

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0294 of 29 September 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

BOSSONG universal frame anchor JNS-PLUS

Plastic anchor for redundant non-structural systems in concrete and masonry

Bossong SpA Via Enrico Fermi 51 24050 GRASSOBBIO (Bergamo) **ITALIEN**

Bossong S.p.A. - Plant1

22 pages including 3 annexes which form an integral part of this assessment

EAD 330284-00-0604, edition 12/2020

ETA-17/0294 issued on 7 September 2017

Z211827.25

European Technical Assessment ETA-17/0294

English translation prepared by DIBt

Page 2 of 22 | 29 September 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 22 | 29 September 2025

Specific Part

1 Technical description of the product

The BOSSONG universal frame anchor JNS-PLUS is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 1

3.2 Mechanical resistance and stability (BWR 4)

Essential characteristic	Performance
Resistance to steel failure under tension loading	See Annex C 1
Resistance to steel failure under shear loading	See Annex C 1
Resistance to pull-out or concrete failure under tension loading (base material group a)	See Annex C 1
Resistance in any load direction without lever arm (base material group b, c, d)	See Annexes C 2 - C 4 and C 9
Edge distance and spacing (base material group a)	See Annex B 2
Edge distance and spacing (base material group b, c, d)	See Annex B 3 - B 5
Displacements under short-term and long-term loading	See Annex C 5 - C 9
Durability	See Annex B 1

European Technical Assessment ETA-17/0294

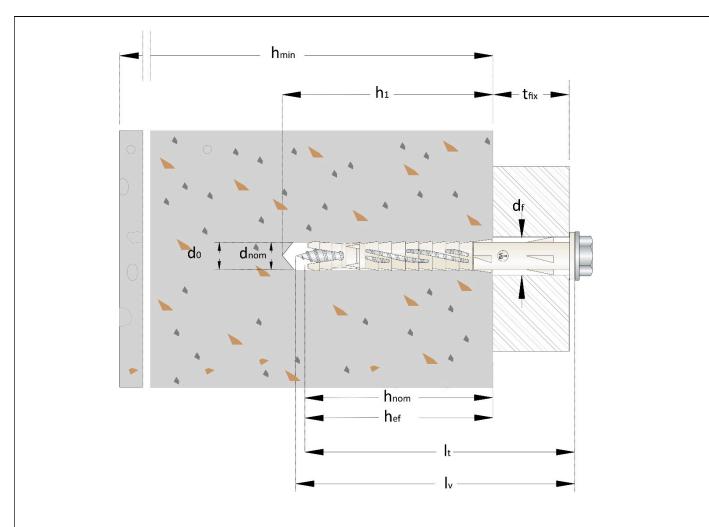
English translation prepared by DIBt

Page 4 of 22 | 29 September 2025

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD 330284-00-0604 the applicable European legal act is: 97/463/EC.

The system to be applied is: 2+

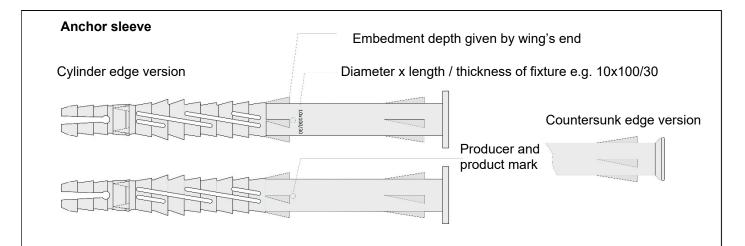

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 29 September 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Ziegler

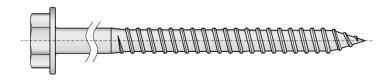
Intended use:


Fixing in concrete and different types of masonry.

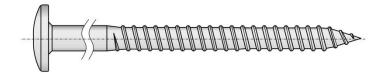
Legend:

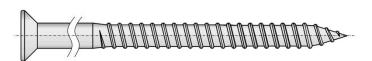
h _{min} :	minimum thickness of concrete member
h _{nom} :	minimum overall embedment depth
h _{ef} :	minimum effective embedment depth
d _{nom} :	anchor diameter
I _t :	anchor length
l _v :	screw length
d ₀ :	drill hole diameter
h₁:	minimum depth of drill hole
t _{fix} :	maximum thickness of fixture
d _f :	diameter of clearance hole in the fixture

BOSSONG universal frame anchor JNS-PLUS	
Product description Installed condition	Annex A 1



Special screw (Carbon steel version and stainless steel A4 version)





BOSSONG universal frame anchor JNS-PLUS	
Product description Anchor types / specific screw – marking and dimensions	Annex A 2

Table 1: Dimensions

Anchor type		JNS- PLUS Ø 8	JNS- PLUS Ø 10
Outside diameter of anchor	d _{nom} = [mm]	8	10
Length of the anchor	l _t = [mm]	≥	80
Screw diameter	dv = [mm]	6	7
Screw length	lv = [mm]	≥85	≥85

Table 2: Materials

Anchor sleeve	Polyamide PA 6, colour: light grey
Carbon steel screw	Carbon Steel grade 5.8, Electroplated coating of zinc minimum 5 μm according to ISO 4042:2022 (hereinafter designated "zinc plated carbon steel")
Stainless steel screw	SS A4/70 according to ISO 3506-1:2020 and EN 10088-3:2014 Corrosion Resistance Class CRC III according to EN 1993-1-4:2006+A1:2015

BOSSONG universal frame anchor JNS-PLUS	
Product description	Annex A 3
Dimensions and materials	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads:
- Redundant non-structural systems

Base materials:

- Reinforced or unreinforced compacted normal weight concrete without fibres with strength classes ≥ C16/20 (base material group a), according to EN 206:2013 + A1:2016. See Annex C 1.
- Solid brick masonry (base material group b). See Annex C 2.
 Note: The characteristic resistance is also valid for larger brick sizes and larger compressive strength of the masonry unit.
- Hollow or perforated brick masonry (base material group c). See Annexes C 3 and C 4.
- Autoclaved aerated concrete (base material group d). See Annex C 9
- Mortar strength class of the masonry ≥ M2,5 at minimum according to EN 998-2:2016.
- For other base materials of the base material group a, b, c or d the characteristic resistance of the anchor may be determined by job site tests according to EOTA TR 051:2018-04.

Temperature Range:

- a: 40 °C to 40 °C (max. short term temperature + 40 °C and max long term temperature + 24 °C)
- b: 40 °C to 80 °C (max. short term temperature + 80 °C and max long term temperature + 50 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: zinc plated carbon steel screws, A4 stainless steel screws.
- The specific screw made of zinc plated carbon steel may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist: A4 stainless steel screws. Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with TR 064:2018-05 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances. The position of the anchor is indicated on the design drawings.

Installation:

- Hole drilling by the drill modes according to Annex C 1, C 2, C 3, C 4, C 9.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Installation temperature ≥ 0°C
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks
- No ingress of water in the core hole < 0°C

BOSSONG universal frame anchor JNS-PLUS	
Intended use Specifications	Annex B 1

Table 3: Installation parameters

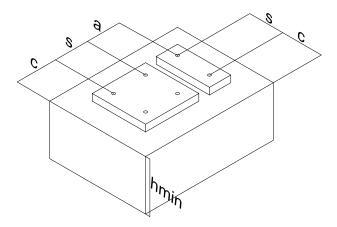

Parameter / Size		JNS- PLUS Ø 8	JNS- PLUS Ø 10
Nominal drill hole diameter	d _o [mm]	8	10
Cutting diameter of drill bit	d _{cut} ≤[mm]	8,45	10,45
Depth of drill hole	h ₁ = [mm]	90	90
Effective anchorage depth	h _{ef} = [mm]	70	70
Diameter of clearance hole in the fixture	d _f = [mm]	9	11
Thickness of fixture	t _{fix} = [mm]	≥	10
Hexalobular socket number (ISO 10664)	T [-]	30	40
Wrench size (for hexagonal head only)	SW = [mm]	10	13

Table 4: Minimum thickness of the member, edge distance and spacing in concrete

Parameter / Size		JNS- PLUS Ø 8	JNS- PLUS Ø 10
Concrete strength class		≥ C1	6/20
Minimum thickness of the member	h _{min} [mm]	14	40
Characteristic edge distance	c _{cr,N} 1) [mm]	105	105
Characteristic spacing	S _{cr,N} 1) [mm]	75	90
Minimum angoing and adge distance1)	s _{min} [mm]	90	100
Minimum spacing and edge distance ¹⁾	c _{min} [mm]	90	100

¹⁾ Intermediate value by linear interpolation

Scheme of edge distance and spacing in concrete and masonry

Fixing points with a spacing a \leq s_{cr,N} are considered as a group with a maximum characteristic resistance N_{Rk,p} according to Table 17. For a spacing a > s_{cr,N} the anchors are considered as single anchors, each with a characteristic resistance N_{Rk,p} according to Table 17.

BOSSONG universal frame anchor JNS-PLUS	
Intended use Installation parameters, edge distances and spacing for use in concrete	Annex B 2

Table 5: Minimum distances and dimensions in solid brick masonry - Type "A"

Minimum thickness of the member	h _{min} [mm]	110
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

Table 6: Minimum distances and dimensions in solid brick masonry - Type "B"

Minimum thickness of the member	h _{min} [mm]	120
Single anchor		
Minimum edge distance	c _{min} [mm]	125
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	250
Spacing parallel to free edge	S _{2,min} [mm]	500
Minimum edge distance	c _{min} [mm]	125

Table 7: Minimum distances and dimensions in solid brick masonry - Type "E"

Minimum thickness of the member	h _{min} [mm]	370
Single anchor		
Minimum edge distance	c _{min} [mm]	185
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	370
Spacing parallel to free edge	S _{2,min} [mm]	740
Minimum edge distance	c _{min} [mm]	185

Table 8: Minimum distances and dimensions in solid brick masonry - Type "F"

Minimum thickness of the member	h _{min} [mm]	240
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

BOSSONG universal frame anchor JNS-PLUS	
Intended use Edge distances and spacing for use in solid brick masonry	Annex B 3

Table 9: Minimum distances and dimensions in perforated brick masonry - Type "C"

Minimum thickness of the member	h _{min} [mm]	120
Single anchor		
Minimum edge distance	c _{min} [mm]	125
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	250
Spacing parallel to free edge	S _{2,min} [mm]	500
Minimum edge distance	c _{min} [mm]	125

Table 10: Minimum distances and dimensions in perforated brick masonry – Type "D"

Minimum thickness of the member	h _{min} [mm]	120
Single anchor		
Minimum edge distance	c _{min} [mm]	125
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	250
Spacing parallel to free edge	S _{2,min} [mm]	500
Minimum edge distance	c _{min} [mm]	75

Table 11: Minimum distances and dimensions in perforated brick masonry – Type "G"

Minimum thickness of the member	h _{min} [mm]	240
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

Table 12: Minimum distances and dimensions in perforated brick masonry – Type "H"

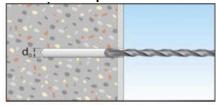
Minimum thickness of the member	h _{min} [mm]	115
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

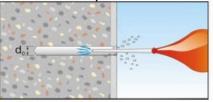
BOSSONG universal frame anchor JNS-PLUS	_
Intended use Edge distances and spacing for use in perforated brick masonry	Annex B 4

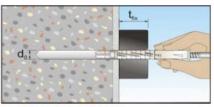
Table 13: Minimum distances and dimensions in hollow brick masonry – Type "I"

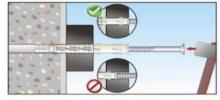
Minimum thickness of the member	h _{min} [mm]	175
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

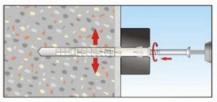
Table 14: Minimum distances and dimensions in autoclaved aerated concrete

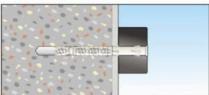

Minimum thickness of the member	h _{min} [mm]	240
Single anchor		
Minimum edge distance	c _{min} [mm]	120
Anchor Group		
Spacing perpendicular to free edge	S _{1,min} [mm]	240
Spacing parallel to free edge	S _{2,min} [mm]	480
Minimum edge distance	c _{min} [mm]	120

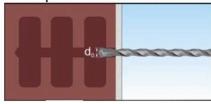

BOSSONG universal frame anchor JNS-PLUS	
Intended use Edge distances and spacing for use in hollow brick masonry and autoclaved aerated concrete	Annex B 5

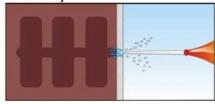


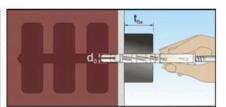

Setting instructions

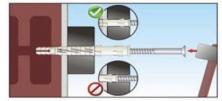

Installation sequence in concrete and solid brick masonry

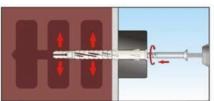


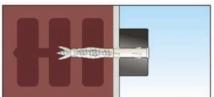


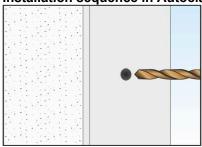


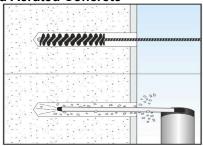


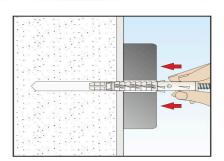


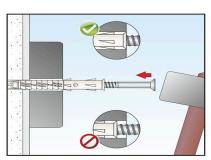

Installation sequence in perforated brick masonry

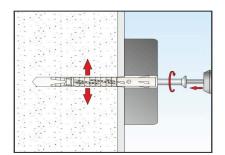


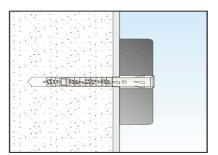









Installation sequence in Autoclaved Aerated Concrete



BOSSONG universal frame anchor JNS-PLUS

Intended use Setting instructions Annex B 6

Table 15: Characteristic bending resistance of the screw

Parameter / Size		JNS-PL	.US Ø 8	JNS-PLUS Ø 10		
			Galvanized steel	Stainless steel	Galvanized steel	Stainless steel
Characteristic bending resistance	M _{Rk,s}	[Nm]	12,1	16,9	19,3	27,1
Partial safety factor	γMs	[-]	1,25			

Table 16: Characteristic resistance of the screw

Parameter / Size			JNS-PL	.US Ø 8	JNS-PLUS Ø 10		
			Galvanized Stainless steel steel		Galvanized steel	Stainless steel	
Characteristic tension resistance	$N_{Rk,s}$	[kN]	11,3	15,8	15,4	21,6	
Partial safety factor	γMs	[-]	1,5				
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,6	7,9	7,7	10,8	
Partial safety factor	γMs	[-]	1,25				

Table 17: Characteristic resistance for use in concrete¹⁾

Plastic sleeve pull-out	Plastic sleeve pull-out failure			.US Ø 8	JNS-PLUS Ø 10	
Temperature range			24/40 °C	50/80 °C	24/40 °C	50/80 °C
Characteristic tension resistance		[kN]	3,5	3,0	4,5	4,0
Partial safety factor	γ _{Mc} ²⁾	[-]	1,8			

¹⁾ Concrete strength f_{ck} ≥ 16 N/mm² (strength class C16/20 according to EN 206:2013 + A1:2016)

Drill method: hammer drilling

Table 18: Characteristic resistance under fire exposure in concrete¹⁾ in any load direction, no permanent centric tension load and without lever arm, fastening of façade systems

	Anchor type	Fire resistance class	F _{Rk,fi,90} [kN]	γ _{M,fi} ²⁾ [-]	
JNS-PLUS R 90		R 90	0,8	1,0	

¹⁾ Concrete strength f_{ck} ≥ 16 N/mm² (strength class C16/20 according to EN 206:2013 + A1:2016) Drill method: hammer drilling

BOSSONG universal frame anchor JNS-PLUS	
Performances Characteristic resistance of the screw, characteristic resistance for use in concrete	Annex C 1

²⁾ In absence of other national regulations

²⁾ In absence of other national regulations

Table 19: Characteristic resistance – Solid brick masonry type "A" (base material group "b")

Base material	Drill method	Bulk density ρ	Mean compressive strength as per EN 771	JNS- PLUS Ø 8	JNS- PLUS Ø 10 F _{Rk}
description	-	[kg/dm ³]	[N/mm ²]	[kN]	[kN]
Solid clay brick according to EN 771-1:2011+A1:2015 Mattone pieno 110x60x240 "Danesi"	Rotary + hammer	1,7	20,0	3,01)	2,01)

Table 20: Characteristic resistance – Solid brick masonry type "B" (base material group "b")

Base material	Drill method	Bulk density ρ	Mean compressive strength as per EN 771	JNS- PLUS Ø 8	JNS- PLUS Ø 10 F _{Rk}
description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Solid clay brick according to EN 771-1:2011+A1:2015 Mattone pieno 250x120x55 "Terreal Italia"	Rotary + hammer	1,7	20,0	4,01)	5,01)

Table 21: Characteristic resistance - Solid brick masonry type "E" (base material group "b")

Base material	Drill method	Bulk density ρ	Mean compressive strength as per EN 771	JNS- PLUS Ø 8 F _{Rk}	JNS- PLUS Ø 10 F _{Rk}
description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Vulcanic tuff brick according to EN 771-3:2011+A1:2015 Fior di tufo 370x370x110 "Cave reunite"	Rotary + hammer	2,4	7,5	-	0,3

Table 22: Characteristic resistance – Solid brick masonry type "F" (base material group "b")

Base material	Drill method	Bulk density ρ	Mean compressive strength as per EN 771	JNS- PLUS Ø 8 F _{Rk}	JNS- PLUS Ø 10 F _{Rk}
description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Calcium silicate solid brick according to EN 771-2:2011+A1:2015 Kalksandsteine KS-Plansteine KS-R(P)- 20-2,0-8DF (240) "Heidelberger- Kalksandstein"	Rotary + hammer	1,9	20,0	5,5 ¹⁾	6,0 ¹⁾

¹⁾ For brick with mean compressive strength in the range 10 - 20 N/mm²: $F_{Rk,low}$ = 0,7 x F_{Rk} (with F_{Rk} for 20 N/mm²)

BOSSONG universal frame anchor JNS-PLUS	
Performances Characteristic resistance for use in solid brick masonry	Annex C 2

Table 23: Hollow and perforated brick masonry (base material group "c") dimensional details

Brick type	Base material description	Dimensions [mm]	Dimensional details
"C"	Perforated clay brick Doppio doppio UNI "Danesi"	120x245x250	23 >7,2 >10 28 120
"D"	Perforated clay brick according to EN-771-1:2011+A1:2015 Forati "Wienerberger"	120x250x250	28 120
"G"	Perforated clay brick, according to EN 771- 1:2011+A1:2015 Poroton-Hochlochziegel- Block-T-24,0-0,9 L "Wienerberger"	240x500x238	15 10 12 12 12 12 12 12 12 12 12 12 12 12 12
"Н"	Perforated clay brick, according to EN 771-1:2011+A1:2015 Poroton-Kleinformat HlzB- 2DF -0,9 "Wienerberger"	115x240x113	25.0
"l"	Hollow calcium silicate brick according to EN 771-2:2011+A1:2015 "Heidelberger- Kalksandstein" KS-L	175x240x113	21

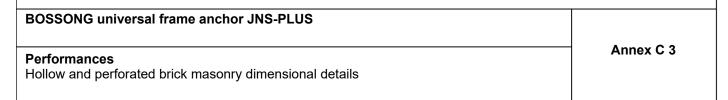


Table 24: Characteristic resistance - perforated and hollow brick masonry (base material group "c")

Base material	Drill method	Bulk density ρ	Mean com- pressive strength as per EN 771	JNS- PLUS Ø 8 F _{Rk}	JNS- PLUS Ø 10 F _{Rk}
description	-	[kg/dm³]	[N/mm²]	[kN]	[kN]
Masonry type "C"					
Perforated clay brick according to EN 771-1:2011+A1:2015 Doppio doppio UNI 120x245x250 "Danesi"	Rotary	0,9	13,0	-	0,3
Masonry type "D"					
Perforated clay brick according to EN 771-1:2011+A1:2015 Forati 120x250x250 "Wienerberger"	Rotary	0,6	2,0	0,3	-
Masonry type "G"					
Perforated clay brick, according to EN 771-1:2011+A1:2015 Poroton-Hochlochziegel-Block-T-24,0-0,9 L"Wienerberger"	Rotary	0,9	7,0	0,9	0,9
Masonry type "H"					
Perforated clay brick, according to EN 771-1:2011+A1:2015 Poroton-Kleinformat HIzB- 2DF -0,9 "Wienerberger"	Rotary	0,9	15,0	0,9	0,9
Masonry type "I"					
Hollow calcium silicate brick according to EN 771-2:2011+A1:2015 "Heidelberger-Kalksandstein" KS-L	Rotary	1,5	15,0	5,0	5,5

BOSSONG universal frame anchor JNS-PLUS	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 4

Table 25: Displacements under tension load in concrete

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load concrete	N	[kN]	1,2	1,6
Displacements	δ_{N0}	[mm]	0,24	0,29
Displacements	$\delta_{N\infty}$	[mm]	0,48	0,58

Table 26: Displacements under shear load in concrete

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load in concrete	V	[kN]	3,2	4,4
Displacements	δ_{V0}	[mm]	2,00	1,67
Displacements	δ_{V_∞}	[mm]	3,00	2,50

Table 27: Displacements under tension load in solid brick masonry - type "A"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load in solid masonry	N	[kN]	0,9	0,6
Displacements	δ_{N0}	[mm]	0,04	0,06
Dispiacements	$\delta_{N\infty}$	[mm]	0,08	0,12

Table 28: Displacements under tension load in solid brick masonry - type "B"

Parameter / Size	JNS- PLUS Ø 8	JNS- PLUS Ø 10		
Service tension load in solid masonry	N	[kN]	1,1	1,4
Dianlacomento	δ_{N0}	[mm]	0,25	0,67
Displacements	δ _{N∞}	[mm]	0,50	1,34

BOSSONG universal frame anchor JNS-PLUS	
Performances	Annex C 5
Displacements in concrete and solid masonry	

Table 29: Displacements under tension load in solid brick masonry - type "E"

Parameter / Size	JNS- PLUS Ø 8		
Service tension load in solid masonry	N	[kN]	0,09
Displacements	δ_{N0}	[mm]	0,01
Dishiacements	$\delta_{N\infty}$	[mm]	0,02

Table 30: Displacements under tension load in solid brick masonry - type "F"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load in solid masonry	N	[kN]	1,57	1,71
Displacements	δ_{N0}	[mm]	0,14	0,07
Displacements	δ _{N∞}	[mm]	0,29	0,15

Table 31: Displacements under shear load in solid brick masonry - type "A", "B" and "E"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load in solid masonry	v	[kN]	3,2	4,4
Displacements	δ_{V0}	[mm]	2,67	3,67
Displacements	δ _{V∞}	[mm]	4,00	5,50

Table 32: Displacements under shear load in solid brick masonry - type "F"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load in solid masonry	v	[kN]	1,57	1,71
Displacements	δ_{V0}	[mm]	1,31	1,43
Displacements	δ _{V∞}	[mm]	1,96	2,14

BOSSONG universal frame anchor JNS-PLUS	
Performances	Annex C 6
Displacements in solid masonry	

Table 33: Displacements under tension load in perforated brick masonry - type "C"

Parameter / Size	JNS- PLUS Ø 10		
Service tension load in hollow masonry	N	[kN]	0,09
Dianlacamenta	δ_{N0}	[mm]	0,12
Displacements	$\delta_{N\infty}$	[mm]	0,24

Table 34: Displacements under tension load in perforated brick masonry - type "D"

Parameter / Size	JNS- PLUS Ø 8		
Service tension load in hollow masonry	N	[kN]	0,09
Dioplesements	δ_{N0}	[mm]	0,03
Displacements	$\delta_{N\infty}$	[mm]	0,06

Table 35: Displacements under tension load in perforated brick masonry - type "G"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load in hollow masonry	N	[kN]	0,26	0,26
Displacements	δ_{N0}	[mm]	0,01	0,01
Displacements	$\delta_{N\infty}$	[mm]	0,02	0,02

Table 36: Displacements under tension load in perforated brick masonry - type "H"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load in hollow masonry	N	[kN]	0,26	0,26
Displacements	δ_{N0}	[mm]	0,01	0,01
	$\delta_{N\infty}$	[mm]	0,02	0,02

Table 37: Displacements under tension load in hollow brick masonry - type "I"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load in hollow masonry	N	[kN]	1,43	1,57
Displacements	δ_{N0}	[mm]	0,11	0,08
Displacements	$\delta_{N\infty}$	[mm]	0,21	0,17

BOSSONG universal frame anchor JNS-PLUS	
Performances Displacements under tension load in perforated and hollow brick masonry	Annex C 7

Table 38: Displacements under shear load in perforated brick masonry type "C" and "D"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load in hollow masonry	V	[kN]	3,2	4,4
Displacements	δ_{V0}	[mm]	6,40	8,80
Displacements	δ _{V∞}	[mm]	9,60	13,20

Table 39: Displacements under shear load in perforated brick masonry type "G" and "H"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load in hollow masonry	v	[kN]	0,26	0,26
Displacements	δ_{V0}	[mm]	0,21	0,21
Displacements	δ _{V∞}	[mm]	0,32	0,32

Table 40: Displacements under shear load in hollow brick masonry type "I"

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load in hollow masonry	v	[kN]	1,43	1,57
Displacements	δ_{V0}	[mm]	1,19	1,31
Displacements	$\delta_{V\infty}$	[mm]	1,79	1,96

BOSSONG universal frame anchor JNS-PLUS	
Performances Displacements under shear load in perforated and hollow brick masonry	Annex C 8

Table 41: Characteristic resistance in autoclaved aerated concrete (base material group "d")

Base material	Drill method	Bulk density ρ	Mean compressive strength as per EN 771 f _{cm,decl}	JNS- PLUS Ø 8 F _{Rk}	JNS- PLUS Ø 10 F _{Rk}
description	-	[kg/dm³]	[N/mm ²]	[kN]	[kN]
Uncracked autoclaved aerated concrete blocks EN 771-4:2011+A1:2015	Rotary only	0,5	3,5	0,5	0,6

Table 42: Displacements under tension load in autoclaved aerated concrete

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service tension load	N	[kN]	0,18	0,21
Dianlacements	δ_{N0}	[mm]	0,01	0,01
Displacements	δ _{N∞}	[mm]	0,02	0,02

Table 43: Displacements under shear load in autoclaved aerated concrete

Parameter / Size			JNS- PLUS Ø 8	JNS- PLUS Ø 10
Service shear load	v	[kN]	0,18	0,21
Displacements	δ_{V0}	[mm]	0,36	0,43
	$\delta_{V\infty}$	[mm]	0,54	0,64

BOSSONG universal frame anchor JNS-PLUS	
Performances Characteristic resistance and displacements for use in autoclaved aerated concrete	Annex C 9