                   | uerbear  | nspruchu                 | ıng      |        |     |     |  |  |
| Stahlversagen <u>ohne</u> Hebelarm                      |          |                          |          |        |     |     |  |  |
|                                                         | R30      | $V^0$ Rk,s,fi            | [kN]     | 0,3    | 1,1 | 1,7 |  |  |
| Stahl, Festigkeitsklasse 5.8 und 8.8;                   | R60      | $V^0$ Rk,s,fi            | [kN]     | 0,2    | 0,9 | 1,4 |  |  |
| Nichtrostender Stahl (A4 / HCR)<br>Festigkeitsklasse 70 | R90      | $V^0$ Rk,s,fi            | [kN]     | 0,2    | 0,7 | 1,0 |  |  |
| T congretionable 70                                     | R120     | $V^0$ Rk,s,fi            | [kN]     | 0,1    | 0,5 | 0,8 |  |  |
| Stahlversagen <u>mit</u> Hebelarm – Charakt             | eristisc | her Bieg                 | ewiderst | and    |     |     |  |  |
|                                                         | R30      | M <sup>0</sup> Rk,s,fi   | [Nm]     | 0,2    | 1,1 | 2,2 |  |  |
| Stahl, Festigkeitsklasse 5.8 und 8.8;                   | R60      | M <sup>0</sup> Rk,s,fi   | [Nm]     | 0,2    | 0,9 | 1,8 |  |  |
| Nichtrostender Stahl (A4 / HCR)<br>Festigkeitsklasse 70 | R90      | $M^0$ Rk,s,fi            | [Nm]     | 0,1    | 0,7 | 1,3 |  |  |
| 1 ootigiteiteitidees 70                                 | R120     | $M^0$ <sub>Rk,s,fi</sub> | [Nm]     | 0,1    | 0,5 | 1,0 |  |  |
| Teilsicherheitsbeiwert                                  | alle     | γMs,fi                   | [-]      |        | 1,0 |     |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                             |           |
|------------------------------------------------------------------------|-----------|
| Leistung Charakteristische Stahltragfähigkeit unter Brandbeanspruchung | Anhang C4 |



#### Rand- und Achsabstände

C<sub>cr,fi</sub>

= Charakteristischer Randabstand Ccr

 Minimaler Randabstand Cmin

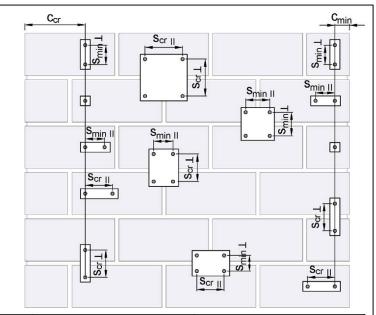
Charakteristischer Randabstand bei

Brandbeanspruchung

= Charakteristischer (minimaler) Scr,II Achsabstand für Anker parallel zur (Smin,II)

Lagerfuge angeordnet

= Charakteristischer (minimaler) Scr, L


Achsabstand für Anker senkrecht zur  $(s_{min,\perp})$ 

Lagerfuge angeordnet

= Charakteristischer Achsabstand unter Scr,fi,II Brandbeanspruchung für Anker  $(S_{cr,fi,\perp})$ 

parallel (senkrecht) zur Lagerfuge

angeordnet



# Definition der Reduktions- und Gruppenfaktoren

=

| Lastrichtung Anker- anordnung                                               | Zuglast             | Querlast<br>parallel zum freien<br>Rand V ιι | <b>Querlast</b><br>senkrecht zum freien<br>Rand <b>V</b> ⊥ |  |
|-----------------------------------------------------------------------------|---------------------|----------------------------------------------|------------------------------------------------------------|--|
| Anker parallel zur Lagerfuge s <sub>cr,II</sub> (s <sub>min,II</sub> )      | α <sub>g</sub> II,N | α <sub>g II,</sub> ν <sub>II</sub>           | <b>∨</b> ••• α <sub>g II,</sub> ∨⊥                         |  |
| Anker senkrecht zur<br>Lagerfuge<br>s <sub>cr,⊥</sub> (s <sub>min,⊥</sub> ) | α <sub>g ⊥,N</sub>  | α <sub>g ⊥,</sub> ν <sub>II</sub>            | <b>∨</b> • α <sub>g⊥,∨⊥</sub>                              |  |

| $\alpha$ edge,N          | = | Reduktionsfaktor bei Zuglast am freien Rand (Einzelanker)             | $(\text{fur } C_{\min} \leq C < C_{cr})$ |
|--------------------------|---|-----------------------------------------------------------------------|------------------------------------------|
| $lpha$ edge,V $_{\perp}$ | = | Reduktionsfaktor bei Querlast senkrecht zum freien Rand (Einzelanker) | (für $c_{min} \le c < c_{cr}$ )          |
| αedge,V II               | = | Reduktionsfaktor bei Querlast parallel zum freien Rand (Einzelanker)  | (für $c_{min} \le c < c_{cr}$ )          |
| αα ιι Ν                  | = | Gruppenfaktor für Anker parallel zur Lagerfuge unter Zuglast          |                                          |

Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Zuglast =  $\alpha_{g\perp,N}$ 

Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast parallel zum freien Rand  $\alpha_{g\,II,V\,II}$ 

Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast parallel zum freien Rand = αg ⊥,V II

Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast senkrecht zum freien Rand αg II,V⊥ Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast senkrecht zum freien Rand  $\alpha_{\text{g}\,\perp,\text{V}\perp}$ 

|                      | $N_{Rk,b,c}$                 | = $\alpha_{\text{edge,N}} * \mathbf{N}_{\text{Rk,b}}$                            | bzw. | $N_{Rk,p,c}$        | = $\alpha_{\text{edge,N}} * N_{\text{Rk,p}}$                          |                            |
|----------------------|------------------------------|----------------------------------------------------------------------------------|------|---------------------|-----------------------------------------------------------------------|----------------------------|
| Einzelanker am Rand: | V <sub>Rk,c</sub> II         | = $\alpha_{\text{edge,V II}}$ * $V_{\text{Rk,b}}$                                |      |                     |                                                                       |                            |
|                      | V <sub>Rk,c</sub> $_{\perp}$ | = $\alpha_{\text{edge,V}} + V_{\text{Rk,b}}$                                     |      |                     |                                                                       |                            |
|                      | $N^{g}_{Rk}$                 | $= \alpha_{g,N} * N_{Rk,b}$                                                      |      |                     |                                                                       |                            |
| Gruppe aus 2 Ankern  | $V^{g}_{Rk  II}$             | = $\alpha_{g, V II}$ * $V_{Rk,b}$                                                | bzw. | $V^{g}_{Rk\perp}$   | $= \alpha_{g,V_{\perp}} * V_{Rk,b}$                                   | (für $c \ge c_{cr}$ )      |
|                      | V <sup>g</sup> Rk,c II       | $= \alpha_{g, VII} * V_{Rk,b}$                                                   | bzw. | $V^{g}_{Rk,c\perp}$ | $= \alpha_{g,V_{\perp}} * V_{Rk,b}$                                   | (für $c \ge c_{min}$ )     |
|                      | $N^{g}_{Rk}$                 | = $\alpha_{g \parallel I,N} * \alpha_{g\perp,N} * N_{Rk,b}$                      |      |                     |                                                                       |                            |
| Gruppe aus 4 Ankern  | $V^{g}_{Rk  II}$             | = $\alpha_{g \parallel, V \parallel} * \alpha_{g \perp, V \parallel} * V_{Rk,b}$ | bzw. | $V^g_{Rk\perp}$     | = $\alpha_g II, V_{\perp}^* \alpha_{g_{\perp}}, V_{\perp}^* V_{Rk,b}$ | (für c ≥ c <sub>cr</sub> ) |
|                      | V <sup>g</sup> Rk,c II       | = $\alpha_{g \parallel,V \parallel} * \alpha_{g \perp,V \parallel} * V_{Rk,b}$   | bzw. | $V^{g}_{Rk,c\perp}$ | = $\alpha_g II, V_{\perp}^* \alpha_{g_{\perp}}, V_{\perp}^* V_{Rk,b}$ | (für $c \ge c_{min}$ )     |

Formeln abhängig von Ankeranordnung und Lastrichtung (siehe Tabelle oben). Reduktionsfaktoren, Gruppenfaktoren und Widerstände siehe Anhang C. Abminderung für Installation in Fugen siehe Anhang B1.

#### Injektionssystem HB-VMU plus für Mauerwerk

#### Leistung

Definition der Rand- und Achsabstände und der Reduktions- und Gruppenfaktoren  $\alpha$ 

Anhang C5



# Steintyp: Porenbetonstein AAC

# Tabelle C6: Beschreibung

| Steintyp                              |                    | Porenbetonstein AAC   |
|---------------------------------------|--------------------|-----------------------|
| Rohdichte                             | ρ <b>[kg/dm</b> ³] | 0,35 - 0,60           |
| Normierte mittlere<br>Druckfestigkeit | ≥ [N/mm²]          | 2, 4 oder 6           |
| Norm                                  | [-]                | EN 771-4:2011+A1:2015 |
| Hersteller (Länderkennung)            | [-]                | z.B. Porit (DE)       |
| Steinabmessungen                      | [mm]               | ≥ 499 x 240 x 249     |
| Bohrverfahren                         | [-]                | Drehbohren            |



# Tabelle C7: Montagekennwerte

| Ankergröße                               |                     | M8   | M10                                                      | M12  | M16  | IG-M6 | IG-M8 | IG-M10 |  |
|------------------------------------------|---------------------|------|----------------------------------------------------------|------|------|-------|-------|--------|--|
| Montagedrehmoment T <sub>inst</sub> [Nm] |                     | ≤ 5  | ≤ 5                                                      | ≤ 10 | ≤ 10 | ≤ 5   | ≤ 5   | ≤ 10   |  |
| Randabstand                              | Ccr                 | [mm] | 150 (für Querlasten senkrecht zum freien Rand: ccr =210) |      |      |       |       |        |  |
| Minimaler Randabstand                    | C <sub>min</sub>    | [mm] | 50                                                       |      |      |       |       |        |  |
| Achsabstand                              | S <sub>cr,II</sub>  | [mm] | 300                                                      |      |      |       |       |        |  |
| Acrisabstand                             | Scr,⊥               | [mm] | 250                                                      |      |      |       |       |        |  |
| Minimaler Achsabstand                    | S <sub>min,II</sub> | [mm] | 50                                                       |      |      |       |       |        |  |
| Willimater Achsabstand                   | S <sub>min,⊥</sub>  | [mm] | 50                                                       |      |      |       |       |        |  |

#### Tabelle C8: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | act     |         | Querlast     |            |          |                          |         |           |  |  |  |
|------|---------|---------|--------------|------------|----------|--------------------------|---------|-----------|--|--|--|
| Zugi | ası     |         | Senkrecht zu | m freien l | Rand     | Parallel zum freien Rand |         |           |  |  |  |
|      | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,VII |  |  |  |
|      | 50      | 0.05    |              | 50         | 0,12     |                          | 50      | 0,70      |  |  |  |
|      | 50      | 50 0,85 |              | 125        | 0,50     |                          | 125     | 0,85      |  |  |  |
|      | 150     | 1,00    |              | 210        | 1,00     |                          | 150     | 1,00      |  |  |  |

# Tabelle C9: Faktor für Ankergruppen

|                              | Anordnung parall | el zur Lag | gertuge |            | Anordnung senk | recht zur | ' Lagerfu | ge       |  |
|------------------------------|------------------|------------|---------|------------|----------------|-----------|-----------|----------|--|
|                              |                  | mit c ≥    | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥   | αg⊥,N    |  |
| Zuglast                      |                  | 50         | 50      | 1,10       |                | 50        | 50        | 0,75     |  |
|                              |                  | 150        | 50      | 1,25       |                | 150       | 50        | 0,90     |  |
|                              |                  | 150        | 300     | 2,00       |                | 150       | 250       | 2,00     |  |
|                              |                  | mit c ≥    | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥   | αд⊥,∨⊥   |  |
| Querlast                     |                  | 50         | 50      | 0,20       |                | 50        | 50        | 0,25     |  |
| senkrecht<br>zum freien Rand |                  | 210        | 50      | 1,60       |                | 210       | 50        | 1,80     |  |
| Zam noion rana               |                  | 210        | 300     | 2,00       |                | 210       | 250       | 2,00     |  |
|                              |                  | mit c ≥    | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥   | αg⊥,∨ II |  |
| Querlast                     |                  | 50         | 50      | 1,15       |                | 50        | 50        | 0,80     |  |
| parallel<br>zum freien Rand  |                  | 150        | 50      | 1,60       |                | 150       | 50        | 1,10     |  |
|                              |                  | 150        | 300     | 2,00       |                | 150       | 250       | 2,00     |  |

# Injektionssystem HB-VMU plus für Mauerwerk Leistung - Porenbetonstein AAC Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren Anhang C6



# Steintyp: Porenbetonstein AAC - Fortsetzung

# Tabelle C10: Charakteristische Widerstände unter Zug- und Querlast

|                             |                |                                     | С              | harakteri      | stische V       | Viderstär            | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |
|-----------------------------|----------------|-------------------------------------|----------------|----------------|-----------------|----------------------|----------------|-----------------------|---------------------------------|
|                             |                |                                     |                |                | Nutzu           | ıngsbedi             | ngunger        | 1                     |                                 |
| A misa war # C a            | Sieb-<br>hülse | Effektive<br>Veranke-<br>rungstiefe |                | d/d            |                 | w/d<br>w/w           |                |                       | d/d<br>w/d<br>w/w               |
| Ankergröße                  | HB-            | ,                                   | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C       | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |
|                             |                | h <sub>ef</sub>                     |                |                | $N_{Rk,b} = 1$  | V <sub>Rk,p</sub> 1) |                |                       | V <sub>Rk,b</sub> 1)            |
|                             |                | [mm]                                |                |                | [kN             | <b>J</b> ]           |                |                       | [kN]                            |
| Normierte mittle            | re Druckfe     | stigkeit f <sub>b</sub> ≥ 2         | N/mm²          |                | ,l              | Rohdich              | te ρ ≥ 0,3     | 5 kg/dm <sup>2</sup>  | 3                               |
| M8                          |                | 80                                  | 1,2            | 0,9            | 0,9             | 0,9                  | 0,9            | 0,9                   | 1,5                             |
| M10 / IG-M6                 | -              | 90                                  | 1,2            | 0,9            | 0,9             | 0,9                  | 0,9            | 0,9                   | 2,5                             |
| M12 / M16<br>IG-M8 / IG-M10 | -              | 100                                 | 2,0            | 1,5            | 1,5             | 1,5                  | 1,5            | 1,5                   | 2,5                             |
| M8                          | VM-SH 12       | 80                                  | 1,2            | 0,9            | 0,9             | 0,9                  | 0,9            | 0,9                   | 1,5                             |
| M8 / M10<br>IG-M6           | VM-SH 16       | ≥ 85                                | 1,2            | 0,9            | 0,9             | 0,9                  | 0,9            | 0,9                   | 2,5                             |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20       | ≥ 85                                | 2,0            | 1,5            | 1,5             | 1,5                  | 1,5            | 1,5                   | 2,5                             |
| Normierte mittle            | re Druckfe     | stigkeit f <sub>b</sub> ≥ 4         | N/mm²          |                |                 | Rohdich              | te ρ ≥ 0,5     | 0 kg/dm <sup>3</sup>  | 3                               |
| M8                          |                | 80                                  | 3,0            | 2,5            | 2,0             | 2,5                  | 2,0            | 2,0                   | 4,5                             |
| M10 / IG-M6                 | -              | 90                                  | 3,0            | 2,5            | 2,0             | 2,5                  | 2,0            | 2,0                   | 7,5                             |
| M12 / M16<br>IG-M8 / IG-M10 | _              | 100                                 | 5,0            | 4,5            | 4,0             | 4,5                  | 4,0            | 4,0                   | 7,5                             |
| M8                          | VM-SH 12       | 80                                  | 3,0            | 2,5            | 2,0             | 2,5                  | 2,0            | 2,0                   | 4,5                             |
| M8 / M10<br>IG-M6           | VM-SH 16       | ≥ 85                                | 3,0            | 2,5            | 2,0             | 2,5                  | 2,0            | 2,0                   | 7,5                             |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20       | ≥ 85                                | 5,0            | 4,5            | 4,0             | 4,5                  | 4,0            | 4,0                   | 7,5                             |

 $<sup>^{1)}</sup>$   $N_{\text{Rk,b,c}}$  =  $N_{\text{Rk,p,c}}$  und  $V_{\text{Rk,c II}}$  =  $V_{\text{Rk,c}}{}_{\perp}$  gemäß Anhang C5

| Injektionssystem HB-VMU plus für Mauerwerk                     |           |
|----------------------------------------------------------------|-----------|
| Leistungen - Porenbetonstein AAC Charakteristische Widerstände | Anhang C7 |



# Steintyp: Porenbetonstein AAC – Fortsetzung

Charakteristische Widerstände - Fortsetzung:

|                             |            |                        | С                                   | harakteri                  | stische V       | /iderstär      | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |
|-----------------------------|------------|------------------------|-------------------------------------|----------------------------|-----------------|----------------|----------------|-----------------------|---------------------------------|--|--|
| Ankergröße                  | Sieb-      | Effektive              | Nutzungsbedingungen                 |                            |                 |                |                |                       |                                 |  |  |
|                             | hülse      | Veranke-<br>rungstiefe | <b>)</b> -                          |                            |                 | w/d<br>w/w     |                |                       | d/d<br>w/d<br>w/w               |  |  |
|                             | HB-        |                        | 24°C /<br>40°C                      | 50°C /<br>80°C             | 72°C /<br>120°C | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |
|                             |            | h <sub>ef</sub>        | ,                                   | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                 |                |                |                       | V <sub>Rk,b</sub> 1)            |  |  |
|                             |            | [mm]                   |                                     |                            | [kN             | I]             |                |                       | [kN]                            |  |  |
| Normierte mit               | lere Druck | festigkeit fb          | ≥ 6 N/mm² Rohdichte ρ ≥ 0,60 kg/dm³ |                            |                 |                |                |                       | 3                               |  |  |
| M8                          | -          | 80                     | 4,0                                 | 3,5                        | 3,0             | 3,5            | 3,0            | 3,0                   | 6,0                             |  |  |
| M10 / IG-M6                 | -          | 90                     | 4,0                                 | 3,5                        | 3,0             | 3,5            | 3,0            | 3,0                   | 10,0                            |  |  |
| M12 / M16<br>IG-M8 / IG-M10 | -          | 100                    | 7,0                                 | 6,0                        | 5,5             | 6,5            | 5,5            | 5,5                   | 10,0                            |  |  |
| M8                          | VM-SH 12   | 80                     | 4,0                                 | 3,5                        | 3,0             | 3,5            | 3,0            | 3,0                   | 6,0                             |  |  |
| M8 / M10<br>IG-M6           | VM-SH 16   | ≥ 85                   | 4,0                                 | 3,5                        | 3,0             | 3,5            | 3,0            | 3,0                   | 10,0                            |  |  |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20   | ≥ 85                   | 7,0                                 | 6,0                        | 5,5             | 6,5            | 5,5            | 5,5                   | 10,0                            |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

# Tabelle C11: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                      | δ <sub>N∞</sub>   | δ <sub>V</sub> / V            | δνο                       | δν∞     |  |
|------------------------------|-----------------|---------------------------|---------------------------|-------------------|-------------------------------|---------------------------|---------|--|
| Alikergrobe                  | [mm]            | [mm/kN]                   | [mm]                      | [mm]              | [mm/kN]                       | [mm]                      | [mm]    |  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,1                       | 0,1*N <sub>Rk</sub> / 2,8 | 2*δ <sub>N0</sub> | 0,3                           | 0,3*V <sub>Rk</sub> / 2,8 | 1,5*δ√ο |  |
| M16                          |                 |                           | -,                        | _ 5110            | 0,1 0,1*V <sub>Rk</sub> / 2,8 |                           |         |  |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen - Porenbetonstein AAC
Charakteristische Widerstände und Verschiebungen

Anhang C8



# Steintyp: Kalksandvollstein KS-NF

Tabelle C12: Beschreibung

| Steintyp                                             |                      | Kalksandvollstein KS-NF    |
|------------------------------------------------------|----------------------|----------------------------|
| Rohdichte ρ                                          | [kg/dm³]             | ≥ 2,0                      |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> | [N/mm <sup>2</sup> ] | ≥ 28                       |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten |                      | $(f_b / 28)^{0,5} \le 1,0$ |
| Norm                                                 | [-]                  | EN 771-2:2011+A1:2015      |
| Hersteller (Länderkennung)                           | [-]                  | z.B. Wemding (DE)          |
| Steinabmessungen                                     | [mm]                 | ≥ 240 x 115 x 71           |
| Bohrverfahren                                        | [-]                  | Hammerbohren               |

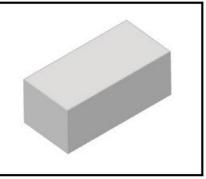



Tabelle C13: Montagekennwerte

| Ankergröße                                |                                  |      | M8                                                                                            | M10  | M12  | M16       | IG-M6 | IG-M8 | IG-M10 |
|-------------------------------------------|----------------------------------|------|-----------------------------------------------------------------------------------------------|------|------|-----------|-------|-------|--------|
| Montagedrehmoment                         | $T_{inst}$                       | [Nm] | ≤ 10                                                                                          | ≤ 10 | ≤ 15 | ≤ 15      | ≤ 10  | ≤ 10  | ≤ 10   |
| Randabstand (unter<br>Brandbeanspruchung) | Ccr (Ccr,fi)                     | [mm] | 150 (2 h <sub>er</sub> )<br>(für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 240) |      |      |           |       |       |        |
| Minimaler Randabstand                     | Cmin                             | [mm] |                                                                                               |      |      | 60        |       |       |        |
| Achsabstand (unter                        | Scr,II; (Scr,fi,II)              | [mm] |                                                                                               |      |      | 240 (4 he | :)    |       | 4      |
| Brandbeanspruchung)                       | $S_{cr,\perp};(S_{cr,fi,\perp})$ | [mm] | 150 (4 h <sub>ef</sub> )                                                                      |      |      |           |       |       |        |
| Minimaler Achsabstand                     | Smin,II; Smin,⊥                  | [mm] | 75                                                                                            |      |      |           |       |       |        |

Tabelle C14: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual    | act                      |              | Querlast      |            |          |                          |         |            |  |  |
|---------|--------------------------|--------------|---------------|------------|----------|--------------------------|---------|------------|--|--|
| Zuglast |                          |              | senkrecht zui | m freien F | Rand     | parallel zum freien Rand |         |            |  |  |
|         | mit c ≥                  | αedge,N      | +             | mit c ≥    | αedge,V⊥ | +                        | mit c ≥ | αedge,V II |  |  |
|         | 60 <sup>1)</sup>         | 0,50         |               | 60         | 0,30     |                          | 60      | 0,60       |  |  |
| •       | 100 <sup>1)</sup>        | 0,50         | <b>→</b>      | 100        | 0,50     |                          | 100     | 1,00       |  |  |
|         | 150 <sup>1)</sup><br>180 | 1,00<br>1,00 |               | 240        | 1,00     |                          | 150     | 1,00       |  |  |

Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C15: Faktor für Ankergruppen

|                                         | Anordnung parall | el zur Lag        | gerfuge |            | Anordnung senk | recht zur         | Lagerfug | je                                     |
|-----------------------------------------|------------------|-------------------|---------|------------|----------------|-------------------|----------|----------------------------------------|
|                                         |                  | mit c ≥           | mit s ≥ | αg II, N   |                | mit c ≥           | mit s ≥  | αg⊥, N                                 |
|                                         | 1                | 60 <sup>1)</sup>  | 75      | 0,70       |                | 60 <sup>1)</sup>  | 75       | 1,15                                   |
|                                         |                  | 150 <sup>1)</sup> | 75      | 1,40       |                | 150 <sup>1)</sup> | 75       | 2,00                                   |
| Zuglast                                 | • •              | 150 <sup>1)</sup> | 240     | 2,00       |                | 150 <sup>1)</sup> | 150      | 2,00                                   |
|                                         |                  | 180 <sup>2)</sup> | 75      | 1,00       |                | 180 <sup>2)</sup> | 75       | 1,15                                   |
|                                         | 1                | 180 <sup>2)</sup> | 240     | 1,70       |                | 180 <sup>2)</sup> | 150      | 2,00                                   |
| S                                       |                  | 240 <sup>2)</sup> | 240     | 2,00       |                | 100-/             | 150      | 2,00                                   |
| Quarlant                                |                  | mit c ≥           | mit s ≥ | αg II,V⊥   |                | mit c ≥           | mit s ≥  | $\alpha_{\text{g}\perp,\text{V}\perp}$ |
| Querlast<br>senkrecht                   |                  | 60                | 75      | 0,75       | •              | 60                | 75       | 0,90                                   |
| zum freien Rand                         |                  | 150               | 75      | 2,00       |                | 150               | 75       | 2,00                                   |
| Zum reien Kand                          |                  | 150               | 250     | 2,00       |                | 150               | 150      | 2,00                                   |
| Outerlant                               |                  | mit c ≥           | mit s ≥ | αg II,V II |                | mit c ≥           | mit s ≥  | α <sub>g⊥,V</sub> II                   |
| Querlast<br>parallel<br>zum freien Rand |                  | 60                | 75      | 2,00       | •              | 60                | 75       | 2,00                                   |
|                                         |                  | 150               | 75      | 2,00       |                | 150               | 75       | 2,00                                   |
|                                         |                  | 150               | 250     | 2,00       |                | 150               | 150      | 2,00                                   |

<sup>1)</sup> Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

# Injektionssystem HB-VMU plus für Mauerwerk

#### Leistungen - Kalksandvollstein KS-NF

Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren

**Anhang C9** 

Nur für Anwendungen mit hef = 200mm und ohne Siebhülse



# Steintyp: Kalksandvollstein KS-NF – Fortsetzung

# Tabelle C16: Charakteristische Widerstände unter Zug- und Querlast

|                             |                       |                                     | С                   | harakteri      | stische V               | Viderstär            | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |
|-----------------------------|-----------------------|-------------------------------------|---------------------|----------------|-------------------------|----------------------|----------------|-----------------------|---------------------------------|--|--|
| A mkovavä () o              | Ciah                  | Effolisis                           | Nutzungsbedingungen |                |                         |                      |                |                       |                                 |  |  |
| Ankergröße                  | Sieb-<br>Hülse<br>HB- | Effektive<br>Veranke-<br>rungstiefe |                     | d/d            |                         | w/d<br>w/w           |                |                       | d/d<br>w/d<br>w/w               |  |  |
|                             | пь-                   |                                     | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C         | 24°C /<br>40°C       | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |
|                             |                       | h <sub>ef</sub>                     |                     |                | $N_{Rk,b} = I$          | √ <sub>Rk,p</sub> 1) |                |                       | V <sub>Rk,b</sub> 1)            |  |  |
|                             |                       | [mm]                                |                     |                | [kN                     | l]                   |                |                       | [kN]                            |  |  |
|                             |                       | Normierte m                         | ittlere Dr          | uckfestig      | keit f <sub>b</sub> ≥ 2 | 8 N/mm <sup>2</sup>  | 2)             |                       | -                               |  |  |
| M8                          | -                     | 80                                  | 7,0                 | 6,5            | 5,0                     | 6,0                  | 5,5            | 4,0                   |                                 |  |  |
| M10 / IG-M6                 | -                     | ≥ 90                                | 7,0                 | 6,5            | 5,0                     | 6,0                  | 5,5            | 4,0                   |                                 |  |  |
| M12 / IG-M8                 | -                     | ≥ 100                               | 7,0                 | 6,5            | 5,0                     | 6,0                  | 5,5            | 4,0                   |                                 |  |  |
| M16 / IG-M10                | -                     | ≥ 100                               | 7,0                 | 6,5            | 5,0                     | 7,0                  | 6,5            | 5,0                   |                                 |  |  |
| M10 - M16<br>IG-M6 - IG-M10 | -                     | 200                                 | 9,0                 | 8,5            | 6,5                     | 5,5                  | 5,0            | 4,0                   | 7,0                             |  |  |
| M8                          | VM-SH 12              | 80                                  | 7,0                 | 6,5            | 5,0                     | 6,0                  | 5,5            | 4,0                   |                                 |  |  |
| M8 / M10/ IG-M6             | VM-SH 16              | ≥ 85                                | 7,0                 | 6,5            | 5,0                     | 7,0                  | 6,5            | 5,0                   |                                 |  |  |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20              | ≥ 85                                | 7,0                 | 6,5            | 5,0                     | 7,0                  | 6,5            | 5,0                   |                                 |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

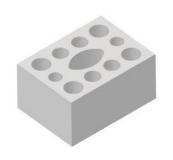
#### Tabelle C17: Verschiebungen

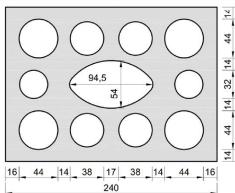
| Ankergröße                   | h <sub>ef</sub><br>[mm] | δ <sub>N</sub> / <b>N</b><br>[mm/kN] | δ <sub>N0</sub><br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | δ <sub>N∞</sub><br>[mm] | δ <sub>V</sub> / V<br>[mm/kN] | δν <sub>0</sub><br>[mm]  | δν∞<br>[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|-------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M8 – M12 /<br>IG-M6 – IG-M10 | alle                    | 0,1                                  | 0,1*N <sub>Rk</sub> / 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2*δνο                   | 0,3                           | 0,3*V <sub>Rk</sub> /3,5 | 1,5*δ√0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| M16                          |                         |                                      | on the common of | 20 M 100000             | 0,1                           | 0,1*V <sub>Rk</sub> /3,5 | The state of the s |

# Tabelle C18: Charakteristische Widerstände unter Brandbeanspruchung

| Ankergröße                  | Sieb-<br>hülse | Effektive<br>Veranke-<br>rungstiefe | Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$ |      |                |                |  |  |
|-----------------------------|----------------|-------------------------------------|-------------------------------------------------------------------------|------|----------------|----------------|--|--|
|                             | нв-            | h <sub>ef</sub>                     | R30                                                                     | R60  | R90            | R120           |  |  |
|                             | пь-            | [mm]                                |                                                                         | [k   | N]             |                |  |  |
| M8                          | -              | 80                                  |                                                                         |      |                |                |  |  |
| M10 / IG-M6                 | =              | ≥ 90                                | 0,48                                                                    | 0,41 | 0,34           | 0,30           |  |  |
| M12 / IG-M8                 | -              | ≥ 100                               | 0,46                                                                    |      |                | 0,30           |  |  |
| M16 / IG-M10                | -              | ≥ 100                               |                                                                         |      |                |                |  |  |
| M8                          | VM-SH 12       | 80                                  |                                                                         |      |                |                |  |  |
| M8 / M10 / IG-M6            | VM-SH 16       | ≥ 85                                | 0,47                                                                    | 0,26 | keine Leistung | keine Leistung |  |  |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20       | ≥ 85                                | 0,47                                                                    | 0,20 | bewertet       | bewertet       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                |            |
|-----------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Kalksandvollstein KS-NF<br>Charakteristische Widerstände, Verschiebungen, Brandbeanspruchung | Anhang C10 |


<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C12 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.




# Steintyp: Kalksandlochstein KSL-3DF

# Tabelle C19: Beschreibung

| Steintyp                                         |         |                       | Kalksandlochstein<br>KSL-3DF |
|--------------------------------------------------|---------|-----------------------|------------------------------|
| Rohdichte                                        | ρ       | [kg/dm <sup>3</sup> ] | ≥ 1,4                        |
| Normierte mittlere<br>Druckfestigkeit            | $f_{b}$ | [N/mm <sup>2</sup> ]  | ≥ 14                         |
| Umrechnungsfaktor für gerin<br>Druckfestigkeiten | ger     | е                     | $(f_b / 14)^{0.75} \le 1.0$  |
| Norm                                             |         | [-]                   | EN 771-2:2011+A1:2015        |
| Hersteller (Länderkennung)                       |         | [-]                   | z.B. KS-Wemding (DE)         |
| Steinabmessungen                                 |         | [mm]                  | ≥ 240 x 175 x 113            |
| Bohrverfahren                                    |         | [-]                   | Drehbohren                   |





# Tabelle C20: Montagekennwerte

| Ankergröße            | M8                                           | M10                                                                        | M12      | M16 | IG-M6 | IG-M8 | IG-M10 |     |     |  |
|-----------------------|----------------------------------------------|----------------------------------------------------------------------------|----------|-----|-------|-------|--------|-----|-----|--|
| Montagedrehmoment     | $T_{inst}$                                   | [Nm]                                                                       | ≤ 5      | ≤ 5 | ≤ 8   | ≤ 8   | ≤ 5    | ≤ 8 | ≤ 8 |  |
| Randabstand           | Ccr                                          | [mm] 120 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 240) |          |     |       |       |        |     |     |  |
| Minimaler Randabstand | Cmin                                         | [mm]                                                                       | nm] 60   |     |       |       |        |     |     |  |
| Achsabstand           | Scr, II                                      | [mm]                                                                       | 240      |     |       |       |        |     |     |  |
| Acrisabstand          | Scr, ⊥                                       | [mm]                                                                       | 120      |     |       |       |        |     |     |  |
| Minimaler Achsabstand | S <sub>min, II;</sub><br>S <sub>min, ⊥</sub> | [mm]                                                                       | [mm] 120 |     |       |       |        |     |     |  |

# Tabelle C21: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | act     |         | Querlast     |            |          |                          |         |            |  |
|------|---------|---------|--------------|------------|----------|--------------------------|---------|------------|--|
| Zugi | ası     |         | senkrecht zu | m freien F | Rand     | parallel zum freien Rand |         |            |  |
|      | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |
| •    | 60      | 1,00    | <b>→</b>     | 60         | 0,30     |                          | 60      | 1,00       |  |
|      | 120     | 1,00    |              | 240        | 1,00     |                          | 120     | 1,00       |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                               |            |
|----------------------------------------------------------------------------------------------------------|------------|
| <b>Leistungen – Kalksandlochstein KSL-3DF</b><br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C11 |



# Steintyp: Kalksandlochstein KSL-3DF – Fortsetzung

Tabelle C22: Faktor für Ankergruppen

|                          | Anordnung paral | el zur La | gerfuge |            | Anordnung senkrecht zur Lagerfuge |         |         |                                        |  |
|--------------------------|-----------------|-----------|---------|------------|-----------------------------------|---------|---------|----------------------------------------|--|
| Zuglast                  |                 | mit c ≥   | mit s ≥ | αg II, N   |                                   | mit c ≥ | mit s ≥ | αg⊥, N                                 |  |
|                          | • •             | 60        | 120     | 1,50       |                                   | 60      | 120     | 1,00                                   |  |
|                          |                 | 120       | 120     | 2,00       |                                   | 60      | 120     | 1,00                                   |  |
|                          |                 | 120       | 240     | 2,00       |                                   | 120     | 120     | 2,00                                   |  |
| Overdent                 |                 | mit c ≥   | mit s ≥ | αg II,V⊥   |                                   | mit c ≥ | mit s ≥ | $\alpha_{\text{g}\perp,\text{V}\perp}$ |  |
| Querlast<br>senkrecht    |                 | 60        | 120     | 0,30       |                                   | 60      | 120     | 0,30                                   |  |
| zum freien Rand          |                 | 120       | 120     | 1,00       |                                   | 60      | 120     | 0,30                                   |  |
| Zum melen Kana           |                 | 120       | 240     | 2,00       |                                   | 240     | 120     | 2,00                                   |  |
| 0 . 1 (                  |                 | mit c ≥   | mit s ≥ | αg II,V II |                                   | mit c ≥ | mit s ≥ | α <sub>g⊥,V</sub> II                   |  |
| Querlast                 |                 | 60        | 120     | 1,00       | •                                 | 60      | 120     | 1,00                                   |  |
| parallel zum freien Rand |                 | 120       | 120     | 1,60       |                                   | 60      | 120     | 1,00                                   |  |
| Zam noten Kana           |                 | 120       | 240     | 2,00       |                                   | 120     | 120     | 2,00                                   |  |

Tabelle C23: Charakteristische Widerstände unter Zug- und Querlast

|                              |              |                             | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> |                     |                 |                |                |                 |                                 |  |  |  |
|------------------------------|--------------|-----------------------------|-------------------------------------------------------------------------------|---------------------|-----------------|----------------|----------------|-----------------|---------------------------------|--|--|--|
| Ankergröße                   | Sieb-        | Effektive                   |                                                                               | Nutzungsbedingungen |                 |                |                |                 |                                 |  |  |  |
|                              | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe | d/d                                                                           |                     |                 | w/d<br>w/w     |                |                 | d/d<br>w/d<br>w/w               |  |  |  |
|                              |              |                             | 24°C /<br>40°C                                                                | 50°C /<br>80°C      | 72°C /<br>120°C | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |  |  |  |
|                              |              | h <sub>ef</sub>             |                                                                               | N <sub>Rk,b</sub> = |                 |                |                |                 | V <sub>Rk,b</sub> 1)            |  |  |  |
|                              |              | [mm]                        |                                                                               |                     | [kN             | ١]             |                |                 | [kN]                            |  |  |  |
|                              | 1            | Normierte ı                 | mittlere D                                                                    | ruckfesti           | gkeit f₀ ≥      | 14 N/mm        | 2 2)           |                 |                                 |  |  |  |
| M8 / M10                     | VM-SH 16     | ≥ 85                        | 2,5                                                                           | 2,5                 | 1,5             | 2,5            | 2,5            | 1,5             |                                 |  |  |  |
| IG-M6                        | VIVI-SIT 10  | 130                         | 2,5                                                                           | 2,5                 | 2,0             | 2,5            | 2,5            | 2,0             | 0.0                             |  |  |  |
| M12 / M16<br>IG-M8<br>IG-M10 | VM-SH 20     | ≥ 85                        | 6,5                                                                           | 6,0                 | 4,5             | 6,5            | 6,0            | 4,5             | 6,0                             |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|I|} = V_{Rk,c} \perp$  gemäß Anhang C5

Tabelle C24: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                                  | δn∞   | δ <sub>V</sub> / V | δνο                       | δν∞                                     |
|------------------------------|-----------------|---------------------------|---------------------------------------|-------|--------------------|---------------------------|-----------------------------------------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                                  | [mm]  | [mm/kN]            | [mm]                      | [mm]                                    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5            | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0                                 |
| M16                          | 5200 8          |                           | · · · · · · · · · · · · · · · · · · · |       | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                     |            |
|----------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Kalksandlochstein KSL-3DF<br>Gruppenfaktoren und charakteristische Widerstände und Verschiebungen | Anhang C12 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C19 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Kalksandlochstein KSL-8DF

# Tabelle C25: Beschreibung

| Steintyp                                             |                       | Kalksandlochstein<br>KSL-8DF |                                                      |
|------------------------------------------------------|-----------------------|------------------------------|------------------------------------------------------|
| Rohdichte $\rho$                                     | [kg/dm <sup>3</sup> ] | ≥ 1,4                        |                                                      |
| Normierte mittlere<br>Druckfestigkeit                | [N/mm <sup>2</sup> ]  | ≥ 12                         | 100                                                  |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten | •                     | $(f_b / 12)^{0.75} \le 1.0$  |                                                      |
| Norm                                                 | [-]                   | EN 771-2:2011+A1:2015        | to a proper commence of the contract and a second of |
| Hersteller (Länderkennung)                           | [-]                   | z.B. KS-Wemding (DE)         |                                                      |
| Steinabmessungen                                     | [mm]                  | ≥ 248 x 240 x 238            |                                                      |
| Bohrverfahren                                        | [-]                   | Drehbohren                   |                                                      |
|                                                      |                       | 63   63   64   60<br>250     |                                                      |

Tabelle C26: Montagekennwerte

| Ankergröße            |                                             |      | M8                   | M10       | M12        | M16        | IG-M6       | IG-M8                   | IG-M10 |
|-----------------------|---------------------------------------------|------|----------------------|-----------|------------|------------|-------------|-------------------------|--------|
| Montagedrehmoment     | $T_{inst}$                                  | [Nm] | ≤5 ≤5 ≤8 ≤8 ≤5 ≤8 ≤8 |           |            |            |             |                         | ≤ 8    |
| Randabstand           | Ccr                                         | [mm] | 120                  | (für Quer | lasten ser | nkrecht zu | ım freien f | Rand: c <sub>cr</sub> = | = 250) |
| Minimaler Randabstand | Cmin                                        | [mm] | 50                   |           |            |            |             |                         |        |
| Achsabstand           | Scr, II                                     | [mm] | 250                  |           |            |            |             |                         |        |
| Acrisabstand          | Scr, ⊥                                      | [mm] | 120                  |           |            |            |             |                         |        |
| Minimaler Achsabstand | S <sub>min,</sub> II<br>S <sub>min,</sub> ⊥ | [mm] | 50                   |           |            |            |             |                         |        |

# Tabelle C27: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast |         |         | Querlast     |                          |          |  |         |            |  |  |
|---------|---------|---------|--------------|--------------------------|----------|--|---------|------------|--|--|
| Zugi    | ası     |         | senkrecht zu | parallel zum freien Rand |          |  |         |            |  |  |
|         | mit c ≥ | αedge,N |              | mit c ≥                  | αedge,V⊥ |  | mit c ≥ | αedge,V II |  |  |
| •       | 50      | 1,00    |              | 50                       | 0,30     |  | 50      | 1,00       |  |  |
|         | 120     | 1,00    |              | 250                      | 1,00     |  | 120     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                        |            |
|---------------------------------------------------------------------------------------------------|------------|
| Leistungen – Kalksandlochstein KSL-8DF<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C13 |



# Steintyp: Kalksandlochstein KSL-8DF – Fortsetzung

Tabelle C28: Faktor für Ankergruppen

|                       | Anordnung parall | el zur Lag | gerfuge |            | Anordnung senkrecht zur Lagerfuge |         |         |          |  |
|-----------------------|------------------|------------|---------|------------|-----------------------------------|---------|---------|----------|--|
|                       |                  | mit c ≥    | mit s ≥ | αg II, N   |                                   | mit c ≥ | mit s ≥ | αg⊥, N   |  |
| Zuglast               | Zuglast ● ●      | 50         | 50      | 1,00       |                                   | 50      | 50      | 1,00     |  |
|                       |                  | 120        | 250     | 2,00       |                                   | 120     | 120     | 2,00     |  |
| 0 1 1                 | <del></del>      | mit c ≥    | mit s ≥ | αg II,V⊥   | Г <del>і</del>                    | mit c ≥ | mit s ≥ | αд⊥,∨⊥   |  |
| Querlast<br>senkrecht |                  | 50         | 50      | 0,45       | •                                 | 50      | 50      | 0,45     |  |
| zum freien Rand       |                  | 250        | 50      | 1,15       |                                   | 250     | 50      | 1,20     |  |
| Zam noion rana        | <del></del>      | 250        | 250     | 2,00       |                                   | 250     | 250     | 2,00     |  |
| Querlast              |                  | mit c ≥    | mit s ≥ | αg II,V II |                                   | mit c ≥ | mit s ≥ | αg⊥,∨ II |  |
| parallel              | parallel         | 50         | 50      | 1,30       |                                   | 50      | 50      | 1,00     |  |
| zum freien Rand       | 120              | 250        | 2,00    |            | 120                               | 250     | 2,00    |          |  |

Tabelle C29: Charakteristische Widerstände unter Zug- und Querlast

|                              |                       |                                          | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> Nutzungsbedingungen |                |                 |                      |                |                      |                                 |  |
|------------------------------|-----------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|-----------------|----------------------|----------------|----------------------|---------------------------------|--|
| Ankergröße                   | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungs-<br>tiefe |                                                                                                   | d/d            | Nutzt           | mysbear              | w/d<br>w/w     |                      | d/d<br>w/d<br>w/w               |  |
|                              |                       |                                          | 24°C /<br>40°C                                                                                    | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C       | 50°C /<br>80°C | 72°C /<br>120°C      | alle<br>Temperatur-<br>bereiche |  |
|                              |                       | h <sub>ef</sub>                          |                                                                                                   |                | $N_{Rk,b} = I$  | N <sub>Rk,p</sub> 1) |                | V <sub>Rk,b</sub> 1) |                                 |  |
|                              |                       | [mm]                                     |                                                                                                   |                | [kN             | 1]                   |                | [kN]                 |                                 |  |
|                              | 7.                    | Normierte                                | mittlere D                                                                                        | ruckfesti      | gkeit f₀ ≥      | 12 N/mm              | 2 2)           |                      |                                 |  |
| M8 / M10<br>IG-M6            | VM-SH 16              | 130                                      | 5,0                                                                                               | 4,5            | 3,5             | 5,0                  | 4,5            | 3,5                  | 3,5                             |  |
| M12 / M16<br>IG-M8<br>IG-M10 | VM-SH 20              | ≥ 130                                    | 5,0                                                                                               | 4,5            | 3,5             | 5,0                  | 4,5            | 3,5                  | 6,0                             |  |

# Tabelle C30: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞                                     | δ <sub>V</sub> / V | δνο                       | δ∨∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-----------------------------------------|--------------------|---------------------------|---------|
| Alikergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]                                    | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub>                       | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          |                 |                           | o, . o                     | _ = = = = = = = = = = = = = = = = = = = | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | .,0 010 |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                  |            |
|-------------------------------------------------------------------------------------------------------------|------------|
| Leistungen - Kalksandlochstein KSL-8DF<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C14 |

N<sub>Rk,b,c</sub> = N<sub>Rk,p,c</sub> und V<sub>Rk,c II</sub> = V<sub>Rk,c ⊥</sub> gemäß Anhang C5
 Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C25 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Kalksandlochstein KSL-12DF

# Tabelle C31: Beschreibung

| Steintyp                                           |                       | Kalksandlochstein<br>KSL-12DF |
|----------------------------------------------------|-----------------------|-------------------------------|
| Rohdichte p                                        | [kg/dm <sup>3</sup> ] | ≥ 1,4                         |
| Normierte mittlere<br>Druckfestigkeit              | [N/mm <sup>2</sup> ]  | ≥ 12                          |
| Umrechnungsfaktor für geringe<br>Druckfestigkeiten | ere                   | $(f_b / 12)^{0.75} \le 1.0$   |
| Norm                                               | [-]                   | EN 771-2:2011+A1:2015         |
| Hersteller (Länderkennung)                         | [-]                   | z.B. KS-Wemding (DE)          |
| Steinabmessungen                                   | [mm]                  | ≥ 498 x 175 x 238             |
| Bohrverfahren                                      | [-]                   | Drehbohren                    |





# Tabelle C32: Montagekennwerte

| Ankergröße                             | Ankergröße                                                   |      |                                                                                               |     |     | M16       | IG-M6 | IG-M8 | IG-M10 |
|----------------------------------------|--------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------|-----|-----|-----------|-------|-------|--------|
| Montagedrehmoment                      | $T_{inst}$                                                   | [Nm] | ≤ 4                                                                                           | ≤ 4 | ≤ 5 | ≤ 5       | ≤ 4   | ≤ 5   | ≤ 5    |
| Randabstand (unter Brandbeanspruchung) | C <sub>cr</sub> (C <sub>cr,fi</sub> )                        | [mm] | 120 (2 h <sub>ef</sub> )<br>(für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 500) |     |     |           |       | 500)  |        |
| Minimaler<br>Randabstand               | C <sub>min</sub>                                             | [mm] |                                                                                               |     |     |           |       |       |        |
| Achsabstand (unter                     | Scr,II (Scr,fi,II)                                           | [mm] |                                                                                               |     |     | 500 (4 h∈ | ef)   |       |        |
| Brandbeanspruchung)                    | $\mathbf{S}_{cr,\perp}\left(\mathbf{S}_{cr,fi,\perp}\right)$ | [mm] | 120 (4 h <sub>ef</sub> )                                                                      |     |     |           |       |       |        |
| Minimaler<br>Achsabstand               | S <sub>min,</sub> II;<br>S <sub>min,⊥</sub>                  | [mm] | 50                                                                                            |     |     |           |       |       |        |

# Tabelle C33: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast |         |         | Querlast                  |         |          |                          |         |           |
|---------|---------|---------|---------------------------|---------|----------|--------------------------|---------|-----------|
|         |         |         | senkrecht zum freien Rand |         |          | parallel zum freien Rand |         |           |
|         | mit c ≥ | αedge,N |                           | mit c ≥ | αedge,V⊥ |                          | mit c ≥ | αedge,VII |
| •       | 50      | 1,00    | <b>→</b>                  | 50      | 0,45     |                          | 50      | 1,00      |
|         | 120     | 1,00    |                           | 500     | 1,00     |                          | 120     | 1,00      |

| Injektionssystem HB-VMU plus für Mauerwerk                                                  |            |  |  |
|---------------------------------------------------------------------------------------------|------------|--|--|
| Leistung Kalksandlochstein KSL-12DF Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C15 |  |  |



#### Steintyp: Kalksandlochstein KSL-12DF – Fortsetzung

Tabelle C34: Faktor für Ankergruppen

|                           | Anordnung parall | el zur La | gerfuge  |            | Anordnung senkrecht zur Lagerfuge |         |         |          |  |
|---------------------------|------------------|-----------|----------|------------|-----------------------------------|---------|---------|----------|--|
|                           | mit c ≥          | mit s ≥   | αg II, N |            | mit c ≥                           | mit s ≥ | αg⊥, N  |          |  |
| Zuglast                   | Zuglast ● ●      | 50        | 50       | 1,50       |                                   | 50      | 50      | 1,00     |  |
|                           |                  | 120       | 500      | 2,00       |                                   | 120     | 240     | 2,00     |  |
|                           | +                | mit c ≥   | mit s ≥  | αg II,V⊥   | 1                                 | mit c ≥ | mit s ≥ | αд⊥,∨⊥   |  |
| Querlast                  |                  | 50        | 50       | 0,55       |                                   | 50      | 50      | 0,50     |  |
| senkrecht zum freien Rand |                  | 500       | 50       | 1,00       |                                   | 500     | 50      | 1,00     |  |
| Zum melen kana            |                  | 500       | 500      | 2,00       |                                   | 500     | 250     | 2,00     |  |
| Querlast                  |                  | mit c ≥   | mit s ≥  | αg II,V II |                                   | mit c ≥ | mit s ≥ | αg⊥,∨ II |  |
| parallel                  | parallel ••      | 50        | 50       | 2,00       | ]                                 | 50      | 50      | 1,30     |  |
| zum freien Rand           |                  | 120       | 500      | 2,00       |                                   | 120     | 250     | 2,00     |  |

Tabelle C35: Charakteristische Widerstände unter Zug- und Querlast

| Ankarasi 0 a Siah          | 0:1                      | F66 14:         | (                          | Charakte       |                 | Widerst        |                   |                 | nd s ≥ s <sub>cr</sub>       |
|----------------------------|--------------------------|-----------------|----------------------------|----------------|-----------------|----------------|-------------------|-----------------|------------------------------|
| Ankergröße                 | hülse Veranke-<br>rungs- |                 | d/d                        |                |                 | w/d<br>w/w     | d/d<br>w/d<br>w/w |                 |                              |
|                            | пв-                      | tiefe           | 24°C /<br>40°C             | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C | 50°C /<br>80°C    | 72°C /<br>120°C | alle Temperatur-<br>bereiche |
|                            |                          | h <sub>ef</sub> | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                |                 |                |                   |                 | V <sub>Rk,b</sub> 1)         |
|                            |                          | [mm]            |                            |                | [k              | N]             |                   | [kN]            |                              |
|                            |                          | Normierte i     | mittlere [                 | Druckfes       | tigkeit f₀      | ≥ 12 N/m       | nm² ²)            |                 |                              |
| M8 / M10<br>IG-M6          | VM-SH 16                 | 130             | 3,5                        | 3,5            | 2,5             | 3,5            | 3,5               | 2,5             | 3,5                          |
| M12 / M16<br>IG-M8 /IG-M10 | VM-SH 20                 | ≥ 130           | 3,5                        | 3,5            | 2,5             | 3,5            | 3,5               | 2,5             | 7,0                          |

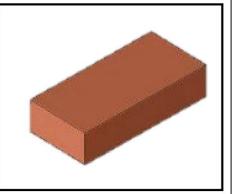
<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

#### Tabelle C36: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δνο                        | δ <sub>N∞</sub> | δ <sub>V</sub> / V | δνο                       | δν∞                 |
|------------------------------|-----------------|---------------------------|----------------------------|-----------------|--------------------|---------------------------|---------------------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]            | [mm/kN]            | [mm]                      | [mm]                |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο           | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ <sub>V0</sub> |
| M16                          |                 |                           |                            |                 | 0,31               | 0,31*V <sub>Rk</sub> /3,5 |                     |

#### Tabelle C37: Charakteristische Widerstände unter Brandbeanspruchung

| A . l        | Sieb-<br>hülse | Effektive<br>Verankerungstiefe | Charakteristischer Widerstand<br>N <sub>Rk,b,fi</sub> = N <sub>Rk,p,fi</sub> = V <sub>Rk,b,fi</sub> |      |      |                |  |  |  |
|--------------|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------|------|------|----------------|--|--|--|
| Ankergröße   | нв-            | h <sub>ef</sub>                | R30                                                                                                 | R60  | R90  | R120           |  |  |  |
|              |                | [mm]                           | [kN]                                                                                                |      |      |                |  |  |  |
| M8/M10/IG-M6 | VM-SH 16       | 130                            |                                                                                                     |      |      | keine Leistung |  |  |  |
| M12/ IG-M8   | VM-SH 20       | ≥ 130                          | 0,37                                                                                                | 0,27 | 0,17 | bewertet       |  |  |  |
| M16/IG-M10   | VM-SH 20       | ≥ 130                          |                                                                                                     |      |      | 0,12           |  |  |  |


| Injektionssystem HB-VMU plus für Mauerwerk                                                                   |            |
|--------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Kalksandlochstein KSL-12DF<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C16 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C31 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Mauerziegel MZ-1DF Tabelle C38: Beschreibung

| Steintyp                                         | Mauerziegel MZ-1DF |                       |                            |
|--------------------------------------------------|--------------------|-----------------------|----------------------------|
| Rohdichte                                        | ρ                  | [kg/dm <sup>3</sup> ] | ≥ 2,0                      |
| Normierte mittlere<br>Druckfestigkeit            | $f_b$              | [N/mm <sup>2</sup> ]  | ≥ 20                       |
| Umrechnungsfaktor für gerin<br>Druckfestigkeiten | ger                | е                     | $(f_b / 20)^{0.5} \le 1.0$ |
| Norm                                             |                    | [-]                   | EN 771-1:2011+A1:2015      |
| Hersteller (Länderkennung)                       |                    | [-]                   | z.B. Wienerberger (DE)     |
| Steinabmessungen                                 |                    | [mm]                  | ≥ 240 x 115 x 55           |
| Bohrverfahren                                    |                    | [-]                   | Hammerbohren               |



#### Tabelle C39: Montagekennwerte

| Ankergröße                                       | M8                                         | M10  | M12                                                                   | M16  | IG-M6 | IG-M8 | IG-M10 |      |        |  |
|--------------------------------------------------|--------------------------------------------|------|-----------------------------------------------------------------------|------|-------|-------|--------|------|--------|--|
| Montagedrehmoment                                | T <sub>inst</sub>                          | [Nm] | ≤ 10                                                                  | ≤ 10 | ≤ 10  | ≤ 10  | ≤ 10   | ≤ 10 | ≤ 10   |  |
| Randabstand                                      | Ccr                                        | [mm] | 150 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 240) |      |       |       |        |      | = 240) |  |
| Minimaler Randabstand                            | Cmin                                       | [mm] | 60                                                                    |      |       |       |        |      | č.     |  |
| Ashashatand                                      | S <sub>cr,II</sub>                         | [mm] | 240                                                                   |      |       |       |        |      |        |  |
| Achsabstand ———————————————————————————————————— |                                            | [mm] | 130                                                                   |      |       |       |        |      |        |  |
| Minimaler Achsabstand                            | S <sub>min,II;</sub><br>S <sub>min,⊥</sub> | [mm] |                                                                       |      |       |       |        |      |        |  |

Tabelle C40: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast |         |         |   | Querlast     |            |          |                          |         |            |  |  |
|---------|---------|---------|---|--------------|------------|----------|--------------------------|---------|------------|--|--|
| Zugi    | ası     |         |   | senkrecht zu | m freien F | Rand     | parallel zum freien Rand |         |            |  |  |
|         | mit c ≥ | αedge,N | Ħ |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |  |
|         | 60      | 0,75    |   | -            | 60         | 0,10     |                          | 60      | 0,30       |  |  |
|         | 150     | 1,00    |   |              | 100        | 0,50     |                          | 100     | 0,65       |  |  |
|         | 180     | 1,00    | ] |              | 240        | 1,00     |                          | 150     | 1,00       |  |  |

#### Tabelle C41: Faktor für Ankergruppen

|                             | Anordnung parall | el zur La | gerfuge |            | Anordnung senk | recht zur | Lagerfu | ge       |
|-----------------------------|------------------|-----------|---------|------------|----------------|-----------|---------|----------|
|                             |                  | mit c ≥   | mit s ≥ | αg II, N   |                | mit c ≥   | mit s ≥ | αg⊥, N   |
| 7umloot                     | 7last            | 60        | 65      | 0,85       | •              | 60        | 65      | 1,00     |
| Zuglast                     | 150              | 65        | 1,15    |            | 150            | 65        | 1,20    |          |
|                             |                  | 150       | 240     | 2,00       |                | 150       | 130     | 2,00     |
|                             |                  | mit c ≥   | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥ | αд⊥,∨⊥   |
| Querlast<br>senkrecht       |                  | 60        | 65      | 0,40       | •              | 60        | 65      | 0,30     |
| zum freien Rand             |                  | 240       | 65      | 2,00       |                | 240       | 65      | 2,00     |
| Zum molom kuma              |                  | 240       | 240     | 2,00       |                | 240       | 130     | 2,00     |
|                             |                  | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥ | αg⊥,∨ II |
|                             | Querlast         | 60        | 65      | 1,75       | •              | 60        | 65      | 1,10     |
| parallel<br>zum freien Rand |                  | 150       | 65      | 2,00       |                | 150       | 65      | 2,00     |
| Zum molem Kana              |                  | 150       | 240     | 2,00       |                | 150       | 130     | 2,00     |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen – Mauerziegel MZ-1DF
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C17



#### Steintyp: Mauerziegel MZ-1DF – Fortsetzung

Tabelle C42: Charakteristische Widerstände unter Zug- und Querlast

|                                                                             |              |                        | С              | s ≥ s <sub>cr</sub> |                |                  |                |                 |                                 |  |  |
|-----------------------------------------------------------------------------|--------------|------------------------|----------------|---------------------|----------------|------------------|----------------|-----------------|---------------------------------|--|--|
| Ankergröße                                                                  | Sieb-        | Effektive              |                |                     | Nutzu          | ıngsbedi         | ngsbedingungen |                 |                                 |  |  |
|                                                                             | hülse<br>HB- | Veranke-<br>rungstiefe |                | d/d                 |                |                  | w/d<br>w/w     |                 | d/d<br>w/d<br>w/w               |  |  |
|                                                                             |              |                        | 24°C /<br>40°C |                     |                | 24°C /<br>40°C   | 50°C /<br>80°C | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |  |  |
|                                                                             |              | h <sub>ef</sub>        |                |                     | $N_{Rk,b} = I$ | <b>V</b> Rk,p 1) |                |                 | V <sub>Rk,b</sub> 1)            |  |  |
|                                                                             |              | [mm]                   | [kN]           |                     |                |                  |                |                 | [kN]                            |  |  |
| Normierte mittlere Druckfestigkeit f <sub>b</sub> ≥ 20 N/mm <sup>2 2)</sup> |              |                        |                |                     |                |                  |                |                 |                                 |  |  |
| M8                                                                          | -            | 80                     | 7,0            | 6,0                 | 6,0            | 7,0              | 6,0            | 6,0             | 8,0                             |  |  |
| M10 / IG-M6                                                                 | -            | ≥ 90                   | 7,0            | 6,0                 | 6,0            | 7,0              | 6,0            | 6,0             | 8,0                             |  |  |
| M12 / IG-M8                                                                 | -            | ≥ 100                  | 7,0            | 6,0                 | 6,0            | 7,0              | 6,0            | 6,0             | 8,0                             |  |  |
| M16 / IG-M10                                                                | -            | ≥ 100                  | 8,0            | 6,5                 | 6,5            | 8,0              | 6,5            | 6,5             | 12,0                            |  |  |
| M8                                                                          | VM-SH 12     | 80                     | 7,0            | 6,0                 | 6,0            | 7,0              | 6,0            | 6,0             | 8,0                             |  |  |
| M8 / M10<br>IG-M6                                                           | VM-SH 16     | ≥ 85                   | 7,0            | 6,0                 | 6,0            | 7,0              | 6,0            | 6,0             | 8,0                             |  |  |
| M12<br>IG-M8                                                                | VM-SH 20     | ≥ 85                   | 7,0            | 6,0                 | 6,0            | 7,0              | 6,0            | 6,0             | 8,0                             |  |  |
| M16<br>IG-M10                                                               | VM-SH 20     | ≥ 85                   | 8,0            | 6,5                 | 6,5            | 8,0              | 6,5            | 6,5             | 12,0                            |  |  |

<sup>&</sup>lt;sup>1)</sup> NRk,b,c = NRk,p,c und VRk,c II = VRk,c  $\perp$  gemäß Anhang C5

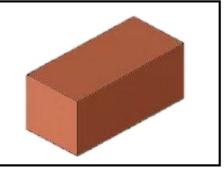
Tabelle C43: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                      | δn∞               | δ <sub>V</sub> / V | δνο                      | δν∞                   |
|------------------------------|-----------------|---------------------------|---------------------------|-------------------|--------------------|--------------------------|-----------------------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                      | [mm]              | [mm/kN]            | [mm]                     | [mm]                  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,1                       | 0,1*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,3                | 0,3*V <sub>Rk</sub> /3,5 | 1,5*δ√0               |
| M16                          |                 |                           |                           | 3500              | 0,1                | 0,1*V <sub>Rk</sub> /3,5 | and the second second |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen – Mauerziegel MZ-1DF
Charakteristische Widerstände und Verschiebungen

Anhang C18


<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C38 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



#### Steintyp: Mauerziegel MZ-2DF

#### Tabelle C44: Beschreibung

| Steintyp                                        |                |                       | Mauerziegel MZ-2DF         |
|-------------------------------------------------|----------------|-----------------------|----------------------------|
| Rohdichte                                       | ρ              | [kg/dm <sup>3</sup> ] | ≥ 2,0                      |
| Normierte mittlere<br>Druckfestigkeit           | f <sub>b</sub> | [N/mm <sup>2</sup> ]  | ≥ 28                       |
| Umrechnungsfaktor für geri<br>Druckfestigkeiten | nger           | е                     | $(f_b / 28)^{0.5} \le 1.0$ |
| Norm                                            |                | [-]                   | EN 771-1:2011+A1:2015      |
| Hersteller (Länderkennung)                      |                | [-]                   | z.B. Wienerberger (DE)     |
| Steinabmessungen                                |                | [mm]                  | ≥ 240 x 115 x 113          |
| Bohrverfahren                                   |                | [-]                   | Hammerbohren               |



#### Tabelle C45: Montagekennwerte

| Ankergröße                                |                                          |      | M8   | M10        | M12        | M16      | IG-M6 | IG-M8                    | IG-M10 |
|-------------------------------------------|------------------------------------------|------|------|------------|------------|----------|-------|--------------------------|--------|
| Montagedrehmoment                         | T <sub>inst</sub>                        | [Nm] | ≤ 10 | ≤ 10       | ≤ 10       | ≤ 10     | ≤ 10  | ≤ 10                     | ≤ 10   |
| Randabstand (unter<br>Brandbeanspruchung) | Ccr (Ccr,fi)                             | [mm] | (fi  | ir Querlas | sten senkr | 150 (2 h |       | and: c <sub>cr</sub> = : | 240)   |
| Minimaler Randabstand                     | Cmin                                     | [mm] |      |            |            | 50       |       |                          |        |
| Achsabstand (unter                        | Scr,II (Scr,fi,II)                       | [mm] |      |            |            | 240 (4 h | ef)   |                          |        |
| Brandbeanspruchung)                       | $S_{cr,\perp}$ ( $S_{cr,fi,\perp}$ )     | [mm] |      |            |            | 240 (4 h | ef)   |                          |        |
| Minimaler Achsabstand                     | S <sub>min,II</sub> ; S <sub>min,⊥</sub> | [mm] |      |            |            |          |       |                          |        |

#### Tabelle C46: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual | oot               |         |                           |         | Quer     | last                     |         | Š          |  |
|------|-------------------|---------|---------------------------|---------|----------|--------------------------|---------|------------|--|
| Zugl | ası               |         | senkrecht zum freien Rand |         |          | parallel zum freien Rand |         |            |  |
|      | mit c ≥           | αedge,N |                           | mit c ≥ | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |
|      | 50 <sup>1)</sup>  | 1,00    |                           | 50      | 0,20     |                          | 50      | 1,00       |  |
|      | 150 <sup>1)</sup> | 1,00    |                           | 125     | 0,50     |                          | 50      | 1,00       |  |
|      | 150               | 1,00    |                           | 240     | 1,00     |                          | 150     | 1,00       |  |

<sup>1)</sup> Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

#### Tabelle C47: Faktor für Ankergruppen

|                             | <b>Anordnung parall</b> | el zur La         | gerfuge |            | Anordnung senk | recht zur         | Lagerfu | ge      |
|-----------------------------|-------------------------|-------------------|---------|------------|----------------|-------------------|---------|---------|
|                             |                         | mit c ≥           | mit s ≥ | αg II, N   |                | mit c ≥           | mit s ≥ | αg⊥, N  |
|                             | <u> </u>                | 50 <sup>1)</sup>  | 50      | 1,50       | <b>1</b>       | 50 <sup>1)</sup>  | 50      | 0,80    |
| 7alaat                      |                         | 150 <sup>1)</sup> | 240     | 2,00       |                | 150 <sup>1)</sup> | 240     | 2,00    |
| Zuglast                     |                         | 180 <sup>2)</sup> | 60      | 1,00       |                | 180 <sup>2)</sup> | 60      | 1,00    |
|                             |                         | 180 <sup>2)</sup> | 240     | 1,55       |                | 180 <sup>2)</sup> | 120     | 2,00    |
|                             |                         | 240 <sup>2)</sup> | 240     | 2,00       |                | 180 <sup>2)</sup> | 120     | 2,00    |
|                             | <del></del>             | mit c ≥           | mit s ≥ | αg II,V⊥   |                | mit c ≥           | mit s ≥ | αд⊥,∨⊥  |
| Querlast                    |                         | 50                | 50      | 0,40       |                | 50                | 50      | 0,20    |
| senkrecht                   |                         | 240               | 50      | 1,20       | ]    😛         | 240               | 50      | 0,60    |
| zum freien Rand             |                         | 240               | 240     | 2,00       |                | 240               | 125     | 1,00    |
|                             |                         | 240               | 240     | 2,00       | <del> </del>   | 240               | 240     | 2,00    |
| Querlast                    |                         | mit c ≥           | mit s ≥ | αg II,V II |                | mit c ≥           | mit s ≥ | αg⊥,∨II |
|                             |                         | 50                | 50      | 1,20       | ]              | 50                | 50      | 1,00    |
| parallel<br>zum freien Rand |                         | 150               | 240     | 2,00       |                | 50                | 125     | 1,00    |
|                             |                         | 130               | 240     | 2,00       |                | 150               | 240     | 2,00    |

<sup>1)</sup> Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

#### Injektionssystem HB-VMU plus für Mauerwerk

#### Leistungen - Mauerziegel MZ-2DF

Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren

**Anhang C19** 

<sup>2)</sup> Nur für Anwendungen mit hef = 200mm und ohne Siebhülse



#### Steintyp: Mauerziegel MZ-2DF - Fortsetzung

Tabelle C48: Charakteristische Widerstände unter Zug- und Querlast

|                                                                             |              |                            | С                   | harakteri      | stische V           | Viderstär            | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |  |
|-----------------------------------------------------------------------------|--------------|----------------------------|---------------------|----------------|---------------------|----------------------|----------------|-----------------------|---------------------------------|--|--|--|
| Ankergröße                                                                  | Sieb-        | Effektive                  | Nutzungsbedingungen |                |                     |                      |                |                       |                                 |  |  |  |
| •                                                                           | hülse<br>HB- | Veranker<br>ungs-<br>tiefe | d/d                 |                |                     |                      | w/d<br>w/w     |                       | d/d<br>w/d<br>w/w               |  |  |  |
|                                                                             |              |                            | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C     | 24°C /<br>40°C       | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |  |
|                                                                             |              | h <sub>ef</sub>            |                     |                | N <sub>Rk,b</sub> = | N <sub>Rk,p</sub> 1) |                |                       | V <sub>Rk,b</sub> 1)            |  |  |  |
|                                                                             |              | [mm]                       |                     |                | [kN                 | ٧]                   |                |                       | [kN]                            |  |  |  |
| Normierte mittlere Druckfestigkeit f <sub>b</sub> ≥ 28 N/mm <sup>2 2)</sup> |              |                            |                     |                |                     |                      |                |                       |                                 |  |  |  |
| M8                                                                          | _            | 80                         | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 9,5                             |  |  |  |
| M10 / IG-M6                                                                 | -            | ≥ 90                       | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 9,5                             |  |  |  |
| M12 / IG-M8                                                                 | -            | ≥ 100                      | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 12,0                            |  |  |  |
| M16 / IG-M10                                                                | -            | ≥ 100                      | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 12,0 <sup>3)</sup>              |  |  |  |
| M10 / M12<br>IG-M6 / IG-M8                                                  | -            | 200                        | 11,5                | 11,5           | 10,0                | 6,0                  | 6,0            | 5,0                   | 8,0                             |  |  |  |
| M16 / IG-M10                                                                | -            | 200                        | 11,5                | 11,5           | 10,0                | 6,0                  | 6,0            | 5,0                   | 12,0                            |  |  |  |
| M8                                                                          | VM-SH 12     | 80                         | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 9,5                             |  |  |  |
| M8 / M10<br>IG-M6                                                           | VM-SH 16     | ≥ 85                       | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 9,5                             |  |  |  |
| M12 / IG-M8                                                                 | VM-SH 20     | ≥ 85                       | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 12,0                            |  |  |  |
| M16 / IG-M10                                                                | VM-SH 20     | ≥ 85                       | 9,0                 | 9,0            | 7,5                 | 9,0                  | 9,0            | 7,5                   | 12,0 <sup>3)</sup>              |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

#### Tabelle C49: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | διο                       | δn∞   | δ <sub>V</sub> / V | δνο                      | δν∞         |
|------------------------------|-----------------|---------------------------|---------------------------|-------|--------------------|--------------------------|-------------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                      | [mm]  | [mm/kN]            | [mm]                     | [mm]        |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,1                       | 0,1*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,3                | 0,3*V <sub>Rk</sub> /3,5 | 1,5*δνο     |
| M16                          |                 |                           | 389 5033 8                |       | 0,1                | 0,1*V <sub>Rk</sub> /3,5 | 1.60 353358 |

Injektionssystem HB-VMU plus für Mauerwerk

Leistung - Mauerziegel MZ-2DF
Charakteristische Widerstände und Verschiebungen

Anhang C20

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C44 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

<sup>&</sup>lt;sup>3)</sup> Gültig für alle Steinfestigkeitsklassen bis min. 10 N/mm²



#### Tabelle C50: Charakteristische Widerstände unter Brandbeanspruchung

| Ankergröße            | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungstiefe | Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$ |      |      |      |  |  |
|-----------------------|-----------------------|-------------------------------------|-------------------------------------------------------------------------|------|------|------|--|--|
|                       | HD-                   | h <sub>ef</sub>                     | R30                                                                     | R120 |      |      |  |  |
|                       |                       | [mm]                                |                                                                         | [k   |      |      |  |  |
| M8                    | -                     | 80                                  |                                                                         |      |      |      |  |  |
| M10 / IG-M6           | -                     | ≥ 90                                | 0.51                                                                    | 0.44 | 0.30 | 0.22 |  |  |
| M12 / IG-M8           | -                     | ≥ 100                               | 0,51                                                                    | 0,44 | 0,36 | 0,33 |  |  |
| M16 / IG-M10          | -                     | ≥ 100                               |                                                                         |      |      |      |  |  |
| M8                    | VM-SH 12              | 80                                  | 0,36                                                                    | 0,26 | 0,15 | 0,10 |  |  |
| NAO / NAAO / I.O. NAO | \/\A_C  _4C           | ≥ 85                                | 0,36                                                                    | 0,26 | 0,15 | 0,10 |  |  |
| M8 / M10 / IG-M6      | VIVI-5H 16            | 130                                 | 0,92                                                                    | 0,74 | 0,57 | 0,49 |  |  |
| M12 / M16             | //// CH 30            | ≥ 85                                | 0,36                                                                    | 0,26 | 0,15 | 0,10 |  |  |
| IG-M8 / IG-M10        | 1////_SH 201          | ≥ 130                               | 0,92                                                                    | 0,74 | 0,57 | 0,49 |  |  |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen - Mauerziegel MZ-2DF

Charakteristische Widerstände unter Brandbeanspruchung

**Anhang C21** 



#### Steintyp: Hochlochziegel Hlz-10 DF

#### Tabelle C51: Beschreibung

| Steintyp                                         |                |                       | Hochlochziegel<br>Hlz-10 DF |
|--------------------------------------------------|----------------|-----------------------|-----------------------------|
| Rohdichte                                        | ρ              | [kg/dm <sup>3</sup> ] | ≥ 1,25                      |
| Normierte mittlere<br>Druckfestigkeit            | f <sub>b</sub> | [N/mm <sup>2</sup> ]  | ≥ 20                        |
| Umrechnungsfaktor für gerin<br>Druckfestigkeiten | nger           | е                     | $(f_b / 20)^{0.5} \le 1.0$  |
| Norm                                             |                | [-]                   | EN 771-1:2011+A1:2015       |
| Hersteller (Länderkennung)                       |                | [-]                   | z.B. Wienerberger (DE)      |
| Steinabmessungen                                 |                | [mm]                  | 300 x 240 x 249             |
| Bohrverfahren                                    |                | [-]                   | Drehbohren                  |
|                                                  |                |                       |                             |



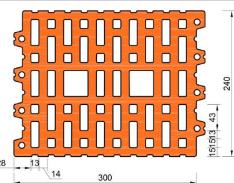



Tabelle C52: Montagekennwerte

| Ankergröße                                  |                    |      | M8                                                                 | M10  | M12  | M16      | IG-M6 | IG-M8                        | IG-M10 |  |
|---------------------------------------------|--------------------|------|--------------------------------------------------------------------|------|------|----------|-------|------------------------------|--------|--|
| Montagedrehmoment                           | T <sub>inst</sub>  | [Nm] | ≤ 5                                                                | ≤ 10 | ≤ 10 | ≤ 10     | ≤ 5   | ≤ 5                          | ≤ 10   |  |
| Randabstand (unter Brandbeanspruchung)      | Ccr; (Ccr,fi)      | [mm] | m] 120 (2 h <sub>ef</sub> )<br>(für Querlasten senkrecht zum freie |      |      |          |       | Rand: c <sub>cr</sub> = 300) |        |  |
| Minimaler Randabstand c <sub>min</sub> [mm] |                    |      | 50                                                                 |      |      |          |       |                              |        |  |
| Achsabstand (unter                          | Scr,II (Scr,fi,II) | [mm] |                                                                    |      |      | 300 (4 h | ef)   |                              |        |  |
| Brandbeanspruchung)                         | Scr,⊥ (Scr,fi,⊥)   | [mm] |                                                                    |      |      | 250 (4 h | ef)   |                              |        |  |
| Minimaler<br>Achsabstand                    | Smin,II; Smin,⊥    | [mm] | -                                                                  |      |      | 50       |       |                              |        |  |

#### Tabelle C53: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | act     |         |                           | Querlast |          |                          |         |            |  |  |  |  |
|------|---------|---------|---------------------------|----------|----------|--------------------------|---------|------------|--|--|--|--|
| Zugi | สรเ     |         | senkrecht zum freien Rand |          |          | parallel zum freien Rand |         |            |  |  |  |  |
|      | mit c ≥ | αedge,N |                           | mit c ≥  | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |  |  |  |
| •    | 50      | 1,00    | <b>│</b>                  | 50       | 0,20     |                          | 50      | 1,00       |  |  |  |  |
|      | 120     | 1,00    |                           | 300      | 1,00     |                          | 120     | 1,00       |  |  |  |  |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen - Hochlochziegel Hlz-10 DF

 $Steinbeschreibung,\,Montagekennwerte,\,Reduktionsfaktoren$ 

**Anhang C22** 



#### Steintyp: Hochlochziegel Hlz-10 – Fortsetzung

Tabelle C54: Faktor für Ankergruppen

|                       | Anordnung parall                                 | el zur La | gerfuge |            | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge                  |
|-----------------------|--------------------------------------------------|-----------|---------|------------|----------------|-----------|----------------------|---------------------|
|                       |                                                  | mit c ≥   | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | αg⊥,N               |
| Zuglast               | • •                                              | 50        | 50      | 1,55       |                | 50        | 50                   | 1,00                |
|                       |                                                  | 120       | 300     | 2,00       |                | 120       | 250                  | 2,00                |
| Ouerleet              | <del></del>                                      | mit c ≥   | mit s ≥ | αg II,V⊥   | +              | mit c ≥   | mit s ≥              | α <sub>g⊥,</sub> ∨⊥ |
| Querlast<br>senkrecht |                                                  | 50        | 50      | 0,30       |                | 50        | 50                   | 0,20                |
| zum freien Rand       | •••                                              | 300       | 50      | 1,40       |                | 300       | 50                   | 1,00                |
| Zuili lieleli Kallu   | <del>                                     </del> | 300       | 300     | 2,00       |                | 300       | 250                  | 2,00                |
| Querlast              |                                                  | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥              | αg⊥,∨ II            |
| parallel              | •••                                              | 50        | 50      | 1,85       |                | 50        | 50                   | 1,00                |
| zum freien Rand       |                                                  | 120       | 300     | 2,00       |                | 120       | 250                  | 2,00                |

#### Tabelle C55: Charakteristische Widerstände unter Zug- und Querlast

| A               | 0:-1-                 | F.C. 1.4                            | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> Nutzungsbedingungen |           |                         |                      |                |                      |                                 |  |  |  |
|-----------------|-----------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|-----------|-------------------------|----------------------|----------------|----------------------|---------------------------------|--|--|--|
| Ankergröße      | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungstiefe |                                                                                                   | d/d       |                         | w/d<br>w/w           |                |                      | d/d<br>w/d<br>w/w               |  |  |  |
|                 |                       |                                     | 24°C / 50°C / 72°C /<br>40°C 80°C 120°C                                                           |           |                         | 24°C /<br>40°C       | 50°C /<br>80°C | 72°C /<br>120°C      | alle<br>Temperatur-<br>bereiche |  |  |  |
|                 |                       | h <sub>ef</sub>                     |                                                                                                   |           | $N_{Rk,b} = I$          | V <sub>Rk,p</sub> 1) | <i>y</i>       | V <sub>Rk,b</sub> 1) |                                 |  |  |  |
|                 |                       | [mm]                                |                                                                                                   |           | [kN                     | J]                   |                |                      | [kN]                            |  |  |  |
|                 | j                     | Normierte m                         | ittlere Dr                                                                                        | uckfestig | keit f <sub>b</sub> ≥ 2 | 0 N/mm <sup>2</sup>  | 2)             |                      |                                 |  |  |  |
| M8              | VM-SH 12              | 80                                  | 2,5                                                                                               | 2,5       | 2,0                     | 2,5                  | 2,5            | 2,0                  | 8,0                             |  |  |  |
| M8 / M10 /IG-M6 | VM-SH 16              | ≥ 85                                | 2,5                                                                                               | 2,5       | 2,0                     | 2,5                  | 2,5            | 2,0                  | 8,0                             |  |  |  |
| M12 / IG-M8     | VM-SH 20              | ≥ 85                                | 5,0 5,0 4,5 5,0 5,0 4,5                                                                           |           |                         |                      |                |                      | 8,0                             |  |  |  |
| M16 / IG-M10    | VM-SH 20              | ≥ 85                                | 5,0                                                                                               | 5,0       | 4,5                     | 5,0                  | 5,0            | 4,5                  | 11,5                            |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|l} = V_{Rk,c\perp}$  gemäß Anhang C5

#### Tabelle C56: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δνο                        | δ <sub>N∞</sub> | δ <sub>V</sub> / V | δ∨0                       | δν∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-----------------|--------------------|---------------------------|---------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]            | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο           | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          |                 | 20                        | 10 parties 10              | N 965500 1      | 0,31               | 0,31*V <sub>Rk</sub> /3,5 |         |

#### Tabelle C57: Charakteristische Widerstände unter Brandbeanspruchung

| Ankergröße                  | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungstiefe |                 |      |      |      |  |  |  |  |
|-----------------------------|-----------------------|-------------------------------------|-----------------|------|------|------|--|--|--|--|
| 3                           | пр-                   | h <sub>ef</sub>                     | R30             | R60  | R90  | R120 |  |  |  |  |
|                             |                       | [mm]                                | \(\frac{1}{2}\) | [k   | N]   |      |  |  |  |  |
| M8 / M10 / IG-M6            | VM-SH 16              | 130                                 |                 |      |      |      |  |  |  |  |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20              | ≥ 130                               | 0,57            | 0,39 | 0,21 | 0,12 |  |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                 |            |
|------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Hlz-10 DF<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C23 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C51 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Porotherm Homebric

#### Tabelle C58: Beschreibung

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                 |  |
| Druckfestigkeiten(16 / 10) · 1 ≤ 1,0Norm[-]EN 771-1:2011+A1:2015Hersteller (Länderkennung)[-]z.B. Wienerberger (FR)Steinabmessungen[mm]500 x 200 x 299 |  |
| Hersteller (Länderkennung) [-] z.B. Wienerberger (FR) Steinabmessungen [mm] 500 x 200 x 299                                                            |  |
| Steinabmessungen [mm] 500 x 200 x 299                                                                                                                  |  |
| ·                                                                                                                                                      |  |
| Bohrverfahren [-] Drehbohren                                                                                                                           |  |
|                                                                                                                                                        |  |
| 7,9 25 4,5 494                                                                                                                                         |  |

Tabelle C59: Montagekennwerte

| Ankergröße            |                                           | M8   | M10 | M12 | M16 | IG-M6 | IG-M8 | IG-M10 |     |  |
|-----------------------|-------------------------------------------|------|-----|-----|-----|-------|-------|--------|-----|--|
| Montagedrehmoment     | $T_{inst}$                                | [Nm] | ≤ 2 | ≤ 2 | ≤ 2 | ≤ 2   | ≤ 2   | ≤ 2    | ≤ 2 |  |
| Randabstand           | Ccr                                       | [mm] |     |     |     |       |       |        |     |  |
| Minimaler Randabstand | Cmin                                      | [mm] | 120 |     |     |       |       |        |     |  |
| Achsabstand           | s <sub>cr,II</sub> [mm] 500               |      |     |     |     |       |       |        |     |  |
| Achsabstand           | S <sub>cr,⊥</sub>                         | [mm] |     |     |     | 300   |       |        |     |  |
| Minimaler Achsabstand | S <sub>min,II</sub><br>S <sub>min,⊥</sub> | [mm] |     |     |     | 120   |       |        |     |  |

#### Tabelle C60: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast |   |         |         |                           | Querlast |         |          |                          |         |            |  |  |  |
|---------|---|---------|---------|---------------------------|----------|---------|----------|--------------------------|---------|------------|--|--|--|
|         |   |         |         | senkrecht zum freien Rand |          |         |          | parallel zum freien Rand |         |            |  |  |  |
|         |   | mit c ≥ | αedge,N | +                         |          | mit c ≥ | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |  |  |
|         | _ | 120     | 1,00    | l                         |          | 120     | 0,30     |                          | 120     | 0.60       |  |  |  |
|         | • | 120     | 1,00    |                           |          | 250     | 0,60     |                          | 120     | 0,60       |  |  |  |
|         |   | 120     | 1,00    |                           |          | 500     | 1,00     |                          | 200     | 1,00       |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                |            |
|-----------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Porotherm Homebric<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C24 |



#### Steintyp: Hochlochziegel Porotherm Homebric – Fortsetzung

Tabelle C61: Faktor für Ankergruppen

|                      | Anordnung parall | el zur La | gerfuge |            | Anordnung senkrecht zur Lagerfuge |         |         |                                   |  |  |
|----------------------|------------------|-----------|---------|------------|-----------------------------------|---------|---------|-----------------------------------|--|--|
|                      |                  | mit c ≥   | mit s ≥ | αg II,N    |                                   | mit c ≥ | mit s ≥ | $lpha_{	t g oldsymbol{\perp}, N}$ |  |  |
| Zuglast              |                  | 120       | 100     | 1,00       |                                   | 120     | 100     | 1,00                              |  |  |
| Zugiast              |                  | 200       | 100     | 2,00       |                                   | 200     | 100     | 1,20                              |  |  |
|                      |                  | 120       | 500     | 2,00       |                                   | 120     | 300     | 2,00                              |  |  |
|                      | <del></del>      | mit c ≥   | mit s ≥ | αg II,V⊥   | Н                                 | mit c ≥ | mit s ≥ | αд⊥,∨⊥                            |  |  |
| Querlast             |                  | 120       | 100     | 0,30       | •                                 | 120     | 100     | 0,30                              |  |  |
| senkrecht            |                  | 250       | 100     | 0,60       |                                   | 250     | 100     | 0,60                              |  |  |
| zum freien Rand      |                  | 500       | 100     | 1,00       |                                   | 120     | 300     | 2,00                              |  |  |
|                      | <del></del>      | 120       | 500     | 2,00       |                                   | 120     | 000     | 2,00                              |  |  |
| Quarlast             |                  | mit c ≥   | mit s ≥ | αg II,V II |                                   | mit c ≥ | mit s ≥ | αg⊥,∨II                           |  |  |
| Querlast<br>parallel | •                | 120       | 100     | 1,00       |                                   | 120     | 100     | 1,00                              |  |  |
| zum freien Rand      |                  | 120       | 500     | 2,00       |                                   | 120     | 300     | 2,00                              |  |  |

Tabelle C62: Charakteristische Widerstände unter Zug- und Querlast

|                |              |                        | С              | Charakteristische Widerstände bei c≥ c <sub>cr</sub> und s |                         |                     |                      |                 |                                 |  |  |
|----------------|--------------|------------------------|----------------|------------------------------------------------------------|-------------------------|---------------------|----------------------|-----------------|---------------------------------|--|--|
| Ankergröße     | Sieb-        | Effektive              |                |                                                            | Nutzu                   | ıngsbedi            | ingunger             | 1               | 3                               |  |  |
|                | hülse<br>HB- | Veranke-<br>rungstiefe |                | d/d                                                        |                         |                     | w/d<br>w/w           |                 | d/d<br>w/d<br>w/w               |  |  |
|                |              |                        | 24°C /<br>40°C | 50°C /<br>80°C                                             | 72°C /<br>120°C         | 24°C /<br>40°C      | 50°C /<br>80°C       | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |  |  |
|                |              | h <sub>ef</sub>        |                |                                                            | $N_{Rk,b} = I$          |                     | V <sub>Rk,b</sub> 1) |                 |                                 |  |  |
|                |              | [mm]                   |                | [kN]                                                       |                         |                     |                      |                 | [kN]                            |  |  |
|                |              | Normierte m            | ittlere Dr     | uckfestig                                                  | keit f <sub>b</sub> ≥ 1 | 0 N/mm <sup>2</sup> | 2 2)                 |                 |                                 |  |  |
| M8             | VM-SH 12     | 80                     |                |                                                            | 1,2                     | 2                   |                      |                 | 3,0                             |  |  |
| M8 / M10/      | \/M CII 40   | ≥ 85                   |                |                                                            | 1,2                     | 2                   |                      |                 | 3,0                             |  |  |
| IG-M6          | VM-SH 16     | 130                    |                | 1,5                                                        |                         |                     |                      |                 |                                 |  |  |
| M12 / M16/     | V/M CH 20    | ≥ 85                   |                | 1,2                                                        |                         |                     |                      |                 |                                 |  |  |
| IG-M8 / IG-M10 | VM-SH 20     | ≥ 130                  |                |                                                            | 1,                      | 5                   |                      |                 | 4,0                             |  |  |

 $<sup>^{1)}</sup>$   $N_{\text{Rk,b,c}}$  =  $N_{\text{Rk,p,c}}$  und  $V_{\text{Rk,c II}}$  =  $V_{\text{Rk,c }\perp}$  gemäß Anhang C5

Tabelle C63: Verschiebungen

| Ankergröße                   | keraröße h <sub>ef</sub> |         | δινο                       | δn∞   | δ <sub>V</sub> / V | δνο                       | δν∞                                     |
|------------------------------|--------------------------|---------|----------------------------|-------|--------------------|---------------------------|-----------------------------------------|
| Alikergroße                  | [mm]                     | [mm/kN] | [mm]                       | [mm]  | [mm/kN]            | [mm]                      | [mm]                                    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle                     | 0,13    | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0                                 |
| M16                          |                          | .,      | -,                         | _ = = | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                          | Anhang C25 |
|---------------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Porotherm Homebric Gruppenfaktoren und charakteristische Widerstände und Verschiebungen | <b>3</b>   |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C58 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel BGV Thermo

# Tabelle C64: Beschreibung

| Steintyp                                                                | Hochlochziegel<br>BGV Thermo | <i>51110</i> 000 |
|-------------------------------------------------------------------------|------------------------------|------------------|
| Rohdichte $\rho$ [kg/dm <sup>3</sup> ]                                  | ≥ 0,60                       |                  |
| Normierte mittlere Druckfestigkeit  f <sub>b</sub> [N/mm <sup>2</sup> ] | ≥ 10                         |                  |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten                    | $(f_b / 10)^{0.5} \le 1.0$   |                  |
| Norm [-]                                                                | EN 771-1:2011+A1:2015        |                  |
| Hersteller (Länderkennung) [-]                                          | z.B. Leroux (FR)             |                  |
| Steinabmessungen [mm]                                                   | 500 x 200 x 314              |                  |
| Bohrverfahren [-]                                                       | Drehbohren                   |                  |
| -42 <u>28</u>                                                           | 500                          | 200 2            |

#### Tabelle C65: Montagekennwerte

| Ankergröße            |                                           | M8   | M10     | M12 | M16 | IG-M6 | IG-M8 | IG-M10 |     |  |
|-----------------------|-------------------------------------------|------|---------|-----|-----|-------|-------|--------|-----|--|
| Montagedrehmoment     | T <sub>inst</sub>                         | [Nm] | ≤ 2     | ≤ 2 | ≤ 2 | ≤ 2   | ≤ 2   | ≤ 2    | ≤ 2 |  |
| Randabstand           | Ccr                                       | [mm] |         |     |     |       |       |        |     |  |
| Minimaler Randabstand | C <sub>min</sub>                          | [mm] | 120     |     |     |       |       |        |     |  |
| Achsabstand           | Scr,II                                    | [mm] | mm] 500 |     |     |       |       |        |     |  |
| Achsabstand           | Scr,⊥                                     | [mm] |         |     |     | 315   |       |        |     |  |
| Minimaler Achsabstand | S <sub>min,II</sub><br>S <sub>min,⊥</sub> | [mm] | 120     |     |     |       |       |        |     |  |

#### Tabelle C66: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugi | loot    |         | Querlast                                           |         |          |          |         |            |  |  |
|------|---------|---------|----------------------------------------------------|---------|----------|----------|---------|------------|--|--|
| Zugi | iasi    |         | senkrecht zum freien Rand parallel zum freien Rand |         |          |          |         | and        |  |  |
|      | mit c ≥ | αedge,N |                                                    | mit c ≥ | αedge,V⊥ |          | mit c ≥ | αedge,V II |  |  |
|      | 120     | 1.00    | -                                                  | 120     | 0,30     |          | 120     | 0.60       |  |  |
|      | 120     | 1,00    |                                                    | 250     | 0,60     | <b> </b> | 120     | 0,60       |  |  |
|      | 120     | 1,00    |                                                    | 500     | 1,00     |          | 250     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                 |            |
|--------------------------------------------------------------------------------------------|------------|
| Leistung – Hochlochziegel BGV Thermo Beschreibung, Montagekennwerte und Reduktionsfaktoren | Anhang C26 |



#### Steintyp: Hochlochziegel BGV Thermo – Fortsetzung

Tabelle C67: Faktor für Ankergruppen

|                                        | Anordnung parall | el zur Lag | gerfuge |                      | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge               |
|----------------------------------------|------------------|------------|---------|----------------------|----------------|-----------|----------------------|------------------|
| Zuglast                                |                  | mit c ≥    | mit s ≥ | αg II,N              |                | mit c ≥   | mit s ≥              | $lpha_{	t gL,N}$ |
|                                        |                  | 120        | 100     | 1,00                 |                | 120       | 100                  | 1,00             |
|                                        |                  | 200        | 100     | 1,70                 |                | 200       | 100                  | 1,10             |
|                                        |                  | 120        | 500     | 2,00                 |                | 120       | 315                  | 2,00             |
| Querlast senkrecht                     |                  | mit c ≥    | mit s ≥ | α <sub>g</sub> II,∨⊥ |                | mit c ≥   | mit s ≥              | αд⊥,∨⊥           |
|                                        | •••              | 120        | 100     | 1,00                 | -              | 120       | 100                  | 1,00             |
| zum freien Rand                        |                  | 120        | 500     | 2,00                 |                | 120       | 315                  | 2,00             |
| Quarlant                               |                  | mit c ≥    | mit s ≥ | αg II,V II           |                | mit c ≥   | mit s ≥              | αg⊥,∨ II         |
| Querlast<br>senkrecht<br>zur Lagerfuge | •                | 120        | 100     | 1,00                 |                | 120       | 100                  | 1,00             |
|                                        |                  | 120        | 500     | 2,00                 |                | 120       | 315                  | 2,00             |

Tabelle C68: Charakteristische Widerstände unter Zug- und Querlast

|                |              |                        | С              | harakteri                | stische V               | Viderstä       | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |
|----------------|--------------|------------------------|----------------|--------------------------|-------------------------|----------------|----------------|-----------------------|---------------------------------|--|--|
| Ankergröße     | Sieb-        | Effektive              |                | Nutzungsbedingungen      |                         |                |                |                       |                                 |  |  |
|                | hülse<br>HB- | Veranke-<br>rungstiefe |                | d/d                      |                         |                | w/d<br>w/w     |                       | d/d<br>w/d<br>w/w               |  |  |
|                |              |                        | 24°C /<br>40°C | 50°C /<br>80°C           | 72°C /<br>120°C         | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |
|                |              | h <sub>ef</sub>        |                | $N_{Rk,b} = N_{Rk,p}$ 1) |                         |                |                |                       | V <sub>Rk,b</sub> 1)            |  |  |
|                |              | [mm]                   |                | [kN]                     |                         |                |                |                       | [kN]                            |  |  |
|                |              | Normierte m            | ittlere Dr     | uckfestig                | keit f <sub>b</sub> ≥ 1 | l0 N/mm²       | 2 2)           |                       |                                 |  |  |
| M8             | VM-SH 12     | 80                     |                |                          | 0,                      | 9              |                |                       | 3,5                             |  |  |
| M8 / M10/      | VM-SH 16     | ≥ 85                   |                |                          | 0,                      | 9              |                |                       | 3,5                             |  |  |
| IG-M6          | VIVI-OF 16   | 130                    | 2,0            | 2,0                      | 1,5                     | 2,0            | 2,0            | 1,5                   | 4,0                             |  |  |
| M12 / M16/     | VM-SH 20     | ≥ 85                   | ≥ 85 0,9       |                          |                         |                |                |                       | 4,0                             |  |  |
| IG-M8 / IG-M10 | VIVI-SH ZU   | ≥ 130                  | 2,0            | 2,0                      | 1,5                     | 2,0            | 2,0            | 1,5                   | 4,0                             |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|I|} = V_{Rk,c\perp}$  gemäß Anhang C5

#### Tabelle C69: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | διο                                    | δn∞   | δ <sub>V</sub> / V | δνο                       | δν∞           |
|------------------------------|-----------------|---------------------------|----------------------------------------|-------|--------------------|---------------------------|---------------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                                   | [mm]  | [mm/kN]            | [mm]                      | [mm]          |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle 0,13       |                           | 0,13*N <sub>Rk</sub> / 3,5             | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0       |
| M16                          | 7.555           |                           | est of the establishment of the second |       | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | , , , , , , , |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                  |            |
|-------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel BGV Thermo<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C27 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C64 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Calibric R+

# Tabelle C70: Beschreibung

| Steintyp                                           |                       | Hochlochziegel<br>Calibric R+ |           |
|----------------------------------------------------|-----------------------|-------------------------------|-----------|
| Rohdichte $\rho$                                   | [kg/dm <sup>3</sup> ] | ≥ 0,60                        |           |
| Normierte mittlere<br>Druckfestigkeit              | [N/mm <sup>2</sup> ]  | ≥ 12                          |           |
| Umrechnungsfaktor für geringe<br>Druckfestigkeiten | ere                   | $(f_b / 12)^{0.5} \le 1.0$    |           |
| Norm                                               | [-]                   | EN 771-1:2011+A1:2015         |           |
| Hersteller (Länderkennung)                         | [-]                   | z.B. Leroux (FR)              |           |
| Steinabmessungen                                   |                       |                               |           |
| Bohrverfahren                                      | [-]                   | Drehbohren                    |           |
|                                                    |                       |                               | 200 5 200 |
| E                                                  | 40                    |                               | 200       |

Tabelle C71: Montagekennwerte

| Ankergröße            | Ankergröße                                  |      |                                                                       |  | M12 | M16 | IG-M6 | IG-M8 | IG-M10 |  |
|-----------------------|---------------------------------------------|------|-----------------------------------------------------------------------|--|-----|-----|-------|-------|--------|--|
| Montagedrehmoment     | $T_{inst}$                                  | [Nm] | ≤2     ≤2     ≤2     ≤2     ≤2     ≤2                                 |  |     |     |       |       | ≤ 2    |  |
| Randabstand           | Ccr                                         | [mm] | 120 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 500) |  |     |     |       |       |        |  |
| Minimaler Randabstand | Cmin                                        | [mm] | 120                                                                   |  |     |     |       |       |        |  |
| Achsabstand           | Scr, II                                     | [mm] | 500                                                                   |  |     |     |       |       |        |  |
| Acrisabstand          | Scr, ⊥                                      | [mm] | 315                                                                   |  |     |     |       |       |        |  |
| Minimaler Achsabstand | S <sub>min,</sub> II<br>S <sub>min,</sub> ⊥ | [mm] | 120                                                                   |  |     |     |       |       |        |  |

#### Tabelle C72: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | act     |         | Querlast     |            |          |              |             |            |  |  |
|------|---------|---------|--------------|------------|----------|--------------|-------------|------------|--|--|
| Zugi | ası     |         | senkrecht zu | m freien F | Rand     | parallel zum | freien Rand |            |  |  |
|      | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |              | mit c ≥     | αedge,V II |  |  |
|      | 120     | 1,00    | -            | 120        | 0,15     |              | 120         | 0,30       |  |  |
|      | 120     | 1,00    |              | 250        | 0,30     | ] [ ]        | 120         | 0,30       |  |  |
|      | 120     | 1,00    |              | 500        | 1,00     |              | 250         | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                         |            |
|----------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Calibric R+<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C28 |



#### Steintyp: Hochlochziegel Calibric R+ – Fortsetzung

Tabelle C73: Faktor für Ankergruppen

|                                         | Anordnung parall | el zur La | gerfuge |                      | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge                                                            |
|-----------------------------------------|------------------|-----------|---------|----------------------|----------------|-----------|----------------------|---------------------------------------------------------------|
| Zuglast                                 |                  | mit c ≥   | mit s ≥ | αg II,N              |                | mit c ≥   | mit s ≥              | $lpha_{	t gL,N}$                                              |
|                                         |                  | 120       | 100     | 1,00                 |                | 120       | 100                  | 1,00                                                          |
|                                         |                  | 175       | 100     | 1,70                 |                | 175       | 100                  | 1,10                                                          |
|                                         |                  | 120       | 500     | 2,00                 |                | 120       | 315                  | 2,00                                                          |
| Querlast senkrecht                      |                  | mit c ≥   | mit s ≥ | α <sub>g</sub> II,∨⊥ |                | mit c ≥   | mit s ≥              | αд⊥,∨⊥                                                        |
|                                         | •••              | 120       | 100     | 1,00                 | -              | 120       | 100                  | 1,00                                                          |
| zum freien Rand                         |                  | 120       | 500     | 2,00                 |                | 120       | 315                  | 2,00                                                          |
| Quarlast                                |                  | mit c ≥   | mit s ≥ | αg II,V II           |                | mit c ≥   | mit s ≥              | αg⊥,∨II                                                       |
| Querlast<br>parallel<br>zum freien Rand | •                | 120       | 100     | 1,00                 |                | 120       | 100                  | α <sub>g⊥,N</sub> 1,00 1,10 2,00 α <sub>g⊥,V⊥</sub> 1,00 2,00 |
|                                         |                  | 120       | 500     | 2,00                 |                | 120       | 315                  | 2,00                                                          |

Tabelle C74: Charakteristische Widerstände unter Zug- und Querlast

|               |              |                             |                            |                     |                 | **                  |                |                       |                                 |  |  |  |
|---------------|--------------|-----------------------------|----------------------------|---------------------|-----------------|---------------------|----------------|-----------------------|---------------------------------|--|--|--|
|               |              |                             | С                          | harakteri           | stische V       | Viderstäi           | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |  |
| Ankergröße    | Sieb-        | Effektive                   |                            | Nutzungsbedingungen |                 |                     |                |                       |                                 |  |  |  |
|               | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe | d/d                        |                     |                 |                     | w/d<br>w/w     | d/d<br>w/d<br>w/w     |                                 |  |  |  |
|               |              |                             | 24°C /<br>40°C             | 50°C /<br>80°C      | 72°C /<br>120°C | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |  |
|               |              | h <sub>ef</sub>             | $N_{Rk,b} = N_{Rk,p}^{-1}$ |                     |                 |                     |                | V <sub>Rk,b</sub> 1)  |                                 |  |  |  |
|               |              | [mm]                        |                            |                     | [kN             | 1]                  |                | [kN]                  |                                 |  |  |  |
|               |              | Normierte m                 | ittlere Dr                 | uckfestig           | keit f₀ ≥ 1     | 2 N/mm <sup>2</sup> | 2 2)           |                       |                                 |  |  |  |
| M8            | VM-SH 12     | 80                          | 1,2                        | 1,2                 | 0,9             | 1,2                 | 1,2            | 0,9                   | 4,0                             |  |  |  |
| M8 / M10/     | VM CH4C      | ≥ 85                        | 1,2                        | 1,2                 | 0,9             | 1,2                 | 1,2            | 0,9                   | 5,5                             |  |  |  |
| IG-M6 VM-SH16 | VIVI-SH 16   | 130                         | 1,5                        | 1,5                 | 1,2             | 1,5                 | 1,5            | 1,2                   | 5,5                             |  |  |  |
| M12 / M16     | V/M CHOO     | ≥ 85                        | 1,2                        | 1,2                 | 0,9             | 1,2                 | 1,2            | 0,9                   | 8,5                             |  |  |  |
| IG-M8 /IG-M10 | VM-SH20      | ≥ 130                       | 1,5                        | 1,5                 | 1,2             | 1,5                 | 1,5            | 1,2                   | 8,5                             |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|l} = V_{Rk,c\perp}$  gemäß Anhang C5

Tabelle C75: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞               | δ <sub>V</sub> / V | δνο                       | δν∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------------------|--------------------|---------------------------|---------|
| Alikergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]              | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          | 3,550,000,000   | ,                         |                            |                   | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | ,       |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                   |            |
|--------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Calibric R+ Gruppenfaktoren und charakteristische Widerstände und Verschiebungen | Anhang C29 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C70 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Urbanbric

# Tabelle C76: Beschreibung

| Steintyp                                                                  | Hochlochziegel<br>Urbanbric |            |
|---------------------------------------------------------------------------|-----------------------------|------------|
| Rohdichte $\rho$ [kg/dm <sup>3</sup> ]                                    | ≥ 0,70                      |            |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> [N/mm <sup>2</sup> ] | ≥ 12                        |            |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten                      | $(f_b / 12)^{0,5} \le 1,0$  |            |
| Norm [-]                                                                  | EN 771-1:2011+A1:2015       |            |
| Hersteller (Länderkennung) [-]                                            | z.B. Imerys (FR)            |            |
| Steinabmessungen [mm]                                                     | 560 x 200 x 274             |            |
| Bohrverfahren [-]                                                         | Drehbohren                  |            |
|                                                                           |                             | 20 6,5 200 |
| 9 -40 6                                                                   | 560                         | 2,6        |

#### Tabelle C77: Montagekennwerte

| Ankergröße            |                                              |      | M8  | M10       | M12        | M16        | IG-M6      | IG-M8                   | IG-M10 |
|-----------------------|----------------------------------------------|------|-----|-----------|------------|------------|------------|-------------------------|--------|
| Montagedrehmoment     | T <sub>inst</sub>                            | [Nm] | ≤ 2 | ≤ 2       | ≤ 2        | ≤ 2        | ≤ 2        | ≤ 2                     | ≤ 2    |
| Randabstand           | Ccr                                          | [mm] | 120 | (für Quer | lasten ser | nkrecht zu | m freien F | Rand: c <sub>cr</sub> = | 500)   |
| Minimaler Randabstand | C <sub>min</sub>                             | [mm] |     |           |            | 120        |            |                         |        |
| Achsabstand           | Scr, II                                      | [mm] |     |           |            | 560        |            |                         |        |
| Achsabstand           | Scr, ⊥                                       | [mm] |     |           |            | 275        |            |                         |        |
| Minimaler Achsabstand | S <sub>min, II;</sub><br>S <sub>min, ⊥</sub> | [mm] | 100 |           |            |            |            |                         |        |

#### Tabelle C78: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglaet |  |         |         | Querlast     |                                            |          |              |         |            |  |  |  |
|---------|--|---------|---------|--------------|--------------------------------------------|----------|--------------|---------|------------|--|--|--|
| Zuglast |  |         |         | senkrecht zu | senkrecht zum freien Rand parallel zum fre |          |              |         |            |  |  |  |
|         |  | mit c ≥ | αedge,N |              | mit c ≥                                    | αedge,V⊥ |              | mit c ≥ | αedge,V II |  |  |  |
|         |  | 120     | 1.00    | -            | 120                                        | 0,25     |              | 120     | 0.50       |  |  |  |
|         |  | 120     | 1,00    |              | 250                                        | 0,50     | <b>     </b> | 120     | 0,50       |  |  |  |
|         |  | 120     | 1,00    |              | 500                                        | 1,00     |              | 250     | 1,00       |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                       |            |
|--------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Urbanbric<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C30 |



#### Steintyp: Hochlochziegel Urbanbric – Fortsetzung

Tabelle C79: Faktor für Ankergruppen

|                 | Anordnung parall | el zur La | gerfuge |                      | Anordnung senkrecht zur Lagerfuge |         |         |                       |  |  |
|-----------------|------------------|-----------|---------|----------------------|-----------------------------------|---------|---------|-----------------------|--|--|
|                 |                  | mit c ≥   | mit s ≥ | αg II,N              |                                   | mit c ≥ | mit s ≥ | αg⊥,N                 |  |  |
| Zuglast         |                  | 120       | 100     | 1,00                 |                                   | 120     | 100     | 1,00                  |  |  |
| Zuglast         |                  | 185       | 100     | 1,90                 |                                   | 185     | 100     | 1,10                  |  |  |
|                 |                  | 120       | 560     | 2,00                 |                                   | 120     | 275     | 2,00                  |  |  |
| Querlast        |                  | mit c ≥   | mit s ≥ | α <sub>g</sub> II,∨⊥ |                                   | mit c ≥ | mit s ≥ | αд⊥,∨⊥                |  |  |
| senkrecht       | •••              | 120       | 100     | 1,00                 | -                                 | 120     | 100     | 1,00                  |  |  |
| zum freien Rand |                  | 120       | 560     | 2,00                 |                                   | 120     | 275     | 2,00                  |  |  |
| Querlast        |                  | mit c ≥   | mit s ≥ | αg II,V II           |                                   | mit c ≥ | mit s ≥ | α <sub>g⊥,</sub> ∨ II |  |  |
| parallel        |                  | 120       | 100     | 1,00                 |                                   | 120     | 100     | 1,00                  |  |  |
| zum freien Rand |                  | 120       | 560     | 2,00                 |                                   | 120     | 275     | 2,00                  |  |  |

Tabelle C80: Charakteristische Widerstände unter Zug- und Querlast

|                |              |                             | С                                       | harakteri           | stische V      | Viderstär           | <b>nde</b> bei c | ≥ c <sub>cr</sub> und           | s ≥ s <sub>cr</sub>  |  |  |  |
|----------------|--------------|-----------------------------|-----------------------------------------|---------------------|----------------|---------------------|------------------|---------------------------------|----------------------|--|--|--|
| Ankergröße     | Sieb-        | Effektive                   |                                         | Nutzungsbedingungen |                |                     |                  |                                 |                      |  |  |  |
|                | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe |                                         | d/d                 |                |                     | w/d<br>w/w       |                                 | d/d<br>w/d<br>w/w    |  |  |  |
|                |              |                             | 24°C / 50°C / 72°C /<br>40°C 80°C 120°C |                     | 24°C /<br>40°C | 50°C /<br>80°C      | 72°C /<br>120°C  | alle<br>Temperatur-<br>bereiche |                      |  |  |  |
|                |              | h <sub>ef</sub>             |                                         |                     | $N_{Rk,b} = 1$ | <b>V</b> Rk,p 1)    |                  |                                 | V <sub>Rk,b</sub> 1) |  |  |  |
|                |              | [mm]                        |                                         |                     | [kN            | I]                  |                  | [kN]                            |                      |  |  |  |
|                |              | Normierte m                 | ittlere Dr                              | uckfestig           | keit f₀ ≥ 1    | 2 N/mm <sup>2</sup> | 2)               |                                 |                      |  |  |  |
| M8             | VM-SH 12     | 80                          | 1,2                                     | 1,2                 | 0,9            | 1,2                 | 1,2              | 0,9                             | 4,5                  |  |  |  |
| M8 / M10/      | VM CH 4C     | ≥ 85                        | 1,2                                     | 1,2                 | 0,9            | 1,2                 | 1,2              | 0,9                             | 4,5                  |  |  |  |
| IG-M6          | VM-SH 16     | 130                         | 3,0                                     | 3,0                 | 2,5            | 3,0                 | 3,0              | 2,5                             | 4,5                  |  |  |  |
| M12 / M16      | V/M CH 20    | ≥ 85                        | 1,2                                     | 1,2                 | 0,9            | 1,2                 | 1,2              | 0,9                             | 5,0                  |  |  |  |
| IG-M8 / IG-M10 | VM-SH 20     | ≥ 130                       | 3,0                                     | 3,0                 | 2,5            | 3,0                 | 3,0              | 2,5                             | 5,0                  |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|II} = V_{Rk,c\perp}$  gemäß Anhang C5

Tabelle C81: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞   | δ <sub>V</sub> / V | δνο                       | δ∨∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------|--------------------|---------------------------|---------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]  | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          |                 | ,                         |                            |       | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | . ,     |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                 |            |
|------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Urbanbric<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C31 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C76 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Lochziegel Brique Creuse C40

#### Tabelle C82: Beschreibung

| Steintyp                                                                                                                        | Lochziegel<br>Brique Creuse C40 |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Rohdichte $\rho$ [kg/dm <sup>3</sup> ]                                                                                          | ] ≥ 0,70                        |
| $\label{eq:norm_entropy} \mbox{Normierte mittlere} \\ \mbox{Druckfestigkeit} \qquad \qquad \mbox{$f_b$} \qquad \mbox{[N/mm^2]}$ | ≥ 12                            |
| Umrechnungsfaktor für geringere Druckfestigkeiten                                                                               | $(f_b / 12)^{0.5} \le 1.0$      |
| Norm [-]                                                                                                                        | EN 771-1:2011+A1:2015           |
| Hersteller (Länderkennung) [-]                                                                                                  | z.B. Terreal (FR)               |
| Steinabmessungen [mm]                                                                                                           | 500 x 200 x 200                 |
| Bohrverfahren [-]                                                                                                               | Drehbohren                      |
|                                                                                                                                 | 000<br>200                      |

#### Tabelle C83: Montagekennwerte

| Ankergröße            |                                             |      | M8  | M10       | M12        | M16        | IG-M6       | IG-M8                   | IG-M10 |
|-----------------------|---------------------------------------------|------|-----|-----------|------------|------------|-------------|-------------------------|--------|
| Montagedrehmoment     | Tinst                                       | [Nm] | ≤ 2 | ≤ 2       | ≤ 2        | ≤ 2        | ≤ 2         | ≤ 2                     | ≤ 2    |
| Randabstand           | Ccr                                         | [mm] | 120 | (für Quer | lasten ser | nkrecht zu | ım freien F | Rand: c <sub>cr</sub> = | 500)   |
| Minimaler Randabstand | Cmin                                        | [mm] |     |           |            | 120        |             |                         |        |
| Achsabstand           | Scr, II                                     | [mm] | 500 |           |            |            |             |                         |        |
| Achsabstand           | Scr, ⊥                                      | [mm] |     |           |            | 200        |             |                         |        |
| Minimaler Achsabstand | S <sub>min, II</sub><br>S <sub>min, ⊥</sub> | [mm] | 200 |           |            |            |             |                         |        |

#### Tabelle C84: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | act     |         | Querlast     |                                                   |          |  |         |            |  |  |
|------|---------|---------|--------------|---------------------------------------------------|----------|--|---------|------------|--|--|
| Zugi | สธเ     |         | senkrecht zu | enkrecht zum freien Rand parallel zum freien Rand |          |  |         |            |  |  |
|      | mit c ≥ | αedge,N |              | mit c ≥                                           | αedge,V⊥ |  | mit c ≥ | αedge,V II |  |  |
| •    | 120     | 1,00    | <b>│</b>     | 120                                               | 0,83     |  | 120     | 1,00       |  |  |
|      | 120     | 1,00    |              | 500                                               | 1,00     |  | 250     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                           |            |
|------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Lochziegel Brique Creuse C40<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C32 |



#### Steintyp: Lochziegel Brique Creuse C40 – Fortsetzung

#### Tabelle C85: Faktor für Ankergruppen

|                                          | Anordnung parall | el zur Lag | gerfuge |            | Anordnung senk | recht zui | <sup>r</sup> Lagerfu | ge       |
|------------------------------------------|------------------|------------|---------|------------|----------------|-----------|----------------------|----------|
|                                          |                  | mit c ≥    | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | αg⊥,N    |
| Zuglast                                  |                  | 120        | 500     | 2,00       |                | 120       | 200                  | 2,00     |
| Overdent                                 |                  | mit c ≥    | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥              | αд⊥,∨⊥   |
| Querlast<br>senkrecht<br>zum freien Rand |                  | 120        | 500     | 2,00       |                | 120       | 200                  | 2,00     |
| Overdent                                 |                  | mit c ≥    | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥              | αg⊥,∨ II |
| Querlast<br>parallel<br>zum freien Rand  |                  | 120        | 500     | 2,00       |                | 120       | 200                  | 2,00     |

#### Tabelle C86: Charakteristische Widerstände unter Zug- und Querlast

|                               |              |                             |                     | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> |                         |                     |                |                 |                                 |  |  |
|-------------------------------|--------------|-----------------------------|---------------------|-------------------------------------------------------------------------------|-------------------------|---------------------|----------------|-----------------|---------------------------------|--|--|
| Ankergröße                    | Sieb-        | Effektive                   | Nutzungsbedingungen |                                                                               |                         |                     |                |                 |                                 |  |  |
|                               | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe | d/d                 |                                                                               |                         | w/d<br>w/w          |                |                 | d/d<br>w/d<br>w/w               |  |  |
|                               |              |                             | 24°C /<br>40°C      | 50°C /<br>80°C                                                                | 72°C /<br>120°C         | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |  |  |
|                               |              | h <sub>ef</sub>             |                     |                                                                               | $N_{Rk,b} = I$          | <b>V</b> Rk,p 1)    |                |                 | V <sub>Rk,b</sub> 1)            |  |  |
|                               |              | [mm]                        |                     |                                                                               | [kN                     | 1]                  |                |                 | [kN]                            |  |  |
|                               |              | Normierte m                 | ittlere Dr          | uckfestig                                                                     | keit f <sub>b</sub> ≥ 1 | 2 N/mm <sup>2</sup> | 2)             |                 |                                 |  |  |
| M8                            | VM-SH 12     | 80                          |                     |                                                                               |                         |                     |                |                 |                                 |  |  |
| M8 / M10/<br>IG-M6            | VM-SH 16     | ≥ 85                        | 1,2                 | 1,2                                                                           | 0,9                     | 1,2                 | 1,2            | 0,9             | 1,5                             |  |  |
| M12 / M16 /<br>IG-M8 / IG-M10 | VM-SH 20     | ≥ 85                        |                     |                                                                               |                         |                     |                |                 |                                 |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

#### Tabelle C87: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | διο                        | δn∞      | δ <sub>V</sub> / V | δνο                       | δν∞     |  |
|------------------------------|-----------------|---------------------------|----------------------------|----------|--------------------|---------------------------|---------|--|
| Allkergroße                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]     | [mm/kN]            | [mm]                      | [mm]    |  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο    | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |  |
| M16                          |                 | ,                         | .,                         | _ = 5110 | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | .,      |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                  |            |
|-------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Lochziegel Brique Creuse C40 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C33 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C82 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Lochziegel Blocchi Leggeri

# Tabelle C88: Beschreibung

| Steintyp                                                                  | Lochziegel<br>Blocchi Leggeri |      |
|---------------------------------------------------------------------------|-------------------------------|------|
| Rohdichte $\rho$ [kg/dm <sup>3</sup> ]                                    | ≥ 0,60                        |      |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> [N/mm <sup>2</sup> ] | ≥ 12                          |      |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten                      | $(f_b / 12)^{0.5} \le 1.0$    |      |
| Norm [-]                                                                  | EN 771-1:2011+A1:2015         |      |
| Hersteller (Länderkennung) [-]                                            | z.B. Wienerberger (IT)        |      |
| Steinabmessungen [mm]                                                     | 250 x 120 x 250               |      |
| Bohrverfahren [-]                                                         | Drehbohren                    |      |
| 43 6                                                                      | 250                           | 32 6 |

#### Tabelle C89: Montagekennwerte

| Ankergröße            |                                             | M8   | M10                                                                   | M12 | M16 | IG-M6 | IG-M8 | IG-M10 |     |
|-----------------------|---------------------------------------------|------|-----------------------------------------------------------------------|-----|-----|-------|-------|--------|-----|
| Montagedrehmoment     | Tinst                                       | [Nm] | ≤ 2                                                                   | ≤ 2 | ≤ 2 | ≤ 2   | ≤ 2   | ≤ 2    | ≤ 2 |
| Randabstand           | Ccr                                         | [mm] | 120 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |     |     |       |       |        |     |
| Minimaler Randabstand | Cmin                                        | [mm] | 60                                                                    |     |     |       |       |        |     |
| Achsabstand           | Scr, II                                     | [mm] |                                                                       |     |     | 250   |       |        |     |
| Achsabstand           | Scr, ⊥                                      | [mm] | 250                                                                   |     |     |       |       |        |     |
| Minimaler Achsabstand | S <sub>min, II</sub><br>S <sub>min, ⊥</sub> | [mm] | 100                                                                   |     |     |       |       |        |     |

#### Tabelle C90: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | act     |         | Querlast                                           |         |          |  |         |            |  |  |
|------|---------|---------|----------------------------------------------------|---------|----------|--|---------|------------|--|--|
| Zugi | สธเ     |         | senkrecht zum freien Rand parallel zum freien Rand |         |          |  |         | and        |  |  |
|      | mit c ≥ | αedge,N |                                                    | mit c ≥ | αedge,V⊥ |  | mit c ≥ | αedge,V II |  |  |
| •    | 60      | 1,00    | <b>—</b>                                           | 60      | 0,40     |  | 60      | 0,40       |  |  |
|      | 120     | 1,00    |                                                    | 250     | 1,00     |  | 120     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                         |            |
|----------------------------------------------------------------------------------------------------|------------|
| Leistungen – Lochziegel Blocchi Leggeri<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C34 |



#### Steintyp: Lochziegel Blocchi Leggeri – Fortsetzung

Tabelle C91: Faktor für Ankergruppen

|                             | Anordnung parall | el zur La | gerfuge |            | Anordnung senk | recht zui | r Lagerfu | ge       |
|-----------------------------|------------------|-----------|---------|------------|----------------|-----------|-----------|----------|
|                             |                  | mit c ≥   | mit s ≥ | αg II, N   |                | mit c ≥   | mit s ≥   | αg⊥, N   |
| Zuglast                     | • •              | 60        | 100     | 1,00       |                | 60        | 100       | 2,00     |
|                             |                  | 120       | 250     | 2,00       |                | 120       | 250       | 2,00     |
| 0                           |                  | mit c ≥   | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥   | αд⊥,∨⊥   |
| Querlast<br>senkrecht       |                  | 60        | 100     | 0,40       |                | 60        | 100       | 0,40     |
| zum freien Rand             |                  | 250       | 100     | 1,00       |                | 250       | 100       | 1,00     |
| Zum melen Kana              |                  | 250       | 250     | 2,00       |                | 250       | 250       | 2,00     |
| Quarlant                    |                  | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥   | αg⊥,∨ II |
| Querlast                    |                  | 60        | 100     | 0,40       |                | 60        | 100       | 0,40     |
| parallel<br>zum freien Rand |                  | 120       | 100     | 1,00       |                | 120       | 100       | 1,00     |
| Zaili lieleli Kalla         |                  | 120       | 250     | 2,00       |                | 120       | 250       | 2,00     |

Tabelle C92: Charakteristische Widerstände unter Zug- und Querlast

|                               |                 |                             | С                   | harakteri      | <b>nde</b> bei c        | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub> |                 |                                 |  |  |
|-------------------------------|-----------------|-----------------------------|---------------------|----------------|-------------------------|-----------------------|---------------------|-----------------|---------------------------------|--|--|
| Ankergröße                    | Sieb- Effektive |                             | Nutzungsbedingungen |                |                         |                       |                     |                 |                                 |  |  |
|                               | hülse<br>HB-    | Veranke-<br>rungs-<br>tiefe |                     | d/d            |                         | w/d<br>w/w            |                     |                 | d/d<br>w/d<br>w/w               |  |  |
|                               |                 |                             | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C         | 24°C /<br>40°C        | 50°C /<br>80°C      | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |  |  |
|                               |                 | h <sub>ef</sub>             |                     |                | $N_{Rk,b} = 1$          | <b>V</b> Rk,p 1)      |                     |                 | V <sub>Rk,b</sub> 1)            |  |  |
|                               |                 | [mm]                        |                     |                | [kN                     | 1]                    |                     | [kN]            |                                 |  |  |
|                               |                 | Normierte m                 | ittlere Dr          | uckfestig      | keit f <sub>b</sub> ≥ 1 | 2 N/mm <sup>2</sup>   | 2)                  |                 |                                 |  |  |
| M8                            | VM-SH 12        | 80                          |                     |                |                         |                       |                     |                 |                                 |  |  |
| M8 / M10/<br>IG-M6            | VM-SH 16        | ≥ 85                        | 0,6                 | 0,6            | 0,6                     | 0,6                   | 0,6                 | 0,6             | 3,5                             |  |  |
| M12 / M16 /<br>IG-M8 / IG-M10 | VM-SH 20        | ≥ 85                        |                     |                |                         |                       |                     |                 |                                 |  |  |

 $<sup>^{1)}</sup>$   $N_{\text{Rk,b,c}}$  =  $N_{\text{Rk,p,c}}$  und  $V_{\text{Rk,c II}}$  =  $V_{\text{Rk,c }\perp}$  gemäß Anhang C5

Tabelle C93: Verschiebungen

| Ankararößa                   | Ankergröße h <sub>ef</sub> |         | δινο                       | δn∞                       | δ <sub>V</sub> / V | δνο                       | δν∞     |
|------------------------------|----------------------------|---------|----------------------------|---------------------------|--------------------|---------------------------|---------|
| Alikelglobe                  | [mm]                       | [mm/kN] | [mm]                       | [mm]                      | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle                       | 0,13    | 0,13*N <sub>Rk</sub> / 3,5 | <b>2</b> *δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          |                            |         | ,                          |                           | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | ,       |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                   |            |
|--------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Lochziegel Blocchi Leggeri<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C35 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C88 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Doppio Uni

# Tabelle C94: Beschreibung

| Steintyp                                           |                      | Hochlochziegel<br>Doppio Uni |           |
|----------------------------------------------------|----------------------|------------------------------|-----------|
| Rohdichte ρ                                        | [kg/dm³]             | ≥ 0,90                       |           |
| Normierte mittlere<br>Druckfestigkeit              | [N/mm <sup>2</sup> ] | ≥ 28                         |           |
| Jmrechnungsfaktor für geringe<br>Druckfestigkeiten | ere                  | $(f_b / 28)^{0.5} \le 1.0$   |           |
| Norm                                               | [-]                  | EN 771-1:2011+A1:2015        |           |
| Hersteller (Länderkennung)                         | [-]                  | z.B. Wienerberger (IT)       |           |
| Steinabmessungen                                   | [mm]                 | 250 x 120 x 120              |           |
| Bohrverfahren                                      | [-]                  | Drehbohren                   |           |
|                                                    |                      |                              | 11 31 120 |

#### Tabelle C95: Montagekennwerte

| Ankergröße            |                                             | M8   | M10 | M12       | M16        | IG-M6      | IG-M8       | IG-M10                  |      |
|-----------------------|---------------------------------------------|------|-----|-----------|------------|------------|-------------|-------------------------|------|
| Montagedrehmoment     | $T_{inst}$                                  | [Nm] | ≤ 2 | ≤ 2       | ≤ 2        | ≤ 2        | ≤ 2         | ≤ 2                     | ≤ 2  |
| Randabstand           | Ccr                                         | [mm] | 120 | (für Quer | lasten ser | nkrecht zu | ım freien F | Rand: c <sub>cr</sub> = | 250) |
| Minimaler Randabstand | C <sub>min</sub>                            | [mm] | 100 |           |            |            |             |                         |      |
| Achsabstand           | Scr, II                                     | [mm] |     |           |            | 250        |             |                         |      |
| Acrisabstand          | Scr, ⊥                                      | [mm] |     |           |            | 120        |             |                         |      |
| Minimaler Achsabstand | S <sub>min, II</sub><br>S <sub>min, ⊥</sub> | [mm] | 100 |           |            |            |             |                         |      |

#### Tabelle C96: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual | Zuglast |         |   |              | Querlast   |                                     |          |         |           |  |  |  |  |
|------|---------|---------|---|--------------|------------|-------------------------------------|----------|---------|-----------|--|--|--|--|
| Zugi | Zugiast |         |   | senkrecht zu | m freien F | reien Rand parallel zum freien Rand |          |         |           |  |  |  |  |
|      | mit c ≥ | αedge,N | T |              | mit c ≥    | αedge,V⊥                            |          | mit c ≥ | αedge,VII |  |  |  |  |
| •    | 100     | 1,00    |   |              | 100        | 0,50                                |          | 100     | 1,00      |  |  |  |  |
|      | 120     | 1,00    | F |              | 250        | 1,00                                | <b>1</b> | 120     | 1,00      |  |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                        |            |
|---------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Doppio Uni<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C36 |



#### Steintyp: Hochlochziegel Doppio Uni- Fortsetzung

Tabelle C97: Faktor für Ankergruppen

|                      | Anordnung parall | el zur La | gerfuge |                      | Anordnung senkrecht zur Lagerfuge |         |         |          |  |  |
|----------------------|------------------|-----------|---------|----------------------|-----------------------------------|---------|---------|----------|--|--|
|                      |                  | mit c ≥   | mit s ≥ | αg II,N              |                                   | mit c ≥ | mit s ≥ | αg⊥,N    |  |  |
| Zuglast              | • •              | 100       | 100     | 1,00                 |                                   | 100     | 120     | 2,00     |  |  |
|                      |                  | 120       | 250     | 2,00                 |                                   | 120     | 120     | 2,00     |  |  |
| Querlast             |                  | mit c ≥   | mit s ≥ | α <sub>g</sub> II,∨⊥ |                                   | mit c ≥ | mit s ≥ | αд⊥,∨⊥   |  |  |
| senkrecht            | •••              | 100       | 100     | 1,00                 | -                                 | 100     | 100     | 1,00     |  |  |
| zum freien Rand      |                  | 250       | 250     | 2,00                 |                                   | 250     | 120     | 2,00     |  |  |
| Quarlant             |                  | mit c ≥   | mit s ≥ | αg II,V II           |                                   | mit c ≥ | mit s ≥ | αg⊥,∨ II |  |  |
| Querlast<br>parallel |                  | 100       | 100     | 1,00                 |                                   | 100     | 100     | 1,00     |  |  |
| zum freien Rand      |                  | 120       | 250     | 2,00                 |                                   | 120     | 120     | 2,00     |  |  |

#### Tabelle C98: Charakteristische Widerstände unter Zug- und Querlast

|                               |              |                        | С              | harakteri      | stische V             | Viderstäi            | <b>nde</b> bei c | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |  |  |  |
|-------------------------------|--------------|------------------------|----------------|----------------|-----------------------|----------------------|------------------|-----------------------|---------------------------------|--|--|--|--|--|
| Ankergröße                    | Sieb-        | Effektive              |                |                | Nutzu                 | ıngsbedi             | ngunger          | 1                     |                                 |  |  |  |  |  |
|                               | hülse<br>HB- | Veranke-<br>rungstiefe |                | d/d            |                       |                      | w/d<br>w/w       |                       | d/d<br>w/d<br>w/w               |  |  |  |  |  |
|                               |              |                        | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C       | 24°C /<br>40°C       | 50°C /<br>80°C   | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |  |  |  |
|                               |              | h <sub>ef</sub>        |                |                | N <sub>Rk,b</sub> = I | N <sub>Rk,p</sub> 1) |                  |                       | V <sub>Rk,b</sub> 1)            |  |  |  |  |  |
|                               |              | [mm]                   |                | [kN]           |                       |                      |                  |                       | [kN]                            |  |  |  |  |  |
|                               | 1            | Normierte m            | ittlere Dr     | uckfestig      | keit f₀ ≥ 2           | 28 N/mm <sup>2</sup> | 2)               |                       |                                 |  |  |  |  |  |
| M8                            | VM-SH 12     | 80                     |                |                |                       |                      |                  |                       |                                 |  |  |  |  |  |
| M8 / M10/<br>IG-M6            | VM-SH 16     | ≥ 85                   | 1,2            | 1,2            | 0,9                   | 1,2                  | 1,2              | 0,9                   | 2,5                             |  |  |  |  |  |
| M12 / M16 /<br>IG-M8 / IG-M10 | VM-SH 20     | ≥ 85                   |                |                |                       |                      |                  |                       |                                 |  |  |  |  |  |

 $<sup>^{1)}</sup>$   $N_{\text{Rk,b,c}}$  =  $N_{\text{Rk,p,c}}$  und  $V_{\text{Rk,c II}}$  =  $V_{\text{Rk,c }\perp}$  gemäß Anhang C5

#### Tabelle C99: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞               | δ <sub>V</sub> / V | δνο                       | δν∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------------------|--------------------|---------------------------|---------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]              | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δνο |
| M16                          | 5000 5          |                           | .,                         |                   | 0,31               | 0,31*V <sub>Rk</sub> /3,5 |         |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                  |            |
|-------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Doppio Uni<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C37 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C94 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Coriso WS07 mit integrierter Wärmedämmung

Tabelle C100: Beschreibung

| Steintyp                                             |                      | Hochlochziegel<br>Coriso WS07 |  |
|------------------------------------------------------|----------------------|-------------------------------|--|
| Füllung                                              |                      | Mineralwolle                  |  |
| Rohdichte $\rho$                                     | [kg/dm³]             | ≥ 0,55                        |  |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> | [N/mm <sup>2</sup> ] | ≥ 6                           |  |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten |                      | $(f_b / 6)^{0,5} \le 1,0$     |  |
| Norm                                                 | [-]                  | EN 771-1:2011+A1:2015         |  |
| Hersteller (Länderkennung)                           | [-]                  | z.B. Unipor (DE)              |  |
| Steinabmessungen                                     | [mm]                 | 248 x 365 x 249               |  |
| Bohrverfahren                                        | [-]                  | Drehbohren                    |  |
| 14                                                   |                      | 365<br>8                      |  |

#### Tabelle C101: Montagekennwerte

| Ankergröße            |                                             | M8   | M10 | M12       | M16        | IG-M6      | IG-M8       | IG-M10                  |      |  |
|-----------------------|---------------------------------------------|------|-----|-----------|------------|------------|-------------|-------------------------|------|--|
| Montagedrehmoment     | $T_{inst}$                                  | [Nm] | ≤ 5 | ≤ 5       | ≤ 10       | ≤ 10       | ≤ 5         | ≤ 5                     | ≤ 5  |  |
| Randabstand           | Ccr                                         | [mm] | 120 | (für Quer | lasten ser | nkrecht zu | ım freien F | Rand: c <sub>cr</sub> = | 250) |  |
| Minimaler Randabstand | C <sub>min</sub>                            | [mm] | 50  |           |            |            |             |                         |      |  |
| Achsabstand           | Scr, II                                     | [mm] | 250 |           |            |            |             |                         |      |  |
| Acrisabstand          | Scr, ⊥                                      | [mm] |     |           |            | 250        |             |                         |      |  |
| Minimaler Achsabstand | S <sub>min, II</sub><br>S <sub>min, ⊥</sub> | [mm] |     |           |            | 50         |             |                         |      |  |

#### Tabelle C102: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl           | laat    |         | Querlast     |            |          |                          |         |            |  |  |
|----------------|---------|---------|--------------|------------|----------|--------------------------|---------|------------|--|--|
| Zugi           | ası     |         | senkrecht zu | m freien F | Rand     | parallel zum freien Rand |         |            |  |  |
|                | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |  |
| <b> </b>     • | 50      | 1,00    | <b>│</b>     | 50         | 0,30     |                          | 50      | 1,00       |  |  |
|                | 120     | 1,00    |              | 250        | 1,00     | <b>V</b>                 | 120     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                      |            |
|-------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Coriso WS07 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C38 |



#### Steintyp: Hochlochziegel Coriso WS07- Fortsetzung

#### Tabelle C103: Faktor für Ankergruppen

|                              | Anordnung parall | el zur La | gerfuge |            | Anordnung senk | recht zur | Lagerfug | e                     |
|------------------------------|------------------|-----------|---------|------------|----------------|-----------|----------|-----------------------|
| Zuglast                      |                  | mit c ≥   | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥  | αg⊥,N                 |
|                              | • •              | 50        | 50      | 1,50       |                | 50        | 50       | 1,00                  |
|                              |                  | 120       | 250     | 2,00       |                | 120       | 250      | 2,00                  |
| 2                            | Н                | mit c ≥   | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥  | lphag⊥,V⊥             |
| Querlast                     |                  | 50        | 50      | 0,40       |                | 50        | 50       | 0,40                  |
| senkrecht<br>zum freien Rand |                  | 250       | 50      | 1,00       |                | 250       | 50       | 1,20                  |
|                              |                  | 250       | 250     | 2,00       |                | 250       | 250      | 2,00                  |
| Querlast                     |                  | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥  | α <sub>g⊥,</sub> ∨ II |
| parallel                     |                  | 50        | 50      | 1,65       |                | 50        | 50       | 1,00                  |
| zum freien Rand              |                  | 120       | 250     | 2,00       |                | 120       | 250      | 2,00                  |

#### Tabelle C104: Charakteristische Widerstände unter Zug- und Querlast

|                               |              |                             | С                      | harakteri      | stische V       | Viderstäi            | <b>nde</b> bei c | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |
|-------------------------------|--------------|-----------------------------|------------------------|----------------|-----------------|----------------------|------------------|-----------------------|---------------------------------|
| Ankergröße                    | Sieb-        | Effektive                   |                        |                | Nutzu           | ıngsbedi             | ngunger          | 1                     |                                 |
|                               | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe | Veranke-<br>rungs- d/d |                |                 |                      | w/d<br>w/w       | d/d<br>w/d<br>w/w     |                                 |
|                               |              |                             | 24°C /<br>40°C         | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C       | 50°C /<br>80°C   | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |
|                               |              | h <sub>ef</sub>             |                        |                | $N_{Rk,b} = 1$  | V <sub>Rk,p</sub> 1) |                  |                       | V <sub>Rk,b</sub> 1)            |
|                               |              | [mm]                        |                        |                | [kN             | 1]                   |                  |                       | [kN]                            |
|                               |              | Normierte m                 | nittlere Dr            | uckfestig      | ykeit f₀ ≥ (    | 6 N/mm²              | 2)               |                       |                                 |
| M8                            | VM-SH 12     | 80                          |                        |                |                 |                      |                  |                       |                                 |
| M8 / M10/<br>IG-M6            | VM-SH 16     | ≥ 85                        | 1,5                    | 1,5            | 1,5             | 1,5                  | 1,5              | 1,5                   | 5,0                             |
| M12 / M16 /<br>IG-M8 / IG-M10 | VM-SH 20     | ≥ 85                        |                        |                |                 |                      |                  |                       |                                 |

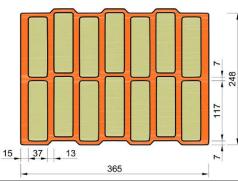
<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

#### Tabelle C105: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞               | δ <sub>V</sub> / V | δνο                       | δν∞       |  |
|------------------------------|-----------------|---------------------------|----------------------------|-------------------|--------------------|---------------------------|-----------|--|
| Alikergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]              | [mm/kN]            | [mm]                      | [mm]      |  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | . 1,5*δνο |  |
| M16                          |                 | ,                         | ,                          | - 3.112           | 0,31               | 0,31*V <sub>Rk</sub> /3,5 |           |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                |            |
|-----------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Coriso WS07 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C39 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C100 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.




# Steintyp: Hochlochziegel T7 MW mit integrierter Wärmedämmung

Tabelle C106: Beschreibung

| Steintyp                                             |                      | Hochlochziegel T7 MW      |
|------------------------------------------------------|----------------------|---------------------------|
| Füllung                                              |                      | Mineralwolle              |
| Rohdichte ρ                                          | [kg/dm³]             | ≥ 0,59                    |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> | [N/mm <sup>2</sup> ] | ≥ 8                       |
| Umrechnungsfaktor für geringe<br>Druckfestigkeiten   | ere                  | $(f_b / 8)^{0,5} \le 1,0$ |
| Norm                                                 | [-]                  | EN 771-1:2011+A1:2015     |
| Hersteller (Länderkennung)                           | [-]                  | e.g. Wienerberger (DE)    |
| Steinabmessungen                                     | [mm]                 | 248 x 365 x 249           |
| Bohrverfahren                                        | [-]                  | Drehbohren                |
|                                                      |                      |                           |





#### Tabelle C107: Montagekennwerte

| Ankergröße                             |                                           |      | M8                                                                                            | M10 | M12  | M16  | IG-M6 | IG-M8 | IG-<br>M10 |
|----------------------------------------|-------------------------------------------|------|-----------------------------------------------------------------------------------------------|-----|------|------|-------|-------|------------|
| Montagedrehmoment                      | $T_{inst}$                                | [Nm] | ≤ 5                                                                                           | ≤ 5 | ≤ 10 | ≤ 10 | ≤ 5   | ≤ 5   | ≤5         |
| Randabstand (unter Brandbeanspruchung) | Ccr; (Ccr,fi)                             | [mm] | 120 (2 h <sub>ef</sub> )<br>(für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |     |      |      |       |       | 50)        |
| Minimaler Randabstan                   | 50                                        |      |                                                                                               |     |      |      |       |       |            |
| Achsabstand (unter                     | Scr, II (Scr,fi, II)                      | [mm] | 250 (4 h <sub>ef</sub> )                                                                      |     |      |      |       |       |            |
| Brandbeanspruchung)                    | $S_{cr, \perp}(S_{cr,fi, \perp})$         | [mm] | 250 (4 h <sub>ef</sub> )                                                                      |     |      |      |       |       |            |
| Minimaler<br>Achsabstand               | S <sub>min,</sub> II; S <sub>min,</sub> ⊥ | [mm] | 50                                                                                            |     |      |      |       |       |            |

# Tabelle C108: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast        |         |         | Querlast     |            |          |                          |         |            |  |  |
|----------------|---------|---------|--------------|------------|----------|--------------------------|---------|------------|--|--|
| Zugi           | ası     |         | senkrecht zu | m freien F | Rand     | parallel zum freien Rand |         |            |  |  |
|                | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |  |
| <b> </b>     • | 50      | 1,00    | <b>│</b>     | 50         | 0,35     |                          | 50      | 1,00       |  |  |
|                | 120     | 1,00    |              | 250        | 1,00     |                          | 120     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                       |            |
|--------------------------------------------------------------------------------------------------|------------|
| <b>Leistungen – Hochlochziegel T7 MW</b> Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C40 |



#### Steintyp: Hochlochziegel T7 MW – Fortsetzung

#### Tabelle C109: Faktor für Ankergruppen

|                              | Anordnung parall | el zur La | gerfuge |            | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge                    |
|------------------------------|------------------|-----------|---------|------------|----------------|-----------|----------------------|-----------------------|
| Zuglast                      |                  | mit c ≥   | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | αg⊥,N                 |
|                              | • •              | 50        | 50      | 1,40       |                | 50        | 50                   | 1,15                  |
|                              |                  | 120       | 250     | 2,00       |                | 120       | 250                  | 2,00                  |
| Querlast                     |                  | mit c ≥   | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥              | αд⊥,∨⊥                |
|                              |                  | 50        | 50      | 0,60       |                | 50        | 50                   | 0,40                  |
| senkrecht<br>zum freien Rand |                  | 250       | 50      | 1,55       |                | 250       | 50                   | 1,00                  |
| Zam noion rama               |                  | 250       | 250     | 2,00       | ļL             | 250       | 250                  | 2,00                  |
| Querlast                     |                  | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥              | α <sub>g</sub> ⊥,∨ II |
| parallel                     |                  | 50        | 50      | 2,00       |                | 50        | 50                   | 1,20                  |
| zum freien Rand              |                  | 120       | 250     | 2,00       |                | 120       | 250                  | 2,00                  |

#### Tabelle C110: Charakteristische Widerstände unter Zug- und Querlast

| Ankergröße      | Sieb-        | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> Nutzungsbedingungen |                |                |                 |                  |                |                   |                                 |
|-----------------|--------------|---------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|------------------|----------------|-------------------|---------------------------------|
| 7e.g. 6.60      | hülse<br>HB- | Veranke-<br>rungstiefe                                                                            |                | d/d            |                 |                  | w/d<br>w/w     | d/d<br>w/d<br>w/w |                                 |
|                 |              |                                                                                                   | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C   | 50°C /<br>80°C | 72°C /<br>120°C   | alle<br>Temperatur-<br>bereiche |
|                 |              | h <sub>ef</sub>                                                                                   |                |                | $N_{Rk,b} = 1$  | <b>V</b> Rk,p 1) |                |                   | V <sub>Rk,b</sub> 1)            |
|                 |              | [mm]                                                                                              |                |                | [kN             | 1]               |                | [kN]              |                                 |
|                 |              | Normierte m                                                                                       | nittlere Dr    | uckfestig      | jkeit f₀ ≥ 8    | 8 N/mm²          | 2)             |                   |                                 |
| M8              | VM-SH 12     | 80                                                                                                |                |                |                 |                  |                |                   |                                 |
| M8 / M10/ IG-M6 | VM-SH 16     | ≥ 85                                                                                              | 2.0            | 2.0            | 1 5             | 2.0              | 2,0            | 1 5               | 3,0                             |
| M12 / IG-M8     | VM-SH 20     | ≥ 85                                                                                              | 2,0            | 2,0            | 1,5             | 2,0              |                | 1,5               |                                 |
| M16 / IG-M10    | VM-SH 20     | ≥ 85                                                                                              |                |                |                 |                  |                |                   | 4,5                             |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c\,II} = V_{Rk,c\,\perp}$  gemäß Anhang C5

#### Tabelle C111: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞   | δ <sub>V</sub> / V | δνο                       | δν∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------|--------------------|---------------------------|---------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]  | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δνο |
| M16                          | 2000            |                           | .,                         |       | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | .,      |

| Injektionssystem HB-VMU plus für Mauerwerk                                                          |            |
|-----------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel T7 MW Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C41 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C106 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



#### Tabelle C112: Charakteristische Widerstände unter Brandbeanspruchung

| Ankergröße                  | Sieb-<br>hülse | Effektive<br>Veranke-<br>rungstiefe |      |      |      |                            |  |
|-----------------------------|----------------|-------------------------------------|------|------|------|----------------------------|--|
| Alikeigiose                 | нв-            | h <sub>ef</sub>                     |      |      |      |                            |  |
|                             |                | [mm]                                |      |      |      |                            |  |
| M8 / M10 / IG-M6            | VM-SH 16       | 130                                 |      |      |      | kojno Loistung             |  |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20       | ≥ 130                               | 0,64 | 0,37 | 0,11 | keine Leistung<br>bewertet |  |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen – Hochlochziegel T7 MW
Charakteristische Widerstände unter Brandbeanspruchung

Anhang C42



# Steintyp: Hochlochziegel T8 P mit integrierter Wärmedämmung

Tabelle C113: Beschreibung

| Steintyp                                         |                |                       | Hochlochziegel T8 P       |        |
|--------------------------------------------------|----------------|-----------------------|---------------------------|--------|
| Füllung                                          |                |                       | Perlite                   | Wille. |
| Rohdichte                                        | ρ              | [kg/dm <sup>3</sup> ] | ≥ 0,56                    |        |
| Normierte mittlere<br>Druckfestigkeit            | f <sub>b</sub> | [N/mm <sup>2</sup> ]  | ≥ 6                       | 相關高級   |
| Umrechnungsfaktor für gerir<br>Druckfestigkeiten | nger           | 9                     | $(f_b / 6)^{0,5} \le 1,0$ |        |
| Norm                                             |                | [-]                   | EN 771-1:2011+A1:2015     |        |
| Hersteller (Länderkennung)                       |                | [-]                   | z.B. Wienerberger (DE)    |        |
| Steinabmessungen                                 |                | [mm]                  | 248 x 365 x 249           |        |
| Bohrverfahren                                    |                | [-]                   | Drehbohren                |        |
|                                                  |                |                       | 113 8 113 6               |        |

365

#### Tabelle C114: Montagekennwerte

| Ankergröße            |                     |      | M8  | M10       | M12        | M16        | IG-M6       | IG-M8                   | IG-M10 |
|-----------------------|---------------------|------|-----|-----------|------------|------------|-------------|-------------------------|--------|
| Montagedrehmoment     | $T_{inst}$          | [Nm] | ≤ 4 | ≤ 4       | ≤ 10       | ≤ 10       | ≤ 4         | ≤ 4                     | ≤ 4    |
| Randabstand           | Ccr                 | [mm] | 120 | (für Quer | lasten ser | nkrecht zu | ım freien F | Rand: c <sub>cr</sub> = | 250)   |
| Minimaler Randabstand | C <sub>min</sub>    | [mm] |     |           |            | 50         |             |                         |        |
| Achsabstand           | Scr, II             | [mm] | 250 |           |            |            |             |                         |        |
| Acrisabstand          | Scr, ⊥              | [mm] | 250 |           |            |            |             |                         |        |
| Minimaler Achsabstand | Smin, II<br>Smin, ⊥ | [mm] | 50  |           |            |            |             |                         |        |

#### Tabelle C115: Reduktionsfaktoren für Einzelanker unter Randeinfluss

36 14

| Zuglast |         |         | Querlast     |            |          |                          |         |            |  |  |  |
|---------|---------|---------|--------------|------------|----------|--------------------------|---------|------------|--|--|--|
| Zugi    | ası     |         | senkrecht zu | m freien F | Rand     | parallel zum freien Rand |         |            |  |  |  |
|         | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,V II |  |  |  |
| •       | 50      | 1,00    | <del></del>  | 50         | 0,25     |                          | 50      | 1,00       |  |  |  |
|         | 120     | 1,00    |              | 250        | 1,00     |                          | 120     | 1,00       |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                               |            |
|------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel T8 P Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C43 |



#### Steintyp: Hochlochziegel T8 P – Fortsetzung

#### Tabelle C116: Faktor für Ankergruppen

|                              | Anordnung parall | el zur Lag | gerfuge |            | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge       |
|------------------------------|------------------|------------|---------|------------|----------------|-----------|----------------------|----------|
|                              |                  | mit c ≥    | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | αg⊥,N    |
| Zuglast                      | • •              | 50         | 50      | 1,30       |                | 50        | 50                   | 1,10     |
|                              |                  | 120        | 250     | 2,00       |                | 120       | 250                  | 2,00     |
| _                            | <del></del>      | mit c ≥    | mit s ≥ | αg II,V⊥   | Т              | mit c ≥   | mit s ≥              | αд⊥,∨⊥   |
| Querlast                     |                  | 50         | 50      | 0,40       |                | 50        | 50                   | 0,30     |
| senkrecht<br>zum freien Rand |                  | 250        | 50      | 1,35       |                | 250       | 50                   | 1,20     |
| Zam noion rama               |                  | 250        | 250     | 2,00       |                | 250       | 250                  | 2,00     |
| Querlast                     |                  | mit c ≥    | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥              | αg⊥,∨ II |
| parallel                     | • •              | 50         | 50      | 1,70       |                | 50        | 50                   | 1,00     |
| zum freien Rand              |                  | 120        | 250     | 2,00       |                | 120       | 250                  | 2,00     |

#### Tabelle C117: Charakteristische Widerstände unter Zug- und Querlast

|                    |              |                             | С                         | harakteri | stische V           | Viderstär            | nde bei c       | ≥ c <sub>cr</sub> und           | s ≥ s <sub>cr</sub>  |  |  |
|--------------------|--------------|-----------------------------|---------------------------|-----------|---------------------|----------------------|-----------------|---------------------------------|----------------------|--|--|
| Ankergröße         | Sieb-        | Effektive                   | Effektive Nutzungsbedingu |           |                     |                      |                 |                                 | ngen                 |  |  |
|                    | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe |                           | d/d       |                     |                      | w/d<br>w/w      |                                 | d/d<br>w/d<br>w/w    |  |  |
|                    |              |                             |                           |           | 24°C /<br>40°C      | 50°C /<br>80°C       | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |                      |  |  |
|                    |              | h <sub>ef</sub>             |                           |           | N <sub>Rk,b</sub> = | V <sub>Rk,p</sub> 1) |                 |                                 | V <sub>Rk,b</sub> 1) |  |  |
|                    |              | [mm]                        |                           |           | [kN                 | 1]                   |                 |                                 | [kN]                 |  |  |
|                    |              | Normierte m                 | nittlere Dr               | uckfestig | gkeit f₀ ≥          | 6 N/mm²              | 2)              | -                               |                      |  |  |
| M8                 | VM-SH 12     | 80                          |                           |           |                     |                      |                 |                                 |                      |  |  |
| M8 / M10/<br>IG-M6 | VM-SH 16     | ≥ 85                        | 1,5                       | 1,5       | 1,5                 | 1,5                  | 1,5             | 1,5                             | 4,5                  |  |  |
| M12 /<br>IG-M8     | VM-SH 20     | ≥ 85                        |                           |           |                     |                      |                 |                                 |                      |  |  |
| M16 /<br>IG-M10    | VM-SH 20     | ≥ 85                        | 2,5                       | 2,5       | 2,0                 | 2,5                  | 2,5             | 2,0                             | 7,0                  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | II} = V_{Rk,c \perp}$  gemäß Anhang C5

#### Tabelle C118: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | διο                        | δn∞   | δ <sub>V</sub> / V | δνο                       | δ∨∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------|--------------------|---------------------------|---------|
| Alikergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]  | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          |                 | ,                         | ,                          | 3110  | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | ,       |

| Injektionssystem HB-VMU plus für Mauerwerk                                                            |            |
|-------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel T8 P<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C44 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C113 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Thermoplan MZ90-G mit integrierter Wärmedämmung Tabelle C119: Beschreibung

| Steintyp                                          |                                   | Hochlochziegel<br>Thermoplan MZ90-G |               |
|---------------------------------------------------|-----------------------------------|-------------------------------------|---------------|
| Füllung                                           |                                   | Mineralwolle                        |               |
| Rohdichte                                         | [kg/dm³]                          | ≥ 0,68                              | and the same  |
| Normierte mittlere<br>Druckfestigkeit             | <sub>b</sub> [N/mm <sup>2</sup> ] | ≥ 12                                | Call fill war |
| Umrechnungsfaktor für gering<br>Druckfestigkeiten | ere                               | $(f_b / 12)^{0.5} \le 1.0$          |               |
| Norm                                              | [-]                               | EN 771-1:2011+A1:2015               |               |
| Hersteller (Länderkennung)                        | [-]                               | z.B. Mein Ziegelhaus (DE)           |               |
| Steinabmessungen                                  | [mm]                              | 248 x 365 x 249                     |               |
| Bohrverfahren                                     | [-]                               | Drehbohren                          |               |
|                                                   | 13                                | 13<br>10<br>365                     | 13 13 13      |

#### Tabelle C120: Montagekennwerte

| Ankergröße            | Ankergröße                                  |      |                                                                       |  |  | M16 | IG-M6 | IG-M8 | IG-M10 |  |
|-----------------------|---------------------------------------------|------|-----------------------------------------------------------------------|--|--|-----|-------|-------|--------|--|
| Montagedrehmoment     | T <sub>inst</sub>                           | [Nm] | ≤4 ≤4 ≤10 ≤10 ≤4 ≤4 ≤                                                 |  |  |     |       |       | ≤ 4    |  |
| Randabstand           | Ccr                                         | [mm] | 120 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |  |  |     |       |       |        |  |
| Minimaler Randabstand | Cmin                                        | [mm] | 50                                                                    |  |  |     |       |       |        |  |
| Achsabstand           | Scr, II                                     | [mm] | 250                                                                   |  |  |     |       |       |        |  |
| Acrisabstand          | Scr, ⊥                                      | [mm] | 250                                                                   |  |  |     |       |       |        |  |
| Minimaler Achsabstand | S <sub>min,</sub> II<br>S <sub>min,</sub> ⊥ | [mm] | 50                                                                    |  |  |     |       |       |        |  |

## Tabelle C121: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual | oot     |         | Querlast     |                           |          |  |                          |           |  |  |
|------|---------|---------|--------------|---------------------------|----------|--|--------------------------|-----------|--|--|
| Zugl | สรเ     |         | senkrecht zu | senkrecht zum freien Rand |          |  | parallel zum freien Rand |           |  |  |
|      | mit c ≥ | αedge,N |              | mit c ≥                   | αedge,V⊥ |  | mit c ≥                  | αedge,VII |  |  |
| •    | 50      | 1,00    | <b>│</b>     | 50                        | 0,25     |  | 50                       | 1,00      |  |  |
|      | 120     | 1,00    |              | 250                       | 1,00     |  | 120                      | 1,00      |  |  |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen – Hochlochziegel Thermoplan MZ90-G
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C45



#### Steintyp: Hochlochziegel Thermoplan MZ90-G – Fortsetzung

Tabelle C122: Faktor für Ankergruppen

|                                         | Anordnung parall                   | el zur Lag | gerfuge |            | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge       |
|-----------------------------------------|------------------------------------|------------|---------|------------|----------------|-----------|----------------------|----------|
|                                         |                                    | mit c ≥    | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | αg⊥,N    |
| Zuglast                                 | • •                                | 50         | 50      | 1,00       |                | 50        | 50                   | 1,00     |
|                                         |                                    | 120        | 250     | 2,00       |                | 120       | 250                  | 2,00     |
| Overdent.                               |                                    | mit c ≥    | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥              | αд⊥,∨⊥   |
|                                         | Querlast senkrecht zum freien Rand | 50         | 50      | 0,75       |                | 50        | 50                   | 0,50     |
|                                         |                                    | 250        | 50      | 2,00       |                | 250       | 50                   | 1,70     |
| Zum moiem rama                          |                                    | 250        | 250     | 2,00       |                | 250       | 250                  | 2,00     |
| Quarlant                                |                                    | mit c ≥    | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥              | αg⊥,∨ II |
| Querlast<br>parallel<br>zum freien Rand | • •                                | 50         | 50      | 1,65       |                | 50        | 50                   | 1,15     |
|                                         |                                    | 120        | 250     | 2,00       |                | 120       | 250                  | 2,00     |

#### Tabelle C123: Charakteristische Widerstände unter Zug- und Querlast

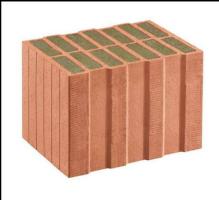
| Tabelle C125.      | Silarante    | I I JUI JUI LE VIII         | aciotana       | c differ z           | -ug und         | Quena               | 31             |                       |                                 |
|--------------------|--------------|-----------------------------|----------------|----------------------|-----------------|---------------------|----------------|-----------------------|---------------------------------|
|                    |              |                             | С              | harakteri            | stische V       | Viderstär           | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |
| Ankergröße         | Sieb-        | Effektive                   |                |                      | Nutzu           | ıngsbedi            | ngunger        | 1                     | ·                               |
|                    | hülse<br>HB- | Veranke-<br>rungs-<br>tiefe | d/d            |                      |                 |                     | w/d<br>w/w     | d/d<br>w/d<br>w/w     |                                 |
|                    |              |                             | 24°C /<br>40°C | 50°C /<br>80°C       | 72°C /<br>120°C | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |
|                    |              | h <sub>ef</sub>             |                | V <sub>Rk,b</sub> 1) |                 |                     |                |                       |                                 |
|                    |              | [mm]                        |                |                      | [kN             | 1]                  |                |                       | [kN]                            |
|                    | -            | Normierte m                 | ittlere Dr     | uckfestig            | keit f₀ ≥ 1     | 2 N/mm <sup>2</sup> | 2)             |                       |                                 |
| M8                 | VM-SH 12     | 80                          |                |                      |                 |                     |                |                       |                                 |
| M8 / M10/<br>IG-M6 | VM-SH 16     | ≥ 85                        | 3,0            | 3,0                  | 2,5             | 3,0                 | 3,0            | 2,5                   | 4,0                             |
| M12 /<br>IG-M8     | VM-SH 20     | ≥ 85                        |                |                      |                 |                     |                |                       |                                 |
| M16 /<br>IG-M10    | VM-SH 20     | ≥ 85                        | 3,5            | 3,5                  | 3,0             | 3,5                 | 3,5            | 3,0                   | 7,5                             |

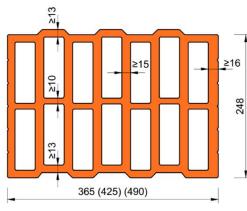
 $<sup>^{1)}</sup>$   $N_{\text{Rk,b,c}}$  =  $N_{\text{Rk,p,c}}$  und  $V_{\text{Rk,c\,II}}$  =  $V_{\text{Rk,c\,\perp}}$  gemäß Anhang C5

#### Tabelle C124: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δη / Ν  | δινο                       | δn∞                       | δ <sub>V</sub> / V | δνο                       | δν∞     |  |
|------------------------------|-----------------|---------|----------------------------|---------------------------|--------------------|---------------------------|---------|--|
| Allkergrobe [I               | [mm]            | [mm/kN] | [mm]                       | [mm]                      | [mm/kN]            | [mm]                      | [mm]    |  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13    | 0,13*N <sub>Rk</sub> / 3,5 | <b>2</b> *δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |  |
| M16                          | 8               |         |                            |                           | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | 5 9995  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                         |            |
|--------------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Thermoplan MZ90-G<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C46 |


<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C119 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.




# Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung

Tabelle C125: Beschreibung

| Steintyp                                         |       |                       | Hochlochziegel Poroton FZ7,5 |
|--------------------------------------------------|-------|-----------------------|------------------------------|
| Füllung                                          |       |                       | Mineralwolle                 |
| Rohdichte                                        | ρ     | [kg/dm <sup>3</sup> ] | ≥ 0,70                       |
| Normierte mittlere<br>Druckfestigkeit            | $f_b$ | [N/mm <sup>2</sup> ]  | ≥ 8                          |
| Umrechnungsfaktor für gerin<br>Druckfestigkeiten | gere  | Э                     | $(f_b / 8)^{0.5} \le 1.0$    |
| Norm                                             |       | [-]                   | EN 771-1:2011+A1:2015        |
| Hersteller (Länderkennung)                       |       | [-]                   | z.B.: Schlagmann (DE)        |
| Steinabmessungen                                 |       | [mm]                  | 248 x 365 x 249              |
| Bohrverfahren                                    |       | [-]                   | Drehbohren                   |
|                                                  |       | V 13                  |                              |





# Tabelle C126: Montagekennwerte

| Ankergröße                             | Ankergröße                             |      |                                                                                 |     |      | M16  | IG-M6 | IG-M8 | IG-M10 |
|----------------------------------------|----------------------------------------|------|---------------------------------------------------------------------------------|-----|------|------|-------|-------|--------|
| Montagedrehmoment                      | $T_{inst}$                             | [Nm] | ≤ 5                                                                             | ≤ 5 | ≤ 10 | ≤ 10 | ≤ 5   | ≤ 5   | ≤ 5    |
| Randabstand (unter Brandbeanspruchung) | C <sub>cr;</sub> (C <sub>cr,fi</sub> ) | [mm] | 120 (2 $h_{ef}$ )<br>(für Querlasten senkrecht zum freien Rand: $c_{cr}$ = 250) |     |      |      |       | 250)  |        |
| Minimaler Randabstand                  | d c <sub>min</sub>                     | [mm] |                                                                                 |     |      |      |       |       |        |
| Achsabstand (unter                     | Scr, II (Scr,fi, II)                   | [mm] | 250 (4 h <sub>ef</sub> )                                                        |     |      |      |       |       |        |
| Brandbeanspruchung)                    | Scr, \( \) (Scr,fi, \( \))             | [mm] |                                                                                 |     |      |      |       |       |        |
| Minimaler<br>Achsabstand               | Smin, II; Smin, ⊥                      | [mm] |                                                                                 |     |      |      |       |       |        |

#### Tabelle C127: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual | oot     |         | Querlast                                      |         |          |  |         |            |  |  |  |
|------|---------|---------|-----------------------------------------------|---------|----------|--|---------|------------|--|--|--|
| Zugl | สรเ     |         | senkrecht zum freien Rand parallel zum freien |         |          |  |         | Rand       |  |  |  |
|      | mit c ≥ | αedge,N |                                               | mit c ≥ | αedge,V⊥ |  | mit c ≥ | αedge,V II |  |  |  |
| •    | 50      | 1,00    | <del></del>                                   | 50      | 0,35     |  | 50      | 1,00       |  |  |  |
|      | 120     | 1,00    |                                               | 250     | 1,00     |  | 120     | 1,00       |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                           |            |
|------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Poroton FZ7,5<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C47 |



#### Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung – Fortsetzung Tabelle C128: Faktor für Ankergruppen

|                      | Anordnung parall                         | el zur La | gerfuge |            | Anordnung senk | recht zui | · Lagerfu | ge                                     |
|----------------------|------------------------------------------|-----------|---------|------------|----------------|-----------|-----------|----------------------------------------|
|                      |                                          | mit c ≥   | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥   | αg⊥,N                                  |
| Zuglast              | • •                                      | 50        | 50      | 1,40       |                | 50        | 50        | 1,15                                   |
|                      |                                          | 120       | 250     | 2,00       |                | 120       | 250       | 2,00                                   |
| Quarlant             | Querlast<br>senkrecht<br>zum freien Rand | mit c ≥   | mit s ≥ | αg II,V⊥   |                | mit c ≥   | mit s ≥   | $\alpha_{\text{g}\perp,\text{V}\perp}$ |
|                      |                                          | 50        | 50      | 0,60       | -              | 50        | 50        | 0,40                                   |
|                      |                                          | 250       | 50      | 1,55       |                | 250       | 50        | 1,00                                   |
| Zuili li eleli Kallu |                                          | 250       | 250     | 2,00       |                | 250       | 250       | 2,00                                   |
| Querlast             |                                          | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥   | αg ⊥,V II                              |
| Parallel             | ••                                       | 50        | 50      | 2,00       |                | 50        | 50        | 1,20                                   |
| zum freien Rand      |                                          | 120       | 250     | 2,00       |                | 120       | 250       | 2,00                                   |

#### Tabelle C129: Charakteristische Widerstände unter Zug- und Querlast

| Al. a           | Oi-h                  | F. G. L. L. L.                      | С              | harakteri      |                 | Viderstär<br>ıngsbedi |                      |                 | s ≥ s <sub>cr</sub>             |
|-----------------|-----------------------|-------------------------------------|----------------|----------------|-----------------|-----------------------|----------------------|-----------------|---------------------------------|
| Ankergröße      | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungstiefe | d/d            |                |                 | w/d<br>w/w            |                      |                 | d/d<br>w/d<br>w/w               |
|                 | 110-                  |                                     | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C        | 50°C /<br>80°C       | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |
|                 |                       | h <sub>ef</sub>                     |                |                | $N_{Rk,b} = I$  | V <sub>Rk,p</sub> 1)  | V <sub>Rk,b</sub> 1) |                 |                                 |
|                 |                       | [mm]                                |                |                | [kN             | ١]                    | [kN]                 |                 |                                 |
|                 |                       | Normierte m                         | ittlere Dr     | uckfestig      | keit f₀ ≥ 8     | 8 N/mm <sup>2</sup>   | 2)                   | -               |                                 |
| M8              | VM-SH 12              | 80                                  |                |                |                 |                       |                      |                 | ,                               |
| M8 / M10 /IG-M6 | VM-SH 16              | ≥ 85                                | 2,0            | 2.0            | 1.5             | 2.0                   | 2.0                  | 1.5             | 3,0                             |
| M12 / IG-M8     | VM-SH 20              | ≥ 85                                | 2,0            | 2,0            | 1,5             | 2,0                   | 2,0                  | 1,5             | 10000                           |
| M16 / IG-M10    | VM-SH 20              | ≥ 85                                |                |                |                 |                       |                      |                 | 4,5                             |

#### Tabelle C130: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δνο                        | δ <sub>N∞</sub>   | δ <sub>V</sub> / V | δ∨0                       | δν∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------------------|--------------------|---------------------------|---------|
| Allkergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]              | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |
| M16                          |                 | 80                        | 55 SS                      | 01000             | 0,31               | 0,31*V <sub>Rk</sub> /3,5 |         |

#### Tabelle C131: Charakteristische Widerstände unter Brandbeanspruchung

| Ankergröße                    | Sieb-<br>hülse | Effektive<br>Veranke-<br>rungstiefe | Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$ |  |      |                            |  |
|-------------------------------|----------------|-------------------------------------|-------------------------------------------------------------------------|--|------|----------------------------|--|
| <b>J</b>                      | нв-            | h <sub>ef</sub>                     | R30 R60 R90 R120                                                        |  |      |                            |  |
|                               | пр-            | [mm]                                | [kN]                                                                    |  |      |                            |  |
| M8 / M10 /IG-M6               | VM-SH 16       | 130                                 |                                                                         |  |      | kojno Lojetuna             |  |
| M12 / M16 /<br>IG-M8 – IG-M10 | VM-SH 20       | ≥ 130                               | 0,64 0,37                                                               |  | 0,11 | keine Leistung<br>bewertet |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                        |            |
|-------------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Poroton FZ7,5<br>Gruppenfaktoren und charakteristische Widerstände und Verschiebungen | Anhang C48 |

8.06.04-163/25 Z208593.25

<sup>1)</sup> N<sub>Rk,b,c</sub> = N<sub>Rk,p,c</sub> und V<sub>Rk,c ||</sub> = V<sub>Rk,c \preceded</sub> gemäß Anhang C5
2) Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C125 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



#### Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung

Tabelle C132: Beschreibung

|                                                  | _              | ,<br>                 | Hashlash-isral Daratan     |                     |
|--------------------------------------------------|----------------|-----------------------|----------------------------|---------------------|
| Steintyp                                         |                |                       | Hochlochziegel Poroton FZ9 |                     |
| Füllung                                          |                |                       | Mineralwolle               | TO TO TO THE OWNER. |
| Rohdichte                                        | ρ              | [kg/dm <sup>3</sup> ] | ≥ 0,90                     |                     |
| Normierte mittlere<br>Druckfestigkeit            | f <sub>b</sub> | [N/mm <sup>2</sup> ]  | ≥ 10                       | 200                 |
| Umrechnungsfaktor für gerir<br>Druckfestigkeiten | ngere          | Э                     | $(f_b / 10)^{0.5} \le 1.0$ |                     |
| Norm                                             |                | [-]                   | EN 771-1:2011+A1:2015      |                     |
| Hersteller (Länderkennung)                       |                | [-]                   | z.B. Wienerberger (DE)     |                     |
| Steinabmessungen                                 |                | [mm]                  | 248 x 365 x 249            |                     |
| Bohrverfahren                                    |                | [-]                   | Drehbohren                 |                     |
|                                                  |                | 0,8%                  |                            | 9,61                |

# Tabelle C133: Montagekennwerte

| Ankergröße                                                  |                                         | M8   | M10                                                                                           | M12 | M16  | IG-M6 | IG-M8 | IG-M10 |     |
|-------------------------------------------------------------|-----------------------------------------|------|-----------------------------------------------------------------------------------------------|-----|------|-------|-------|--------|-----|
| Montagedrehmoment                                           | T <sub>inst</sub>                       | [Nm] | ≤ 5                                                                                           | ≤ 5 | ≤ 10 | ≤ 10  | ≤ 5   | ≤ 5    | ≤ 5 |
| Randabstand (unter Brandbeanspruchung)                      | C <sub>cr;</sub> (C <sub>cr,fi</sub> )  | [mm] | 120 (2 h <sub>ef</sub> )<br>(für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |     |      |       |       |        |     |
| Minimaler Randabstar                                        | nd c <sub>min</sub>                     | [mm] | 50                                                                                            |     |      |       |       |        |     |
| Achsabstand (unter                                          | Scr, II (Scr,fi, II)                    | [mm] | 250 (4 h <sub>ef</sub> )                                                                      |     |      |       |       |        |     |
| Brandbeanspruchung) $s_{cr, \perp} (s_{cr,fi, \perp})$ [mm] |                                         |      | 250 (4 h <sub>ef</sub> )                                                                      |     |      |       |       |        |     |
| Minimaler<br>Achsabstand                                    | S <sub>min,II;</sub> S <sub>min,⊥</sub> | [mm] |                                                                                               |     |      |       |       |        |     |

365

#### Tabelle C134: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual | oot     |         | Querlast                                           |         |                  |  |         |            |  |  |
|------|---------|---------|----------------------------------------------------|---------|------------------|--|---------|------------|--|--|
| Zugl | สรเ     |         | senkrecht zum freien Rand parallel zum freien Rand |         |                  |  | and     |            |  |  |
|      | mit c ≥ | αedge,N |                                                    | mit c ≥ | αedge,V <b>⊥</b> |  | mit c ≥ | αedge,V II |  |  |
| •    | 50      | 1,00    | <del></del>                                        | 50      | 0,35             |  | 50      | 1,00       |  |  |
|      | 120     | 1,00    |                                                    | 250     | 1,00             |  | 120     | 1,00       |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                          |            |
|---------------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Poroton FZ9 mit Wärmedämmung<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C49 |



# Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung – Fortsetzung

Tabelle C135: Faktor für Ankergruppen

|                       | Anordnung parallel zur Lagerfuge |         |         |            |                | Anordnung senkrecht zur Lagerfuge |         |                                        |  |  |
|-----------------------|----------------------------------|---------|---------|------------|----------------|-----------------------------------|---------|----------------------------------------|--|--|
|                       |                                  | mit c ≥ | mit s ≥ | αg II,N    |                | mit c ≥                           | mit s ≥ | αg⊥,N                                  |  |  |
| Zuglast               | ••                               | 50      | 50      | 1,40       |                | 50                                | 50      | 1,15                                   |  |  |
|                       |                                  | 120     | 250     | 2,00       |                | 120                               | 250     | 2,00                                   |  |  |
| Quarlant              | +                                | mit c ≥ | mit s ≥ | αg II,V⊥   | <del>1</del> т | mit c ≥                           | mit s ≥ | $\alpha_{\text{g}\perp,\text{V}\perp}$ |  |  |
| Querlast<br>senkrecht |                                  | 50      | 50      | 0,60       | -              | 50                                | 50      | 0,40                                   |  |  |
| zum freien Rand       |                                  | 250     | 50      | 1,55       |                | 250                               | 50      | 1,00                                   |  |  |
| Zuili li eleli Kallu  | <del> </del>                     | 250     | 250     | 2,00       | <del> </del>   | 250                               | 250     | 2,00                                   |  |  |
| Querlast              |                                  | mit c ≥ | mit s ≥ | αg II,V II |                | mit c ≥                           | mit s ≥ | αg ⊥,V II                              |  |  |
| parallel              | •••                              | 50      | 50      | 2,00       |                | 50                                | 50      | 1,20                                   |  |  |
| zum freien Rand       |                                  | 120     | 250     | 2,00       |                | 120                               | 250     | 2,00                                   |  |  |

#### Tabelle C136: Charakteristische Widerstände unter Zug- und Querlast

|                 |          |                             | С              | harakteri           | stische V               | Viderstär            | <b>nde</b> bei c | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |
|-----------------|----------|-----------------------------|----------------|---------------------|-------------------------|----------------------|------------------|-----------------------|---------------------------------|
| Ankergröße      | Sieb-    | Effektive                   |                | Nutzungsbedingungen |                         |                      |                  |                       |                                 |
| Allkergrose     | hülse    | Veranke-<br>rungs-<br>tiefe | d/d            |                     |                         | w/d<br>w/w           |                  |                       | d/d<br>w/d<br>w/w               |
|                 |          | tiere                       | 24°C /<br>40°C | 50°C /<br>80°C      | 72°C /<br>120°C         | 24°C /<br>40°C       | 50°C /<br>80°C   | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |
|                 |          | h <sub>ef</sub>             |                |                     | $N_{Rk,b} = I$          | N <sub>Rk,p</sub> 1) |                  |                       | V <sub>Rk,b</sub> 1)            |
|                 |          | [mm]                        |                |                     | [kN                     | 1]                   |                  |                       | [kN]                            |
|                 | l        | Normierte m                 | ittlere Dr     | uckfestig           | keit f <sub>b</sub> ≥ 1 | 0 N/mm <sup>2</sup>  | . 2)             |                       |                                 |
| M8              | VM-SH 12 | 80                          |                |                     |                         |                      |                  |                       |                                 |
| M8 / M10 /IG-M6 | VM-SH 16 | ≥ 85                        | 2.0            | 2.0                 | 1 5                     | 20                   | 0.0              | 1 5                   | 3,0                             |
| M12 / IG-M8     | VM-SH 20 | ≥ 85                        | 2,0            | 2,0                 | 1,5                     | 2,0                  | 2,0              | 1,5                   |                                 |
| M16 / IG-M10    | VM-SH 20 | ≥ 85                        |                |                     |                         |                      |                  |                       | 4,5                             |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|l|} = V_{Rk,c\perp}$  gemäß Anhang C5

#### Tabelle C137: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b><br>[mm/kN] | <b>δ</b> №<br>[mm]         | δ <sub>N∞</sub>                         | δv / V<br>[mm/kN] | <b>δ</b> v₀<br>[mm]       | <b>δ</b> ν∞<br>[mm] |
|------------------------------|-----------------|--------------------------------------|----------------------------|-----------------------------------------|-------------------|---------------------------|---------------------|
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                                 | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο                                   | 0,55              | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δνο             |
| M16                          |                 |                                      | 2,722 23.00.7 2,72         | _ = = = = = = = = = = = = = = = = = = = | 0,31              | 0,31*V <sub>Rk</sub> /3,5 | .,,.                |

#### Tabelle C138: Charakteristische Werte unter Brandbeanspruchung

| Ankergröße                  | Sieb-<br>hülse | Effektive<br>Veranke-<br>rungstiefe | Charakteristischer Widerstand<br>N <sub>Rk,b,fi</sub> = N <sub>Rk,p,fi</sub> = V <sub>Rk,b,fi</sub> |      |      |                |  |
|-----------------------------|----------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|------|------|----------------|--|
| 9                           | нв-            | h <sub>ef</sub>                     | R30 R60 R90 R120                                                                                    |      |      |                |  |
|                             | пь-            | [mm]                                | [kN]                                                                                                |      |      |                |  |
| M8 / M10 /IG-M6             | VM-SH 16       | 130                                 |                                                                                                     |      |      | keine Leistung |  |
| M12 / M16 /<br>IG-M8 IG-M10 | VM-SH 20       | ≥ 130                               | 0,64                                                                                                | 0,37 | 0,11 | bewertet       |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                   |            |
|--------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Poroton FZ9 Gruppenfaktoren und charakteristische Widerstände und Verschiebungen | Anhang C50 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C132 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Poroton S9 mit integrierter Wärmedämmung

Tabelle C139: Beschreibung

| Steintyp                                                   | Hochlochziegel Poroton<br>S9 | Property of the Control of the Contr |
|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Füllung                                                    | Perlite                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rohdichte $\rho$ [kg/dm <sup>3</sup> ]                     | ≥ 0,85                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Normierte mittlere Druckfestigkeit  f <sub>b</sub> [N/mm²] | ≥ 12                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten       | $(f_b / 12)^{0.5} \le 1.0$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Norm [-]                                                   | EN 771-1:2011+A1:2015        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hersteller (Länderkennung) [-]                             | e.g. Schlagmann (DE)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Steinabmessungen [mm]                                      | 248 x 365 x 249              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bohrverfahren [-]                                          | Drehbohren                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.5 × 22.1                                                |                              | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Tabelle C140: Montagekennwerte

| Ankergröße            |                     |      | M8                                                                    | M10 | M12  | M16  | IG-M6 | IG-M8 | IG-M10 |
|-----------------------|---------------------|------|-----------------------------------------------------------------------|-----|------|------|-------|-------|--------|
| Montagedrehmoment     | $T_{inst}$          | [Nm] | ≤ 5                                                                   | ≤ 5 | ≤ 10 | ≤ 10 | ≤ 5   | ≤ 5   | ≤ 5    |
| Randabstand           | Ccr                 | [mm] | 120 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |     |      |      |       |       |        |
| Minimaler Randabstand | Cmin                | [mm] | 50                                                                    |     |      |      |       |       |        |
| Achsabstand           | Scr, II             | [mm] | 250                                                                   |     |      |      |       |       |        |
| Achsabstand           | Scr, ⊥              | [mm] |                                                                       |     |      | 250  |       |       |        |
| Minimaler Achsabstand | Smin, II<br>Smin, ⊥ | [mm] | 50                                                                    |     |      |      |       |       |        |

#### Tabelle C141: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl | lact    |         | Querlast                                        |         |          |                                                   |         |           |  |  |
|------|---------|---------|-------------------------------------------------|---------|----------|---------------------------------------------------|---------|-----------|--|--|
| Zugi | ası     |         | senkrecht zum freien Rand parallel zum freien l |         |          | senkrecht zum freien Rand parallel zum freien Ran |         |           |  |  |
|      | mit c ≥ | αedge,N |                                                 | mit c ≥ | αedge,V⊥ |                                                   | mit c ≥ | αedge,VII |  |  |
| •    | 50      | 1,00    | <b></b>                                         | 50      | 0,30     |                                                   | 50      | 1,00      |  |  |
|      | 120     | 1,00    |                                                 | 250     | 1,00     | <b>*</b>                                          | 120     | 1,00      |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                        |            |  |
|---------------------------------------------------------------------------------------------------|------------|--|
| Leistungen – Hochlochziegel Poroton S9<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C51 |  |



#### Steintyp: Hochlochziegel Poroton S9 – Fortsetzung

#### Tabelle C142: Faktor für Ankergruppen

|                                         | Anordnung parall | Anordnung senkrecht zur Lagerfuge |         |            |  |         |         |                                        |
|-----------------------------------------|------------------|-----------------------------------|---------|------------|--|---------|---------|----------------------------------------|
|                                         |                  | mit c ≥                           | mit s ≥ | αg II,N    |  | mit c ≥ | mit s ≥ | αg⊥,N                                  |
| Zuglast                                 | • •              | 50                                | 50      | 1,50       |  | 50      | 50      | 1,00                                   |
|                                         |                  | 120                               | 250     | 2,00       |  | 120     | 250     | 2,00                                   |
|                                         |                  | mit c ≥                           | mit s ≥ | αg II,V⊥   |  | mit c ≥ | mit s ≥ | $\alpha_{\text{g}\perp,\text{V}\perp}$ |
| Querlast                                |                  | 50                                | 50      | 0,40       |  | 50      | 50      | 0,40                                   |
| senkrecht<br>zum freien Rand            |                  | 250                               | 50      | 1,00       |  | 250     | 50      | 1,20                                   |
| Zam noion rama                          |                  | 250                               | 250     | 2,00       |  | 250     | 250     | 2,00                                   |
| Overlant                                |                  | mit c ≥                           | mit s ≥ | αg II,V II |  | mit c ≥ | mit s ≥ | αg ⊥,V II                              |
| Querlast<br>parallel<br>zum freien Rand |                  | 50                                | 50      | 1,65       |  | 50      | 50      | 1,00                                   |
|                                         |                  | 120                               | 250     | 2,00       |  | 120     | 250     | 2,00                                   |

#### Tabelle C143: Charakteristische Widerstände unter Zug- und Querlast

|                             |              |                        | Charakteristische Widerstände bei $c \ge c_{cr}$ und $s \ge s_{cr}$ |                |                 |                     |                |                      |                                 |  |  |  |
|-----------------------------|--------------|------------------------|---------------------------------------------------------------------|----------------|-----------------|---------------------|----------------|----------------------|---------------------------------|--|--|--|
| Ankergröße                  | Sieb-        | Effektive              | Nutzungsbedingungen                                                 |                |                 |                     |                |                      |                                 |  |  |  |
|                             | hülse<br>HB- | Veranke-<br>rungstiefe | d/d                                                                 |                |                 |                     | w/d<br>w/w     | d/d<br>w/d<br>w/w    |                                 |  |  |  |
|                             |              |                        | 24°C /<br>40°C                                                      | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C      | alle<br>Temperatur-<br>bereiche |  |  |  |
|                             |              | h <sub>ef</sub>        | $N_{Rk,b} = N$                                                      |                |                 | <b>V</b> Rk,p 1)    |                | V <sub>Rk,b</sub> 1) |                                 |  |  |  |
|                             |              | [mm]                   |                                                                     |                | [kN             | 1]                  |                | [kN]                 |                                 |  |  |  |
|                             | ı            | Normierte m            | ittlere Dr                                                          | uckfestig      | keit f₀ ≥ 1     | 2 N/mm <sup>2</sup> | 2)             |                      |                                 |  |  |  |
| M8                          | VM-SH 12     | 80                     |                                                                     |                |                 |                     |                |                      |                                 |  |  |  |
| M8 / M10/<br>IG-M6          | VM-SH 16     | ≥ 85                   | 1,5                                                                 | 1,5            | 1,5             | 1,5                 | 1,5            | 1,5                  | 5,0                             |  |  |  |
| M12 / M16<br>IG-M8 / IG-M10 | VM-SH 20     | ≥ 85                   |                                                                     |                |                 |                     |                |                      |                                 |  |  |  |

<sup>&</sup>lt;sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|I} = V_{Rk,c\perp}$  gemäß Anhang C5

#### Tabelle C144: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞   | δ <sub>V</sub> / V | δνο                       | δ∨∞     |
|------------------------------|-----------------|---------------------------|----------------------------|-------|--------------------|---------------------------|---------|
| Alikergrobe                  | [mm]            | [mm/kN]                   | [mm]                       | [mm]  | [mm/kN]            | [mm]                      | [mm]    |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δνο |
| M16                          |                 |                           | , ,                        |       | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | .,      |

| Injektionssystem HB-VMU plus für Mauerwerk                                                               |            |
|----------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Poroton S9 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C52 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C139 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



# Steintyp: Hochlochziegel Thermopor TV8+ mit integrierter Wärmedämmung

Tabelle C145: Beschreibung

| Steintyp                                                   | Hochlochziegel Thermopor TV8+ |     |
|------------------------------------------------------------|-------------------------------|-----|
| Füllung                                                    | Mineralwolle                  |     |
| Rohdichte $\rho$ [kg/dm <sup>3</sup> ]                     | ≥ 0,70                        |     |
| Normierte mittlere Druckfestigkeit  f <sub>b</sub> [N/mm²] |                               |     |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten       | $(f_b / 10)^{0.5} \le 1.0$    |     |
| Norm [-]                                                   | EN 771-1:2011+A1:2015         |     |
| Hersteller (Länderkennung) [-]                             | e.g. THERMOPOR GmbH<br>(DE)   |     |
| Steinabmessungen [mm]                                      | 247 x 365 x 249               |     |
| Bohrverfahren [-]                                          | Drehbohren                    |     |
| 13<br>10<br>14                                             | 8<br>18<br>18<br>18<br>18     | 247 |
| -                                                          | 365                           | -   |

#### Tabelle C146: Montagekennwerte

| Ankergröße            |                     |      | M8                                                                    | M10 | M12  | M16  | IG-M6 | IG-M8 | IG-M10 |
|-----------------------|---------------------|------|-----------------------------------------------------------------------|-----|------|------|-------|-------|--------|
| Montagedrehmoment     | $T_{inst}$          | [Nm] | ≤ 4                                                                   | ≤ 4 | ≤ 10 | ≤ 10 | ≤ 4   | ≤ 4   | ≤ 4    |
| Randabstand           | Ccr                 | [mm] | 120 (für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |     |      |      |       |       |        |
| Minimaler Randabstand | C <sub>min</sub>    | [mm] | 50                                                                    |     |      |      |       |       |        |
| Achsabstand           | Scr, II             | [mm] | 250                                                                   |     |      |      |       |       |        |
| Achsabstand           | S <sub>cr, ⊥</sub>  | [mm] |                                                                       |     |      | 250  |       |       |        |
| Minimaler Achsabstand | Smin, II<br>Smin, ⊥ | [mm] | 50                                                                    |     |      |      |       |       |        |

#### Tabelle C147: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast |         |         |                                              | Querlast |         |          |   |                                                 |         |            |                                                    |  |     |
|---------|---------|---------|----------------------------------------------|----------|---------|----------|---|-------------------------------------------------|---------|------------|----------------------------------------------------|--|-----|
| Zugi    | ası     |         | senkrecht zum freien Rand parallel zum freie |          |         |          |   | senkrecht zum freien Rand parallel zum freien F |         |            | senkrecht zum freien Rand parallel zum freien Rand |  | and |
|         | mit c ≥ | αedge,N | <del> </del> -11                             |          | mit c ≥ | αedge,V⊥ |   |                                                 | mit c ≥ | αedge,V II |                                                    |  |     |
| •       | 50      | 1,00    |                                              |          | 50      | 0,25     |   |                                                 | 50      | 1,00       |                                                    |  |     |
|         | 120     | 1,00    | F                                            |          | 250     | 1,00     | E | <u> </u>                                        | 120     | 1,00       |                                                    |  |     |

| Injektionssystem HB-VMU plus für Mauerwerk                                                         |            |
|----------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Thermopor TV8+ Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C53 |



#### Steintyp: Hochlochziegel Thermopor TV8+ – Fortsetzung

#### Tabelle C148: Faktor für Ankergruppen

|                             | Anordnung parall | el zur La | gerfuge |            | Anordnung senk | recht zui | <sup>r</sup> Lagerfu | ge                                     |
|-----------------------------|------------------|-----------|---------|------------|----------------|-----------|----------------------|----------------------------------------|
| Zuglast                     |                  | mit c ≥   | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | $lpha_{	t gL,N}$                       |
|                             | • •              | 50        | 50      | 1,00       |                | 50        | 50                   | 1,00                                   |
|                             |                  | 120       | 250     | 2,00       |                | 120       | 250                  | 2,00                                   |
|                             |                  | mit c ≥   | mit s ≥ | αg II,∨⊥   |                | mit c ≥   | mit s ≥              | $\alpha_{\text{g}\perp,\text{V}\perp}$ |
| Querlast<br>senkrecht       | •••              | 50        | 50      | 0,75       | •              | 50        | 50                   | 0,50                                   |
| zum freien Rand             |                  | 250       | 50      | 2,00       |                | 250       | 50                   | 1,70                                   |
| Zam noion rana              |                  | 250       | 250     | 2,00       |                | 250       | 250                  | 2,00                                   |
| Querlast                    |                  | mit c ≥   | mit s ≥ | αg II,V II |                | mit c ≥   | mit s ≥              | α <sub>g ⊥,</sub> γ II                 |
| parallel<br>zum freien Rand | •                | 50        | 50      | 1,65       |                | 50        | 50                   | 1,15                                   |
|                             |                  | 120       | 250     | 2,00       |                | 120       | 250                  | 2,00                                   |

#### Tabelle C149: Charakteristische Widerstände unter Zug- und Querlast

|                    |              |                        | С              | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> |                         |                      |                |                   |                                 |  |  |  |
|--------------------|--------------|------------------------|----------------|-------------------------------------------------------------------------------|-------------------------|----------------------|----------------|-------------------|---------------------------------|--|--|--|
| Ankergröße         | Sieb-        | Effektive              |                | Nutzungsbedingungen                                                           |                         |                      |                |                   |                                 |  |  |  |
|                    | hülse<br>HB- | Veranke-<br>rungstiefe |                | d/d                                                                           |                         |                      | w/d<br>w/w     | d/d<br>w/d<br>w/w |                                 |  |  |  |
|                    |              |                        | 24°C /<br>40°C | 50°C /<br>80°C                                                                | 72°C /<br>120°C         | 24°C /<br>40°C       | 50°C /<br>80°C | 72°C /<br>120°C   | alle<br>Temperatur-<br>bereiche |  |  |  |
|                    |              | h <sub>ef</sub>        |                | ,                                                                             | $N_{Rk,b} = I$          | V <sub>Rk,p</sub> 1) |                |                   | V <sub>Rk,b</sub> 1)            |  |  |  |
|                    |              | [mm]                   |                | [kN]                                                                          |                         |                      |                |                   | [kN]                            |  |  |  |
|                    |              | Normierte m            | ittlere Dr     | uckfestig                                                                     | keit f <sub>b</sub> ≥ 1 | 0 N/mm <sup>2</sup>  | ? 2)           |                   | 7                               |  |  |  |
| M8                 | VM-SH 12     | 80                     |                |                                                                               |                         |                      |                |                   |                                 |  |  |  |
| M8 / M10/<br>IG-M6 | VM-SH 16     | ≥ 85                   | 3,0            | 3,0                                                                           | 2,5                     | 3,0                  | 3,0            | 2,5               | 3,5                             |  |  |  |
| M12 /<br>IG-M8     | VM-SH 20     | ≥ 85                   |                |                                                                               |                         |                      |                |                   |                                 |  |  |  |
| M16 /<br>IG-M10    | VM-SH 20     | ≥ 85                   | 3,5            | 3,5                                                                           | 3,0                     | 3,5                  | 3,5            | 3,0               | 7,0                             |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c \, II} = V_{Rk,c \, \perp}$  gemäß Anhang C5

#### Tabelle C150: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b>               | δινο                       | δn∞               | δ <sub>V</sub> / V | δνο                       | δν∞     |  |
|------------------------------|-----------------|-----------------------------------------|----------------------------|-------------------|--------------------|---------------------------|---------|--|
| Alikergrobe                  | [mm]            | [mm/kN]                                 | [mm]                       | [mm]              | [mm/kN]            | [mm]                      | [mm]    |  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                                    | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δ√0 |  |
| M16                          | 3,550,750,000   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                            |                   | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | .,,.    |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                   |            |
|--------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Hochlochziegel Thermopor TV8+ Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C54 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C145 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



## Steintyp: Leichtbetonlochstein HBL 16DF

# Tabelle C151: Beschreibung

| Steintyp                                                     | Leichtbetonlochstein HBL<br>16DF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|--------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Rohdichte ρ [kg/dm³]                                         | ≥ 1,0                            | and the same of th |  |  |  |  |  |  |  |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> [N/mm²] | ≥ 3,1                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten         | $(f_b / 3,1)^{0,5} \le 1,0$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Norm [-]                                                     | EN 771-3:2011+A1:2015            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Hersteller (Länderkennung) [-]                               | z.B. KLB Klimaleichtblock (DE)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Steinabmessungen [mm]                                        | 500 x 250 x 240                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Bohrverfahren [-]                                            | Drehbohren                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| 25 30 185 30 185 30 25                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |

#### Tabelle C152: Montagekennwerte

| Ankergröße                                                           | M8                                          | M10  | M12                                                                                           | M16                      | IG-M6 | IG-M8 | IG-<br>M10 |     |     |
|----------------------------------------------------------------------|---------------------------------------------|------|-----------------------------------------------------------------------------------------------|--------------------------|-------|-------|------------|-----|-----|
| Montagedrehmoment                                                    | T <sub>inst</sub>                           | [Nm] | ≤ 2                                                                                           | ≤ 2                      | ≤ 5   | ≤ 5   | ≤ 2        | ≤ 5 | ≤ 5 |
| Randabstand (unter Brandbeanspruchung)                               | Ccr; (Ccr,fi)                               | [mm] | 120 (2 h <sub>ef</sub> )<br>(für Querlasten senkrecht zum freien Rand: c <sub>cr</sub> = 250) |                          |       |       |            | 50) |     |
| Minimaler Randabstan                                                 | Minimaler Randabstand c <sub>min</sub> [mm] |      |                                                                                               | 50                       |       |       |            |     |     |
| Achsabstand (unter                                                   | Scr, II (Scr,fi, II)                        | [mm] |                                                                                               | 500 (4 h <sub>ef</sub> ) |       |       |            |     |     |
| Brandbeanspruchung)                                                  | $S_{cr, \perp} (S_{cr,fi, \perp})$          | [mm] | 250 (4 h <sub>ef</sub> )                                                                      |                          |       |       |            |     |     |
| Minimaler Achsabstand $\frac{s_{min, \ II;}}{s_{min, \ \perp}}$ [mm] |                                             | 50   |                                                                                               |                          |       |       |            |     |     |

497

#### Tabelle C153: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zugl |         |         | Querlast     |            |          |                          |         |           |  |
|------|---------|---------|--------------|------------|----------|--------------------------|---------|-----------|--|
| Zugi | สรเ     |         | senkrecht zu | m freien F | Rand     | parallel zum freien Rand |         |           |  |
|      | mit c ≥ | αedge,N |              | mit c ≥    | αedge,V⊥ |                          | mit c ≥ | αedge,VII |  |
| •    | 50      | 1,00    |              | 50         | 0,30     |                          | 50      | 1,00      |  |
|      | 120     | 1,00    |              | 250        | 1,00     |                          | 120     | 1,00      |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                            |            |
|-------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Leichtbetonlochstein HBL 16DF<br>Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C55 |



#### Steintyp: Leichtbetonlochstein HBL 16DF – Fortsetzung

Tabelle C154: Faktor für Ankergruppen

|                              | Anordnung parall | el zur La | gerfuge |            | Anordnung senk | recht zur | <sup>r</sup> Lagerfu | ge                  |
|------------------------------|------------------|-----------|---------|------------|----------------|-----------|----------------------|---------------------|
|                              |                  | mit c ≥   | mit s ≥ | αg II,N    |                | mit c ≥   | mit s ≥              | αg⊥,N               |
| Zuglast                      | • •              | 50        | 50      | 2,00       |                | 50        | 50                   | 1,55                |
|                              |                  | 120       | 500     | 2,00       |                | 120       | 250                  | 2,00                |
| Querlast                     | +                | mit c ≥   | mit s ≥ | αg II,V⊥   | 1              | mit c ≥   | mit s ≥              | α <sub>g⊥,</sub> ∨⊥ |
|                              |                  | 50        | 50      | 0,60       |                | 50        | 50                   | 0,35                |
| senkrecht<br>zum freien Rand |                  | 120       | 50      | 2,00       |                | 120       | 50                   | 1,15                |
| Zuili lieleli Kallu          |                  | 120       | 500     | 2,00       |                | 120       | 250                  | 2,00                |
| Querlast                     | +                | mit c ≥   | mit s ≥ | αg II,V II | t              | mit c ≥   | mit s ≥              | αg⊥,∨ II            |
| parallel                     |                  | 50        | 50      | 1,30       |                | 50        | 50                   | 1,00                |
| zum freien Rand              |                  | 120       | 250     | 2,00       |                | 50        | 50                   | 1,00                |
|                              |                  | 120       | 500     | 2,00       |                | 120       | 250                  | 2,00                |

Tabelle C155: Charakteristische Widerstände unter Zug- und Querlast

| Tabelle & Too. C. | ia anterio            |                                          |                     |                     | - 5. 5                  | , -, -, -, -, -, -, -, -, -, -, -, -, |                |                       |                                 |  |  |  |
|-------------------|-----------------------|------------------------------------------|---------------------|---------------------|-------------------------|---------------------------------------|----------------|-----------------------|---------------------------------|--|--|--|
|                   |                       |                                          | С                   | harakteri           | stische V               | Viderstär                             | nde bei c      | ≥ c <sub>cr</sub> und | s ≥ s <sub>cr</sub>             |  |  |  |
| A nkoraröß o      | Sich                  | - Fffalstive                             | Nutzungsbedingungen |                     |                         |                                       |                |                       |                                 |  |  |  |
| Ankergröße        | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungs-<br>tiefe | d/d                 |                     |                         | w/d<br>w/w                            |                |                       | d/d<br>w/d<br>w/w               |  |  |  |
|                   | пъ-                   | цете                                     | 24°C /<br>40°C      | 50°C /<br>80°C      | 72°C /<br>120°C         | 24°C /<br>40°C                        | 50°C /<br>80°C | 72°C /<br>120°C       | alle<br>Temperatur-<br>bereiche |  |  |  |
|                   |                       | h <sub>ef</sub>                          |                     | N <sub>Rk,b</sub> = |                         |                                       |                | V <sub>Rk,b</sub> 1)  |                                 |  |  |  |
|                   |                       | [mm]                                     |                     |                     | [kN                     | l]                                    |                | [kN]                  |                                 |  |  |  |
|                   | No                    | ormierte mi                              | ttlere Dru          | ıckfestigl          | keit f <sub>b</sub> ≥ 3 | ,1 N/mm <sup>2</sup>                  | 2 2)           |                       |                                 |  |  |  |
| M8 / M10/IG-M6    | VM-SH 16              | ≥ 85                                     | 1,2                 | 1,2                 | 0,9                     | 1,2                                   | 1,2            | 0,9                   | 2,0                             |  |  |  |
| M12 / IG-M8       | VM-SH 20              | ≥ 85                                     | 1 5                 | 1 5                 | 1.0                     | 1 5                                   | 1 5            | 1.0                   | 3,0                             |  |  |  |
| M16 / IG-M10      | VM-SH 20              | ≥ 85                                     | 1,5                 | 1,5                 | 1,2                     | 1,5                                   | 1,5            | 1,2                   | 5,0                             |  |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|I|} = V_{Rk,c\perp}$  gemäß Anhang C5

#### Tabelle C156: Verschiebungen

| Ankergröße                   | <b>h</b> ef<br>[mm] | δ <sub>N</sub> / <b>N</b> [mm/kN] | <b>δ</b> <sub>N0</sub><br>[mm]          | δ <sub>N∞</sub><br>[mm] | δv / V<br>[mm/kN] | <b>δ</b> ν₀<br>[mm]       | δ <sub>V∞</sub> |
|------------------------------|---------------------|-----------------------------------|-----------------------------------------|-------------------------|-------------------|---------------------------|-----------------|
| M8 – M12 /<br>IG-M6 – IG-M10 | alle                | 0,13                              | 0,13*N <sub>Rk</sub> / 3,5              | 2*δνο                   | 0,55              | 0,55*V <sub>Rk</sub> /3,5 | 1,5*δνο         |
| M16                          | Se 2008/184         | 000 <b>4</b> 00 000000            | 100 10 10 10 10 10 10 10 10 10 10 10 10 |                         | 0,31              | 0,31*V <sub>Rk</sub> /3,5 |                 |

#### Tabelle C157: Charakteristische Widerstände unter Brandbeanspruchung

| Ankergröße      | Sieb-<br>hülse | Effektive<br>Veranke-<br>rungstiefe | Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$ |      |                |                            |  |  |
|-----------------|----------------|-------------------------------------|-------------------------------------------------------------------------|------|----------------|----------------------------|--|--|
|                 | HB-            | h <sub>ef</sub>                     | R30                                                                     | R60  | R90            | R120                       |  |  |
|                 | 1,0            | [mm]                                | [kN]                                                                    |      |                |                            |  |  |
| M8 / M10 /IG-M6 | VM-SH 16       | 130                                 | 0,29                                                                    | 0.21 | keine Leistung | Iraina I aistuus           |  |  |
| M12 / IG-M8     | VM-SH 20       | ≥ 130                               | 0,29                                                                    | 0,21 | bewertet       | keine Leistung<br>bewertet |  |  |
| M16 / IG-M10    | VM-SH 20       | ≥ 130                               | 0,29                                                                    | 0,21 | 0,12           | Deweilet                   |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                    |            |
|---------------------------------------------------------------------------------------------------------------|------------|
| Leistung – Leichtbetonlochstein HBL 16DF<br>Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C56 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C151 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



## Steintyp: Betonlochstein Bloc Creux B40

Tabelle C158: Beschreibung

| Steintyp                                                 |       | Betonlochstein<br>Bloc Creux B40 |                    |
|----------------------------------------------------------|-------|----------------------------------|--------------------|
| Rohdichte $\rho$ [kg.                                    | /dm³] | ≥ 0,8                            |                    |
| Normierte mittlere<br>Druckfestigkeit f <sub>b</sub> [N/ | mm²]  | ≥ 5,2                            |                    |
| Umrechnungsfaktor für geringere<br>Druckfestigkeiten     |       | $(f_b / 5,2)^{0,5} \le 1,0$      |                    |
| Norm                                                     | [-]   | EN 771-3:2011+A1:2015            |                    |
| Hersteller (Länderkennung)                               | [-]   | z.B. Leroux (FR)                 |                    |
| Steinabmessungen [n                                      | nm]   | 500 x 200 x 200                  |                    |
| Bohrverfahren                                            | [-]   | Drehbohren                       |                    |
|                                                          |       |                                  | 17 72 17 72 17 195 |
| 17 130                                                   | _1    | 7 130 17 130                     |                    |
| -                                                        |       | 495                              | -                  |

Tabelle C159: Montagekennwerte

| Ankergröße            |                                             | M8      | M10                                                       | M12 | M16 | IG-M6 | IG-M8 | IG-M10 |     |
|-----------------------|---------------------------------------------|---------|-----------------------------------------------------------|-----|-----|-------|-------|--------|-----|
| Montagedrehmoment     | $T_{inst}$                                  | st [Nm] |                                                           |     |     |       |       | ≤ 4    | ≤ 4 |
| Randabstand           | Ccr                                         | [mm]    | 120 (für Querlasten senkrecht zum freien Rand: ccr = 170) |     |     |       |       |        |     |
| Minimaler Randabstand | Cmin                                        | [mm]    | 50                                                        |     |     |       |       |        |     |
| Ashashatand           | Scr, II                                     | [mm]    | 170                                                       |     |     |       |       |        |     |
| Achsabstand           | S <sub>cr, ⊥</sub>                          | [mm]    | 200                                                       |     |     |       |       |        |     |
| Minimaler Achsabstand | S <sub>min, II</sub><br>S <sub>min, ⊥</sub> | [mm]    | 50                                                        |     |     |       |       |        |     |

#### Tabelle C160: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zuglast |         |         |  | Querlast                  |          |  |                          |           |  |  |  |
|---------|---------|---------|--|---------------------------|----------|--|--------------------------|-----------|--|--|--|
| Zugi    | Zugiast |         |  | senkrecht zum freien Rand |          |  | parallel zum freien Rand |           |  |  |  |
|         | mit c ≥ | αedge,N |  | mit c ≥                   | αedge,V⊥ |  | mit c ≥                  | αedge,VII |  |  |  |
| •       | 50      | 1,00    |  | 50                        | 0,35     |  | 50                       | 1,00      |  |  |  |
|         | 120     | 1,00    |  | 170                       | 1,00     |  | 120                      | 1,00      |  |  |  |

| Injektionssystem HB-VMU plus für Mauerwerk                                                       |            |
|--------------------------------------------------------------------------------------------------|------------|
| Leistung – Betonlochstein Bloc Creux B40 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren | Anhang C57 |



#### Steintyp: Betonlochstein Bloc Creux B40 – Fortsetzung

Tabelle C161: Faktor für Ankergruppen

|                                   | Anordnung parall | el zur Lag | gerfuge  |            | Anordnung senkrecht zur Lagerfuge |         |         |                  |  |
|-----------------------------------|------------------|------------|----------|------------|-----------------------------------|---------|---------|------------------|--|
|                                   | †                | mit c ≥    | mit s ≥  | αg II,N    |                                   | mit c ≥ | mit s ≥ | $lpha_{	t gL,N}$ |  |
| Zuglast                           |                  | 50         | 50       | 1,50       |                                   | 50      | 50      | 1,40             |  |
|                                   |                  | 50         | 170      | 2,00       |                                   | 50      | 200     | 2,00             |  |
|                                   |                  | 120        | 170      | 2,00       |                                   | 120     | 200     | 2,00             |  |
|                                   | mit c ≥          | mit s ≥    | αg II,V⊥ |            | mit c ≥                           | mit s ≥ | αg⊥,∨⊥  |                  |  |
| Querlast<br>senkrecht             |                  | 50         | 50       | 0,55       |                                   | 50      | 50      | 0,35             |  |
| zum freien Rand                   |                  | 120        | 50       | 1,30       |                                   | 120     | 50      | 0,85             |  |
| Zam noion rana                    |                  | 120        | 170      | 2,00       |                                   | 120     | 200     | 2,00             |  |
| 0                                 |                  | mit c ≥    | mit s ≥  | αg II,V II |                                   | mit c ≥ | mit s ≥ | αg⊥,∨ II         |  |
| Querlast parallel zum freien Rand |                  | 50         | 50       | 1,10       | •                                 | 50      | 50      | 1,00             |  |
|                                   |                  | 50         | 30       | 1,10       |                                   | 50      | 200     | 2,00             |  |
| Zam noion rana                    |                  | 120        | 170      | 2,00       |                                   | 120     | 200     | 2,00             |  |

#### Tabelle C162: Charakteristische Widerstände unter Zug- und Querlast

|                            |                       |                                          | С                   | harakteri      |                 |                      | derstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> |                   |                                 |  |
|----------------------------|-----------------------|------------------------------------------|---------------------|----------------|-----------------|----------------------|-----------------------------------------------------------|-------------------|---------------------------------|--|
| Ankergröße                 | Sieb-<br>hülse<br>HB- | Effektive<br>Veranke-<br>rungs-<br>tiefe | d/d                 |                |                 | mysbear              | w/d<br>w/w                                                | d/d<br>w/d<br>w/w |                                 |  |
|                            |                       |                                          | 24°C /<br>40°C      | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C       | 50°C /<br>80°C                                            | 72°C /<br>120°C   | alle<br>Temperatur-<br>bereiche |  |
|                            |                       | h <sub>ef</sub>                          | N <sub>Rk,b</sub> = |                |                 | N <sub>Rk,p</sub> 1) | 9                                                         |                   | V <sub>Rk,b</sub> 1)            |  |
|                            |                       | [mm]                                     |                     |                | [kN             | ١]                   |                                                           | [kN]              |                                 |  |
|                            | No                    | ormierte mi                              | ttlere Dru          | ıckfestigl     | keit f₀ ≥ 5     | ,2 N/mm              | 2 2)                                                      |                   |                                 |  |
| M8 / M10<br>IG-M6          | VM-SH 16              | 130                                      | 2.0                 | 1.5            | 1.2             | 2.0                  | 1 5                                                       | 1.2               | 6.0                             |  |
| M12 / M16<br>IG-M8 /IG-M10 | VM-SH 20              | ≥ 130                                    | 2,0                 | 1,5            | 1,2             | 2,0                  | 1,5                                                       | 1,2               | 6,0                             |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c | l} = V_{Rk,c \perp}$  gemäß Anhang C5

#### Tabelle C163: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> | δ <sub>N</sub> / <b>N</b> | δινο                       | δn∞               | δ <sub>V</sub> / V | δνο                       | δν∞              |
|------------------------------|-----------------|---------------------------|----------------------------|-------------------|--------------------|---------------------------|------------------|
| [mm]                         | [mm]            | [mm/kN]                   | [mm]                       | [mm]              | [mm/kN]            | [mm]                      | [mm]             |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle            | 0,13                      | 0,13*N <sub>Rk</sub> / 3,5 | 2*δ <sub>N0</sub> | 0,55               | 0,55*V <sub>Rk</sub> /3,5 | 1, <b>5</b> *δνο |
| M16                          |                 | ,                         | ,                          | - 3.112           | 0,31               | 0,31*V <sub>Rk</sub> /3,5 | 3.00             |

| Injektionssystem HB-VMU plus für Mauerwerk                                                                   |            |
|--------------------------------------------------------------------------------------------------------------|------------|
| Leistungen – Betonlochstein Bloc Creux B40 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen | Anhang C58 |

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C158 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

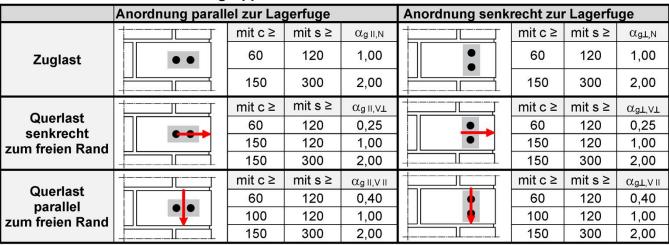


#### Steintyp: Leichtbetonvollstein VBL

Tabelle C164: Beschreibung

| Steintyp                                         |         |                       | Leichtbetonvollstein VBL  |
|--------------------------------------------------|---------|-----------------------|---------------------------|
| Rohdichte                                        | ρ       | [kg/dm <sup>3</sup> ] | ≥ 0,6                     |
| Normierte mittlere<br>Druckfestigkeit            | $f_{b}$ | [N/mm <sup>2</sup> ]  | ≥ 2                       |
| Umrechnungsfaktor für gerir<br>Druckfestigkeiten | nger    | е                     | $(f_b / 2)^{0,5} \le 1,0$ |
| Norm                                             |         | [-]                   | EN 771-3:2011+A1:2015     |
| Hersteller (Länderkennung)                       |         | [-]                   | z.B. Bisotherm (DE)       |
| Steinabmessungen                                 |         | [mm]                  | ≥ 240 x 300 x 113         |
| Bohrverfahren                                    |         | [-]                   | Drehbohren                |




#### Tabelle C165: Montagekennwerte

| Ankergröße            |                                            |      | M8  | M10 | M12 | M16 | IG-M6 | IG-M8 | IG-M10 |
|-----------------------|--------------------------------------------|------|-----|-----|-----|-----|-------|-------|--------|
| Montagedrehmoment     | T <sub>inst</sub>                          | [Nm] | ≤ 2 | ≤ 2 | ≤ 2 | ≤ 2 | ≤ 2   | ≤ 2   | ≤ 2    |
| Randabstand           | Ccr                                        | [mm] | 150 |     |     |     |       |       |        |
| Minimaler Randabstand | C <sub>min</sub>                           | [mm] | 60  |     |     |     |       |       |        |
| Achsabstand           | Scr, II                                    | [mm] |     |     |     | 300 |       |       |        |
| Acrisabstand          | Scr, ⊥                                     | [mm] |     |     |     | 300 |       |       |        |
| Minimaler Achsabstand | S <sub>min, I</sub><br>S <sub>min, ⊥</sub> | [mm] | 120 |     |     |     |       |       |        |

#### Tabelle C166: Reduktionsfaktoren für Einzelanker unter Randeinfluss

| Zual | Zuglast |         |              | Querlast                 |          |  |         |           |  |  |  |
|------|---------|---------|--------------|--------------------------|----------|--|---------|-----------|--|--|--|
| Zugi | ası     |         | senkrecht zu | parallel zum freien Rand |          |  |         |           |  |  |  |
|      | mit c ≥ | αedge,N |              | mit c ≥                  | αedge,V⊥ |  | mit c ≥ | αedge,VII |  |  |  |
| •    | 60      | 1,00    |              | 60                       | 0,25     |  | 60      | 0,40      |  |  |  |
|      | 150     | 1,00    |              | 150                      | 1,00     |  | 100     | 1,00      |  |  |  |

#### Tabelle C167: Faktor für Ankergruppen



# Injektionssystem HB-VMU plus für Mauerwerk Leistungen – Leichtbetonvollstein VBL Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren Anhang C59



#### Steintyp: Leichtbetonvollstein VBL – Fortsetzung

#### Tabelle C168: Charakteristische Widerstände unter Zug- und Querlast

|                                                                | Sieb-        | Effektive              | Charakteristische Widerstände bei c ≥ c <sub>cr</sub> und s ≥ s <sub>cr</sub> |                |                 |                |                |                 |                                 |  |  |
|----------------------------------------------------------------|--------------|------------------------|-------------------------------------------------------------------------------|----------------|-----------------|----------------|----------------|-----------------|---------------------------------|--|--|
| Ankergröße                                                     |              |                        | Nutzungsbedingungen                                                           |                |                 |                |                |                 |                                 |  |  |
|                                                                | hülse<br>HB- | Veranke-<br>rungstiefe | d/d                                                                           |                |                 | w/d<br>w/w     |                |                 | d/d<br>w/d<br>w/w               |  |  |
|                                                                |              |                        | 24°C /<br>40°C                                                                | 50°C /<br>80°C | 72°C /<br>120°C | 24°C /<br>40°C | 50°C /<br>80°C | 72°C /<br>120°C | alle<br>Temperatur-<br>bereiche |  |  |
|                                                                |              | h <sub>ef</sub>        | $N_{Rk,b} = N_{Rk,p}^{-1}$                                                    |                |                 |                |                |                 | V <sub>Rk,b</sub> 1)            |  |  |
|                                                                |              | [mm]                   |                                                                               |                | [kN             | 1]             |                |                 | [kN]                            |  |  |
| Normierte mittlere Druckfestigkeit f <sub>b</sub> ≥ 2 N/mm² ²) |              |                        |                                                                               |                |                 |                |                |                 |                                 |  |  |
| M8                                                             | _            | 80                     | 3,0                                                                           | 2,5            | 2,0             | 2,5            | 2,0            | 1,5             | 3,0                             |  |  |
| M10 / IG-M6                                                    | -            | 90                     |                                                                               |                |                 |                |                |                 |                                 |  |  |
| M12 / M16 /<br>IG-M8 / IG-M10                                  | -            | 100                    |                                                                               |                |                 |                |                |                 |                                 |  |  |
| M8                                                             | VM-SH 12     | 80                     |                                                                               | 2,5            | 2,0             | 2,5            | 2,0            | 1,5             |                                 |  |  |
| M8 / M10 /<br>IG-M6                                            | VM-SH 16     | ≥ 85                   | 2,5                                                                           |                |                 |                |                |                 |                                 |  |  |
| M12 / M16 /<br>IG-M8 / IG-M10                                  | VM-SH 20     | ≥ 85                   |                                                                               |                |                 |                |                |                 |                                 |  |  |

<sup>1)</sup>  $N_{Rk,b,c} = N_{Rk,p,c}$  und  $V_{Rk,c|I} = V_{Rk,c\perp}$  gemäß Anhang C5

#### Tabelle C169: Verschiebungen

| Ankergröße                   | h <sub>ef</sub> δ <sub>N</sub> / N |         | δινο                       | δn∞   | δ <sub>V</sub> / V | δνο                       | δν∞                                     |  |
|------------------------------|------------------------------------|---------|----------------------------|-------|--------------------|---------------------------|-----------------------------------------|--|
| Alikelglobe                  | [mm]                               | [mm/kN] | [mm]                       | [mm]  | [mm/kN]            | [mm]                      | [mm]                                    |  |
| M8 – M12 /<br>IG-M6 – IG-M10 | alle                               | 0,10    | 0,10*N <sub>Rk</sub> / 3,5 | 2*δνο | 0,30               | 0,30*V <sub>Rk</sub> /3,5 | 1,5*δ√ο                                 |  |
| M16                          |                                    |         |                            |       | 0,10               | 0,10*V <sub>Rk</sub> /3,5 | , , , , , , , , , , , , , , , , , , , , |  |

Injektionssystem HB-VMU plus für Mauerwerk

Leistungen – Leichtbetonvollstein VBL
Charakteristische Widerstände und Verschiebungen

Anhang C60

<sup>&</sup>lt;sup>2)</sup> Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C164 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.