

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0196 of 15 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection System HB-VMU plus for masonry

Metal Injection anchors for use in masonry

Leviat GmbH Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Leviat Herstellwerke HB1, HB3

81 pages including 3 annexes which form an integral part of this assessment

EAD 330076-01-0604, Edition 10/2022

ETA-17/0196 issued on 10 March 2017

DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de Z208598.25 | 8.06.04-163/25

European Technical Assessment ETA-17/0196

English translation prepared by DIBt

Page 2 of 81 | 15 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 81 | 15 September 2025

Specific Part

1 Technical description of the product

The "Injection System HB-VMU plus for masonry" is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar HB-VMU plus or HB-VMU plus Polar, a perforated sleeve and an anchor rod with hexagon nut and washer or an Internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static loading	See Annexes B6, B7 C1 to C60
Characteristic resistance and displacements for seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm. Minimum edge distances and spacing	See Annexes C4, C9, C10, C15, C16, C19, C21, C22, C23, C40, C42, C47, C48, C49, C50, C55 and C56

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-17/0196

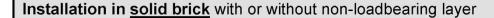
English translation prepared by DIBt

Page 4 of 81 | 15 September 2025

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC].

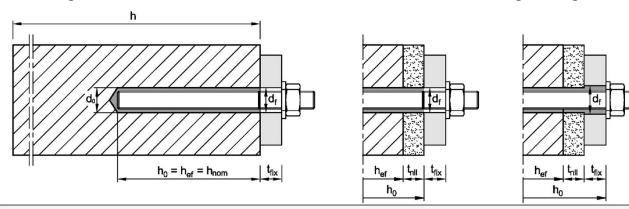
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

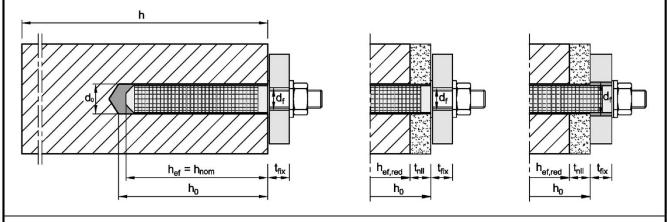
Issued in Berlin on 15 September 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider



Threaded rod M8 - M16 / Internally threaded anchor rod IG-M6 - IG-M10

Pre-setting installation


Through-setting installation

Threaded rod M8 - M16 / Internally threaded anchor rod IG-M6 - IG-M10 with sleeve

Pre-setting installation

Through-setting installation

For through-setting installation, the annular gap between the anchor rod and the fixture must be filled with mortar.

Legend (Annex A1 and Annex A2):

h_{ef} = effective anchorage depth

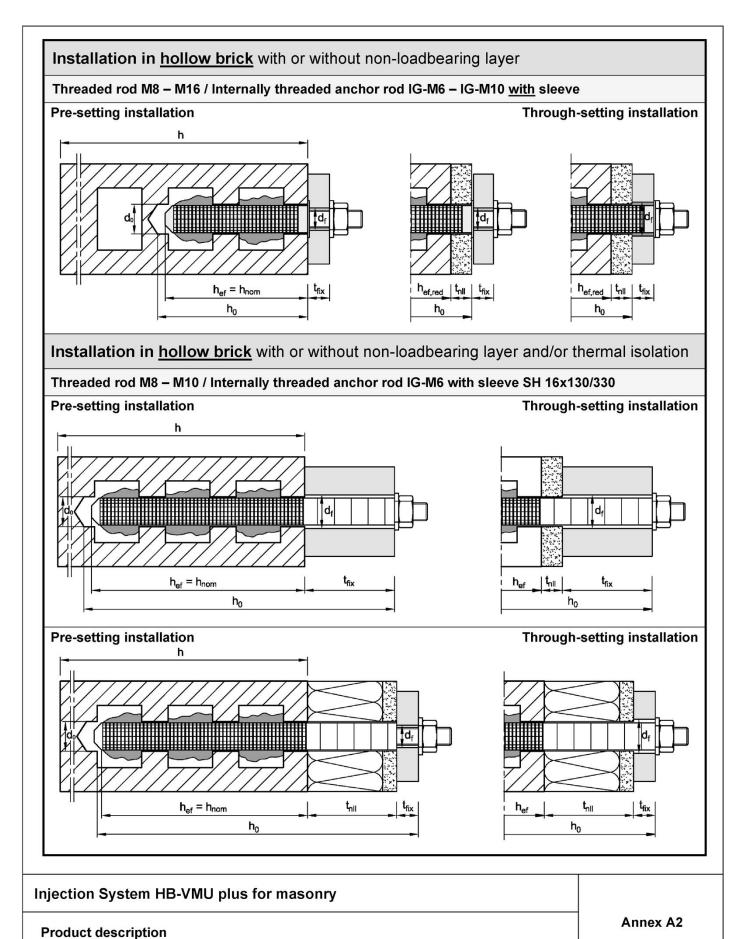
h_{nom} = overall anchor embedment depth

 h_0 = depth of drill hole

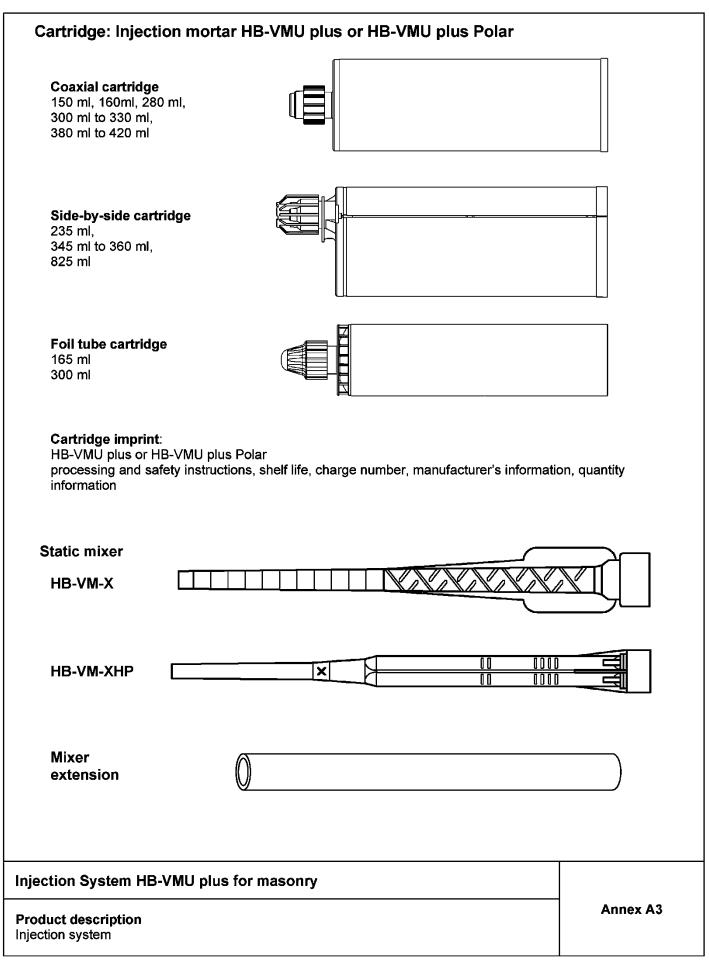
h = thickness of masonry member d₀ = nominal drill hole diameter

d_f = diameter of clearance hole in the fixture

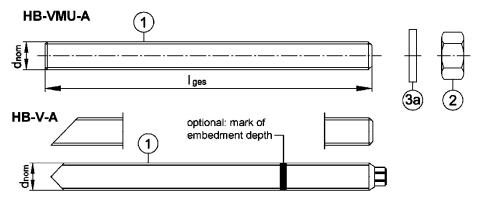
 t_{fix} = thickness of fixture


t_{nll} = thickness of non-loadbearing layer

Injection System HB-VMU plus for masonry Product description Installation condition – solid brick Annex A1


Installation condition - hollow brick

English translation prepared by DIBt



Threaded rod

Threaded rod HB-VMU-A and HB-V-A

M8, M10, M12, M16 (zinc plated, A4, HCR)

with washer and hexagon nut

Marking e.g.: ♦ M10

identifying mark of manufacturing plant

M10 size of thread

additional marking:

-8 strength class 8.8A4 stainless steel

HC high corrosion resistant steel

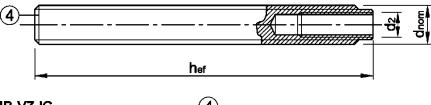
Threaded rod HB-VM-A (material sold by the metre, to be cut at the required length)

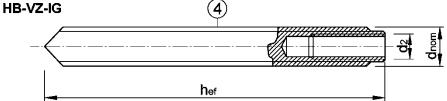
M8, M10, M12, M16 (zinc plated, A2, A4, HCR)

- Materials, dimensions and mechanical properties see Table A1

Commercial standard threaded rod with:

M8, M10, M12, M16 (zinc plated, A2, A4, HCR)


- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004 (documents must be retained)


Internally threaded anchor rod HB-VMU-IG and HB-VZ-IG

IG M6, IG M8, IG M10

(zinc plated, A4, HCR)

HB-VMU-IG

identifying mark of manufacturing plant

I internal thread (optional)

M8 size of internal thread

additional marking:

-8 strength class 8.8

A4 stainless steel

HCR high corrosion resistant steel

Injection System HB-VMU plus for masonry

Product description

Threaded rods and internally threaded anchor rods

Annex A4

Table A1: Material

Part	Designation		Material an	d mech	anical pro	perties		
electro hot-di	p galvanized ≥ 5	5 μm acc. to 0 μm in aver 5 μm acc. to	age acc. to	EN ISO	1461:202	2, EN IS	O 10684:200	04+AC:2009 or
		Property class			characteristic characteristic			EN ISO 683-4:2018,
		4.0	3	400		240	A ₅ > 8 %	EN 10263:2017
1	Threaded rod	4.8		400	1 .	320	A ₅ > 8 %	Commercial standard
		5.0	f _{uk} [N/mm²]	500	f _{yk} [N/mm²]	300	A ₅ > 8 %	threaded rod:
		5.8	3	500	[[[,],]]	400	A ₅ > 8 %	EN ISO 898-1:2013
		8.8	3	800		640	A ₅ > 8 %	
			for class	4.6 or 4.	8 rods			
2	Hexagon nut		for class	4.6, 4.8,	5.6 or 5.8	rods		EN ISO 898-2:2022
			for class	4.6, 4.8,	5.6, 5.8 o	r 8.8 roc	ls	
3	Washer		e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EI EN ISO 887:2006					I ISO 7094:2000,
4 Stain	Internally threaded anchor rod ³⁾	5.3	Steel, ele		ed or sher		A ₅ > 8% A ₅ > 8% A ₅ > 1 4541	EN ISO 683-4:2018
Stain Stain		8.steel HCR Propert	Steel, ele CRC II (1.4 CRC III (1.4 CRC V (1.4) Charact	301 / 1.4 401 / 1.4 529 / 1.4 eristic	4307 / 1.4 4404 / 1.4 4565) charact	311 / 1.4 571 / 1.4 eristic	A ₅ > 8% 1567 / 1.4541 1578) fracture	50 10 10 10 10 10 10 10 10 10 10 10 10 10
Stain Stain	less steel A2 1) less steel A4	8.6 steel HCR Propert clas	Steel, ele CRC II (1.4 CRC V (1.4) CRC v (the charact of the charact	301 / 1.4 401 / 1.4 529 / 1.4 eristic	4307 / 1.4 4404 / 1.4 1565)	311 / 1.4 571 / 1.4 eristic	A ₅ > 8% 1567 / 1.4541 1578) fracture elongation	50 10 10 10 10 10 10 10 10 10 10 10 10 10
Stain Stain High	less steel A2 1) less steel A4 corrosion resistant s	8.steel HCR Propert	Steel, ele CRC II (1.4 CRC V (1.4) CRC v (the charact of the charact	301 / 1.4 401 / 1.4 529 / 1.4 eristic	4307 / 1.4 4404 / 1.4 4565) charact	311 / 1.4 571 / 1.4 eristic rength 210	A ₅ > 8% 1567 / 1.4541 1578) fracture) EN 10088-1:2014
Stain Stain	less steel A2 1) less steel A4	8.6 steel HCR Propert clas	Steel, ele CRC II (1.4 CRC V (1.4) charact ultimate s	301 / 1.4 401 / 1.4 529 / 1.4 eristic	4307 / 1.4 4404 / 1.4 4565) charact	311 / 1.4 571 / 1.4 eristic rength 210 450 (560) 2)	A ₅ > 8% IS67 / 1.4541 IS78) fracture elongation A ₅ > 8%)
Stain Stain High	less steel A2 1) less steel A4 corrosion resistant s	eteel HCR Propert clas	Steel, ele CRC II (1.4 CRC V (1.4) charact ultimate s fuk [N/mm²]	301 / 1.4 401 / 1.4 529 / 1.4 eristic strength 500 700 800	4307 / 1.4 4404 / 1.4 4565) charact yield str	311 / 1.4 571 / 1.4 eristic rength 210 450	A ₅ > 8% 4567 / 1.4541 4578) fracture elongation A ₅ > 8% A ₅ > 8 %) EN 10088-1:2014
Stain Stain High	anchor rod ³⁾ less steel A2 ¹⁾ less steel A4 corrosion resistant s Threaded rod	Propert clas	Steel, ele CRC II (1.4 CRC V (1.4 Charact ultimate s fuk [N/mm²] for class	301 / 1.4 401 / 1.4 529 / 1.4 eristic strength 500 700 800	4307 / 1.4 4404 / 1.4 4565) charact yield str	311 / 1.4 571 / 1.4 eristic rength 210 450 (560) ²⁾ 600	A ₅ > 8% 4567 / 1.4541 4578) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020
Stain Stain High	less steel A2 1) less steel A4 corrosion resistant s	Propert class 70 80	Steel, ele CRC II (1.4 CRC V (1.4) charact ultimate s fuk [N/mm²] for class s for class s	301 / 1.4 401 / 1.4 529 / 1.4 eristic strength 500 700 800 50 rods 50 or 70	4307 / 1.4 4404 / 1.4 4565) charact yield str f _{yk} [N/mm²]	311 / 1.4 571 / 1.4 eristic rength 210 450 (560) ²⁾ 600	A ₅ > 8% 4567 / 1.4541 4578) fracture elongation A ₅ > 8% A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020
Stain Stain High	anchor rod ³⁾ less steel A2 ¹⁾ less steel A4 corrosion resistant s Threaded rod	Propert class 70 80	Steel, ele CRC II (1.4 CRC V (1.44 CRC V	301 / 1.4 401 / 1.4 529 / 1.4 eristic strength 500 700 800 50 rods 50 or 70	4307 / 1.4 4404 / 1.4 4565) charact yield str f _{yk} [N/mm²]	311 / 1.4 571 / 1.4 eristic rength 210 450 (560) ²⁾ 600 (640) ²⁾	A ₅ > 8% I ₅ 67 / 1.4541 I ₅ 78) fracture elongation A ₅ > 8% A ₅ > 8 % A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020
Stain Stain High	anchor rod ³⁾ less steel A2 ¹⁾ less steel A4 corrosion resistant s Threaded rod	Propert class 70 80	Steel, ele CRC II (1.4 CRC V (1.4 Charact ultimate s fuk [N/mm²] for class s for class s e.g.: EN I	301 / 1.4 401 / 1.4 529 / 1.4 eristic strength 500 700 800 50 rods 50 or 70 50, 70 or	4307 / 1.4 4404 / 1.4 4565) charact yield str f _{yk} [N/mm²]	311 / 1.4 571 / 1.4 eristic rength 210 450 (560) ²⁾ 600 (640) ²⁾	A ₅ > 8% I ₅ 67 / 1.4541 I ₅ 78) fracture elongation A ₅ > 8% A ₅ > 8 % A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020
Stain Stain High	anchor rod³) less steel A2 ¹) less steel A4 corrosion resistant s Threaded rod Hexagon nut	Propert class 70 80	Steel, ele CRC II (1.4 CRC V	301 / 1.4 401 / 1.4 529 / 1.4 eristic strength 500 700 800 50 rods 50 or 70 50, 70 or SO 708 094:200 steel A4	4307 / 1.4 4404 / 1.4 4565) charact yield str f _{yk} [N/mm²] rods r 80 rods 9:2000, El	311 / 1.4 571 / 1.4 eristic rength 210 450 (560) ²⁾ 600 (640) ²⁾	A ₅ > 8% I ₅ 67 / 1.4541 I ₅ 78) fracture elongation A ₅ > 8% A ₅ > 8 % A ₅ > 8 %	EN 10088-1:2014 EN ISO 3506-1:2020 EN 10088-1:2014 EN ISO 3506-2:2020

¹⁾ Property class 50 and 70

²⁾ Value in brackets for anchor rods HB-VMU-A and HB-V-A
³⁾ Using HB-VMU-IG or HB-VZ-IG, screws or threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used.

Injection System HB-VMU plus for masonry	
Product description Materials	Annex A5

Table A2: Dimensions of threaded rods and internally threaded anchor rods

Threaded rod			M8	M10	M12	M16
Diameter	$d = d_{nom}$	[mm]	8	10	12	16
Total length I _{ges} [mm]		h_{ef} + t_{fix} + 9,5	h _{ef} + t _{fix} + 11,5	h _{ef} + t _{fix} + 17,5	h _{ef} + t _{fix} + 20,0	
Internally threaded anchor rod		•	IG M6	IG M8	IG M10	
Internal diameter	d_2	[mm]	-	6	8	10
Outer diameter	$d = d_{nom}$	[mm]	ī	10	12	16
min. screw-in depth	$L_{IG,min}$	[mm]	Ī	8	10	10
Total length	I_{ges}	I _{ges} [mm] - with sleeve: h _{ef} – 5mm without sleeve: h _{ef}			nm	

Table A3: Dimensions of sleeves HB-VM-SH

Туре	Size	d ₅ [mm]	L _s	h _{ef} = h _{nom} [mm]
$L_s = h_{ef} = h_{nom}$	HB-VM-SH 12x80	12	80	80
ds	HB-VM-SH 16x85	16	85	85
	HB-VM-SH 20x85	20	85	85
L _s = h _{ef} = h _{nom}	HB-VM-SH 16x130	16	130	130
ds	HB-VM-SH 20x130	20	130	130
	HB-VM-SH 20x200	20	200	200
L_s $h_{ef} = h_{nom}$ d_s for installation through insulation up to a thickness of 20 cm or through-setting installation	HB-VM-SH 16x130/330 ¹⁾	16	330	130

¹⁾ In Annex C this sleeve is covered with the HB-VM-SH 16x130

Injection System HB-VMU plus for masonry	
Product description Dimensions of threaded rods and sleeves	Annex A6

Specifications of intended use

	1		
Anchorages	Static and quasi-sta	M8 – M16	
subject to	Fire exposure	IG M6 – IG M10	
	Tension and shear	oads	(with and without sleeve)
Base Material	Masonry group b:	Solid brick masonry	Annex B 3
	Masonry group c:	Hollow brick masonry	Annex B 3 to B 5
	Masonry group d:	Autoclaved Aerated Concrete	Annex B 3
	For other bricks in s the characteristic re	es of the masonry M2,5 at minimum ac olid masonry, hollow masonry or in au sistance of the anchor may be determ TR 053, Edition July 2022 under cons C1, Table C1	itoclaved aerated concrete, lined by job site tests
Temperature range	T _b : - 40°C to +80°C (max. short term T _c : - 40°C to +120°C	temperature +40°C and max. long tentemperature +80°C and max. long tentemperature +120°C and max. long tentemperature +120°C and max. long tentemperature +120°C and max.	rm temperature +50°C)
Hole drilling	See Annex C		
Use conditions (Environmental conditions):	For all other condition	o dry internal conditions (all materials) ons acc. to EN 1993-1-4:2006+ A2:20 Annex A (stainless steel and high corr	20 corresponding to corrosion
Use category	Condition d/d Condition w/w	Installation and use in dry masonry Installation and use in dry or wet m (incl. w/d, installation in wet mason	asonry

Note: The characteristic resistance for solid bricks and autoclaved aerated concrete are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Injection System HB-VMU plus for masonry	
Intended Use	Annex B1
Specifications	

Specifications of intended use (continued)

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the EOTA TR 054, Edition July 2022, under the responsibility of an engineer experienced in anchorages and masonry work.
- · Applies to all bricks if no other values are specified:
 - $N_{Rk} = N_{Rk,b} = N_{Rk,p} = N_{Rk,b,c} = N_{Rk,p,c}$
 - $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$
- For the calculation of pulling out a brick under tension loading NRK,pb or pushing out a brick under shear loading VRK,pb see EOTA Technical Report TR 054, Edition July 2022.
- NRk,s, VRk,s and M⁰Rk,s see annexes C2 C4
- For application with sleeve with drill bit size ≤ 15mm installed in joints not filled with mortar:
 - NRk,p,j = 0,18 * NRk,p and NRk,b,j = 0,18 * NRk,b (NRk,p = NRk,b see Annex C)
 - VRk,c,j = 0,15 * VRk,c and VRk,b,j = 0,15 * VRk,b (VRk,b see Annex C; and VRk,c see Annex C5)
- Applications without sleeve installed in unfilled joints are not permitted.

Installation:

- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Using internally threaded anchor rod (HB-VMU-IG or HB-VZ-IG) screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used.

Injection System HB-VMU plus for masonry	
Intended use Specifications	Annex B2

Designation Density [kg/dm³] Dimension LxBxH [mm]	Picture	Perfo Sleeve HB-VM-SH	Fire exposure	Annex	Designation Density [kg/dm³] Dimension LxBxH [mm]	Picture	Perfo Sleeve HB-VM-SH	Fire exposure	Annex
	ght weight concrete EN 771-4:2011+A1:		c. to			ght weight concre EN 771-3:2011+A1		cc. to	
AAC ρ = 0,35-0,60 ≥ 499x240x249	1	12x80 16x85 16x130 20x85 20x130 20x200	J	C6 - C8	VBL ρ≥0,6 ≥240x300x113		12x80 16x85 16x130 20x85 20x130 20x200	_	C59 - C60
	Hollow light	weight co	ncre	te bric	k acc. to EN 771	-3: 2011+A1:2015			
HBL 16DF ρ ≥ 1,0 500x250x240	Sec.	16x85 16x130 20x85 20x130 20x200	✓	C55 - C56	Bloc creux B40 ρ ≥ 0,8 495x195x190		16x130 20x130	-	C57
	Calci	um silica	brick	s acc.	to EN 771-2:2011	I+A1:2015			
KS-NF ρ ≥ 2,0 ≥ 240x115x71		12x80 16x85 16x130 20x85 20x130 20x200	✓	C9 - C10	KSL-3DF ρ≥1,4 240x175x113		16x85 16x130 20x85 20x130	_	C1 ⁻
KSL-8DF ρ≥ 1,4 248x240x238		16x130 20x130 20x200	-	C13 - C14	KSL-12DF ρ≥ 1,4 498x175x238		16x130 20x130	✓	C18
	So	lid clay b	ricks	acc. to	EN 771-1:2011+	·A1:2015			
MZ-1DF ρ ≥ 2,0 ≥ 240x115x55		12x80 16x85 16x130 20x85 20x130 20x200	ı	C17 - C18	MZ – 2 DF ρ ≥ 2,0 ≥ 240x115x113		12x80 16x85 16x130 20x85 20x130 20x200	~	C19 - C2

Injection System HB-VMU plus for masonry	
Intended use Brick types and properties	Annex B3

Designation Designation Designation										
Density [kg/dm³] Dimension LxBxH [mm]	Picture	Perfo Sleeve HB-VM-SH	Fire exposure	Annex	Density [kg/dm³] Dimension LxBxH [mm]	Picture	Perfo Sleeve HB-VM-SH	Fire exposure	Annex	
	Hol	low clay b	oricks	acc. to	EN 771-1:2011	+A1:2015				
HIz-10DF ρ ≥ 1,25 300x240x249		12x80 16x85 16x130 20x85 20x130 20x200	✓	C22 - C23	Porotherm Homebric $\rho \ge 0,7$ $500x200x299$		12x80 16x85 16x130 20x85 20x130	1	C2 - C2	
BGV Thermo ρ ≥ 0,6 500x200x314		12x80 16x85 16x130 20x85 20x130	l,	C26 - C27	Brique creuse C40 ρ≥0,7 500x200x200		12x80 16x85 16x130 20x85 20x130	_	C3	
Calibric R+ ρ ≥ 0,6 500x200x314		12x80 16x85 16x130 20x85 20x130	_	C28 - C29	Blocchi Leggeri ρ≥0,6 250x120x250		12x80 16x85 16x130 20x85 20x130	_	C3	
Urbanbric ρ ≥ 0,7 560x200x274		12x80 16x85 16x130 20x85 20x130	_	C30 - C31	Doppio Uni ρ≥0,9 250x120x120		12x80 16x85 16x130 20x85 20x130	_	Ci Ci	
	Hollow clay b	ricks with	therr	nal ins	ulation acc. to E	N 771-1:2011+A1:2	2015			
Coriso WS07 ρ ≥ 0,55 248x365x249 Mineral wool		12x80 16x85 16x130 20x85 20x130 20x200	_	C38 - C39	T8 P ρ ≥ 0,56 248x365x249 Perlite		12x80 16x85 16x130 20x85 20x130 20x200	ı	C4 C4	
T7 MW ρ ≥ 0,59 248x365x249 Mineral wool		12x80 16x85 16x130 20x85 20x130 20x200	~	C40 - C42	MZ90-G ρ ≥ 0,68 248x365x249 Mineral wool		12x80 16x85 16x130 20x85 20x130 20x200	_	C4 - C4	

Injection System HB-VMU plus for masonry	
Intended use Brick types and properties	Annex B4

Continuation Table B1: Overview brick types and properties

Designation Density [kg/dm³] Dimension LxBxH [mm]	Picture	Perfo Sleeve HB-VM-SH	Fire exposure	Annex	Designation Density [kg/dm³] Dimension LxBxH [mm]	Picture	Perfo Sleeve HB-VM-SH	Fire exposure	Annex
	Hollow clay brid	cks with t	herm	al insu	lation acc. to EN	N 771-1:2011+A1:20	15		
Poroton FZ7,5 ρ ≥ 0,90 248x365x249 Mineral wool		12x80 16x85 16x130 20x85 20x130 20x200	~	C47 - C48	Poroton FZ9 ρ ≥ 0,90 248x365x249 Mineral wool	15 A 31 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	12x80 16x85 16x130 20x85 20x130 20x200	>	C49 - C50
Poroton S9 ρ ≥ 0,85 248x365x249 Perlite		12x80 16x85 16x130 20x85 20x130 20x200	_	C51 - C52	Thermopor TV8+ ρ≥0,7 248x365x249 Mineral wool		12x80 16x85 16x130 20x85 20x130 20x200		C53 - C54

Injection System HB-VMU plus for masonry	
Intended Use Brick types and properties	Annex B5

Table B2: Installation parameters for autoclaved aerated concrete AAC and solid masonry (without sleeve) for pre- or through-setting installation

Threaded roo	d			М8	M10 IG-M6	M12 IG-M8	M16 IG-M10		
Nominal drill	nole diameter	d₀	[mm]	10	12	14	18		
Depth of drill	hole	h ₀	[mm]		h _{ef}	+ t _{fix} 1)			
Effective and	norage depth	h _{ef}	[mm]	80	≥ 90	≥ 100	≥ 100		
Diameter of clearance	pre-setting installation	d _f ≤	[mm]	9	7 (IG-M6) 12 (M10)	9 (IG-M8) 14 (M12)	12 (IG-M10) 18 (M16)		
hole in the fixture	through- setting installation	d _f ≤	[mm]	12	14	16	20		
Brush			[-]	HB-RB 10	HB-RB 12	HB-RB 14	HB-RB 18		
Minimum brus	sh diameter	d_{b}	[mm]	10,5	12,5	14,5	18,5		
Maximum ins	tallation torque	T _{inst}	[Nm]	see Annex C					
Minimum mei	mber thickness	h _{min}	[mm]	h _{ef} + 30					
Minimum spa	cing	Smin	[mm]	see Annex C					
Minimum edg	e distance	Cmin	[mm]	see Annex C					

¹⁾ Consider t_{fix} in case of through-setting installation

Table B3: Installation parameters in solid and hollow masonry (<u>with</u> sleeve) for presetting Installation

Threaded rod	M8	M8 / M10 IG-M6			M12 / M16 IG-M8 / IG-M10				
Sleeve HB-VM-SH			12x80	16x85	16x130	16x130 /330	20x85	20x130	20x200
Nominal drill hole diameter	d_0	[mm]	12		16			20	
Depth of drill hole	h ₀	[mm]	85	90	135	330	90	135	205
Effective anchorage depth	h _{ef}	[mm]	80	85	130	130	85	130	200
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	7 (IG-M6) 9 (M8) 12 (M10)			9 (IG-M8) 12 (IG-M10) 14 (M12) 18 (M16)		
Brush		[-]	HB-RB 12	HB-RB 16			HB-RB 20		
Minimum brush diameter	dь	[mm]	12,5	16,5			20,5		
Maximum installation torque	T _{inst}	[Nm]		see Annex (C		
Minimum member thickness	h _{min}	[mm]	115	115 195 195			115	195	240
Minimum spacing	Smin	[mm]	see Annex C						
Minimum edge distance	C _{min}	[mm]			Se	ee Annex (0		

Injection System HB-VMU plus for masonry	
Intended Use Installation parameters	Annex B6

Table B4: Installation parameters in solid and hollow masonry (<u>with</u> sleeve) for presetting installation through non-load-bearing layers and/or through-setting installation

Threaded rod					M10 -M6	M12 / M16 IG-M8 / IG-M10		
Sleeve HB-VM	1-SH			16x130	16x130/330	20x130	20x200	
Nominal drill he	ole diameter	d ₀	[mm]	1	6	2	0	
Depth of drill h	ole	h ₀	[mm]		h _{ef} + 5mm	+ t_{nll} + t_{fix} 1)		
Effective	pre-setting installation	h _{ef}	[mm]	130	130	130	200	
anchorage depth	through-setting installation	h _{ef}	[mm]	85	130	85	85	
	Maximum thickness of non-loadbearing layer			45	200	45	115	
Diameter of clearance hole in the	pre-setting installation d _f ≤		[mm]	7 9 12	(IG-M6) (M8) (M10)	9 12 14 18	(IG-M8) (IG-M10) (M12) (M16)	
fixture	through-setting installation	d _f ≤	[mm]	18		22		
Brush			[-]	HB-RB 16		HB-RB 20		
Minimum brusl	Minimum brush diameter d _b			16,5		20,5		
Maximum insta	Maximum installation torque T _{inst}				see Ar	nnex C		
Minimum mem	Minimum member thickness h _{min}			195 (115) 195		195 (115)	240 (115)	
Minimum spacing s _{min} [mn			[mm]	see Annex C				
Minimum edge	Minimum edge distance c _{min} [mm]				see Annex C			

 $^{^{1)}}$ Consider t_{nll} and/or t_{fix} in case of non-loadbearing layers and/or through-setting installation.

Cleaning and installation tools

Compressed air tool (min. 6 bar)

Brush HB-RB

Blow out pump (Volume ≥ 750 ml)

Brush extension

Injection System HB-VMU plus for masonry

Intended use

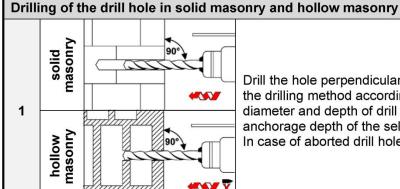
Installation parameters and cleaning and installation tools

Annex B7

Table B5: Working and curing time - HB-VMU plus

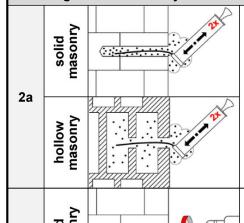
	Temperature in the base material [°C]		Maximum working	Minimum curing time in				
m			time	in dry base material	in wet base material			
- 10°C	to	- 6°C	90 min	24 h	48 h			
- 5°C	to	- 1°C	90 min	14 h	28 h			
0°C	to	+ 4°C	45 min	7 h	14 h			
+ 5°C	to	+ 9°C	25 min	2 h	4 h			
+ 10°C	to	+ 19°C	15 min	80 min	160 min			
+ 20°C	to	+ 29°C	6 min	45 min	90 min			
+ 30°C	to	+ 34°C	4 min	25 min	50 min			
+ 35°C	to	+ 39°C	2 min	20 min	40 min			
н	+ 40°C 1,5 min			15 min	30 min			
Cartridge	temp	erature 1)		+5°C to +40°C				

¹⁾ At temperatures in the base material of -10°C to -6°C, the cartridge temperature must be at least +15°C.


Table B6: Working and curing time - HB-VMU plus Polar

	mperature in the base Maximum		Maximum working	Minimum curing time				
m	nateri [°C]	al	time	in dry base material	in dry base material			
- 20°C	to	- 16°C	75 min	24 h	48 h			
- 15°C	to	- 11°C	55 min	16 h	32 h			
- 10°C	to	- 6°C	35 min	10 h	20 h			
- 5°C	to	- 1°C	20 min	5 h	10 h			
0°C	to	+4°C	10 min	2,5 h	5 h			
+5°C	to	+9°C	6 min	80 min	160 min			
-	+ 10°C 6 min			60 min	2 h			
Cartridge	e tem	perature		-20°C to +10°C				

Injection System HB-VMU plus for masonry	
Intended use Working and curing times	Annex B8


Installation instructions

Drill the hole perpendicular to the surface of the base material using the drilling method according to Annex C, with the specified drill hole diameter and depth of drill hole corresponding to the anchor size and anchorage depth of the selected anchor.

In case of aborted drill hole, the drill hole shall be filled with mortar.

Cleaning in solid masonry and hollow masonry

Blow out from the bottom of the bore hole with the blow out pump (Annex B7) a minimum of **two** times.

For applications in solid masonry with a bore hole depth h₀ > 100mm cleaning with compressed air is required.

Solid masonry was a solid masonry with the solid masonry was a solid masonry with the solid masonry was a solid masonry was a solid masonry with the solid masonry was a solid mas

Brush the hole with an appropriately sized wire brush $\geq d_{b,min}$ (Table B2, B3 and B4, check minimum brush diameter $d_{b,min}$) a minimum of **two** times using a drilling machine or battery screwdriver.

If the drill hole ground is not reached, an appropriate brush extension must be used.

Finally starting from the bottom or back of the drill hole blow out the hole with the blow out pump again a minimum of **two** times. For applications in solid masonry with a bore hole depth $h_0 > 100$ mm cleaning with compressed air is required.

Injection System HB-VMU plus for masonry

Intended use

2c

nasonry

Installation instruction: drilling of drill hole / cleaning in solid and hollow masonry

Annex B9

Installation instructions - continuation

	Installation instructions - continuation								
Prep	paration injection								
3	The state of the s	Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B5 and B6) as well as for new cartridges, a new static-mixer shall be used.							
4	h _{ef} +(t _{nll})+(t _{fix})	Mark position of embedment depth on the threaded rod. Consider t _{nll} and/or t _{fix} in case of installation through non-loadbearing layers and/or through setting installation. The threaded rod shall be free of dirt, grease, oil or other foreign material.							
5	min.3x	Prior to dispensing into the drill hole, squeeze out separately (a minimum of three full strokes, for foil tube cartridges at least 6 full strokes) and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey color.							
Insta	allation <u>without</u> sleeve								
6		Starting at the bottom of the drill hole and fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. Use mixer extension if necessary. Observe temperature dependent working time (Table B5 or B6).							
7		Insert fastener while turning slightly up to the embedment mark.							
8		Annular gap between threaded rod and base material must be completely filled with mortar. For through setting installation the annular gap between threaded rod and fixture must also be filled with mortar. Otherwise, the installation must be repeated starting from step 6 before the maximum working time has expired.							
9	· · · · · · · · · · · · · · · · · · ·	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (Table B5 or B6). After full curing time remove excess mortar.							
10	T _{inst} ,max	Install the fixture using a torque wrench, observing the maximum installation torque T_{inst} according to Annex C.							

Injection System HB-VMU plus for masonry	
Intended use Installation instruction: Preparation injection / Installation without sleeve	Annex B10

Installation instructions - continuation

Inst	allation <u>with</u> sleeve	е	
6	-		Insert the perforated sleeve flush with the surface of the masonry. Only use sleeves that have the right length. Never cut the sleeve in the anchoring area. For through-setting installation with perforated sleeve HB-VM SH 16x130/330 through a non-load-bearing layer and/or add-on part, the clamping area may be shortened to the thickness of the non-load-bearing layer and/or attachment.
7		• • •	Fill the perforated sleeve with mortar from the bottom or back. Use mixer extension if necessary. Refer to the cartridge label or the installation instructions for the exact quantity of mortar. For through setting installation, the perforated sleeve must be completely filled with mortar up to the fixture. Observe the working and curing times given in Table B5 and B6.
8			To optimize the distribution of the mortar, insert the fastener with slight rotation to the defined embedment depth.
9		c X	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (Table B5 and B6).
10	T	nst,max	Install the fixture using a torque wrench, observing the maximum installation torque T_{inst} according to Annex C.

Injection System HB-VMU plus for masonry	
Intended use Installation instruction: Installation with sleeve	Annex B11

Table C1: β - factor for job-site testing under tension loading

			β-factor						
Brick type	Anchor size	Perfo sleeve	anchorage depth			Т _ь : 50°С / 80°С		T₀: 72°C/120°C	
	3126	HB-VM-SH	h _{ef}	d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w
Autoclaved aerated concrete	all sizes	with or without HB-VM-SH	all	0,95	0,86	0,81	0,73	0,81	0,73
	d ₀ ≤ 14 mm		oll oll	0,93	0,80	0,87	0,74	0,65	0,56
	d ₀ ≥ 16 mm	HB-VM-SH	all	0,93	0,93	0,87	0,87	0,65	0,65
Calcium silica bricks	$d_0 \le 14 \text{ mm}$ $d_0 \ge 16 \text{ mm}$		≤ 100mm	0,93	0,80	0,87	0,74	0,65	0,56
		-		0,93	0,93	0,87	0,87	0,65	0,65
	all sizes		> 100mm	0,93	0,56	0,87	0,52	0,65	0,40
		HB-VM-SH	all	0,86	0,86	0,86	0,86	0,73	0,73
Clay bricks	ricks all sizes		≤ 100mm	0,86	0,86	0,86	0,86	0,73	0,73
			> 100mm	0,86	0,43	0,86	0,43	0,73	0,37
Concrete	d ₀ ≤ 12 mm	with or	all all	0,93	0,80	0,87	0,74	0,65	0,56
bricks	d ₀ ≥ 16 mm	without HB-VM-SH	all	0,93	0,93	0,87	0,87	0,65	0,65

Injection System HB-VMU plus for masonry	
Performances β-factors for job site testing under tension load	Annex C1

Table C2: Characteristic steel resistance under tension and shear load for threaded rods

Threaded r	od			M 8	M 10	M 12	M 16	
Steel failur	e							
Cross section	onal area	As	[mm²]	36,6	58,0	84,3	157	
Characteris	stic resistance under tension load	1)		V				
-11	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13) ¹⁾	23 (21) ¹⁾	34	63	
steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17) ¹⁾	29 (27) ¹⁾	42	79	
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	29 (27) ¹⁾	46 (43) ¹⁾	67	126	
	Property class 50 (A2/A4/HCR)	N _{Rk,s}	[kN]	18	29	42	79	
stainless steel	Property class 70 (A2/A4/HCR)	N _{Rk,s}	[kN]	26	41	59	110	
SICCI	Property class 80 (A4/HCR)	N _{Rk,s}	[kN]	29	46	67	126	
Partial fact	ors ²⁾							
steel,	Property class 4.6 and 5.6	γMs,N	[-]		2,	0		
zinc plated	Property class 4.8, 5.8 and 8.8	γMs,N	[-]		1,	5		
	Property class 50 (A2/A4/HCR)	γMs,N	[-]		2,8	36		
stainless steel	Property class 70 (A2/A4/HCR)	γMs,N	[-]	1,87 (1,5) ³⁾				
SICCI	Property class 80 (A4/HCR)	γMs,N	[-]		1,6 (1,5) ³⁾		
Characteris	stic resistance under shear load 1)	0.0000000000000000000000000000000000000						
Steel failure	e <u>without</u> lever arm							
	Property class 4.6 and 4.8	V^0 Rk,s	[kN]	7 (6) ¹⁾	12 (10) ¹⁾	17	31	
steel,	Property class 5.6 and 5.8	V^0 Rk,s	[kN]	9 (8)1)	15 (13) ¹⁾	21	39	
zinc plated	Property class 8.8	V^0 Rk,s	[kN]	15 (13) ¹⁾	23 (21) ¹⁾	34	63	
	Property class 50 (A2/A4/HCR)	V^0 Rk,s	[kN]	9	15	21	39	
stainless steel	Property class 70 (A2/A4/HCR)	V^0 Rk,s	[kN]	13	20	30	55	
31001	Property class 80 (A4/HCR)	V^0 Rk,s	[kN]	15	23	34	63	
Steel failur	e <u>with</u> lever arm – characteristic be	ending mo	oment					
-11	Property class 4.6 and 4.8	M^0 _{Rk,s}	[Nm]	15 (13) ¹⁾	30 (27) ¹⁾	52	133	
steel,	Property class 5.6 and 5.8	M^0 _{Rk,s}	[Nm]	19 (16) ¹⁾	37 (33) ¹⁾	65	166	
zinc plated	Property class 8.8	M^0 Rk,s	[Nm]	30 (26) ¹⁾	60 (53) ¹⁾	105	266	
-4-1-1	Property class 50 (A2/A4/HCR)	M^0 _{Rk,s}	[Nm]	19	37	65	166	
stainless steel	Property class 70 (A2/A4/HCR)	M^0 _{Rk,s}	[Nm]	26	52	92	233	
01001	Property class 80 (A4/HCR)	M^0 Rk,s	[Nm]	30	60	105	266	
Partial fact	ors ²⁾							
steel,	el, Property class 4.6 and 5.6 γ _{Ms,ν}		[-]	1,67				
zinc plated Property class 4.8, 5.8 and 8.8 $\gamma_{Ms,V}$ [-] 1,25				25				
	Property class 50 (A2/A4/HCR)	γMs,V	[-]		2,3	38		
stainless steel	Property class 70 (A2/A4/HCR)	γMs,V	[-]	1,56 (1,25) ³⁾				
SIEEI	Property class 80 (A4/HCR)	γMs,V	[-]		1,33 (10. 10.		

¹⁾ The characteristic resistances apply for all anchor rods with the cross-sectional area A_s specified here: HB-VMU-A, HB-V-A, HB-VM-A. For commercial standard threaded rods with a smaller cross-sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the value in bracket is valid.

³⁾ Value in bracket only valid for anchor rod HB-VMU-A or HB-V-A

Injection System HB-VMU plus for masonry	
Performances Characteristic steel resistance under tension and shear load for threaded rods	Annex C2

²⁾ In absence of national regulation

Table C3: Characteristic steel resistance under tension and shear load for internally threaded anchor rod

Internally threa	aded anchor rod			IG-M6	IG-M8	IG-M10	
Steel failure 1)							
Characteristic	resistance under tension load						
steel,	Property class 5.8	$N_{Rk,s}$	[kN]	10	17	29	
zinc plated	Property class 8.8	N _{Rk,s}	[kN]	16	27	46	
stainless steel	Property class 70 (A4/HCR)	$N_{Rk,s}$	[kN]	14	26	41	
Partial factors	2)						
steel,	steel, Property class 5.8 γ _{Ms,N} [1,5		
zinc plated	Property class 8.8	γMs,N	[-]		1,5		
stainless steel	Property class 70 (A4/HCR)	γMs,N	[-]		1,87		
Characteristic	resistance under shear load						
Steel failure w	ithout lever arm						
steel,	Property class 5.8	V^0 Rk,s	[kN]	5	9	15	
zinc plated	Property class 8.8	$V^0_{Rk,s}$	[kN]	8	14	23	
stainless steel	Property class 70 (A4/HCR)	V^0 Rk,s	[kN]	7	13	20	
Steel failure w	<u>ith</u> lever arm – characteristic bend	ding momen	nt				
steel,	Property class 5.8	$M^0_{Rk,s}$	[Nm]	8	19	37	
zinc plated	Property class 8.8	M^0 Rk,s	[Nm]	12	30	60	
stainless steel	Property class 70 (A4/HCR)	$M^0_{Rk,s}$	[Nm]	11	26	52	
Partial factors	2)						
steel,	Property class 5.8	γMs,V	[-]	1,25			
zinc plated	Property class 8.8	γMs,V	[-]	1,25			
stainless steel	Property class 70 (A4/HCR)	γMs,V	[-]		1,56		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Injection System HB-VMU plus for masonry	
Performances Characteristic steel resistance under tension and shear load for internally threaded anchor rod	Annex C3

²⁾ In absence of national regulation

Table C4: Characteristic steel resistance under fire exposure - Threaded rod

Threaded rod	M 8	M 10	M 12	M 16				
Characteristic resistance under tens	sion load					•		
	R30	$N_{Rk,s,fi}$	[kN]	1,1	1,7	3,0	5,7	
Steel, property class 5.8 and 8.8;	R60	$N_{Rk,s,fi}$	[kN]	0,9	1,4	2,3	4,2	
Stainless steel (A2/ A4/ HCR) property class ≥ 50	R90	$N_{Rk,s,fi}$	[kN]	0,7	1,0	1,6	3,0	
property state 2 cc	R120	$N_{Rk,s,fi}$	[kN]	0,5	0,8	1,2	2,2	
Characteristic resistance under shear load ¹⁾								
Steel failure without lever arm								
	R30	V^0 Rk,s,fi	[kN]	1,1	1,7	3,0	5,7	
Steel, property class 5.8 and 8.8;	R60	$V^0_{Rk,s,fi}$	[kN]	0,9	1,4	2,3	4,2	
Stainless steel (A2/ A4/ HCR) property class ≥ 50	R90	$V^0_{Rk,s,fi}$	[kN]	0,7	1,0	1,6	3,0	
property order 2 or	R120	V^0 Rk,s,fi	[kN]	0,5	0,8	1,2	2,2	
Steel failure with lever arm - charac	teristic be	nding m	oment					
	R30	M^0 Rk,s,fi	[Nm]	1,1	2,2	4,7	12,0	
Steel, property class 5.8 and 8.8;	R60	M^0 Rk,s,fi	[Nm]	0,9	1,8	3,5	9,0	
Stainless steel (A2/ A4/ HCR) property class ≥ 50	R90	M^0 _{Rk,s,fi}	[Nm]	0,7	1,3	2,5	6,3	
p p	R120	M^0 Rk,s,fi	[Nm]	0,5	1,0	1,8	4,7	
Partial factor	all	γMs,fi	[-]		1	,0		

Table C5: Characteristic steel resistance under fire exposure - Internally threaded anchor rod

Internally threaded anchor rod		IG-M6	IG-M8	IG-M10			
Characteristic resistance under tensi	on load						
Ctaal property class E. 9 and 9.9:	R30	$N_{Rk,s,fi}$	[kN]	0,3	1,1	1,7	
Steel, property class 5.8 and 8.8; Stainless steel (A4 / HCR)	R60	$N_{Rk,s,fi}$	[kN]	0,2	0,9	1,4	
property class 70	R90	$N_{Rk,s,fi}$	[kN]	0,2	0,7	1,0	
property dass 10	R120	$N_{Rk,s,fi}$	[kN]	0,1	0,5	0,8	
Characteristic resistance under shear load							
Steel failure <u>without</u> lever arm							
	R30	V^0 Rk,s,fi	[kN]	0,3	1,1	1,7	
Steel, property class 5.8 and 8.8; Stainless steel (A4 / HCR)	R60	V^0 Rk,s,fi	[kN]	0,2	0,9	1,4	
property class 70	R90	V^0 Rk,s,fi	[kN]	0,2	0,7	1,0	
property sides re	R120	V^0 Rk,s,fi	[kN]	0,1	0,5	0,8	
Steel failure with lever arm - characte	eristic be	nding m	oment				
	R30	M^0 _{Rk,s,fi}	[Nm]	0,2	1,1	2,2	
Steel, property class 5.8 and 8.8; Stainless steel (A4 / HCR)	R60	M^0 Rk,s,fi	[Nm]	0,2	0,9	1,8	
property class 70	R90	M^0 _{Rk,s,fi}	[Nm]	0,1	0,7	1,3	
F. 5451.7 Siddo 75	R120	M^0 _{Rk,s,fi}	[Nm]	0,1	0,5	1,0	
Partial factor	all	γ̃Ms,fi	[-]		1,0		

Injection System HB-VMU plus for masonry	
Performance Characteristic steel resistance under fire exposure	Annex C4

Scr,fi,II

 $(s_{cr,fi,\perp})$

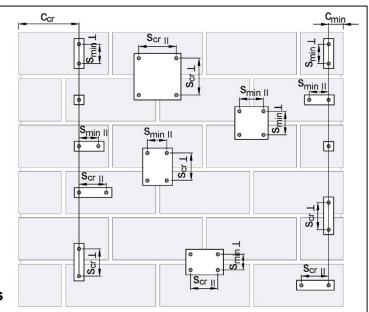
Edge distance and spacing

c_{cr} = Characteristic edge distance

c_{min} = Minimum edge distance

C_{cr,fi} = Characteristic edge distance under

fire exposure


 $s_{cr | l}$ = Characteristic (minimum) spacing $(s_{min, ll})$ for anchor placed parallel to

horizontal joint

s_{cr \(\)} = Characteristic (minimum) spacing for anchor placed perpendicular to horizontal joint

 Characteristic spacing for anchor placed perpendicular to horizontal

(perpendicular) joint

Definition of reduction- and group factors

Load direction Anchor position	Tension load	Shear load parallel to free edge V _{II}	Shear load perpendicular to free edge V ⊥		
Anchors parallel to horizontal joint Scr,II (Smin,II)	α _{g II,N}	α _{g II,} ν _{II}	V ••• α _{g II,} ∨⊥		
Anchors vertical to horizontal joint $s_{cr,\perp}(s_{min,\perp})$	α _{g ⊥,N}	α _{g 1,V II}	V • αg L,VL		

 $\alpha_{\text{edge,N}} = \text{Reduction factor for tension loads at the free edge (single anchor)}$ (for $c_{\text{min}} \leq c < c_{\text{cr}}$) $\alpha_{\text{edge,VL}} = \text{Reduction factor for shear loads perpendicular to the free edge (single anchor)}$ (for $c_{\text{min}} \leq c < c_{\text{cr}}$)

 $\alpha_{\text{edge,VII}}$ = Reduction factor for shear loads parallel to the free edge (single anchor)

(for $c_{min} \le c < c_{cr}$)

 $\alpha_{g \parallel l, N}$ = Group factor for anchors parallel to horizontal joint under tension load

 $\alpha_{g \perp N}$ = Group factor for anchors perpendicular to horizontal joint under tension load

 $\alpha_{g \parallel |V|\parallel}$ = Group factor for anchors parallel to horizontal joint under shear load parallel to the free edge

 $\alpha_{g \perp, V \parallel}$ = Group factor for anchors perpendicular to horizontal joint under shear load parallel to the free edge $\alpha_{g \parallel, V \perp}$ = Group factor for anchors parallel to horizontal joint under shear load perpendicular to the free edge

 α_{glVI} = Group factor for anchors perpendicular to hor, joint under shear load perpendicular to the free edge

αg <u>1,</u> ν <u>1</u> – G	roup ido		10110	i. joint ai	idei sileai load perperidicular	to the nee eage
Single anchor	$N_{Rk,b,c}$	$= \alpha_{\text{edge,N}} * N_{\text{Rk,b}}$	resp.	$N_{Rk,p,c}$	$= \alpha_{\text{edge,N}} * \mathbf{N}_{\text{Rk,p}}$	
at the edge:	V _{Rk,c} II	= α _{edge,V} II * V _{Rk,b}				
at the eage.	$V_{Rk,c} \bot$	$= \alpha_{\text{edge,V}} \perp * V_{\text{Rk,b}}$				
PURSE (85%) (85%)	N^{g}_{Rk}	$= \alpha_{g,N} * N_{Rk,b}$				
Group of 2	$V^{g}_{Rk II}$	$= \alpha_{g, V II} * V_{Rk,b}$	resp.	$V^{g}_{Rk\perp}$	$= \alpha_{g,V_{\perp}} * V_{Rk,b}$	(for $c \ge c_{cr}$)
anchors:	$V^{g}_{Rk,c II}$	$= \alpha_{g, VII} * V_{Rk,b}$	resp.	$V^{g}_{Rk,c\perp}$	$= \alpha_{g,V_{\perp}} * V_{Rk,b}$	(for $c \ge c_{min}$)
_	N^{g}_{Rk}	= $\alpha_{g \mid I,N} * \alpha_{g\perp,N} * N_{Rk,b}$				
Group of 4	$V^{g}_{Rk II}$	= $\alpha_{g \parallel,V \parallel} * \alpha_{g \perp,V \parallel} * V_{Rk,b}$	resp.	$V^g_{Rk\perp}$	$= \alpha_{g \parallel, V_{\perp}} \alpha_{g_{\perp}, V_{\perp}} V_{Rk,b}$	(for $c \ge c_{cr}$)
anchors: Vg _{Rk,c II}		= $\alpha_{g \parallel,V \parallel}$ * $\alpha_{g\perp,V \parallel}$ * $V_{Rk,b}$	resp.	V ^g Rk,c⊥	$= \alpha_{g \parallel, V_{\perp}} \alpha_{g_{\perp}, V_{\perp}} V_{Rk,b}$	(for $c \ge c_{min}$)
Equations depe	end on a	nchor position and load dir	ection (s	see table	above). Reduction factor, grou	ip factor and

Injection System HB-VMU plus for masonry

Performance

Definition of spacing and edge distance and reduction- and group factors $\boldsymbol{\alpha}$

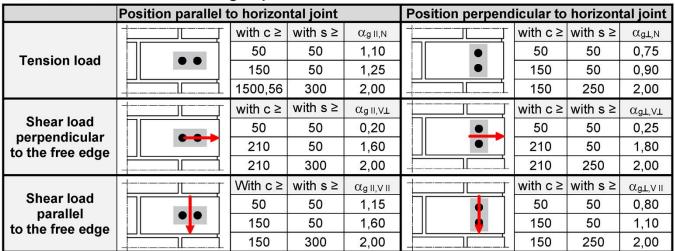
resistances see Annex C. Reduction for installation in joints see Annex B1.

Annex C5

Brick type: Autoclaved aerated concrete AAC

Table C6: Description

Brick type			Autoclaved aerated concrete AAC
Density	ρ	[kg/dm ³]	0,35 - 0,6
Normalised mean compressive strength	$f_b \ge$	[N/mm ²]	2, 4 or 6
Norm		[-]	EN 771-4:2011+A1:2015
Producer (country code)		[-]	e.g. Porit (DE)
Brick dimensions		[mm]	≥ 499 x 240 x 249
Drilling method		[-]	Rotary drilling


Table C7: Installation parameter

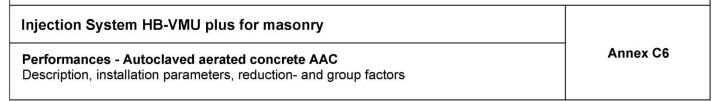

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	Tinst	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10	
Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: c _{cr} = 210)							
Minimum edge distance	C _{min}	[mm]	50							
Chaoina	Scr, II	[mm]	300							
Spacing	Scr, ⊥	[mm]	250							
Minimum spacing	S _{min,II}	[mm]	50							
wiiniinum spacing	S _{min,⊥}	[mm]	50							

Table C8: Reduction factors for single anchors at the edge

Tonsio	Tension load			Shear load								
Telisio	perpendicula				e edge	parallel to the free edge						
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII				
	50	0,85	-	50	0,12		50	0,70				
	50	0,65		125	0,50]	125	0,85				
	150	1,00		210	1,00		150	1,00				

Table C9: Factors for anchor groups

Brick type: Autoclaved aerated concrete AAC - continuation

Table C10: Characteristic resistance under tension and shear load

			Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$							
Anchor size	Perfora-	Effective			L	se cond	ition	,		
	ted Sleeve	anchorage depth		d/d			w/d w/w		d/d w/d w/w	
	НВ-		24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges	
		h _{ef}	,		N _{Rk,b} = I	V Rk,p 1)			V _{Rk,b} 1)	
		[mm]			[kN	1]			[kN]	
Normalised mea	an compres	sive strengt	h f _b ≥ 2 N	l/mm²		Densi	ty ρ≥ 0,3	5 kg/dm	3	
M8	-	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5	
M10 / IG-M6	-	90	1,2	0,9	0,9	0,9	0,9	0,9	2,5	
M12 / M16 IG-M8 / IG-M10	-	100	2,0	1,5	1,5	1,5	1,5	1,5	2,5	
M8	VM-SH 12	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5	
M8 / M10 IG-M6	VM-SH 16	≥ 85	1,2	0,9	0,9	0,9	0,9	0,9	2,5	
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	2,0	1,5	1,5	1,5	1,5	1,5	2,5	
Normalised mea	an compres	sive strengt	h f _b ≥ 4 N	l/mm²		Densi	ty ρ≥ 0,5	0 kg/dm	3	
M8	-	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5	
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	2,0	7,5	
M12 / M16 IG-M8 / IG-M10	-	100	5,0	4,5	4,0	4,5	4,0	4,0	7,5	
M8	VM-SH 12	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5	
M8 / M10 IG-M6	VM-SH 16	≥ 85	3,0	2,5	2,0	2,5	2,0	2,0	7,5	
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	5,0	4,5	4,0	4,5	4,0	4,0	7,5	

 $^{^{1)}}$ $N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Injection System HB-VMU plus for masonry	
Performances - Autoclaved aerated concrete AAC Characteristic resistance	Annex C7

Brick type: Autoclaved aerated concrete AAC - continuation

Characteristic resistance - continuation:

				Charact	eristic res	sistance	with c≥	c _{cr} and s	≥ S _{cr}
Anchor size	Sleeve	Effective			u	lse cond	ition		
	НВ-	anchorage depth		d/d			w/d w/w		d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ 1)						V _{Rk,b} 1)
		[mm]		[kN]					
Normalised mear	compress	ive strength	f _b ≥ 6 N	/mm²		Densit	yρ≥0,60	kg/dm³	
M8	-	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0
M10 / IG-M6	-	90	4,0	3,5	3,0	3,5	3,0	3,0	10,0
M12 / M16 IG-M8 / IG-M10	-	100	7,0	6,0	5,5	6,5	5,5	5,5	10,0
M8	VM-SH 12	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0
M8 / M10 IG-M6	VM-SH 16	≥ 85	4,0	3,5	3,0	3,5	3,0	3,0	10,0
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	7,0	6,0	5,5	6,5	5,5	5,5	10,0

 $^{^{1)}}$ $N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C11: Displacements

Anchor size	h _{ef}	δ _N / N	δνο	δn∞	δ _V / V	δνο	δν∞	
Alichor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,1	0,1*N _{Rk} / 2,8	2*δνο	0,3	0,3*V _{Rk} /2,8	1,5*δνο	
M16	09-273		-,		0,1	0,1*V _{Rk} /2,8		

Injection System HB-VMU plus for masonry

Performances - Autoclaved aerated concrete AAC
Characteristic resistance and displacements

Annex C8

Brick type: Solid calcium silica brick KS-NF

Table C12: Description

Brick type			Solid calcium silica brick KS-NF
Density	ρ	[kg/dm ³]	≥ 2,0
Normalised mean compressive strength	f_b	[N/mm ²]	≥ 28
Conversion factor for lowe compressive strengths	er		$(f_b / 28)^{0.5} \le 1.0$
Norm		[-]	EN 771-2: 2011+A1:2015
Producer (country code)		[-]	e.g. Wemding (DE)
Brick dimensions		[mm]	≥ 240 x 115 x 71
Drilling method		[-]	Hammer drilling

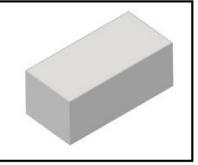


Table C13: Installation parameter

Anchor size	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 15	≤ 15	≤ 10	≤ 10	≤ 10
Edge distance (under fire exposure)	C _{cr;} (C _{cr,fi})	150 (2 hat)							240)
Minimum Edge Distance	C _{min}	[mm]				60			
Spacing (under fire	Scr,II; (Scr,fi,II)	[mm]				240 (4 h _{ef})		
exposure)	$S_{cr,\perp};(S_{cr,fi,\perp})$	[mm]	150 (4 h _{ef})						
Minimum Spacing	Smin,II; Smin,⊥	[mm]	75						

 Table C14:
 Reduction factors for single anchors at the edge

Tonsio	Tension load			Shear load								
Telisio	II loau		perpendicular	to the free	e edge	parallel to the free edge						
r	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII				
	60 ¹⁾	0,50		60	0,30		60	0,60				
 	100 ¹⁾	0,50	─	100	0,50]	100	1,00				
	150 ¹⁾	1,00		240	1.00		150	1.00				
<u> </u>	180	1,00	 	240	1,00		150	1,00				

¹⁾ All applications, except for hef = 200mm and without sleeve

Table C15: Factors for anchor groups

	Position parallel		ntal joint	i i	Position perpend	licular to	horizonta	al joint
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load		60 ¹⁾	75	0,70		60 ¹⁾	75	1,15
		150 ¹⁾	75	1,40		150 ¹⁾	75	2,00
	• •	150 ¹⁾	240	2,00		150 ¹⁾	150	2,00
		180 ²⁾	75	1,00		180 ²⁾	75	1,15
		180 ²⁾	240	1,70	ļ	180 ²⁾	150	2,00
			240 ²⁾	240	2,00		100 /	130
Cheerland		with c≥	with s ≥	αg II,V⊥		with c≥	with s ≥	$lpha_{ t g oldsymbol{\perp}, oldsymbol{\lor} oldsymbol{\bot}}$
Shear load		60	75	0,75		60	75	0,90
perpendicular to the free edge		150	75	2,00	150		75	2,00
to the free edge		150	250	2,00		150	150	2,00
Choor load		with c≥	with s ≥	αg II,V II		with c≥	with s ≥	α _{g⊥,} ∨ II
Shear load parallel to the free edge		60	75	2,00		60	75	2,00
		150	75	2,00		150	75	2,00
to the free edge		150	250	2,00		150	150	2,00

¹⁾ All applications, except for hef = 200mm and without sleeve ²⁾ Only for application with hef = 200mm and without sleeve

Injection System HB-VMU plus for masonry	
Performance - Solid calcium silica brick KS-NF Description, installation parameters, reduction- and group factors	Annex C9

Brick type: Solid calcium silica brick KS-NF – continuation

Table C16: Characteristic resistance under tension and shear load

				Charact	eristic res	sistance	with c≥ o	c _{cr} and s	≥ s _{cr}
Anchor size	Sleeve	Effective			U	lse cond	ition		
	нв-	anchorage depth		d/d			w/d w/w		d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges
		h _{ef}			$N_{Rk,b} = 1$	V Rk,p 1)			V _{Rk,b} 1)
		[mm]		[kN]					
	Nor	malised mea	an compr	essive st	rength f₅	≥ 28 N/m	m² ²)		
M8	-	80	7,0	6,5	5,0	6,0	5,5	4,0	
M10 / IG-M6		≥ 90	7,0	6,5	5,0	6,0	5,5	4,0	
M12 / IG-M8	-	≥ 100	7,0	6,5	5,0	6,0	5,5	4,0	
M16 / IG-M10	=	≥ 100	7,0	6,5	5,0	7,0	6,5	5,0	
M10 - M16 IG-M6 - IG-M10	-	200	9,0	8,5	6,5	5,5	5,0	4,0	7,0
M8	VM-SH 12	80	7,0	6,5	5,0	6,0	5,5	4,0	
M8 / M10/ IG-M6	VM-SH 16	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0	
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0	

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ according to Annex C5

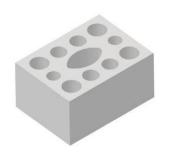
Table C17: Displacements

Anchor size	h _{ef}	δ _N / N	δηο	δ _{N∞}	δ _V / V	δνο	δν∞
AllCliof Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,1	0,1*N _{Rk} / 3,5	2*δνο	0,3	0,3*V _{Rk} / 3,5	1,5*δ√0
M16		*	2 20000	(500) (600)	0,1	0,1*V _{Rk} /3,5	

Table C18: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth	Characteristic resistance $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$						
	HB-	h _{ef}	R30	R60	R90	R120			
		[mm]		[k	N]				
M8	=	80		0,41					
M10 / IG-M6	-	≥ 90	0,48		0,34	0,30			
M12 / IG-M8	-	≥ 100	0,40			0,30			
M16 / IG-M10	-	≥ 100							
M8	VM-SH 12	80							
M8 / M10 / IG-M6	VM-SH 16	≥ 85	0,47	0,26	No performance	No performance			
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	0,47	0,20	assessed	assessed			

Injection System HB-VMU plus for masonry	
Performance Characteristic resistance, displacements, characteristic resistance under fire exposure	Annex C10


²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C12. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow calcium silica brick KSL-3DF

Table C19: Description

Brick type			Hollow calcium silica brick KSL-3DF
Density	ρ	[kg/dm ³]	≥ 1,4
Normalised mean compressive strength	f_{b}	[N/mm ²]	≥ 14
Conversion factor for lower strengths	com	pressive	$(f_b / 14)^{0.75} \le 1.0$
Norm		[-]	EN 771-2:2011+A1:2015
Producer (country code)		[-]	e.g. KS-Wemding (DE)
Brick dimensions		[mm]	≥ 240 x 175 x 113
Drilling method		[-]	Rotary drilling
N .			

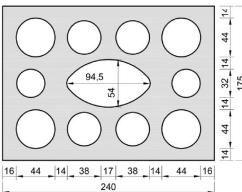


Table C20: Installation parameter

Anchor size				M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 240)						
Minimum edge distance	Cmin	[mm]	60						
Chaoina	Scr, II	[mm]				240			
Spacing	Scr, ⊥	[mm]				120		≤ 8	
Minimum spacing Smin, II; Smin, 1 Smi									

Table C21: Reduction factors for single anchors at the edge

Tensio	n load		Shear load							
Telisio	II IOau		perpendicular	to the free	ree edge parallel to the free edge					
	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII		
•	60	1,00	→	60	0,30		60	1,00		
	120	1,00		240	1,00		120	1,00		

Injection System HB-VMU plus for masonry	
Performances - Hollow calcium silica brick KSL-3DF Description, installation parameters, reduction factors	Annex C11

Brick type: Hollow calcium silica brick KSL-3DF – continuation

Table C22: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II, N		with c≥	with s ≥	$\alpha_{g\perp,N}$
Tamalam land		60	120	1,50	•	60	120	1,00
Tension load		120	120	2,00		60	120	1,00
		120	240	2,00		120	120	2,00
		with c≥	with s ≥	αg II,V⊥		with c≥	with s ≥	αд⊥,∨⊥
Shear load		60	120	0,30		60	120	0,30
perpendicular to the free edge		120	120	1,00		60	120	0,30
to the free eage		120	240	2,00		240	120	2,00
		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II
Shear load		60	120	1,00		60	120	1.00
parallel to the free edge		120	120	1,60		60	120	1,00
to the nee eage		120	240	2,00		120	120	2,00

Table C23: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥c	cr and s ≥	Scr			
Anchor size	Sleeve	Effective	Use condition									
	НВ-	anchorage depth		d/d			w/d w/w	d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$ 1)								
		[mm]			[kN	1]		[kN]				
		Normalised m	ean comp	ressive s	trength f	≥ 14 N/n	nm² ²)					
M8 / M10	VM CH 16	≥ 85	2,5	2,5	1,5	2,5	2,5	1,5				
IG-M6	VM-SH 16	130	2,5	2,5	2,0	2,5	2,5	2,0	6.0			
M12 / M16 IG-M8 IG-M10	VM-SH 20	≥ 85	6,5	6,0	4,5	6,5	6,0	4,5	6,0			

 $^{^{1)}}$ $N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c\,II}}$ = $V_{\text{Rk,c}} \bot$ according to Annex C5

Table C24: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞	
Alichor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0	
M16		3,10	5,10111117 5,0	2 3110	0,31	0,31*V _{Rk} /3,5	.,5 000	

Injection System HB-VMU plus for masonry	
Performance - Hollow calcium silica brick KSL-3DF Group factors, characteristic resistances and displacements	Annex C12

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C19. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow calcium silica brick KSL-8DF

Table C25: Description

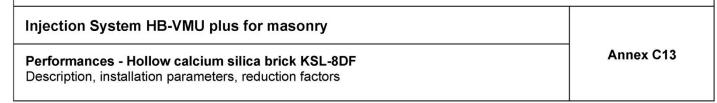

Brick type			Hollow calcium silica brick KSL-8DF	
Density	ρ	[kg/dm ³]	≥ 1,4	
Normalised mean compressive strength	f_{b}	[N/mm ²]	≥ 12	100
Conversion factor for lower of strengths	om	oressive	$(f_b / 12)^{0.75} \le 1.0$	
Norm		[-]	EN 771-2:2011+A1:2015	A CONTROL MANAGEMENT OF A CONTROL OF A CONTR
Producer (country code)		[-]	e.g. KS-Wemding (DE)	
Brick dimensions		[mm]	≥ 248 x 240 x 238	
Drilling method		[-]	Rotary drilling	
			63 63 64 60 EE	

Table C26: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T_{inst}	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤ 8	≤ 8	
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)							
Minimum edge distance	Cmin	[mm]	50							
Specing	Scr, II	[mm]	250							
Spacing	Scr, ⊥	[mm]	120							
Minimum spacing	S _{min,} II S _{min,} ⊥	[mm]	50							

Table C27: Reduction factors for single anchors at the edge

Tonsio	Tension load			Shear load									
Telisio	II loau		perpendicular	to the free	e edge	perpendicular to the free edge							
	with c≥	αedge,N		with c≥	αedge,V ⊥		with c≥	αedge,VII					
•	50	1,00		50	0,30		50	1,00					
	120	1,00		250	1,00		120	1,00					

Brick type: Hollow calcium silica brick KSL-8DF - continuation

Table C28: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II, N		with c≥	with s ≥	αg⊥, N
Tension load	• •	50	50	1,00		50	50	1,00
		120	250	2,00		120	120	2,00
Shear load perpendicular		with c≥	with s ≥	αg II,V⊥		with c≥	with s ≥	αд⊥,∨⊥
		50	50	0,45		50	50	0,45
to the free edge		250	50	1,15		250	50	1,20
to the hos sage		250	250	2,00]	250	250	2,00
Shear load	 	with c≥	with s≥	αg II,V II		with c≥	with s ≥	α _g ⊥,∨ II
parallel to the free edge		50	50	1,30		50	50	1,00
		120	250	2,00		120	250	2,00

Table C29: Characteristic resistance under tension and shear load

			Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$									
Anchor size	Sleeve	Effective	Use condition									
	НВ-	anchorage depth				w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ 1)						V _{Rk,b} 1)			
		[mm]			[kN	١]		[kN]				
	N	ormalised m	ean comp	ressive s	trength f	_b ≥ 12 N/r	nm²²)	23				
M8 / M10 IG-M6	VM-SH 16	130	5,0	4,5	3,5	5,0	4,5	3,5	3,5			
M12 / M16 IG-M8 IG-M10	VM-SH 20	≥ 130	5,0	4,5	3,5	5,0	4,5	3,5	6,0			

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c}\,\perp}$ according to Annex C5

Table C30: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δ∨∞	
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο	
M16		, , ,			0,31	0,31*V _{Rk} /3,5	,	

Injection System HB-VMU plus for masonry	
Performances - Hollow calcium silica brick KSL-8DF Group factors, characteristic resistances and displacements	Annex C14

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C25. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow calcium silica brick KSL-12DF

Table C31: Description

		Hollow calcium silica brick KSL-12DF			
0	[kg/dm ³]	≥ 1,4			
b	[N/mm ²]	≥ 12			
Conversion factor for lower compressive strengths					
	[-]	EN 771-2:2011+A1:2015			
	[-]	e.g. KS-Wemding (DE)			
	[mm]	≥ 498 x 175 x 238			
	[-]	Rotary drilling			
	~	mpressive [-] [-] [mm]			

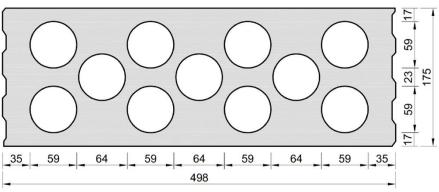


Table C32: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 5	≤ 5	≤ 4	≤ 5	≤ 5
Edge distance (under fire exposure)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h_{ef}) (for shear loads perpendicular to the free edge: $c_{cr} = 500$)						= 500)
Minimum edge distance	C _{min}	[mm]	50						Î
Spacing (under fire	Scr,II; (Scr,fi,II)	[mm]	500 (4 h _{ef})						
exposure)	$S_{cr,\perp};(S_{cr,fi,\perp})$	[mm]	120 (4 h _{ef})						
Minimum spacing	50								

Table C33: Reduction factors for single anchors at the edge

Tension load			Shear load					
			perpendicular to the free edge			parallel to the free edge		
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII
 •	50	1,00	 	50	0,45		50	1,00
	120	1,00		500	1,00		120	1,00

Injection System HB-VMU plus for masonry		
Performance Hollow calcium silica brick KSL-12DF Description, installation parameters, reduction factors	Annex C15	

Brick type: Hollow calcium silica brick KSL-12DF – continuation

Table C34: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II, N		with c≥	with s ≥	αg⊥, N
Tension load	nsion load	50	50	1,50		50	50	1,00
		120	500	2,00		120	240	2,00
	Shear load	with c ≥	with s ≥	αg II,V⊥	 	with c≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
		50	50	0,55	•	50	50	0,50
perpendicular to the free edge		500	50	1,00		500	50	1,00
to the nee eage	 	500	500	2,00	 	500	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg ⊥,V II
parallel		50	50	2,00		50	50	1,30
to the free edge		120	500	2,00		120	250	2,00

Table C35: Characteristic resistance under tension and shear load

Table Occ. Of	able 600. Gharacteristic resistance ander tension and shear load										
				Charact		sistance		or and s ≥	Scr		
Aucheneine	Classes	Tff office	Use condition								
Anchor size	Sleeve HB-	Effective anchorage d/d			w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$							
		[mm]			[k	N]	[kN]				
	Nor	malised mea	an compr	essive st	rength fb	≥ 12 N/m	m ^{2 2)}	9)			
M8 / M10 IG-M6	VM-SH 16	130	3,5	3,5	2,5	3,5	3,5	2,5	3,5		
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 130	3,5	3,5	2,5	3,5	3,5	2,5	7,0		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c | II} = V_{Rk,c \perp}$ according to Annex C5

Table C36: Displacements

Table 900. Displat	ocincinto .							
Anchor size	h _{ef}	δ _N / N	δνο	δn∞	δv / V	δνο	δν∞	
Allchor Size	[mm]	[mm/kN] [mm]		[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0	
M16			M 2003 M	105	0,31	0,31*V _{Rk} /3,5		

Table C37: Characteristic resistance under fire exposure

Anchor size HB-		Effective anchorage depth	Characteristic resistance $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$						
		h _{ef}	R30	R60	R90	h _{ef}			
		[mm]							
M8/M10/IG-M6	VM-SH 16	130				no			
M12/ IG-M8	VM-SH 20	≥ 130	0,37	0,27	0,17	performance assessed			
M16/IG-M10	VM-SH 20	≥ 130				0,12			

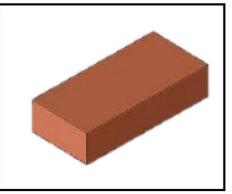
Injection System HB-VMU plus for masonry	
Performances - Hollow calcium silica brick KSL-12DF Group factors, characteristic resistances and displacements	Annex C16

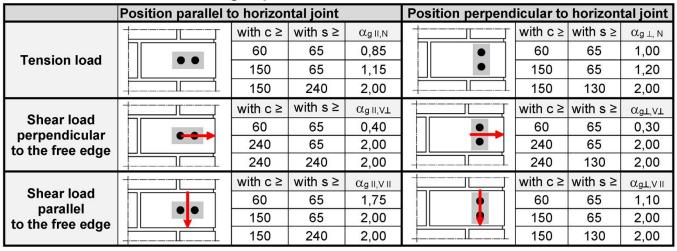
²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C31. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Solid clay brick MZ-1DF

Table C38: Description

Brick type	Solid clay brick MZ-1DF		
Density	ρ	[kg/dm ³]	≥ 2,0
Normalised mean compressive strength	f_b	[N/mm ²]	≥ 20
Conversion factor for lower strengths	pressive	$(f_b / 20)^{0,5} \le 1,0$	
Norm		[-]	EN 771-1:2011+A1:2015
Producer (country code)		[-]	e.g. Wienerberger (DE)
Brick dimensions		[mm]	≥ 240 x 115 x 55
Drilling method		[-]	Hammer drilling




Table C39: Installation parameter

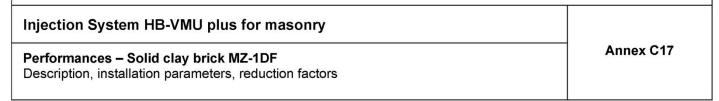

Anchor size		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	
Edge distance	Ccr	[mm]	150 (for shear loads perpendicular to the free edge: c _{cr} = 240)							
Minimum edge distance	Cmin	[mm]	60							
Chaoing	S _{cr,II}	[mm]	240							
Spacing	S _{cr,⊥}	[mm]	130							
Minimum spacing $S_{min, ll;} [mm]$				65						

Table C40: Reduction factors for single anchors at the edge

Tension load			Shear load Shear load								
Tells	ion ioau		perpendicular	to the free	e edge	parallel to the free edge					
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII			
	60	0,75	-	60	0,10		60	0,30			
	150	1,00		100	0,50		100	0,65			
	180	1,00		240	1,00		150	1,00			

Table C41: Factors for anchor groups

Brick type: Solid clay brick MZ-1DF – continuation

Table C42: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ s _{cr}	
Anchor size	Sleeve	Effective			L	lse cond	ition			
	HB-	anchorage depth					w/d w/w	d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges	
	,	h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$						
		[mm]		[kN]						
Normalised mean compressive strength f _b ≥ 20 N/mm ^{2 2)}										
M8	-	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M10 / IG-M6	8	≥ 90	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M12 / IG-M8		≥ 100	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,0	6,5	6,5	12,0	
M8	VM-SH 12	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M8 / M10 IG-M6	VM-SH 16	≥ 85	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M12 IG-M8	VM-SH 20	≥ 85	7,0	6,0	6,0	7,0	6,0	6,0	8,0	
M16 IG-M10	VM-SH 20	≥ 85	8,0	6,5	6,5	8,0	6,5	6,5	12,0	

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c\,II}}$ = $V_{\text{Rk,c\,\bot}}$ according to Annex C5

Table C43: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δ ∨0	δν∞	
Allelior size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,1	0,1*N _{Rk} / 3,5	2*δνο	0,3	0,3*V _{Rk} /3,5	1,5*δνο	
M16	2.50	5, .	, a , a , a , a , a , a , a , a , a , a	_ 3110	0,1	0,1*V _{Rk} /3,5	,	

Injection System HB-VMU plus for masonry

Performances - Solid clay brick MZ-1DF
Characteristic resistance and displacements

Annex C18

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C38. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Solid clay brick MZ-2DF

Table C44: Description

Brick type			Solid clay brick MZ-2DF
Density	ρ	[kg/dm ³]	≥ 2,0
Normalised mean compressive strength	f_b	[N/mm ²]	≥ 28
Conversion factor for lower strengths	com	pressive	$(f_b / 28)^{0.5} \le 1.0$
Norm		[-]	EN 771-1:2011+A1:2015
Producer (country code)		[-]	e.g. Wienerberger (DE)
Brick dimensions		[mm]	≥ 240 x 115 x 113
Drilling method		[-]	Hammer drilling

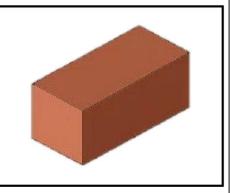


Table C45: Installation parameter

Anchor size		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T_{inst}	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Edge distance (under fire exposure)	C _{cr;} (C _{cr,fi})	[mm]	150 (2 h_{ef}) (for shear loads perpendicular to the free edge: c_{cr} = 240)						
Minimum edge distance	Cmin	[mm]				50			
Spacing (under fire	Scr,II (Scr,fi,II)	[mm]				240 (4 h	ef)		
exposure)	$S_{cr,\perp}(S_{cr,fi,\perp})$	[mm]	240 (4 h _{ef})						
Minimum spacing	Smin,II; Smin,⊥	[mm]				50	25'		

Table C46: Reduction factors for single anchors at the edge

Tensio	n load			Shear load							
Telisio	II loau		perpendicular	to the free	parallel to the free edge						
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII			
	50 ¹⁾	1,00		50	0,20		50	1,00			
	150 ¹⁾	1,00		125	0,50]]	50	1,00			
	150	1,00		240	1,00		150	1,00			

Table C47: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpendicular to horizontal joint				
		with c ≥	with s ≥	αg II, N		with c ≥	with s ≥	αg⊥, N	
		50 ¹⁾	50	1,50		50 ¹⁾	50	0,80	
Tension load		150 ¹⁾	240	2,00		150 ¹⁾	240	2,00	
	• •	180 ²⁾	60	1,00		180 ²⁾	60	1,00	
		180 ²⁾	240	1,55		180 ²⁾	120	2,00	
		240 ²⁾	240	2,00		180 ²⁾	120	2,00	
(-	Т	with c ≥	with s ≥	αg II,V⊥	Iт	with c≥	with s ≥	αд⊥,∨⊥	
Shear load		50	50	0,40		50	50	0,20	
perpendicular		240	50	1,20		240	50	0,60	
to the free edge		240	240	2,00		240	125	1,00	
	1	240	240	2,00		240	240	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II	
parallel to the free edge		50	50	1,20		50	50	1,00	
		150	240	2,00		50	125	1,00	
to the nee eage		130	2-70	2,00		150	240	2,00	

¹⁾ All applications, except for h_{ef} = 200mm and without sleeve (for Table C46 and C47)

Injection System HB-VMU plus for masonry

Performances - Solid clay brick MZ-2DF

Description, installation parameters, reduction- and group factors

Annex C19

²⁾ Only for application with hef = 200mm and without sleeve

Brick type: Solid clay brick MZ-2DF – continuation

Table C48: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ s _{cr}
Anchor size	Sleeve	Effective			ι	lse cond	ition		
Alichor Size	HB-	anchorage depth	d/d				w/d w/w	d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges
		h _{ef}			$N_{Rk,b} = I$	V _{Rk,p} 1)			V _{Rk,b} 1)
		[mm]	[kN]					[kN]	
	Noi	malised mea	an compr	essive st	rength f _b	≥ 28 N/m	ım² ²)		
M8		80	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M10 / IG-M6	400	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M12 / IG-M8	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12,0
M16 / IG-M10	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12,0 ³⁾
M10 / M12 IG-M6 / IG-M8	-	200	11,5	11,5	10,0	6,0	6,0	5,0	8,0
M16 / IG-M10	-	200	11,5	11,5	10,0	6,0	6,0	5,0	12,0
M8	VM-SH 12	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M8 / M10 IG-M6	VM-SH 16	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M12 / IG-M8	VM-SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0
M16 / IG-M10	VM-SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0 ³⁾

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c|I} = V_{Rk,c\perp}$ according to Annex C5

Table C49: Displacements

Anchor size	h _{ef} [mm]	δ _N / N [mm/kN]	δ № [mm]	δ _{N∞} [mm]	δν / V [mm/kN]	δ v₀ [mm]	δν∞ [mm]
M8 – M12 / IG-M6 – IG-M10	all	0,1	0,1*N _{Rk} / 3,5	2*δνο	0,3	0,3*V _{Rk} /3,5	1,5*δ√0
M16		3.7 5		100, 301, 300,000,000	0,1	0,1*V _{Rk} /3,5	

Injection System HB-VMU plus for masonry

Performance - Solid clay brick MZ-2DF
Characteristic resistance and displacements

Annex C20

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C44. For stones with higher strengths, the shown values are valid without conversion.

³⁾ Valid for all stone strengths with min. 10 N/mm²

Table C50: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth		ic resistance _{k,p,fi} = V _{Rk,b,fi}			
	HB-	h _{ef}	R30	R60	R90	R120	
		[mm]		[k	N]		
M8	-	80					
M10 / IG-M6	-	≥ 90	0.51	0,44	0.20	0.33	
M12 / IG-M8	-	≥ 100	0,51		0,36	0,33	
M16 / IG-M10	ı	≥ 100					
M8	VM-SH 12	80	0,36	0,26	0,15	0,10	
M9 / M40 / IC M6	\/\A CII 46	≥ 85	0,36	0,26	0,15	0,10	
M8 / M10 / IG-M6	0 / IG-M6 VM-SH 16	130	0,92	0,74	0,57	0,49	
M12 / M16	VM-SH 20	≥ 85	0,36	0,26	0,15	0,10	
IG-M8 / IG-M10	VIVI-SH ZU	≥ 130	0,92	0,74	0,57	0,49	

Injection System HB-VMU plus for masonry

Performance - Solid clay brick MZ-2DF
Characteristic resistance under fire exposure

Annex C21

Brick type: Hollow clay brick HLZ-10 DF

Table C51: Description

Brick type			Hollow clay brick HLZ-10 DF	
Density	ρ	[kg/dm ³]	≥ 1,25	
Normalised mean compressive strength	f_{b}	[N/mm ²]	≥ 20	
Conversion factor for lower strengths	r com	pressive	$(f_b / 20)^{0,5} \le 1,0$	
Norm		[-]	EN 771-1:2011+A1:2015	
Producer (country code)		[-]	e.g. Wienerberger (DE)	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Brick dimensions		[mm]	300 x 240 x 249	
Drilling method		[-]	Rotary drilling	
			43 240	
		28 13 14	300	

Table C52: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T_{inst}	[Nm]	≤ 5	≤ 10	≤ 10	≤ 10	≤ 5	≤ 5	≤ 10
Edge distance (under fire exposure)	Ccr; (Ccr,fi)	[mm] 120 (2 h _{ef}) (for shear loads perpendicular to the free edge.						edge: c _{cr} =	= 300)
Minimum edge distance	C _{min}	[mm]							
Characteristic	Scr,II (Scr,fi,II)	[mm]				300 (4 h	ef)		
spacing (under fire exposure)	$\mathbf{S}_{\mathrm{cr},\perp}$ $\left(\mathbf{S}_{\mathrm{cr},\mathrm{fi},\perp}\right)$	[mm]	250 (4 h _{ef})						
Minimum spacing	Smin,II; Smin,⊥	[mm]				50			

Table C53: Reduction factors for single anchors at the edge

				Shear load								
Tensio	n ioad		perpendicular	to the free	edge	parallel to the free edge						
	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII				
 •	50	1,00		50	0,20		50	1,00				
	120	1,00		300	1,00		120	1,00				

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick HLZ 10DF Description, installation parameters, reduction factors	Annex C22

Brick type: Hollow clay brick HLZ-10 DF – continuation Table C54: Factors for anchor groups

	Position parallel t	o horizor	ıtal joint		Position perpendicular to horizontal joint				
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N	
Tension load	• •	50	50	1,55	1 :	50	50	1,00	
		120	300	2,00		120	250	2,00	
Shoor lood		with c ≥	with s ≥	αg II,V⊥		with c≥	with s ≥	αg⊥,∨⊥	
Shear load perpendicular	•••	50	50	0,30	•	50	50	0,20	
to the free edge		300	50	1,40		300	50	1,00	
to the nee eage		300	300	2,00	4	300	250	2,00	
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨II	
parallel		50	50	1,85		50	50	1,00	
to the free edge		120	300	2,00		120	250	2,00	

Table C55: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ s _{cr}		
Anchor size	Sleeve	Effective		Use condition							
Anchor size	HB-	anchorage depth		d/d			w/d w/w	d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}			$N_{Rk,b} = I$	V Rk,p 1)		V _{Rk,b} 1)			
		[mm]			[kN	J]		[kN]			
	Nor	malised mea	an compr	essive st	rength f₀	≥ 20 N/m	nm² ²)				
M8	VM-SH 12	80	2,5	2,5	2,0	2,5	2,5	2,0	8,0		
M8 / M10 /IG-M6	VM-SH 16	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	8,0		
M12 / IG-M8	VM-SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	8,0		
M16 / IG-M10	VM-SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	11,5		

Table C56: Displacements

Anchor size	h _{ef}	δ _N / N	δνο	δ _{N∞}	δ _V / V	δ∨0	δ∨∞
Alichor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16	-	0,10	o, 10 111117 o, 0	2 0110	0,31	0,31*V _{Rk} /3,5	1,0 000

Table C57: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth	Characteristic resistance N _{Rk,b,fi} = N _{Rk,p,fi} = V _{Rk,b,fi}						
	HB-	h _{ef}	R30	R30 R60 R90					
		[mm]		[k	N]				
M8 / M10 / IG-M6	VM-SH 16	130							
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 130	0,57	0,39	0,21	0,12			

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick HLZ 10DF Group factors, characteristic resistance and displacements	Annex C23

 $^{^{1)}}$ N_{Rk,b,c} = N_{Rk,p,c} and V_{Rk,c II} = V_{Rk,c \perp} according to Annex C5 $^{2)}$ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C51. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Porotherm Homebric

Table C58: Description

Brick type	Hollow clay brick Porotherm Homebric	
Density ρ [kg/dm ³]	≥ 0,70	
Normalised mean $f_b = [N/mm^2]$	≥ 10	
Conversion factor for lower compressive strengths	$(f_b / 10)^{0.5} \le 1.0$	
Norm [-]	EN 771-1:2011+A1:2015	
Producer (country code) [-]	e.g. Wienerberger (FR)	
Brick dimensions [mm]	500 x 200 x 299	
Drilling method [-]	Rotary drilling	
7,9 25 4,5	54 9 9	10.5

Table C59: Installation parameter

Anchor size	Anchor size				M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Edge distance	Ccr	[mm]	120 (f	or shear l	oads perp	endicular	to the free	e edge: c _{cr}	= 500)
Minimum edge distance	Cmin	[mm]				120			
Specing	S _{cr,II}	[mm]		500					
Spacing -	S _{cr,⊥}	[mm]				300			
Minimum spacing	S _{min,II} S _{min,⊥}	[mm]	120						

Table C60: Reduction factors for single anchors at the edge

Tension load					Shear load								
	Tension load				perpendicular to the free edge parallel t				the free edge				
		with c≥	αedge,N	1		with c≥	αedge,V⊥		with c ≥	αedge,VII			
		120	1.00			120	0,30		120	0.60			
		120	1,00			250	0,60		120	0,60			
		120	1,00	Ī		500	1,00		200	1,00			

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Porotherm Homebric Description, installation parameters, reduction factors	Annex C24

Brick type: Hollow clay brick Porotherm Homebric – continuation

Table C61: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load		120	100	1,00		120	100	1,00
Tension load		200	100	2,00		200	100	1,20
		120	500	2,00		120	300	2,00
		with c ≥	with s≥	αg II,V⊥	Н	with c≥	with s ≥	αg⊥,∨⊥
Shear load		120	100	0,30		120	100	0,30
perpendicular		250	100	0,60		250	100	0,60
to the free edge		500 120	100 500	1,00 2,00		120	300	2,00
Cheerland		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II
Shear load parallel	•	120	100	1,00		120	100	1,00
to the free edge		120	500	2,00		120	300	2,00

Table C62: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ Scr	
Anchor size	Sleeve	Effective	Use condition							
	нв-	anchorage depth d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges	
		h _{ef}			$N_{Rk,b} = I$	V _{Rk,p} 1)			V _{Rk,b} 1)	
		[mm]			[kN	1]			[kN]	
	Noi	rmalised mea	an compr	essive st	rength fb	≥ 10 N/m	nm² ²)			
M8	VM-SH 12	80			1,2	2			3,0	
M8 / M10/	\/M CII 4C	≥ 85			1,2	2			3,0	
IG-M6	VM-SH 16	130		1,5						
M12 / M16/	VM CH co	≥ 85		1,2						
IG-M8 / IG-M10	VM-SH 20	≥ 130			1,	5			4,0	

 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C63: Displacements

Anchor size h _{ef}		δη / Ν	δινο	δn∞	δ _V / V	δνο	δν∞
Allelior Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			-, · · · · · · · · · · · · · · · · · · ·	_ = = 1,10	0,31	0,31*V _{Rk} /3,5	.,,,-

Injection System HB-VMU plus for masonry	Annex C25
Performances – Hollow clay brick Porotherm Homebric Group factors, characteristic resistance and displacements	Allilex 025

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C58. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick BGV Thermo

Table C64: Description

Brick type	Hollow clay brick BGV Thermo	
Density ρ [kg/dm ³]	≥ 0,60	
Normalised mean compressive strength f _b [N/mm ²]	≥ 10	
Conversion factor for lower compressive strengths	$(f_b / 10)^{0.5} \le 1.0$	6
Norm [-]	EN 771-1:2011+A1:2015	
Producer (country code) [-]	e.g. Leroux (FR)	
Brick dimensions [mm]	500 x 200 x 314	
Drilling method [-]	Rotary drilling	
		200 5 - 22
42 28 5	500	

Table C65: Installation parameter

Anchor size		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T_{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Edge distance	Ccr	[mm]	120 (f	or shear l	oads perp	endicular	to the free	e edge: c _{cr}	= 500)
Minimum edge distance	Cmin	[mm]			20	120			
Specing	Scr,II	[mm]	500						
Spacing -	Scr,⊥	[mm]				315			
Minimum spacing	S _{min,I} I S _{min,⊥}	[mm]							

Table C66: Reduction factors for single anchors at the edge

	Tensio	n load		Shear load						
	Telisio	ii ioau		perpendicular	to the free	e edge	perpendicular to the free edge			
Γ		with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII	
l		120	1,00	-	120	0,30		120	0,60	
l		120	1,00		250	0,60]	120	0,60	
		120	1,00		500	1,00		250	1,00	

Injection System HB-VMU plus for masonry	
Performance - Hollow clay brick BGV Thermo Description, Installation parameters and reduction factors	Annex C26

Brick type: Hollow clay brick BGV Thermo - continuation

Table C67: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	$\beta \ge \alpha_{g\perp,N}$ 1,00 1,10			
	†	with c ≥	with s ≥	αg II,N		with c≥	with s ≥	$lpha_{ t gL,N}$			
Tension load		120	100	1,00		120	100	1,00			
l elision load		200	100	1,70		200	100	1,10			
		120	500	2,00		120	315	2,00			
Shear load		with c ≥	with s ≥	α _g II,∨⊥		with c≥	with s ≥	αд⊥,∨⊥			
perpendicular	•••	120	100	1,00	-	120	100	1,00			
to the free edge		120	500	2,00		120	315	2,00			
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II			
parallel		120	100	1,00		120	100	1,00			
to the free edge		120	500	2,00		120	315	2,00			

Table C68: Characteristic resistance under tension and shear load

			Characteristic resistance with c ≥ c _{cr} and s ≥ s _{cr}								
Anchor size	Sleeve	Effective	Use condition								
	НВ-	anchorage depth		d/d			w/d w/w		d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}			N _{Rk,b} =	N _{Rk,p} 1)			V _{Rk,b} 1)		
		[mm]			[kl	٧]			[kN]		
	No	ormalised mea	an compr	essive st	rength f	≥ 10 N/n	nm² ²)				
M8	VM-SH 12	80			0,	9			3,5		
M8 / M10/	VM CH 16	≥ 85			0,	9			3,5		
IG-M6	VM-SH 16	130	2,0	2,0	1,5	2,0	2,0	1,5	4,0		
M12 / M16/	VM-SH 20	≥ 85	0,9					4,0			
IG-M8 / IG-M10	V IVI-3H 2U	≥ 130	2,0	2,0	1,5	2,0	2,0	1,5	4,0		

 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C69: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞	
Allelior Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0	
M16	3,500,000,000	,		- 3,,,	0,31	0,31*V _{Rk} /3,5	.,	

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick BGV Thermo Group factors, characteristic resistance and displacements	Annex C27

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C64. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Calibric R+

Table C70: Description

Brick type		Hollow clay brick Calibric R+	
Density	ρ [kg/dm ³]	≥ 0,60	
Normalised mean compressive strength	f _b [N/mm ²]	≥ 12	
Conversion factor for lower of strengths	compressive	$(f_b / 12)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Producer (country code)	[-]	e.g. Leroux (FR)	
Brick dimensions	[mm]	500 x 200 x 314	
Drilling method	[-]	Rotary drilling	
		86	20 5 200
- -	40 6	500	

Table C71: Installation parameter

Anchor size	Anchor size					M16	IG-M6	IG-M8	IG-M10
Installation torque	T_{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Edge distance	Ccr	[mm] 120 (for shear loads perpendicular to the free edge: c _{cr} = 500)						= 500)	
Minimum edge distance	Cmin	[mm]	120						
Spacing	Scr, II	[mm]				500			
Spacing	Scr, ⊥	[mm]	315						
Minimum spacing	120								

Table C72: Reduction factors for single anchors at the edge

Tensio	n lood		Shear load						
Telisio	II IOau		perpendicular	to the free	e edge	perpendicular to the free edge			
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII	
	120	1,00		120	0,15		120	0,30	
	120	1,00		250	0,30]	120	0,30	
	120	1,00		500	1,00		250	1,00	

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Calibric R+ Description, installation parameters, reduction factors	Annex C28

Brick type: Hollow clay brick Calibric R+ – continuation

Table C73: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
	†	with c ≥	with s ≥	αg II,N		with c≥	with s ≥	$lpha_{ t gL,N}$
Tension load		120	100	1,00		120	100	1,00
l elision load		175	100	1,70		175	100	1,10
		120	500	2,00		120	315	2,00
Shear load		with c ≥	with s ≥	α _g II,∨⊥		with c≥	with s ≥	αд⊥,∨⊥
perpendicular	•••	120	100	1,00	-	120	100	1,00
to the free edge		120	500	2,00		120	315	2,00
Shear load		with c ≥	with s≥	αg II,V II		with c≥	with s ≥	αg⊥,∨II
parallel		120	100	1,00		120	100	1,00
to the free edge		120	500	2,00		120	315	2,00

Table C74: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ Scr
Anchor size	Sleeve	Effective			ι	lse cond	ition		
	нв-	anchorage depth	d/d			w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges
		h _{ef}			$N_{Rk,b} = 1$	V Rk,p 1)		V _{Rk,b} 1)	
		[mm]			[kN	1]		[kN]	
	Noi	malised mea	an compr	essive st	rength f _b	≥ 12 N/m	nm² ²)		
M8	VM-SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,0
M8 / M10/	VM CHAC	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,5
IG-M6	VM-SH16	130	1,5	1,5	1,2	1,5	1,5	1,2	5,5
M12 / M16	VM CHOO	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	8,5
IG-M8 /IG-M10	VM-SH20	≥ 130	1,5	1,5	1,2	1,5	1,5	1,2	8,5

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c|I} = V_{Rk,c\perp}$ according to Annex C5

Table C75: Displacements

Anchor size	h _{ef}	δ _N / N	δνο	δn∞	δ _V / V	δ vo	δ∨∞
[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	200.	,	trades describes absorbed (C.C.)		0,31	0,31*V _{Rk} /3,5	3 , 3 2 3 3 3

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Calibric R+ Group factors, characteristic resistance and displacements	Annex C29

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C70. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Urbanbric

Table C76: Description

Brick type	Hollow clay brick Urbanbric	
Density ρ [kg/dm ³]	≥ 0,70	
Normalised mean compressive strength f _b [N/mm ²]	≥ 12	
Conversion factor for lower compressive strengths	$(f_b / 12)^{0.5} \le 1.0$	
Norm [-]	EN 771-1:2011+A1:2015	
Producer (country code) [-]	e.g. Imerys (FR)	
Brick dimensions [mm]	560 x 200 x 274	
Drilling method [-]	Rotary drilling	
9 40 6	5,5 Ø ^{AO}	9,5

Table C77: Installation parameter

Anchor size	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Edge distance	Ccr	[mm]	120 (f	or shear l	oads perp	endicular	to the free	e edge: c _{cr}	= 500)
Minimum edge distance	C _{min}	[mm]				120			
Specing	Scr, II	[mm]				560			
Spacing	Scr, ⊥	[mm]				275			
Minimum spacing	S _{min,} II S _{min,} ⊥	[mm]				100			

Table C78: Reduction factors for single anchors at the edge

	Tensio	n lood			Shear load								
	rensio	II loau		perpendicular	to the free	perpendicular to the free edge							
-		with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,V II				
		120	1.00	-	120	0,25		120	0.50				
		120	1,00		250	0,50	 	120	0,50				
-		120	1,00		500	1,00		250	1,00				

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Urbanbric Description, installation parameters, reduction factors	Annex C30

Brick type: Hollow clay brick Urbanbric – continuation

Table C79: Factors for anchor groups

	Position parallel t	Position perpend	icular to	horizonta	al joint			
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load		120	100	1,00		120	100	1,00
Tension load		185	100	1,90	•	185	100	1,10
		120	560	2,00		120	275	2,00
Shear load		with c≥	with s ≥	α _g II,V⊥		with c≥	with s ≥	αg⊥,∨⊥
perpendicular	•••	120	100	1,00	-	120	100	1,00
to the free edge		120	560	2,00		120	275	2,00
Shoor load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	α _{g⊥,} ∨ II
Shear load parallel	•	120	100	1,00		120	100	1,00
to the free edge		120	560	2,00		120	275	2,00

Table C80: Characteristic resistance under tension and shear load

				≥ S cr								
Anchor size	Sleeve	Effective	ve Use condition									
	НВ-	anchorage depth		d/d			w/d w/w		d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}			$N_{Rk,b} = 1$	J _{Rk,p} 1)			V _{Rk,b} 1)			
		[mm]			[kN	1]		[kN]				
	Nor	malised mea	an compr	essive st	rength f _b	≥ 12 N/m	nm² ²)					
M8	VM-SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,5			
M8 / M10/	V/M CIL 4C	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	4,5			
IG-M6	VM-SH 16	130	3,0	3,0	2,5	3,0	3,0	2,5	4,5			
M12 / M16	\/M CH 20	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,0			
IG-M8 / IG-M10	VM-SH 20	≥ 130	3,0	3,0	2,5	3,0	3,0	2,5	5,0			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c|I} = V_{Rk,c\perp}$ according to Annex C5

Table C81: Displacements

Anchor size	h _{ef}	δ _N / N	διο	δn∞	δ _V / V	δνο	δν∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√ο
M16		,	,	_ 5110	0,31	0,31*V _{Rk} /3,5	.,,.

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Urbanbric Group factors, characteristic resistance and displacements	Annex C31

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C76. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow Clay brick Brique Creuse C40

Table C82: Description

Table C83: Installation parameter

Anchor size	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Edge distance	Ccr	[mm]	120 (f	or shear l	oads perp	endicular	to the free	e edge: c _{cr}	= 500)
Minimum edge distance	C _{min}	[mm]	120						
Specing	Scr, II	[mm]				500			
Spacing	S _{cr, ⊥}	[mm]				200			
Minimum spacing	S _{min, II} S _{min, ⊥}	[mm]				200			

Table C84: Reduction factors for single anchors at the edge

Tensio	n lood		Shear load							
Telisio	II loau		perpendicular t	to the free	edge	perpendicular t	to the free edge			
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,V II		
•	120	1,00	→	120	0,83		120	1,00		
	120	1,00		500	1,00		250	1,00		

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Brique Creuse C40 Description, installation parameters, reduction factors	Annex C32

Brick type: Hollow Clay brick Brique Creuse C40 - continuation

Table C85: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
Tension load		with c ≥	with s≥	αg II,N		with c≥	with s ≥	αg⊥,N
		120	500	2,00		120	200	2,00
Cheer load		with c≥	with s ≥	α _g II,V⊥		with c≥	with s ≥	αд⊥,∨⊥
Shear load perpendicular to the free edge		120	500	2,00		120	200	2,00
Chassisad		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II
Shear load parallel to the free edge		120	500	2,00		120	200	2,00

Table C86: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c ≥ o	c _{cr} and s	≥ s _{cr}		
Anchor size	Sleeve	Effective	Use condition								
	НВ-	anchorage depth	d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}		,	$N_{Rk,b} = 1$	V Rk,p 1)			V _{Rk} ,b 1)		
		[mm]			[kN	l]		[kN]			
	Nor	malised mea	an compr	essive st	rength f _b	≥ 12 N/m	ım² ²)				
M8	VM-SH 12	80									
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	1,5		
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85									

 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C87: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞	
Allchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δ√0	
M16		,		_ 5110	0,31	0,31*V _{Rk} /3,5	1,1 0,0	

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Brique Creuse C40 Group factors, characteristic resistance and displacements	Annex C33

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C82. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Blocchi Leggeri

Table C88: Description

Brick type	Hollow clay brick Blocchi Leggeri	
Density ρ [kg/dm ³]	≥ 0,60	
Normalised mean compressive strength f _b [N/mm ²]	≥ 12	
Conversion factor for lower compressive strengths	$(f_b / 12)^{0,5} \le 1,0$	
Norm [-]	EN 771-1:2011+A1:2015	
Producer (country code) [-]	e.g. Wienerberger (IT)	
Brick dimensions [mm]	250 x 120 x 250	
Drilling method [-]	Rotary drilling	
	250	32 6

Table C89: Installation parameter

Anchor size		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)							
Minimum edge distance	C _{min}	[mm]	60							
Chaoina	Scr, II	[mm]				250				
Spacing	Scr, ⊥	[mm]	250							
Minimum spacing	S _{min, II} S _{min, ⊥}	[mm]	100							

Table C90: Reduction factors for single anchors at the edge

	Tensio	n lood		Shear load							
	rensio	II loau		perpendicular	perpendicular to the free edge perpendicular to the free edge						
-		with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII		
	•	60	1,00		60	0,40		60	0,40		
		120	1,00		250	1,00		120	1,00		

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Blocchi Leggeri Description, installation parameters, reduction factors	Annex C34

Brick type: Hollow clay brick Blocchi Leggeri - continuation

Table C91: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizonta	al joint
Tension load		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
	• •	60	100	1,00		60	100	2,00
		120	250	2,00		120	250	2,00
		with c ≥	with s ≥	αg II,V⊥		with c≥	with s ≥	$\alpha_{\text{gL,VL}}$
Shear load		60	100	0,40	•	60	100	0,40
perpendicular to the free edge		250	100	1,00		250	100	1,00
to the free eage		250	250	2,00		250	250	2,00
		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II
Shear load		60	100	0,40	•	60	100	0,40
parallel to the free edge		120	100	1,00		120	100	1,00
to the nee edge		120	250	2,00		120	250	2,00

Table C92: Characteristic resistance under tension and shear load

				Charact	eristic res	sistance	with c ≥ o	c _{cr} and s	≥ S _{cr}		
Anchor size	Sleeve	Effective	Use condition								
	НВ-	anchorage depth	d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}			N _{Rk,b} = 1	V Rk,p 1)	\$		V _{Rk,b} 1)		
		[mm]			[kN	1]		[kN]			
	Nor	malised mea	an compr	essive st	rength f₅	≥ 12 N/m	nm² ²)				
M8	VM-SH 12	80									
M8 / M10/ IG-M6	VM-SH 16	≥ 85	0,6	0,6	0,6	0,6	0,6	0,6	3,5		
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85									

 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C93: Displacements

Anchor size hef		δ _N / N	δινο	δn∞	δ _V / V	δνο	δ∨∞
Allelior Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16		,			0,31	0,31*V _{Rk} /3,5	.,

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Blocchi Leggeri Group factors, characteristic resistance and displacements	Annex C35

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C88. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow Clay brick Doppio Uni

Table C94: Description

Brick type			Hollow clay brick Doppio Uni	
Density	ρ	[kg/dm³]	≥ 0,90	
Normalised mean compressive strength	f_{b}	[N/mm ²]	≥ 28	
Conversion factor for lower strengths	com	pressive	$(f_b / 28)^{0.5} \le 1.0$	
Norm		[-]	EN 771-1:2011+A1:2015	
Producer (country code)		[-]	e.g. Wienerberger (IT)	
Brick dimensions		[mm]	250 x 120 x 120	
Drilling method		[-]	Rotary drilling	
	1		61 0	11 31 120

Table C95: Installation parameter

Anchor size		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2		
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)								
Minimum edge distance	C _{min}	[mm]	100								
Chaoina	Scr, II	[mm]				250					
Spacing	scr, 1				120						
Minimum spacing	S _{min, I} I S _{min, ⊥}	[mm]	100								

Table C96: Reduction factors for single anchors at the edge

Tensio	n load		nernendicular	Shear load perpendicular to the free edge perpendicular to				
	with c≥	αedge,N	perpendicular	with c≥	αedge,V⊥		with c ≥	
•	100	1,00	→	100	0,50		100	1,00
	120	1,00		250	1,00		120	1,00

Indication Ocation UD VMII also for an access	
Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick Doppio Uni	Annex C36
Description, installation parameters, reduction factors	

Brick type: Hollow Clay brick Doppio Uni – continuation

Table C97: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizonta	al joint
		with c ≥	with s≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	100	100	1,00		100	120	2,00
		120	250	2,00		120	120	2,00
Shear load		with c ≥	with s ≥	α _g II,V⊥		with c≥	with s ≥	$lpha_{ t gL, VL}$
perpendicular	•••	100	100	1,00	-	100	100	1,00
to the free edge		250	250	2,00		250	120	2,00
Cheerland		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II
Shear load parallel	•	100	100	1,00	1	100	100	1,00
to the free edge		120	250	2,00		120	120	2,00

Table C98: Characteristic resistance under tension and shear load

			Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$								
Anchor size Sleeve		Effective	Use condition								
	НВ-	anchorage depth	anchorage				w/d w/w		d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}			$N_{Rk,b} = I$	V _{Rk,p} 1)			V _{Rk,b} 1)		
		[mm]			[kN	1]		[kN]			
	Nor	malised mea	an compr	essive st	rength f₅	≥ 28 N/m	ım² ²)				
M8	VM-SH 12	80									
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,5		
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85									

 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C99: Displacements

Anchor size	h _{ef}	δη / Ν	δινο	δn∞	δ _V / V	δνο	δν∞
Allelior Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1, 5 *δνο
M16	10000			3.00	0,31	0,31*V _{Rk} /3,5	

Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick Doppio Uni Group factors, characteristic resistance and displacements	Annex C37

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C94. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Coriso WS07 with insulation

Table C100: Description

Brick type			Hollow clay brick Coriso WS07	
Insulation material			Rock wool	
Density	ρ	[kg/dm ³]	≥ 0,55	
Normalised mean compressive strength	f _b	[N/mm ²]	≥ 6	
Conversion factor for lower strengths	com	pressive	$(f_b / 6)^{0,5} \le 1,0$	
Norm		[-]	EN 771-1:2011+A1:2015	
Producer (country code)		[-]	e.g. Unipor (DE)	
Brick dimensions		[mm]	248 x 365 x 249	
Drilling method		[-]	Rotary drilling	
	14	16 7	8 248	

Table C101: Installation parameter

Anchor size		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)						
Minimum edge distance	Cmin	[mm]	50						
Specing	Scr, II	[mm]				250			
Spacing	s _{cr,⊥} [mm] 250								
Minimum spacing	S _{min, II} S _{min, ⊥}	[mm]				50			

Table C102: Reduction factors for single anchors at the edge

Tensio	n load		Shear load							
Telisio	iii ioau		perpendicular	to the free	e edge	perpendicular to the free edge				
	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII		
•	50	1,00	│	50	0,30		50	1,00		
	120	1,00		250	1,00		120	1,00		

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Coriso WS07 Description, installation parameters, reduction factors	Annex C38

Brick type: Hollow clay brick Coriso WS07 with insulation – continuation

Table C103: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizonta	al joint
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	50	50	1,50		50	50	1,00
		120	250	2,00		120	250	2,00
28 8 8		with c ≥	with s ≥	αg II,V⊥		with c≥	with s ≥	$\alpha_{\text{gL,VL}}$
Shear load		50	50	0,40	•	50	50	0,40
perpendicular to the free edge		250	50	1,00		250	50	1,20
to the nee eage		250	250	2,00	ļL	250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨II
parallel to the free edge		50	50	1,65		50	50	1,00
		120	250	2,00		120	250	2,00

Table C104: Characteristic resistance under tension and shear load

Anchor size	Sleeve	Effective	Characteristic resistance with c ≥ c _{cr} and s ≥ s _{cr} Use condition							
Alichor Size	HB-	anchorage depth	nchorage			w/d w/w			d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges	
		h _{ef}			$N_{Rk,b} = 1$	V _{Rk,p} 1)			V _{Rk,b} 1)	
		[mm]			[kN	1]			[kN]	
	No	rmalised me	an comp	ressive s	trength f	₂ ≥ 6 N/m	m ^{2 2)}			
M8	VM-SH 12	80								
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0	
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85								

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c\,II}}$ = $V_{\text{Rk,c\,\bot}}$ according to Annex C5

Table C105: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞	
Allelioi Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ _{V0}	
M16	all		,	_ = = = = = = = = = = = = = = = = = = =	0,31	0,31*V _{Rk} /3,5	.,,.	

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Coriso WS07 with insulation Group factors, characteristic resistance and displacements	Annex C39

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C100. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick T7 MW with insulation

Table C106: Description

Brick type			Hollow clay brick T7 MW	
Insulation material			Rock wool	No.
Density	ρ	[kg/dm³]	≥ 0,59	HIDE
Normalised mean compressive strength	f _b	[N/mm ²]	≥ 8	
Conversion factor for lower of strengths	com	pressive	$(f_b / 8)^{0,5} \le 1,0$	
Norm		[-]	EN 771-1:2011+A1:2015	
Producer (country code)		[-]	e.g. Wienerberger (DE)	All III
Brick dimensions		[mm]	248 x 365 x 249	-41
Drilling method		[-]	Rotary drilling	
				248

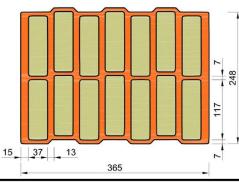


Table C107: Installation parameter

Anchor size	Anchor size				M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T_{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Edge distance (under fire exposure)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h_{ef}) (for shear loads perpendicular to the free edge: c_{cr} = 250)						
Minimum edge distand	[mm]	50							
Spacing (under fire	Scr, II (Scr,fi, II)	[mm]	250 (4 h _{ef})						
exposure)	$S_{cr, \perp}(S_{cr,fi, \perp})$	[mm]	[mm] 250 (4 h _{ef})						
Minimum spacing	Smin, II; Smin, ⊥	[mm]	50						

Table C108: Reduction factors for single anchors at the edge

Tension load			Shear load								
Tellsio	ii ioau		perpendicular	to the free	e edge	perpendicular to the free edge					
	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,V II			
 •	50	1,00		50	0,35		50	1,00			
	120	1,00		250	1,00	V	120	1,00			

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick T7 MW Description, installation parameters, reduction factors	Annex C40

Brick type: Hollow clay brick T7 MW with insulation – continuation

Table C109: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
Tension load		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
	• •	50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
Shear load		with c ≥	with s ≥	αg II,V⊥	 	with c≥	with s ≥	α _{g⊥,} ∨⊥
		50	50	0,60		50	50	0,40
perpendicular to the free edge		250	50	1,55		250	50	1,00
to the nee eage		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	α _{g⊥,} ∨ II
parallel to the free edge		50	50	2,00		50	50	1,20
		120	250	2,00		120	250	2,00

Table C110: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c ≥ d	c _{cr} and s	≥ s _{cr}	
Anchor size	Sleeve	Effective	Effective Use condition							
	НВ-	anchorage depth				w/d w/w			d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges	
		h _{ef}			$N_{Rk,b} = 1$	V Rk,p 1)			V _{Rk,b} 1)	
		[mm]			[kN	1]		[kN]		
	No	rmalised me	an comp	ressive s	trength f	≥ 8 N /m	m ^{2 2)}			
M8	VM-SH 12	80								
M8 / M10/ IG-M6	VM-SH 16	≥ 85	2.0	2.0	1 5	2.0	2,0	1 5	3,0	
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0		1,5		
M16 / IG-M10	VM-SH 20	≥ 85							4,5	

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c }\perp}$ according to Annex C5

Table C111: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δγ∞
Allelior Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δ _{N0}	0,55	0,55*V _{Rk} /3,5	1, 5 *δνο
M16		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 3.1.0	0,31	0,31*V _{Rk} /3,5	.,

Injection System HB-VMU plus for masonry	
Performance Performances – Hollow clay brick T7 MW Group factors, characteristic resistances and displacements	Annex C41

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C106. For stones with higher strengths, the shown values are valid without conversion.

Table C112: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth	Characteristic resistance $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
Anonor Gize	HB-	h _{ef}	R30 R60 R90 R120					
		[mm]	[kN]					
M8 / M10 /IG-M6	VM-SH 16	130				no norformanao		
M12 / M16 / IG-M8 IG-M10	VM-SH 20	≥ 130	0,64 0,37 0,11 r			no performance assessed		

Injection System HB-VMU plus for masonry

Performances – Hollow clay brick T7 MW with insulation
Characteristic resistance under fire exposure

Annex C42

Brick type: Hollow clay brick T8 P with insulation

Table C113: Description

Brick type		Hollow clay brick T8 P	
Insulation material		Perlite	CHIEF THE STATE OF
Density	cy [kg/dm³]	≥ 0,56	
Normalised mean compressive strength	b [N/mm²]	≥ 6	
Conversion factor for lower costrengths	mpressive	$(f_b / 6)^{0,5} \le 1,0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Producer (country code)	[-]	e.g. Wienerberger (DE)	
Brick dimensions	[mm]	248 x 365 x 249	
Drilling method	[-]	Rotary drilling	
	15 36 14	365 113 8 113 6 748	

Table C114: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T_{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4
Edge distance	Ccr	[mm]	120 (f	or shear l	oads perp	endicular	to the free	e edge: ccr	= 250)
Minimum edge distance	C _{min}	[mm]				50			
Chasing	Scr, II	[mm]	250						
Spacing -	Scr, ⊥	[mm]	250						
Minimum spacing	S _{min,} II S _{min,} ⊥	[mm]	50						

Table C115: Reduction factors for single anchors at the edge

Tensio	n load		Shear load perpendicular to the free edge perpendicular to the free edge								
			perpendicular	to the free	e eage	perpendicular t	o the free	e eage			
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII			
•	50	1,00		50	0,25		50	1,00			
	120	1,00		250	1,00		120	1,00			

Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick T8 P with insulation Description, installation parameters, reduction factors	Annex C43

Brick type: Hollow clay brick T8 P- continuation

Table C116: Factors for anchor groups

	Position parallel t	o horizor	ıtal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	50	50	1,30		50	50	1,10
		120	250	2,00		120	250	2,00
		with c ≥	with s ≥	αg II,V⊥		with c≥	with s ≥	αд⊥,∨⊥
Shear load		50	50	0,40		50	50	0,30
perpendicular to the free edge		250	50	1,35		250	50	1,20
to the free eage		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s≥	αg II,V II		with c≥	with s ≥	αg⊥,∨II
parallel	•	50	50	1,70		50	50	1,00
to the free edge		120	250	2,00		120	250	2,00

Table C117: Characteristic resistance under tension and shear load

			Characteristic res			sistance	with c≥	c _{cr} and s	≥ S _{cr}
Anchor size	Sleeve	Effective			L	Jse cond	ition		
	НВ-	anchorage depth	d/d		w/d w/w			d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges
		h _{ef}			N _{Rk,b} = I	N _{Rk,p} 1)		V _{Rk,b} 1)	
		[mm]			[kN	١]		[kN]	
	No	rmalised me	an comp	ressive s	trength f	₂ ≥ 6 N/m	m ^{2 2)}		
M8	VM-SH 12	80							
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	4,5
M12 / IG-M8	VM-SH 20	≥ 85							
M16 / IG-M10	VM-SH 20	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	7,0

Table C118: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
Allelioi size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			,		0,31	0,31*V _{Rk} /3,5	.,

Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick T8 P with insulation Group factors, characteristic resistance and displacements	Annex C44

8.06.04-163/25 Z208594.25

 $^{^{1)}}$ N_{Rk,b,c} = N_{Rk,p,c} and V_{Rk,c II} = V_{Rk,c \perp} according to Annex C5 $^{2)}$ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C113. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Thermoplan MZ90-G with insulation

Table C119: Installation parameter

Brick type			Hollow clay brick Thermoplan MZ90-G	
Insulation material			Rock wool	The fall of the same
Density	ρ	[kg/dm ³]	≥ 0,68	Carlotte State
Normalised mean compressive strength	f _b	[N/mm ²]	≥ 12	I Wall and a second
Conversion factor for lower strengths	com	pressive	$(f_b / 12)^{0.5} \le 1.0$	
Norm		[-]	EN 771-1:2011+A1:2015	
Producer (country code)		[-]	e.g. Mein Ziegelhaus (DE)	
Brick dimensions		[mm]	248 x 365 x 249	
Drilling method		[-]	Rotary drilling	
		13	13 17 365	13 13 13 13

Table C120: Installation parameter

Anchor size	Anchor size					M16	IG-M6	IG-M8	IG-M10	
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4	
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 250)							
Minimum edge distance	Cmin	[mm]	50							
Specing	Scr, II	[mm]	250							
Spacing	S _{cr, ⊥}	[mm]	250							
Minimum spacing	S _{min,} II S _{min,} ⊥	[mm]	50							

Table C121: Reduction factors for single anchors at the edge

Tension load			Shear load								
1611310	ii ioau		perpendicular	to the free	e edge	perpendicular to the free edge					
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,VII			
 •	50	1,00		50	0,25		50	1,00			
	120	1,00		250	1,00		120	1,00			

Injection System HB-VMU plus for masonry

Performances – Hollow clay brick Thermoplan MZ90-G
Description, installation parameters, reduction factors

Annex C45

Brick type: Lochziegel Thermoplan MZ90-G – continuation

Table C122: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	50	50	1,00		50	50	1,00
		120	250	2,00		120	250	2,00
011		with c ≥	with s ≥	αg II,V⊥		with c≥	with s ≥	αд⊥,∨⊥
Shear load		50	50	0,75	•	50	50	0,50
perpendicular to the free edge		250	50	2,00		250	50	1,70
to the nee eage		250	250	2,00		250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	α _g ⊥,∨ II
parallel to the free edge	••	50	50	1,65		50	50	1,15
		120	250	2,00		120	250	2,00

Table C123: Characteristic resistance under tension and shear load

				Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$									
Anchor size	Sleeve	Effective	Use condition										
	НВ-	anchorage depth				w/d w/w			d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges				
		h _{ef}			$N_{Rk,b} = I$	N _{Rk,p} 1)			V _{Rk,b} 1)				
		[mm]			[kN	1]		[kN]					
	Noi	rmalised mea	an compr	essive st	rength f _b	≥ 12 N/m	nm² ²)						
M8	VM-SH 12	80											
M8 / M10/ IG-M6	VM-SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	4,0				
M12 / IG-M8	VM-SH 20	≥ 85											
M16 / IG-M10	VM-SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,5				

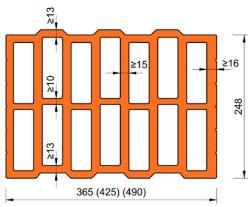
 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C124: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δγ∞
Allelior Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2 *δ _{N0}	0,55	0,55*V _{Rk} /3,5	1, 5 *δνο
M16					0,31	0,31*V _{Rk} /3,5	

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick Thermoplan MZ90-G with insulation Group factors, characteristic resistance and displacements	Annex C46

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C119. For stones with higher strengths, the shown values are valid without conversion.



Brick type: Hollow clay brick Poroton FZ7,5 with insulation

Table C125: Description

Brick type			Hollow clay brick Poroton FZ7,5
Insulation material			Rock wool
Density	ρ	[kg/dm³]	≥ 0,70
Normalised mean compressive strength	f_b	[N/mm ²]	≥ 8
Conversion factor for lower strengths	com	pressive	$(f_b / 8)^{0,5} \le 1,0$
Norm		[-]	EN 771-1:2011+A1:2015
Producer (country code)		[-]	e.g. Schlagmann (DE)
Brick dimensions		[mm]	248 x 365 x 249
Drilling method		[-]	Rotary drilling
		13	

Table C126: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Edge distance (under fire exposure)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h_{ef}) (for shear loads perpendicular to the free edge: c_{cr} = 250)						
Minimum edge distan	ce c _{min}	[mm]				50			1,
Spacing (under fire	Scr, II (Scr,fi, II)	[mm]				250 (4 he	ef)		
exposure)	Scr, ⊥ (Scr,fi, ⊥)	[mm]	m] 250 (4 h _{ef})						
Minimum Spacing	Smin, II; Smin, ⊥	[mm]				50			

Table C127: Reduction factors for single anchors at the edge

Tensio	n lood			Shear load								
Tension	II IOau		perpendicular to the free edge perpendicular to the free e						edge			
	with c≥	αedge,N			with c≥	αedge,V⊥		with c ≥	αedge,V II			
•	50	1,00			50	0,35		50	1,00			
	120	1,00	ļ		250	1,00		120	1,00			

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick FZ7,5 MW Description, installation parameters, reduction factors	Annex C47

Brick type: Hollow clay brick FZ7,5 with insulation – continuation

Table C128: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
Shoor load		with c ≥	with s ≥	αg II,V⊥	+	with c≥	with s ≥	αg⊥,∨⊥
Shear load		50	50	0,60		50	50	0,40
perpendicular to the free edge		250	50	1,55		250	50	1,00
to the free edge		250	250	2,00	<u> </u>	250	250	2,00
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II
parallel		50	50	2,00		50	50	1,20
to the free edge		120	250	2,00		120	250	2,00

Table C129: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ S _{cr}			
Anchor size	Sleeve	Effective		Use condition								
Alichor Size	HB-	anchorage depth	d/d			w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$ ¹⁾					V _{Rk,b} 1)			
		[mm]			[kN	J]		[kN]				
	No	rmalised me	an comp	ressive s	trength f	≥ 8 N/m	m ^{2 2)}	2	1 A			
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	2.0	2.0	1 5	2.0	2.0	1.5	3,0			
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0	2,0	1,5				
M16 / IG-M10	VM-SH 20	≥ 85							4,5			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c|I} = V_{Rk,c\perp}$ according to Annex C5

Table C130: Displacements

Anchor size	h _{ef}	δ _N / N	δνο	δ _{N∞}	δ _V / V	δ∨0	δν∞
Alichor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16					0,31	0,31*V _{Rk} /3,5	

Table C131: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth	Characteristic resistance $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$						
	нв-	h _{ef}	R30	R60	R90	R120			
		[mm]		[kN]					
M8 / M10 /IG-M6	VM-SH 16	130				no norformana			
M12 / M16 / IG-M8 IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	no performance assessed			

Injection System HB-VMU plus for masonry	
Performance – Hollow clay brick FZ7,5 MW Group factors, characteristic resistance and displacements	Annex C48

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C125. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Poroton FZ9 with insulation

Table C132: Description

Brick type			Hollow clay brick Poroton FZ9	
Insulation material			Rock wool	TO BE BERTON
Density	ρ	[kg/dm³]	≥ 0,90	
Normalised mean compressive strength	f_{b}	[N/mm ²]	≥ 10	1 3
Conversion factor for lower strengths	com	pressive	$(f_b / 10)^{0.5} \le 1.0$	
Norm		[-]	EN 771-1:2011+A1:2015	
Producer (country code)		[-]	e.g. Schlagmann (DE)	
Brick dimensions		[mm]	248 x 365 x 249	
Drilling method		[-]	Rotary drilling	
		≥19,6	212,0 214,0 210,0 212,0 222,0 222,0 222,0	≥19,6 87 7

Table C133: Installation parameter

Anchor size	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10			
Installation torque	T_{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5	
Edge distance (under fire exposure)	C _{cr;} (C _{cr,fi})	[mm]	120 (2 h_{ef}) (for shear loads perpendicular to the free edge: c_{cr} = 250)							
Minimum edge distand	ce c _{min}	[mm]				50				
Spacing (under fire	Scr, II (Scr,fi, II)	[mm]	250 (4 h _{ef})							
exposure)	$\mathbf{S}_{cr,\perp}\left(\mathbf{S}_{cr,fi,\perp}\right)$	[mm]	[mm]				250 (4 h _{ef})			
Minimum spacing	Smin,II; Smin,⊥	[mm]	50							

Table C134: Reduction factors for single anchors at the edge

Tension load				Shear load							
rensio	II loau		perpendicular to the free edge perpendicular to the free edge				e edge				
	with c≥	αedge,N	1		with c≥	αedge,V⊥		with c ≥	αedge,VII		
•	50	1,00			50	0,35		50	1,00		
	120	1,00	H		250	1,00		120	1,00		

Injection System HB-VMU plus for masonry	
Performances – Hollow clay brick FZ9 MW with insulation Description, installation parameters, reduction factors	Annex C49

Brick type: Hollow clay brick FZ9 with insulation – continuation

Table C135: Factors for anchor groups

	Position parallel to horizontal joint						Position perpendicular to horizontal joint				
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N			
Tension load	• •	50	50	1,40		50	50	1,15			
		120	250	2,00		120	250	2,00			
Shear load	 	with c ≥	with s ≥	αg II,V⊥	1 г	with c≥	with s ≥	α _{g⊥,} ∨⊥			
	•••	50	50	0,60	-	50	50	0,40			
perpendicular to the free edge		250	50	1,55		250	50	1,00			
to the free edge	 	250	250	2,00	 	250	250	2,00			
Shear load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II			
parallel	•	50	50	2,00		50	50	1,20			
to the free edge		120	250	2,00		120	250	2,00			

Table C136: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ S _{cr}			
Anchor size	Sleeve				ι	Jse cond	ition					
Anchor Size	HB-	anchorage depth				w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}			$N_{Rk,b} = I$	N _{Rk,p} 1)			V _{Rk,b} 1)			
		[mm]			[kN	J]			[kN]			
	Nor	malised mea	an compr	essive st	rength f _b	≥ 10 N/m	nm² ²)	2	1 A			
M8	VM-SH 12	80										
M8 / M10/ IG-M6	VM-SH 16	≥ 85	2.0	2.0	1 5	2.0	2,0	1.5	3,0			
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0		1,5				
M16 / IG-M10	VM-SH 20	≥ 85							4,5			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c | II} = V_{Rk,c \perp}$ according to Annex C5

Table C137: Displacements

Anchor size	h _{ef} [mm]	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δv / V [mm/kN]	δν ₀ [mm]	δν∞ [mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δ√0
M16	,350-30-10-1	**************************************	extrace* section of section effects of the effects of the		0,31	0,31*V _{Rk} /3,5	

Table C138: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth	Characteristic resistance $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$				
	HB-	h _{ef}	R30 R60 R90 R12				
		[mm]		[k	N]		
M8 / M10 /IG-M6	VM-SH 16	130				no norformanao	
M12 / M16 / IG-M8 IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	no performance assessed	

Injection System HB-VMU plus for masonry	
Performance – Hollow clay brick FZ9 Group factors, characteristic resistance and displacements	Annex C50

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C132. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Poroton S9 with insulation

Table C139: Description

Brick type	Hollow clay brick Poroton S9	
Insulation material	Perlite	
Density ρ [kg/dm ³]	≥ 0,85	
Normalised mean compressive strength f _b [N/mm ²]	≥ 12	
Conversion factor for lower compressive strengths	$(f_b / 12)^{0.5} \le 1.0$	
Norm [-]	EN 771-1:2011+A1:2015	
Producer (country code) [-]	e.g. Schlagmann (DE)	
Brick dimensions [mm]	248 x 365 x 249	
Drilling method [-]	Rotary drilling	
11,5	5,0 8,0 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	248 848 248 248

Table C140: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5
Edge distance	Ccr	[mm]	m] 120 (for shear loads perpendicular to the free edge: c _{cr} = 250)						= 250)
Minimum edge distance	Cmin	[mm]	50						
Chooing	Scr, II	[mm]	250						
Spacing	S _{cr, ⊥}	[mm]				250			
Minimum spacing									

Table C141: Reduction factors for single anchors at the edge

Tensio	n lood		Shear load							
Telisio	ii ioau		perpendicular to the free edge perpendicular to the free edge					e edge		
	with c≥	αedge,N		with c≥	αedge,V⊥		with c ≥	αedge,V II		
•	50	1,00	│	50	0,30		50	1,00		
	120	1,00		250	1,00		120	1,00		

Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick Poroton S9 Description, installation parameters, reduction factors	Annex C51

Brick type: Hollow clay brick Poroton S9 with insulation – continuation

Table C142: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
Tension load		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
	• •	50	50	1,50		50	50	1,00
		120	250	2,00		120	250	2,00
22 2 2		with c ≥	with s ≥	αg II,∨⊥		with c≥	with s ≥	$\alpha_{\text{g}\bot,\text{V}\bot}$
Shear load		50	50	0,40		50	50	0,40
perpendicular to the free edge		250	50	1,00		250	50	1,20
to the nee eage		250	250	2,00		250	250	2,00
Shoor load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\text{II}}$
Shear load parallel		50	50	1,65		50	50	1,00
to the free edge		120	250	2,00		120	250	2,00

Table C143: Characteristic resistance under tension and shear load

	×.		Characteristic resistance with c ≥ c _{cr} and s ≥ s _{cr} Use condition								
Anchor size	Sleeve HB-	Effective anchorage depth	nchorage				w/d w/w	d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}			$N_{Rk,b} = I$	V Rk,p 1)			V _{Rk,b} 1)		
		[mm]			[kN	1]		[kN]			
	Nor	malised mea	an compr	essive st	rength f _b	≥ 12 N/m	nm² ²)				
M8	VM-SH 12	80									
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0		
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85									

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c}\,\perp}$ according to Annex C5

Table C144: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δvo
M16		5,.0	5,10 HRX 7 5,5	_ = 5110	0,31	0,31*V _{Rk} /3,5	.,5 5,0

Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick Poroton S9 Group factors, characteristic resistance and displacements	Annex C52

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C139. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow clay brick Thermopor TV8+ with insulation

Table C145: Description

Brick type		Hollow clay brick Thermopor TV8+	
Insulation material		Rock wool	
Density	ρ [kg/dm ³]	≥ 0,70	
Normalised mean compressive strength	f _b [N/mm ²]	≥ 10	
Conversion factor for lower of strengths	compressive	$(f_b / 10)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Producer (country code)	[-]	e.g. THERMOPOR GmbH (DE)	
Brick dimensions	[mm]	247 x 365 x 249	
Drilling method	[-]	Rotary drilling	
<u>1</u> 1	EU	0E 18 18 18 18	247
	W	w w w v	~
	1	365	

Table C146: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤ 4
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: $c_{cr} = 250$)						
Minimum edge distance	Cmin	[mm]	50						
Cassina	Scr, II	[mm]	250						
Spacing	Scr, ⊥	[mm]				250		≤ 4	
Minimum spacing	S _{min, II} S _{min, ⊥}	[mm]							

Table C147: Reduction factors for single anchors at the edge

W.	Tension load				Shear load							
	rensio	II loau			perpendicular	to the free	edge	perpendicular t	o the free	e edge		
		with c≥	αedge,N			with c≥	αedge,V⊥		with c ≥	αedge,VII		
	•	50	1,00			50	0,25		50	1,00		
		120	1,00			250	1,00		120	1,00		

Injection System HB-VMU plus for masonry

Performances - Hollow Clay brick Thermopor TV8+

Description, installation parameters, reduction factors

Annex C53

Brick type: Hollow clay brick Thermopor TV8+ with insulation - continuation

Table C148: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpend	licular to	horizon	tal joint
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	50	50	1,00		50	50	1,00
		120	250	2,00		120	250	2,00
		with c≥	with s ≥	αg II,V⊥		with c≥	with s ≥	$\alpha_{\text{g}\perp,\text{V}\perp}$
Shear load perpendicular		50	50	0,75		50	50	0,50
to the free edge		250	50	2,00		250	50	1,70
to the free eage		250	250	2,00		250	250	2,00
Shoar load		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	α _{g ⊥,} ∨ II
Shear load parallel	•	50	50	1,65		50	50	1,15
to the free edge		120	250	2,00		120	250	2,00

Table C149: Characteristic resistance under tension and shear load

			Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$							
Anchor size	Sleeve	Effective	Use condition							
	НВ-	anchorage depth		d/d			w/d w/w		d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges	
		h _{ef}	$N_{Rk,b} = N_{Rk,p}$ 1)				V _{Rk,b} 1)			
		[mm]			[kN	1]			[kN]	
	Noi	malised mea	an compr	essive st	rength fb	≥ 10 N/m	nm² ²)		7	
M8	VM-SH 12	80								
M8 / M10/ IG-M6	VM-SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	3,5	
M12 / IG-M8	VM-SH 20	≥ 85								
M16 / IG-M10	VM-SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,0	

 $^{^{1)}\,}N_{Rk,b,c}$ = $N_{Rk,p,c}$ and $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ according to Annex C5

Table C150: Displacements

Anchor size	h _{ef}	δη / Ν	δινο	δn∞	δ _V / V	δνο	δν∞
Allollor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	.0.4690.05721	300 J 10000000			0,31	0,31*V _{Rk} /3,5	.,

Injection System HB-VMU plus for masonry	
Performances – Hollow Clay brick Thermopor TV8+ Group factors, characteristic resistance and displacements	Annex C54

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C145. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow light weight concrete brick HBL 16DF

Table C151: Description

Brick type		Hollow light weight concrete brick HBL 16DF
Density	ρ [kg/dm³] ≥ 1,0
Normalised mean compressive strength	f _b [N/mm ²] ≥ 3,1
Conversion factor for lowe strengths	r compressive	$(f_b / 3,1)^{0,5} \le 1,0$
Norm	[-]	EN 771-3:2011+A1:2015
Producer (country code)	[-]	e.g. KLB Klimaleichtblock (DE)
Brick dimensions	[mm]	500 x 250 x 240
Drilling method	[-]	Rotary drilling
		25 50 25 40 25 50 25 40 25 50 25 25 25 25 25 25 25 25 25 25 25 25 25
	25 30 42,5 50 2	185 30 185 30 25 50 25 50 42.5 497

Table C152: Installation parameter

Anchor size	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Installation torque	T _{inst}	[Nm]	≤ 2	≤ 2	≤ 5	≤ 5	≤ 2	≤ 5	≤ 5
Edge distance (under fire exposure)	Ccr; (Ccr,fi)	[mm]	120 (2 h_{ef}) (for shear loads perpendicular to the free edge: c_{cr} = 250)						
Minimum edge distance	C _{min}	[mm]	50						
Spacing (under fire	Scr, II (Scr,fi, II)	[mm]	500 (4 h _{ef})						
exposure)	$S_{cr, \perp}(S_{cr,fi, \perp})$	[mm]	250 (4 h _{ef})						
Minimum spacing	Smin, II; Smin, ⊥	[mm]				50			

Table C153: Reduction factors for single anchors at the edge

Tensio	n load		Shear load								
Tellsio	ii ioau		perpendicular	to the free	e edge	perpendicular to the free edge					
	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII			
•	50	1,00	→	50	0,30		50	1,00			
	120	1,00		250	1,00		120	1,00			

Injection System HB-VMU plus for masonry	
Performances – Hollow light weight concrete brick HBL 16DF Description, installation parameters, reduction factors	Annex C55

Brick type: Hollow light weight concrete brick HBL 16DF – continuation Table C154: Factors for anchor groups

	Position perpend	licular to	horizon	tal joint				
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	αg⊥,N
Tension load	• •	50	50	2,00		50	50	1,55
		120	500	2,00		120	250	2,00
Choor lood		with c ≥	with s ≥	αg II,V⊥	1	with c≥	with s ≥	α _{g⊥,} ∨⊥
Shear load perpendicular		50	50	0,60	•	50	50	0,35
to the free edge		120	50	2,00		120	50	1,15
to the free edge	<u> </u>	120	500	2,00	 	120	250	2,00
Shoor load	+	with c ≥	with s ≥	αg II,V II	+	with c≥	with s ≥	αg⊥,∨ II
Shear load parallel to the free edge		50	50	1,30		50	50	1.00
		120	250	2,00		50	50	1,00
to the free edge		120	500	2,00	 	120	250	2,00

Table C155: Characteristic resistance under tension and shear load

			Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$									
Anchor size	Sleeve	Effective	Use condition									
Alichor Size	HB-	anchorage depth	d/d				w/d w/w	d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}			$N_{Rk,b} = 1$	V Rk,p 1)			V _{Rk,b} 1)			
		[mm]			[kN	1]		3	[kN]			
	Nor	malised mea	n compr	essive st	rength f₅	≥ 3,1 N/n	nm² ²)					
M8 / M10/IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,0			
M12 / IG-M8	VM-SH 20	≥ 85	1 5	1 5	1.0	1 5	1 5	1.0	3,0			
M16 / IG-M10	VM-SH 20	≥ 85	1,5	1,5	1,2	1,5	1,5	1,2	5,0			

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c II}}$ = $V_{\text{Rk,c}\,\perp}$ according to Annex C5

Table C156: Displacements

Table O 100. Disple	tocincino						
Anchor size	h _{ef}	δ _N / N	δινο	δ _{N∞}	δ _V / V	δνο	δν∞
Anchor size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δ _{N0}	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	7				0,31	0,31*V _{Rk} /3,5	

Table C157: Characteristic resistance under fire exposure

Anchor size	Sleeve	Effective anchorage depth			ic resistance _{k,p,fi} = V _{Rk,b,fi}			
	HB-	h _{ef}	R30 R60 R90 R120					
		[mm]		[k	N]			
M8 / M10 /IG-M6	VM-SH 16	130	0.20	0.21	no performance			
M12 / IG-M8	VM-SH 20	≥ 130	0,29	0,21	assessed	no performance assessed		
M16 / IG-M10	VM-SH 20	≥ 130	0,29	0,21	0,12	assesseu		

Injection System HB-VMU plus for masonry	
Performances – Hollow light weight concrete brick HBL 16DF Group factors, characteristic resistance and displacements	Annex C56

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C151. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Hollow concrete brick Bloc Creux B40

Table C158: Description

Brick type		Hollow concrete brick Bloc Creux B40	
Density	o [kg/dm³]	≥ 0,8	
Normalised mean compressive strength	_b [N/mm ²]	≥ 5,2	
Conversion factor for lower costrengths	mpressive	$(f_b / 5,2)^{0,5} \le 1,0$	
Norm	[-]	EN 771-3:2011+A1:2015	
Producer (country code)	[-]	e.g. Leroux (FR)	
Brick dimensions	[mm]	500 x 200 x 200	
Drilling method	[-]	Rotary drilling	
			17 72 17 72 17 196
17	130	17 130 17 130 495	17

Table C159: Installation parameter

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T _{inst}	[Nm]	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4	≤ 4
Edge distance	Ccr	[mm]	120 (for shear loads perpendicular to the free edge: c _{cr} = 170)						
Minimum edge distance	Cmin	[mm]	50						
Specing	Scr, II	[mm]	170						
Spacing	S _{cr, ⊥}	[mm]	200						
Minimum spacing	S _{min, II} S _{min, ⊥}	[mm]	50						

Table C160: Reduction factors for single anchors at the edge

Tensio	n lood		Shear load								
Telisio	II loau		perpendicular	to the fre	e edge	perpendicular to the free edge					
	with c≥	αedge,N		with c≥	αedge,V⊥		with c≥	αedge,VII			
•	50	1,00	→	50	0,35		50	1,00			
	120	1,00		170	1,00		120	1,00			

Injection System HB-VMU plus for masonry	
Performances – Hollow concrete brick Bloc Creux B40 Description, installation parameters, reduction factors	Annex C57

Brick type: Hollow concrete brick Bloc Creux B40 – continuation

Table C161: Factors for anchor groups

	Position parallel t	o horizor	ntal joint		Position perpendicular to horizontal joint					
		with c ≥	with s ≥	αg II,N		with c≥	with s ≥	α _{g⊥,N}		
Tension load		50	50	1,50		50	50	1,40		
		50	170	2,00		50	200	2,00		
		120	170	2,00		120	200	2,00		
		with c ≥	with s ≥	αg II,V⊥		with c≥	with s ≥	αд⊥,∨⊥		
Shear load perpendicular		50	50	0,55	•	50	50	0,35		
to the free edge		120	50	1,30		120	50	0,85		
to the nee eage		120	170	2,00		120	200	2,00		
		with c ≥	with s ≥	αg II,V II		with c≥	with s ≥	αg⊥,∨ II		
Shear load parallel		50	50	1,10		50	50	1,00		
to the free edge			50	1,10		50	200	2,00		
Lo tho hoo dage		120	170	2,00		120	200	2,00		

Table C162: Characteristic resistance under tension and shear load

				Characteristic resistance with $c \ge c_{cr}$ and $s \ge s_{cr}$								
Anchor size	Sleeve	Effective			L	lse cond	ition					
	нв-	anchorage depth		d/d		w/d w/w			d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$ 1)					V _{Rk,b} 1)			
		[mm]			[kN	1]			[kN]			
	Nor	malised mea	ın compr	essive st	rength f _b	≥ 5,2 N/n	nm² ²)					
M8 / M10 IG-M6	VM-SH 16	130	2.0	4.5	1.0	2.0	4.5	4.0	6.0			
M12 / M16 IG-M8 /IG-M10	VM-SH 20	≥ 130	2,0	1,5	1,2	2,0	1,5	1,2	6,0			

 $^{^{1)}\,}N_{\text{Rk,b,c}}$ = $N_{\text{Rk,p,c}}$ and $V_{\text{Rk,c\,II}}$ = $V_{\text{Rk,c\,\bot}}$ according to Annex C5

Table C163: Displacements

Anchor size	h _{ef}	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν∞	
Allelioi Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	all	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1, 5 *δνο	
M16			,	_ = = = = = = = = = = = = = = = = = = =	0,31	0,31*V _{Rk} /3,5	.,- 010	

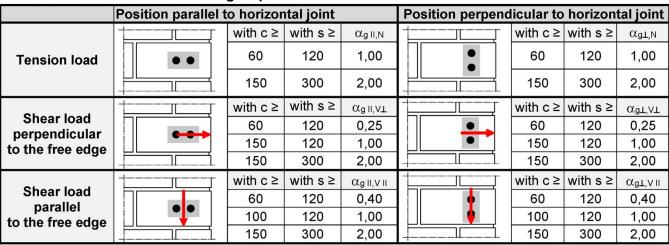
Injection System HB-VMU plus for masonry	
Performances – Hollow concrete brick Bloc Creux B40 Group factors, characteristic resistance and displacements	Annex C58

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C158. For stones with higher strengths, the shown values are valid without conversion.

Brick type: Solid light weight concrete brick VBL

Table C164: Description

Brick type			Solid light weight concrete brick VBL
Density	ρ	[kg/dm ³]	≥ 0,6
Normalised mean compressive strength	f_{b}	[N/mm ²]	≥ 2
Conversion factor for lower strengths	com	pressive	$(f_b / 2)^{0,5} \le 1,0$
Norm		[-]	EN 771-3:2011+A1:2015
Producer (country code)		[-]	e.g. Bisotherm (DE)
Brick dimensions		[mm]	≥ 240 x 300 x 113
Drilling method		[-]	Rotary drilling


Table C165: Installation parameter

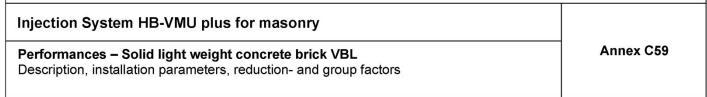

Anchor size			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation torque	T_{inst}	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Edge distance	Ccr	[mm]	150						
Minimum edge distance	C _{min}	[mm]	60						
Specing	Scr, II	[mm]	300						
Spacing	Scr, ⊥	[mm]	300						
Minimum spacing	120								

Table C166: Reduction factors for single anchors at the edge

-	Tanaia	n load			Shear load								
	ensio	ii ioau		perpendicular to the free edge perpendicular to the free ed						edge			
		with c≥	αedge,N	+		with c≥	αedge,V⊥		with c ≥	αedge,VII			
	•	60	1,00			60	0,25		60	0,40			
		150	1,00	ļ		150	1,00		100	1,00			

Table C167: Factors for anchor groups

Brick type: Solid light weight concrete brick VBL – continuation Table C168: Characteristic resistance under tension and shear load

				Charact	eristic re	sistance	with c≥	c _{cr} and s	≥ s _{cr}		
Anchor size	Sleeve	Effective	Use condition								
	НВ-	anchorage depth	,	d/d			w/d w/w	d/d w/d w/w			
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	all temperature ranges		
		h _{ef}			$N_{Rk,b} = I$	V Rk,p 1)			V _{Rk,b} 1)		
		[mm]			[kN	1]		[kN]			
	No	rmalised me	an comp	ressive s	trength f	≥ 2 N/m	m ^{2 2)}				
M8	-	80									
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	1,5			
M12 / M16 / IG-M8 / IG-M10	-	100									
M8	VM-SH 12	80							3,0		
M8 / M10 IG-M6	VM-SH 16	≥ 85	2,5	2,5	2,0	2,5	2,0	1,5			
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85									

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c | II} = V_{Rk,c \perp}$ according to Annex C5

Table C169: Displacements

Anchor size	h _{ef}	δ _N / N	διο	δ _{N∞}	δ _V / V	δνο	δ∨∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	all	0,10	0,10*N _{Rk} / 3,5	2*δνο	0,30	0,30*V _{Rk} /3,5	. 1,5*δ√ο
M16					0,10	0,10*V _{Rk} /3,5	

Injection System HB-VMU plus for masonry

Performances – Solid light weight concrete brick VBL
Characteristic resistance and displacements

Annex C60

²⁾ For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C164. For stones with higher strengths, the shown values are valid without conversion.